wo 2011/130038 A2 I 10K 0 R 0O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization . /gy |1 I 01NN 00100000 O R A
nternational Bureau W - U
(43) International Publication Date \'é’;___,/ (10) International Publication Number
20 October 2011 (20.10.2011) PCT WO 2011/130038 A2
(51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
HO4L 29/06 (2006.01) HO041 9/32 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
. L HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(21) International Application Number: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
PCT/US2011/031103 ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, N,
(22) International Filing Date: NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
4 April 2011 (04.04.2011) SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(25) Filing Language: English
) (84) Designated States (unless otherwise indicated, for every
(26) Publication Language: English kind of regional protection available): ARIPO (BW, GH,
(30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
61/324,723 15 April 2010 (15.04.2010) US ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
12/845,620 28 July 2010 (28.07.2010) US TM), Buropean (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
(71) Applicant (for all designated States except US). MI- LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SIL, SK,
CROSOFT CORPORATION [US/US]; One Microsoft SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
Way, Redmond, Washington 98052-6399 (US). GW, ML, MR, NE, SN, TD, TG).
(72) Imventors: RAO, Deepak; c/o Microsoft Corporation, Declarations under Rule 4.17:
LCA - International Patents, One Microsoft Way, Red-__ as to applicant's entitlement to apply for and be granted
mond, Washington 98052-6399 (US). TAN, Lei; c/o Mi- A PPy &
crosoft Corporation, LCA - International Patents, One a patent (Rule 4.17(i1))
Microsoft Way, Redmond, Washington 98052-6399 (US). — as to the applicant's entitlement to claim the priority of
GUO, Xin; c¢/o Microsoft Corporation, LCA - Interna- the earlier application (Rule 4.17(iii))
tional Patents, One Microsoft Way, Redmond, Washing- Published:
ton 98052-6399 (US). '
. L — without international search report and to be republished
(81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,

upon receipt of that report (Rule 48.2(g))

(54) Title: METHOD AND SYSTEM FOR RELIABLE PROTOCOL TUNNELING OVER HTTP

304

324 ?

300 \

310
1 SESSION r |
MGMT COMP PLATFORM |
322 a | SERVICES [% 326
sERvicE || b-——————~- NS
|1 N
31257 ANNEETS
315 Y1 SERVER
BROWSER- 1
BASED N
CLIENT

RELAY ENGINE
COmMP

PLAIN HTTP
WEB

302/

328 HANDLER

ﬁ

TRANSPORT 4

HTTP/HTTPS RELAY

316 \318

(57) Abstract: The embodiments described herein generally relate to methods and systems for tunneling arbitrary binary data be-
tween an HTTP endpoint and an arbitrary destination. Such tunneling of data is valuable in an environment, for example, in which
a browser-based client communicates in the HTTP protocol and desires to exchange data with a remote endpoint understanding
non-HTTP communications. A relay server is used as a "middle man" to connect the client to the destination, and components
supporting the necessary protocols for data exchange are plugged into the relay server. To achieve reliable and ordered transmis-
sion of data, the relay server groups sessions through the assignment of session identifiers and tracks the exchange of messages
through the assignment of sequence and acknowledgment numbers. Further, the relay server provides for authenticating the HTTP
endpoint with the destination and for handling other operations not available in the constrained environment ot the Web-based
client.

Fig. 3

SERVER

10

15

20

25

30

WO 2011/130038 PCT/US2011/031103

METHOD AND SYSTEM FOR RELIABLE PROTOCOL TUNNELING OVER
HTTP
BACKGROUND

[0001] Web conferencing has become an increasingly useful tool for conducting live
meetings, presentations, training seminars, etc., over the Internet, or World Wide Web. In
a typical Web conference, multiple participants in the conference are connected to each
other over the Internet from their personal computers. An example software platform for
providing Web conferencing capabilities is MICROSOFT COMMUNICATIONS
SERVER produced by MICROSOFT Corporation of Redmond, Washington. Where a
client desires to join an online meeting but does not have Office Communicator, for
example, installed on the client computer, an AJAX-based (“Asynchronous JavaScript and
XML”) Communicator Web Access (CWA) client is typically used to enable the client to
join the meeting. While an AJAX-based CWA client is able to join the meeting, the client
experience is constrained by the functionality available via Javascript.

[0002] To improve the meeting experience of a browser-based client without requiring
explicit installation of a client application, a different type of client from the AJAX-based
CWA client may be used. For example, a SILVERLIGHT-based client may be used as
derived from the MICROSOFT SILVERLIGHT platform produced by MICROSOFT
Corporation of Redmond, Washington. SILVERLIGHT enables the development of
feature-rich applications that are nearly on par with native applications, both in terms of
functionality as well as the underlying protocol used to communicate with the server.
However, a SILVERLIGHT-type platform may still have some limitations in being able to
develop such an application. For example, the browser-based client typically does not
support a Transmission Control Protocol (TCP) socket connection to the remote server(s)
providing Web meeting conference capabilities. Such socket connections are not made
possible based on the heightened security features inherent in the corporate networks of
the client, in which policy file retrieval is prevented due to restricted ports and the overall
inability to traverse firewalls. Indeed, restricted network connectivity exists in such
situations as firewalled networks, networks behind proxy servers, etc. Without a policy
file, the browser-based client rejects the opening of a socket connection to a remote server.
Further, access to certain security packages such as NT LAN Manager (NTLM)
authentication, Kerberos authentication protocol, or certificate authentication may not be

available to the application. Without such authentication capabilities, the browser-based

10

15

20

25

30

WO 2011/130038 PCT/US2011/031103

client cannot be admitted to a Session Initiation Protocol (SIP) server using the same
protocol as a native client.
[0003] Although specific problems have been addressed in this Background, this
disclosure is not intended in any way to be limited to solving those specific problems.
SUMMARY
[0004] Embodiments generally relate to providing a rich meeting experience and
improved functionality for a Web-based client by leveraging a server entity to act as a
“middle man” for connecting the Web-based client with a remote endpoint, ¢.g., remote
server(s), in the meeting platform without requiring any changes to the remote server(s).
Such a “middle man” server is referred to as a “relay server,” for example. Embodiments
thus provide for enabling a client in a restricted environment to extend its functionality by
connecting to, and thus leveraging the functionality of, the relay server. The relay server,
in turn, has functionality associated with its environment, such as a Windows platform, for
example. A Web-based client typically uses Hypertext Transfer Protocol (HTTP) or
Hypertext Transfer Protocol Secure (HTTPS) for communications and exchange of data in
a Web environment. The description of the embodiments below refers to “HTTP.”
However, as those of skill in the art would appreciate, such embodiments include
“HTTPS” when references to “HTTP” are made. Where a remote server in a meeting
platform, such as a MICROSOFT OFFICE COMMUNICATIONS server (“OCS server”),
has an existing protocol of communications that is not HTTP-based, for example, the use
of a relay server permits the exchange of data between the Web-based client and the
remote server(s) by tunneling arbitrary binary data, or arbitrary protocol data, over HTTP
between the client, or HTTP-endpoint, and the remote server, or other arbitrary
destination. Embodiments thus provide for the tunneling of any arbitrary data over HTTP.
For example, embodiments provide for the following example usages of the relay server
for reliable protocol tunneling over HTTP: tunneling any data over HTTP onto Real-Time
Transport Protocol (RTP) / Secure Real-Time Transport Protocol (SRTP); tunneling
Remote Desktop Protocol (RDP) over HTTP onto any transport mechanism (TCP or User
Datagram Protocol (UDP), for example); tunneling RDP over HTTP onto RTP/SRTP;
tunneling SIP over HTTP solution, etc.
[0005] Because the HTTP is a simple request/response protocol, it supports multiple
connections from a client to a server and therefore does not guarantee ordered delivery of
request and response messages. Reliable delivery of messages is also not guaranteed

given that request and response messages can be dropped in transmission of the messages.

10

15

20

25

30

WO 2011/130038 PCT/US2011/031103

For example, an intermediate HTTP proxy may drop an HTTP response. The reliable and
ordered organization and delivery of messages is valuable to a Web conference
environment. As such, embodiments of the present disclosure provide for session
identifiers to be used to group requests that belong to the same relay session. Further, the
reliable and ordered delivery of messages is achieved by restricting requests to one
pending upstream request and one pending downstream request at a time. Embodiments
also provide for sequence/acknowledgment numbers to be used to ensure the detection of
lost messages and the re-sending of lost data. Negative HTTP responses are also treated in
embodiments to re-try requests to promote robust, e.g., lossless, data transmission over
HTTP and system resiliency. In addition, embodiments provide for platform services as
part of the relay server, in which such platform services include, for example, performance
of general cryptographic operations, Domain Name Service (DNS) operations, and the use
of an authentication broker to assist the Web-based client in computing an authentication
handshake with a destination in the meeting environment. Further yet, embodiments
provide for the system components to be pluggable in nature and to thus extend the
functionality of the Web-based client. For example, arbitrary protocol tunneling is
achieved, according to embodiments, by having a pluggable transport component on the
relay server. This pluggable transport component enables the use of Transport Layer
Security (TLS) / Secure Sockets Layer (SSL) transport in SIP tunneling, while, on the
other hand, SRTP transport is used in RDP tunneling, for example. Further, the pluggable
nature of the platform services component allows a client to perform SIP authentication
using the authentication broker, in accordance with an embodiment of the present
disclosure.
[0006] This Summary is provided to introduce a selection of concepts in a simplified
form that is further described below in the Detailed Description. This Summary is not
intended to identify key or essential features of the claimed subject matter, nor is it
intended to be used in any way as to limit the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS
[0007] Embodiments of the present disclosure may be more readily described by
reference to the accompanying drawings in which like numerals refer to like items.
[0008] FIG. 1 illustrates an example logical representation of an environment or system
for initiating a meeting between Web-based client participants in accordance with

embodiments disclosed herein.

10

15

20

25

30

WO 2011/130038 PCT/US2011/031103

[0009] FIG. 2 depicts an example logical representation of an environment or system for
tunneling arbitrary binary data through HTTP using a relay server for the meeting
illustrated in FIG. 1 in accordance with embodiments of the present disclosure.

[0010] FIG. 3 illustrates a logical representation of example functional component
modules for protocol tunneling over HTTP using the relay server depicted in FIG. 2 in
accordance with embodiments of the present disclosure.

[0011] FIG. 4 illustrates a flow diagram illustrating the operational characteristics of a
process depicting the interactions of the functional component modules depicted in FIG. 3
in accordance with an embodiment of the present disclosure.

[0012] FIG. 5 depicts a flow diagram illustrating the operational characteristics of a
process illustrating the pluggable nature of the system using a relay server in accordance
with embodiments of the present disclosure.

[0013] FIG. 6 illustrates a flow diagram depicting the operational characteristics of a
process for grouping requests (through the use of a session identifier) that belong to the
relay session in accordance with an embodiment of the present disclosure.

[0014] FIG. 7 depicts a flow diagram illustrating the operational characteristics of a
process for assigning sequence and acknowledgment numbers to requests and responses to
ensure the reliable and ordered delivery of messages in accordance with an embodiment of
the present disclosure.

[0015] FIG. 8A illustrates a logical representation of example functional component
modules of the relay server for tunneling SIP data in accordance with embodiments of the
present disclosure.

[0016] FIG. 8B illustrates a flow diagram illustrating the operational characteristics of a
process depicting the interactions of the functional component modules depicted in FIG.
8A in accordance with an embodiment of the present disclosure.

[0017] FIG. 9 illustrates a flow diagram depicting the operational characteristics of a
process for authenticating an HTTP endpoint with an arbitrary destination through the use
of an authentication broker on the relay server in accordance with an embodiment of the
present disclosure.

[0018] FIG.10 illustrates a logical representation of example functional component
modules of the relay server for tunneling RDP data in accordance with embodiments of

the present disclosure.

10

15

20

25

30

WO 2011/130038 PCT/US2011/031103

[0019] FIG. 11 depicts a flow diagram illustrating the operational characteristics of a
process showing the interactions of the functional component modules depicted in FIG. 10
in accordance with an embodiment of the present disclosure.
[0020] FIG. 12 depicts an example computing system upon which embodiments of the
present disclosure may be implemented.

DETAILED DESCRIPTION
[0021] This disclosure will now more fully describe example embodiments with
reference to the accompanying drawings, in which specific embodiments are shown.
Other aspects may, however, be embodied in many different forms, and the inclusion of
specific embodiments in this disclosure should not be construed as limiting such aspects to
the embodiments set forth herein. Rather, the embodiments depicted in the drawings are
included to provide a disclosure that is thorough and complete and which fully conveys
the intended scope to those skilled in the art. Dashed lines may be used to show optional
components or operations.
[0022] Embodiments generally relate to using a relay server to extend the functionality
of'a browser-based, or Web-based, client in a Web meeting environment. In alternative
embodiments, the client is not a browser-based, or Web-based, client but, instead, is any
type of client understood by those of ordinary skill in the art. The relay server provides
tunneling of arbitrary binary data between, for example, the Web-based client, or HTTP
endpoint, and an arbitrary destination, or remote server. Such tunneling is useful because
the Web-based client typically communicates using the HTTP protocol and is not able to
communicate using the transport protocols understood by the remote server. Such
transport protocols, for example, include TCP, UDP, SRTP, TLS, etc. These protocols are
offered by way of example only. Any number of transport protocols as understood by one
of ordinary skill in the art may be used by the remote server. The tunneling of any
arbitrary protocol, such as SIP and RDP, through HTTP is thus provided through the use
of the relay server. The relay server acts as a type of “middle man” to receive a byte
buffer via an HTTP request and to relay the request to a destination. Similarly, the relay
server accepts data from the destination and relays the data back to the client via an HTTP
response.
[0023] In an embodiment, the relay server is designed as a Web application sitting at an
Internet Information Server (IIS) server, for example. The relay server in such
embodiments comprises a session management component, a relay engine component, and

an optional platform services component. Any number of types of components may be

10

15

20

25

30

WO 2011/130038 PCT/US2011/031103

used in embodiments, either in combination or alone, and some components, as indicated,
may be optional in embodiments as well. The relay server is designed to be extensible to
enable any transport mechanism to be used to accept tunneled data from the HTTP
endpoint. The relay server allows any binary data to be tunneled. For example, SIP and
RDP traffic are tunneled in embodiments. However, other embodiments provide for the
tunneling of any data, including file transfer data. In establishing a relay session,
embodiments provide for the relay server to communicate with the destination endpoint to
set up a connection so that the particular protocol data understood by the destination
endpoint can be exchanged. The relay server is thus configured to communicate in an
arbitrary protocol to set up the connection.

[0024] According to an embodiment for establishing a relay session, a client requests to
create a session at the relay server’s session management component. This interaction
between the client and the relay server may be referred to as a first “leg” of the relay
session. In embodiments, the relay server is configured with an optional platform service
to help with the session establishment, be it authentication or DNS lookup, for example.
The relay server is also configured with one or more transport modules, in which the
transport module(s) communicates with a remote server in a particular protocol. The
session management component drives the transport module to connect to the remote
server, with potential help from the client via, for example, Web service calls. “Web
service calls” are offered by way of example only of ways of communicating such
information. Other types of communication understood by those of ordinary skill in the
art may also be used. In an embodiment, for the first leg of the relay session, the session
management component interacts with the relay engine component, generates a session
identifier (session ID) to group HTTP side traffic, and returns the session ID to the client.
With the session ID, a virtual connection between the client and the relay server is
established over HTTP. This session ID will be present in each HTTP request the client
sends out, according to embodiments. The session ID, along with
sequence/acknowledgment numbers, the enforcement that there is at most one pending
request per direction (upstream and downstream) according to an embodiment, and the
retrying of sending out an HTTP request for a predefined number of times when a failure,
for example, occurs, provide a method for the reliable and ordered delivery of bi-
directional data between the client and the relay server over HTTP. As noted, in
embodiments, this connection is one leg of the relay session, and a second leg of the relay

session is from the relay server to the remote server, in which an arbitrary transport

10

15

20

25

30

WO 2011/130038 PCT/US2011/031103

protocol is used. According to embodiments, a transport stack is loaded on the relay
server to permit the tunneling of protocols.

[0025] By tunneling protocol data over HTTP, embodiments of the present disclosure
significantly extend the functionality of the Web-based client because the relay server
allows for the adaptation to the different and various means for connecting to each
possible destination endpoint. For example, where the destination endpoint is a server,
different means are used for connecting to the particular type of server, such as TLS to SIP
server, RTP/SRTP to a Screen Sharing Server, etc.

[0026] Further, embodiments of the present disclosure also compensate for limitations
caused by restrictive ports and enterprise firewalls used for enhancing security features.
Due to restrictive ports present in corporate networks, it can be difficult, if not impossible,
to retrieve a policy file from a Web-based client. For example, the port 943 holds the
policy file implementation in the SILVERLIGHT platform. A SILVERLIGHT client
computer sends requests to Web sites to access the policy file on port 943. However, the
port 943 is normally not opened in corporate networks. Policy file retrieval is therefore
hampered, if not made impossible altogether. Without a policy file, the browser-based
client rejects opening a socket connection to a remote server. Communications between
the Web-based client and the remote server are therefore not typically possible.
Embodiments of the present disclosure, however, use the relay server to connect the Web-
based client and remote server. The ability of the relay server to communicate in HTTP
with the client allows for the traversal of corporate firewalls to be made. For example,
using HTTP as a transport mechanism reduces problems in traversing corporate firewalls
because ports 80/443 (HTTP 80/TCP, World Wide Web HTTP; HTTPS 443/TCP, HTTP
protocol over TLS/SSL) are typically opened in the corporate network.

[0027] In embodiments, the Web-based client is therefore able to open an HTTP
connection to the relay server which acts a relay for communications between the client
and the remote server. The Web-based client then communicates with the relay server
using HTTP requests. Upon receiving the HTTP requests, the relay server “unwraps” the
actual data for exchange and forwards it to the remote host using a transport protocol
understood by the remote server. Similarly, upon receiving data in the transport protocol
used by the remote server, the relay server “wraps” the data in the HTTP protocol and
sends, or transfers, it as part of an HTTP response to the Web-based client.

[0028] Because HTTP is a simple request/response protocol and supports multiple

connections from a client to a server, ordered delivery of messages is not guaranteed.

10

15

20

25

30

WO 2011/130038 PCT/US2011/031103

Further, the simple request/response nature of the HTTP protocols provide no built-in
mechanism for ensuring the reliable delivery of messages and, thus, responses may be
dropped before reaching the client. Further, these protocols provide no way to group
requests to form a session. Not being able to guarantee the reliable and ordered delivery
of messages is a detriment to a successful Web conference. As such, embodiments of the
present disclosure provide for using a session identifier (session ID), such as a GUID-like
session identifier or other cryptographically strong identifier, to group requests that belong
to the same relay session, as discussed above. The session identifier is generated
randomly at the relay server using a cryptographic random number generator. By using a
cryptographic random number generator, a third party is prevented from guessing the
number and attacking the services provided by the system. For further security, the session
identifier may also be signed using a secret known only to the relay server to prevent any
guessing attacks. Session identifier capabilities thus enhance security and organize the
multiple connections inherent in an HTTP environment into specific relay sessions.

[0029] To further achieve the ordered delivery of messages, embodiments of the present
disclosure track upstream and downstream requests so as to allow only one pending
upstream request and one pending downstream request at one time. Sequence numbers
and acknowledgment numbers are assigned to request and response messages to track data
exchange and detect for lost messages. Upon detecting a lost message or receiving
indication of a negative/failed HTTP response (such as a response with a status code of
anything other than 200 OK), the HTTP request corresponding to the negative/failed
HTTP response is resent and/or re-tried a predetermined number of times before ending
the session. Such tracking of messages works to achieve lossless data transmission and
system resiliency.

[0030] In a further embodiment to extend the functionality of a Web-based client in a
constrained environment for communicating with a destination, an optional platform
services component helps provide functionalities not available in the constrained
environment. When different protocol data is relayed, it is likely different platform
services are needed. Such services are pluggable to the system. As an example, while
tunneling SIP data, platform services include an authentication broker to help a client
respond successfully to security challenges initiated from a SIP server. The inability of a
Web-based client to respond successfully to such challenge stems from a lack of sufficient
software packages for security in the constrained client environment. The Web-based

client extends its limited functionality in embodiments of the present disclosure by

10

15

20

25

30

WO 2011/130038 PCT/US2011/031103

delegating authentication capabilities to the authentication broker, which is part of the
platform services for tunneling SIP data, though its usage is not restricted to tunneling SIP
data. The relay server, in embodiments, has more functionalitics than the constrained
client environment because it is a fully functional server. For example, the relay server in
embodiments has more software packages installed. In embodiments when the relay
server alone cannot provide the required functionality, the relay server platform services
can go to other server components to coordinate a satisfactory result to the client. In an
embodiment, for example, an authentication broker module on the relay server is
leveraged to assist the client in computing an authentication handshake with the
destination. The Web-based client therefore delegates cryptographic calls to the relay
server and uses the relay server as a tool to handle the cryptographic calls and addresses
needed for protocol communications at the remote server. Other embodiments extend the
functionality of the Web-based client by delegating to the platform services component of
the relay server the handling of hash computations (by implementing the necessary
algorithm on the relay server) or domain name resolution API calls (for resolving host
names to [P addresses), for example. The operations provided herein are offered by way
of example only.

[0031] An example logical environment or system 100 for holding a Web conference
between multiple participants is shown in FIG. 1. Participants 102 and 104 desire to have
a Web conference with each other. As such, clients 106 and 118 contact server 110, such
as a SIP server, for example, across networks 108 and 120, respectively, to request to join
a meeting 114 and 124, respectively. If the session initiation requests are understood and
enabled, SIP server 110 sends acceptance messages 116 and 122, respectively, to clients
106 and 118. However, where no connection is made between client 106 and SIP server
110, for example, the session request 114 may be open-ended or rejected altogether (not
shown). Such a scenario may exist, for example, where the constrained environment of a
client, such as a Web-based client, 106 prevents a socket connection (not shown) from
being opened with server 110. Further yet, client 106 may be able to only communicate in
HTTP and is therefore not able to communicate in the protocols understood by server 110,
such as through TLS or TCP. It is therefore desirable to tunnel SIP, for example, over
HTTP where client 106 is a Web-based client communicating only in HTTP or having
some other form of restricted network connectivity, such as enterprise firewalled

networks, networks behind proxy servers, NATS, etc.

10

15

20

25

30

WO 2011/130038 PCT/US2011/031103

10

[0032] While FIG. 1 illustrates a general meeting environment, FIG. 2 depicts an
example logical environment or system 200 for extending the functionality of Web-based
client 202 in a restricted environment through the use of relay server 206 to enable a rich
meeting experience with destination 208. Web-based client 202 is also referred to in FIG.
2 as tunneling client 202. Further, Web-based client may be referred to in embodiments as
any type of arbitrary endpoint, such as a “browser-based client,” etc. The term “Web-
based” client is offered by way of example only. Where the communications of Web-
based client 202 are HTTP-based, client 202 is not able to connect to the destination
endpoint 208 if the destination endpoint 208 has existing protocols of communication that
are not HTTP-based. In an embodiment, destination 208 is a remote server, such as a SIP
server. In another embodiment, destination 208 is a Screen Sharing server. In still other
embodiments, destination 208 is a client itself. Further yet, any number of destination
endpoints 208 may be used, as shown by ellipses 210 and destination 212.

[0033] Web-based, or tunneling, client 202 sends a HTTP request 214 over network 204
to relay server 206. Relay server 206 unwraps the data in request 214 and forwards the
unwrapped data 216 using a protocol understood by destination 208 over network 218 to
destination 208. In embodiments, relay server 206 thus tunnels the data, e.g., SIP and
RDP protocol data, through HTTP. As discussed above, any arbitrary binary data may be
tunneled by relay server 206. In such an environment, relay server 206 already has an
appropriate transport stack, such as RTP/SRTP or TLS, if necessary, loaded on it (not
shown) to enable such tunneling,

[0034] After processing received protocol data 216, destination 208 sends protocol data
220 to relay server 206. Relay server 206 then wraps the data received from destination
208 in the HTTP protocol and sends it as part of an HTTP response 222 to client 202.
Any type of arbitrary data may be tunneled in accordance with embodiments disclosed
herein. For example, the environment or system 200 may allow: tunneling any data over
HTTP onto RTP/SRTP; tunneling RDP over HTTP onto RTP/SRTP; tunneling RDP over
HTTP onto any transport mechanism (such as TCP or UDP); and tunneling SIP over
HTTP, according to embodiments.

[0035] Logical environment 200 is not limited to any particular implementation and
instead embodies any computing environment upon which the functionality of the
environment described herein may be practiced. For example, any type of client computer
202 understood by those of ordinary skill in the art may be used in accordance with

embodiments. Further, networks 204 and 218, although shown as individual single

10

15

20

25

30

WO 2011/130038 PCT/US2011/031103

11

networks may be any types of networks conventionally understood by those of ordinary
skill in the art. In accordance with an embodiment, the network may be the global
network (e.g., the Internet or World Wide Web, i.e., “Web” for short). It may also be a
local area network, ¢.g., intranet, or a wide area network. In accordance with
embodiments, communications over networks 204 and 218 occur according to one or more
standard packet-based formats, e¢.g., H.323, IP, Ethernet, and/or ATM.

[0036] Further, any conceivable environment or system as understood by those of
ordinary skill in the art may be used in accordance with embodiments of the present
disclosure. FIG. 2 is offered as an example only for purposes of understanding the
teachings of the embodiments disclosed herein. For example, FIG. 2 shows relay server
206 and destinations 208, 210, and 212. However, embodiments also cover any type of
server, separate servers, server farm, or other message server. Further yet, FIG. 2 shows
client computer 202. However, any type of small computer device may be used as is
understood by those of ordinary skill in the art without departing from the spirit and scope
of the embodiments disclosed herein. Although only one client computer 202 is shown,
for example, another embodiment provides for multiple small computer devices to
communicate with relay server 206. In an embodiment, each small computer device
communicates with the network 204, or, in other embodiments, multiple and separate
networks communicate with the small computer devices. In yet another embodiment, each
small computer device communicates with a separate network. Indeed, environment or
system 200 represents a valid way of practicing embodiments disclosed herein but is in no
way intended to limit the scope of the present disclosure. Further, the example network
environment 200 may be considered in terms of the specific components described, e.g.,
relay server, client computer, etc., or, alternatively, may be considered in terms of the
analogous modules corresponding to such units.

[0037] While FIG. 2 shows example environment or system 200 for protocol tunneling
over HTTP, FIG. 3 illustrates software functional modules 300 for extending the
functionality of browser-based client 302 through relay server 304 according to
embodiments of the present disclosure. Software functional modules 300 are executed in
the computing system shown in FIG. 3 in accordance with embodiments disclosed herein.
In the embodiment shown in FIG. 3, browser-based client 302 contacts, such as via a Web
service call 322, relay server 304 to create a relay session. Session management
component 310, comprising Web service 312, of relay server 304 interacts, via method

calls 315, for example, with relay engine 314 comprising plain HTTP Web handler 316 to

10

15

20

25

30

WO 2011/130038 PCT/US2011/031103

12

configure the requested relay session. In embodiments, session management component
310 provides functionality for initiating, and setting up, connections between client 302
and a destination, such as remote server 308, by generating session identifiers, etc., for
establishing connections between the entities involved in the meeting, for example, and for
grouping requests that belong to the same relay session. According to an embodiment, the
session identifier(s) is returned to the client via a Web service call return value, for
example. Once a session is established, relay engine component 314 provides for
exchanging data between client 302 and remote server 308. Relay engine 314 also
provides in embodiments for assigning sequence numbers and acknowledgement numbers
to ensure the reliable and ordered delivery of request and response messages.

[0038] In an embodiment, session management component 310 first contacts 324
platform services component 320, or authentication component 320, to access permission
for configuring the relay session. (In some embodiments, platform services component
320 is optional, as shown by dashed lines 320.) According to embodiments, platform
services component 320 provides for performing authentication of client 302, as well as
for handling cryptographic call operations and DNS resolution operations, for example.
These services are offered by way of example only. Other and additional types of services
are performed by platform services component 320. In some embodiments, platform
services component 320 may be invoked directly by browser-based client 302. According
to an embodiment, browser-based client 302 may need to be authenticated to join a
meeting with remote server, or destination, 308. In a further embodiment, authentication
component 320 has the information or data, such as challenge data, to pass to browser-
based client 302 for authentication before creation of the relay session with relay server
304 acting as the “middle man” between browser-based client 302 and remote server 308.
In yet a further embodiment, authentication component 320 contacts 326 remote server
308 to validate client 302 for joining the conference by presenting the client request to
create the relay session to remote server 308 and/or by obtaining authentication
information or data, e.g., challenge data, and a unique identifier in embodiments, for
sending 322 to client 302 for construction of a challenge response message 322. The
optional nature of the contact between authentication component 320 and remote server
308 is shown by dashed lines 326. Where remote server 308 is contacted, it may verify a
secret provided by relay server 304, according to embodiments, and, where such
verification is successful, provide challenge data (including a unique identifier according

to embodiments) to authentication component 320 (as shown by the bi-directional nature

10

15

20

25

30

WO 2011/130038 PCT/US2011/031103

13

of contact 326). In yet other embodiments, no secret is provided to remote server 308, and
remote server 308 provides challenge/identifier data without any verification of the request
from relay server 304.

[0039] In embodiments where authentication is required and is successful (or where no
authentication is first required, as discussed above), session management component 310
interacts 315, through method calls, for example, with the relay engine component 314 to
configure the relay session. Upon successfully creating a relay session, session
management component 310 assigns a session ID to client 302. In an embodiment, the
session ID assigned to client 302 is used to group requests that belong to the same session.
In an embodiment, the session ID is a GUID-like, or other cryptographically strong,
session identifier. A GUID-like identifier is offered by way of example only. Other types
of session identifiers, such as those to enhance security even further, may be used
according to embodiments of the present disclosure. In an embodiment, one session ID is
assigned to SIP requests, while another session ID is assigned to RDP requests from
browser-based client 302, for example. Such session ID is sent 322 to browser-based
client 302 from relay server 304, and client 302 then uses the session ID as a HTTP header
to communicate 328 with relay engine 314. Upon receiving data from browser-based
client 302, relay engine 314 interacts 330 with transport component 318 to relay data 332
to and from remote server 308. Relay engine 314 thus unwraps received, or transferred,
data in HTTP requests and forwards the data to remote server 308 in the proper protocol(s)
for such transport. Relay server 304 thus acts as a “tunnel” for communicating in the
desired network protocol(s). The software functional modules 300 are offered as an
example of possible software functional modules for the embodiments described. Other
embodiments may include the modules depicted, fewer than the modules and/or sub-
modules depicted, additional modules and/or sub-modules, combinations of modules
and/or sub-modules, expansions of the modules and/or sub-modules depicted, etc.

[0040] According to embodiments, modules corresponding to those on relay server 304
also exist on browser-based client 302 and remote server 308 to enable such
communications and transport. At the client side, an embodiment comprises, for example,
a corresponding module to the relay server to initiate the HTTP request, put the session ID
as the HTTP header in requests, assign sequence numbers and consume acknowledgment
numbers for upstream data, consume sequence numbers and generate acknowledgment
numbers for downstream data, etc. At the remote server, according to embodiments, the

corresponding part to the relay server is a protocol participant. In an embodiment, the

10

15

20

25

30

WO 2011/130038 PCT/US2011/031103

14

protocol participant is a TCP participant, for example, to assist in moving data between the
relay server and the remote server.

[0041] The interactions of the various software functional modules depicted in FIG. 3
are further illustrated in the operational steps 400 depicted in FIG. 4 for tunneling protocol
data via HTTP in accordance with an embodiment disclosed herein. Start operation 402 is
initiated, and process 400 proceeds to receive contact, such as via a Web service call, for
example, from browser-based client to create a relay session 404. Prior to configuring the
requested relay session 410, process 400 may optionally (as shown by dashed lines) first
proceed to query 406 to determine from a platform services component whether the client
is permitted, e.g., authenticated and/or authorized, to create the session with the
destination. In making such a determination 406, relay server, such as through platform
services component 320, may optionally contact the destination 408, such as remote server
308 in FIG. 3, to obtain challenge data and/or other authentication data for completing the
handshake between the client and the destination to configure the requested session.

While steps 406 and 408 are both shown as optional steps according to the embodiment
described, other embodiments require such authentication determination at 406 but do not
require contact with the remote server 408. In still further embodiments, both steps 406
and 408 are required authentication and/or authorization steps. The authentication
involved in steps 406 and 408 shows the pluggable nature of the platform services, e.g.,
authentication broker, used in embodiments of the present disclosure. If query 406
determines that the client is authenticated and/or authorized for setting up a relay session,
process 400 proceeds YES to configure relay session 410. If the client is not authenticated
and such authentication is required for proceeding according to embodiments disclosed
herein, process 400 proceeds NO to END operation 422, in which process 400 is
terminated. Where the client is permitted to configure the relay session and such session
is configured 410, process 400 proceeds to generate and assign session ID 412 and 414,
respectively, in which a session ID is generated and assigned to the client. In an
embodiment, a session ID is generated and assigned to group requests that belong to the
same relay session. In an embodiment, such session ID is generated randomly at the relay
server, such as at the session management component, for example, with a cryptographic
random number generator. As discussed, while a GUID session ID is described, this type
of identifier is offered by way of example only. Any number of types of identifiers may
be used as understood by those of ordinary skill in the art without departing from the spirit

and scope of the present disclosure.

10

15

20

25

30

WO 2011/130038 PCT/US2011/031103

15

[0042] Next, process 400 proceeds to send session ID to client 416, in which the session
ID assigned to requests belonging to the particular relay session is sent to the client. The
client then uses the session ID as a HTTP header to communicate with the relay server for
further exchange of data, in which the relay server receives an HTTP request with the
session ID 418. Data is then exchanged with the remote server 420 through the relay
server, and process 400 terminates at END operation 422. FIG. 4 is an example of
possible operational characteristics for protocol tunneling over HTTP through the use of a
relay server in accordance with embodiments disclosed herein. Operational steps depicted
may be combined into other steps and/or rearranged. Further, fewer or additional steps
may be used, for example.

[0043] FIG. 5 next illustrates the pluggable nature of the system according to
embodiments of the present disclosure. For example, as discussed above, the platform
services components are pluggable to provide services to a client in a restricted
environment. An authentication broker, for example, as part of the platform services
component according to embodiments, assists a client with SIP authentication. Further,
the transport is pluggable. The pluggable nature of the transport enables the tunneling of
arbitrary data because any appropriate protocol(s) for the data desired to be tunneled can
be used. For example, SIP tunneling uses TLS as a transport in embodiments, while RDP
tunneling uses SRTP as a transport in embodiments. FIG. 5 illustrates a process,
according to an embodiment, for configuring, such as by a developer, a relay server to be
pluggable in nature. Process 500 is initiated at START operation 502 and proceeds to
query 504 to determine if it is desired to configure a relay server to tunnel data. If NO,
process 500 proceeds to END operation 528, and process 500 terminates. If YES, process
500 proceeds YES to determine operation 506, in which it is determined whether to tunnel
SIP data. If YES, process 500 proceeds to add plug-in TLS/SSL transport module 508, in
which TLS/SSL is used as a transport in SIP tunneling in an embodiment. In another
embodiment, another type of protocol is used for transport for SIP tunneling. Next,
process 500 proceeds to query 510 for determining whether any other plug-ins are to be
added. Ifno further plug-ins are desired, process 500 proceeds NO to END operation 534,
and process 500 is terminated. If other plug-ins are desired, process 500 proceeds YES to
add authentication broker plug-in 512, for example. The authentication broker, in
embodiments, is a set of platform services that assist a client in performing SIP
authentication. Following add plug-in authentication broker 512, process 500 proceeds to

query 514 for determining whether any other plug-ins are desired. If YES, a plug-in is

10

15

20

25

30

WO 2011/130038 PCT/US2011/031103

16

added 516, and steps 514-516 repeat until no other plug-ins are desired. If no other plug-
ins are desired, process 500 proceeds NO to END operation 534 and terminates.

[0044] Returning to query 506, if SIP tunneling is not desired, process 500 proceeds NO
to query 518 for determining whether it is desired to tunnel RDP data. If tunneling of
RDP data is desired, process 500 proceeds YES to add plug-in for RTP/SRTP transport
module 520, in which RDP tunneling uses RTP/SRTP as a transport. Next, it is
determined whether any other plug-ins are desired to be added 522. If no other plug-ins
are desired, process 500 proceeds NO to END operation 534 and process 500 terminates.
If other plug-ins are desired, process 500 proceeds YES to add plug-in 524 which proceeds
to query 522 to again determine whether any other plug-ins are desired, and these steps
repeat. If no other plug-ins are desired, process 500 proceeds NO to terminate process 500
at END operation 534.

[0045] Returning to step 518, if tunneling of RDP is not desired, process 500 proceeds
NO to query 526 for determining if tunneling of any arbitrary data is desired. If NO,
process 500 terminates at END operation 528. If tunneling of arbitrary data is desired,
process 500 proceeds YES to plug-in appropriate protocol transport module 530 to support
arbitrary protocol data tunneling. Next, it is determined whether any other plug-ins are
desired at operation 532. If other plug-ins are desired, process 500 proceeds YES to add
plug-in 524 and these steps repeat until no other plug-ins are desired. When no other plug-
ins are desired, process 500 proceeds NO to END operation 534 to terminate process 500.
FIG. 5 is an example of possible operational characteristics for configuring, such as by a
developer, a relay server to be pluggable in nature in accordance with embodiments
disclosed herein. Operational steps depicted may be combined into other steps and/or
rearranged. Further, fewer or additional steps may be used, for example.

[0046] FIG. 6 next illustrates example operational steps 600 for assigning session IDs to
group requests belonging to the same relay session in accordance with an embodiment
disclosed herein. Process 600 is initiated at START operation 602 and proceeds to receive
request to create relay session 604, in which a request, such as a SIP request, from a
browser-based client is received at a relay server. A relay session is created at operation
606, and a session ID is generated randomly 608 with a cryptographic random number
generator for assigning the request, e.g., SIP request, to a group belonging to the same
relay session. In an embodiment, the session ID is a GUID-like session ID. Next, process
600 proceeds to assign random number to group 1 operation 610. The group number is

sent to client 612 for “Group 1,” for example. Next, process 600 proceeds to receive a

10

15

20

25

30

WO 2011/130038 PCT/US2011/031103

17

request for RDP data, for example, from browser-based Web application 614. Another
session ID is next generated 616 to group requests for the RDP data, for example, into a
“Group 2,” for example. The session ID for assigning a group number to the client for the
“Group 2” is sent to client 618, and process 600 terminates at END operation 620. FIG. 6
is an example of possible operational characteristics for assigning a session ID to group
requests belonging to the same relay session in accordance with embodiments disclosed
herein. Operational steps depicted may be combined into other steps and/or rearranged.
Further, fewer or additional steps may be used, for example.

[0047] Further, FIG. 7 depicts example operational steps 700 for performing a method
for assigning sequence numbers and acknowledgment numbers to ensure the reliable and
ordered delivery of data between a client, such as a Web browser-based client, and a relay
server, in accordance with embodiments disclosed herein. Process 700 is initiated at
START operation 702 and proceeds to generate HTTP request at a browser-based client
704, in which process 700 illustrates upstream data moving from a browser-based client to
a remote server via a relay server. At operation 704, a sequence number is also assigned
to the request by the client. Next, the HTTP request with the sequence number is received
706 at the relay server. The relay server consumes the sequence number 708, in which the
sequence number is passed to the relay server as a HTTP header. The relay server next
generates an acknowledgment number 710. The relay server passes the acknowledgment
number with the HTTP response back to the client 712 as a HTTP header to a HTTP
response and/or as the body of the response according to embodiments. At the client side,
the HTTP response (if received) is matched to the pending request (not shown). Matching
the HTTP response to its request is performed at the client by the underlying platform,
such as the Web browser according to an embodiment. In such an embodiment, an HTTP
response is received at the client via the same connection, such as TCP, that the request
was sent on. This matching and tracking of the request/response sequence and
acknowledgment numbers allows, in embodiments, for assisting with ordered and reliable
data transmission over HTTP.

[0048] Because response messages and acknowledgment numbers may be dropped
during transmission from the relay server to the client, process 700 provides for
determining at query 714 whether the client has received an acknowledgment
corresponding to the data sent in the HTTP request. For upstream data, for example, each
HTTP request initiated from the client carries a sequence number for the first byte of data

that the particular request carries, according to an embodiment disclosed herein. In

10

15

20

25

30

WO 2011/130038 PCT/US2011/031103

18

addition, each request has a length number indicating the number of bytes of data the
request carries. At the relay server side, the acknowledgment number generated for the
response message is the last byte the relay server has received. All data with sequence
numbers prior to this acknowledgment number are therefore also confirmed with the most
recent acknowledgment number. Once the client confirms that the bytes have been
received, it will remove the bytes from its cache. Otherwise, where no confirmation is
received, the data is re-delivered according to embodiments. For example, where the
sequence number starts at 1 and the length of the request comprises 100 bytes, the
acknowledgment number the client looks for is 100. Where a second request is sent, the
sequence number starts at 101, and if the length is 200, the client looks for a
corresponding acknowledgment number of 300.

[0049] Returning to FIG. 7, if an acknowledgment is received at 714 (indicating the
reliable delivery of the request/response messages), process 700 proceeds YES to query
716 for determining whether the client desires to send any other requests to the remote
server via the relay server. If other requests are desired, process 700 proceeds YES to
generate HTTP request and assign sequence number 704 to the next request. If no other
requests are desired, process 700 proceeds NO to END operation 718, and process 700
terminates.

[0050] When query 714 determines that no acknowledgment has been received, or, in
other embodiments, that a response indicating negative treatment and/or failed treatment
has been received, process 700 proceeds NO to query 720 to determine whether a
predetermined wait time has been exceeded. If the wait time, such as indicated by a timer
in embodiments, for the acknowledgment has not yet been exceeded, process 700 proceeds
back to query 714 to determine if the acknowledgment has been received yet, and steps
714 and 720 repeat. If the predetermined wait time has been exceeded, process 700
proceeds YES to operation 722 to retry sending the request, and process 700 then proceeds
again to operation 706. After repeating steps 706 to 716, process 700 eventually proceeds
to END operation 718, and process 700 terminates. FIG. 7 is an example of possible
operational characteristics for assigning sequence numbers and tracking acknowledgments
of requests to ensure ordered and reliable delivery of messages in accordance with
embodiments disclosed herein. Operational steps depicted may be combined into other
steps and/or rearranged. Further, fewer or additional steps may be used, for example.
[0051] By using acknowledgment queries and/or acknowledgment numbers and waiting

to send the second request until the first request is acknowledged as received, process 700

10

15

20

25

30

WO 2011/130038 PCT/US2011/031103

19

provides for the reliable and ordered delivery of messages by tracking messages to prevent
lost data and achieve lossless data transmission with system resiliency. Further, tracking
the request/response messages allows for the system to maintain ordered delivery by
having only one pending upstream request and one downstream request at a time, in which
a second request may not be sent until the first request/response is acknowledged,
according to embodiments disclosed herein. Further, the use of acknowledgment numbers
allows the system to track requests that are retried for sending with new data in addition to
the data carrying the request. In addition, as discussed, the ordered delivery of messages
is beneficial in an HTTP request/response conferencing environment given that HTTP
allows for multiple connections at one time, for example. While FIG. 7 illustrates the
steps for achieving reliable and ordered data delivery between the client and relay server,
and vice versa, the reliable and ordered delivery of data between the relay server and a
remote server is dictated by the protocol used between them, according to embodiments
disclosed herein.

[0052] While FIG. 7 shows sequence/acknowledgment numbers for upstream data, i.c.,
client to remote server via relay server, corresponding steps are involved for downstream
data, i.e., remote server to client via relay server, according to embodiments disclosed
herein. In an embodiment, a sequence number is generated at the relay server side and is
consumed by the client. The client then generates an acknowledgment number, which is
consumed at the relay server, according to embodiments.

[0053] While FIG. 3 above illustrates example software functional modules 300 for
extending the functionality of browser-based client 302 through relay server 304, FIG. 8A
depicts example software functional modules 800 for tunneling SIP data and for using
optional platform services plugged into the system to assist in tunneling SIP data, such as
by performing authentication, in accordance with embodiments disclosed herein.
Browser-based client 802 contacts, for example via a Web service call 822, to relay server
804 to configure a relay session. Session management component 810 of relay server 804
comprising Web service 812 interacts, via method calls 806, for example, with relay
engine 814 comprising a plain HTTP Web handler 816 to configure the requested relay
session. In embodiments, session management component 810 provides functionality for
initiating, and setting up, a SIP session with connections between client 802 and a
destination, such as remote server 808 by generating session identifiers, etc., for
establishing connections between the entities involved in the meeting, for example, and for

grouping requests that belong to the same relay session. According to an embodiment, the

10

15

20

25

30

WO 2011/130038 PCT/US2011/031103

20

session identifier(s) is returned to the client via a Web service call return value 822, for
example. Once a session is established, relay engine component 814 provides for
exchanging data between client 802 and remote server 808. Relay engine 814 also
provides in embodiments for assigning sequence numbers and acknowledgement numbers
to ensure the reliable and ordered delivery of request and response messages.

[0054] In an embodiment, an optional (as shown by dashed lines 820) platform services
component 820 is first contacted 824 to access permission for configuring the desired
relay session. According to embodiments, platform services component 820 provides for
performing authentication of client 802, as well as for handling cryptographic call
operations and DNS resolution operations, for example. In a further embodiment,
authentication broker 821 is used as a set of pluggable platform services that assist a client
in performing SIP authentication. Authentication broker, in such an embodiment, has the
information or data, such as challenge data, to pass to browser-based client 802 for
authentication before creation of the relay session with relay server 804 acting as the
“middle man” between browser-based client 802 and remote server 808. In yet a further
embodiment, authentication component contacts 826 remote server 808 to validate client
802 for joining the conference, for example, by presenting the client request to create the
relay session to remote server 808 and/or by obtaining authentication information or data,
e.g., challenge data, and a unique identifier in embodiments, for sending 822 to client 802
for construction of a challenge response message 822. The optional nature of the contact
826 between authentication component 820 and remote server 808 is shown by dashed
lines 826. Where remote server 808 is contacted, it may verify a secret provided by relay
server 804 according to embodiments, and, where such verification is successful, provide
challenge data (including a unique identifier according to embodiments) to authentication
component 820 (as shown by the bi-directional nature of contact 826). In yet other
embodiments, no secret is provided to remote server 808, and remote server 808 provides
challenge/identifier data without any verification of the request from relay server 804.
[0055] In embodiments where authentication is performed and is successful (or where
no authentication is first performed, as discussed above), session management component
810 interacts, through method calls 806, for example, with the relay engine component
814 to configure the relay session. Upon successfully creating a relay session, session
management component 810 assigns a session ID to client 802. In an embodiment, the
session ID assigned to client 802 is used to group SIP requests belonging to the same

session. Such session ID is sent 822 to browser-based client from relay server 804, and

10

15

20

25

30

WO 2011/130038 PCT/US2011/031103

21

client 802 then uses the session ID as a HTTP header to communicate 828 with relay
engine 814. Upon receiving data from browser-based client 802, relay engine 814
interacts 830 with the SSL Stream transport module 818 to relay data 832 to and from
remote server 808 using TLS/SSL 832, for example. Relay engine 814 thus unwraps
received, or transferred, data in HTTP requests and forwards the data to remote server 808
in the TLS/SSL protocols for transport. Relay server 804 thus acts as a “tunnel” for
communicating in SIP. The example software functional modules 800 are offered as an
example of possible software functional modules for the embodiments described. Other
embodiments may include the modules depicted, fewer than the modules and/or sub-
modules depicted, additional modules and/or sub-modules, combinations of modules
and/or sub-modules, expansions of the modules and/or sub-modules depicted, etc.

[0056] Continuing to FIG. 8B, example operational steps 834 are shown for tunneling
SIP data using a SSL Stream transport module and a pluggable authentication module as
depicted in FIG. 8A and in accordance with embodiments disclosed herein. Process 834 is
initiated at START operation 836 and proceeds to receive contact, such as via a Web
Service call, for example, at the session management component of the relay server to
create a relay session 838. The session management component next interacts with a relay
engine to configure the requested relay session 844. However, process 834 may first
optionally proceed to query 840 to determine from a platform services component whether
the client is permitted, e.g., authenticated and/or authorized, to create the session. In
making this determination 840, relay server, such as through platform services component
820 and/or authentication broker 821 may optionally contact 842 remote server 808 to
obtain challenge data and/or authentication data for completing the handshake between
client 802 and remote server 808 (as shown by the optional bi-directional nature of the
arrow between steps 840 and 842). In other embodiments, authentication broker 821
provides challenge data and/or authentication data for the handshake completion. If client
802 is not authenticated and/or authorized to create the relay session, process 834 proceeds
NO to END operation 856, and process 834 terminates. If authentication and/or
authorization is desired and successful, process 834 proceeds YES to configure relay
session operation 844, in which the relay session is configured 844. A session ID is
generated 846 and assigned 848 to the client at the session management component and
sent to the client 850. The relay engine then interacts with the transport module for the
SIP tunneling, e.g., a SSL Stream Module to relay data to and from the remote server 852.

The SSL Stream transport module then communicates with the remote server to exchange

10

15

20

25

30

WO 2011/130038 PCT/US2011/031103

22

data 854, and process 834 terminates at END operation 856. FIG. 8B is an example of
possible operational characteristics for tunneling SIP over HTTP using a relay server
between a client and a remote server in accordance with embodiments disclosed herein.
Operational steps depicted may be combined into other steps and/or rearranged. Further,
fewer or additional steps may be used, for example.

[0057] Next, FIG. 9 illustrates example operational steps 900 showing how optional
platform services are plugged into the overall system to assist in tunneling a particular
protocol, e.g., SIP, data. For example, FIG. 9 shows the use of a pluggable authentication
module for assisting a client, e.g., an HTTP endpoint, in completing an authentication
handshake with a destination, ¢.g., a remote server in accordance with embodiments
disclosed herein. Process 900 thus shows the delegation of authentication to a relay server
by a browser-based client. Process 900 is initiated at START operation 902 and proceeds
to receive challenge data from browser-based Web application 904. The relay server then
performs authentication 906, using the challenge data received from the browser-based
client, to generate a challenge response for sending the challenge response to client 908.
In an embodiment, the relay server contacts the remote server in performing authentication
906 and, in another embodiment, the relay server performs the authentication itself for
generating the challenge response for the browser-based client. Upon receiving the
challenge response, the browser-based application assembles the returned challenge
response into a new request message, such as a new SIP message for initiating a session
with the relay server and remote server. The relay server then receives the new request
with the assembled challenge response 910 and sends the new request to the remote server
912 for initiating the session, for example. Upon determining that the client is a valid
participant (not shown), the remote server sends approval to the relay server, which is
received by the relay server 914. The relay server then notifies the browser-based Web
application of the approval and the initiation of the session 916. Data for exchange is then
received from the browser-based Web application at the relay server 918, and process 900
terminates at END operation 920. FIG. 9 is an example of possible operational
characteristics for authenticating a handshake between a browser-based Web application
and a destination by delegating the authentication to the relay server in accordance with
embodiments disclosed herein. Operational steps depicted may be combined into other
steps and/or rearranged. Further, fewer or additional steps may be used, for example.
[0058] Next, FIG. 10 illustrates example software functional modules 1000 for plugging

a transport stack, such as a media stack, into an overall system to assist with tunneling

10

15

20

25

30

WO 2011/130038 PCT/US2011/031103

23

RDP data over RTP/SRTP in accordance with an embodiment of the present disclosure.
Browser-based client 1002 contacts, for example via a Web service call 1018,
configuration component 1008 of relay server 1004 to configure a SRTP channel. In
embodiments, configuration component 1008 comprises a Web service 1010 and interacts,
through method calls 1026, for example, with relay engine 1012 for configuring a channel.
Next, configuration component 1008 configures 1020 media stack 1016 loaded on relay
server 1004.

[0059] Media stack 1016, among other modules, enables relay server 1004 to extend the
functionality of browser-based client 1002. According to embodiments, a media stack is
loaded on the relay server to permit the tunneling of certain protocols. For example, in an
RDP relay scenario, to carry the RDP data via RTP/SRTP, knowledge of RTP/SRTP and
Interactive Connectivity Establishment (ICE) is also used in embodiments. ICE, for
example, is used to enable RTP/SRTP traffic to traverse firewalls. The relay server thus
loads a media stack supporting RTP/SRTP/ICE because RDP data is typically carried to a
Screen Sharing Server via RTP/SRTP. In an embodiment involving an RDP relay and
setting up a connection with a Screen Sharing Server, a Web-based client communicates in
SIP with the Screen Sharing Server to set up a RTP/SRTP/ICE connection between the
relay server and Screen Sharing Server. The loading of the media stack for
RTP/SRTP/ICE on the relay server facilitates this process. The client is then able to
communicate in SIP with the Screen Sharing Server because a portion of the SIP message
body, namely the Session Description Protocol (SDP) portion, is retrieved from the relay
server via Web service calls. Similarly, the SDP of SIP requests from the Screen Sharing
Server is passed to the relay server via Web service calls. The relay server’s loading of
the media stack therefore enables the transport of RDP data in environments otherwise
restricted from having such transport. For example, the media stack of RTP/SRTP and
ICE is typically not available in the Mac platform. In a Mac platform, for example,
developers either port the media stack to native Mac or develop it in the Web-based client.
However, such solutions are complex and restrictive functionality still exists with such
porting and/or development.

[0060] Returning to FIG. 10, as discussed above, to carry RDP data via RTP/SRTP,
knowledge of RTP/SRTP and ICE is used in embodiments. In an embodiment, such
configuration involves communications to remote SIP/RTP endpoint 1006 for a
connectivity check to determine if a connection can be made. In another embodiment, no

connectivity check occurs. Upon configuring the SRTP channel and the media stack,

10

15

20

25

30

WO 2011/130038 PCT/US2011/031103

24

client 1002 sends/receives RDP data via HTTP 1022 to relay engine 1012 comprising
plain HTTP Web handler 1014 for configuring the relay session. Relay engine 1012 then
communicates 1024 with media stack 1016 to obtain RDP data by exchanging RTP-
related messages 1028 between media stack 1016 and remote RTP endpoint 1006. The
software functional modules 1000 are offered as an example of possible software
functional modules for the embodiments described. Other embodiments may include the
modules depicted, fewer than the modules and/or sub-modules depicted, additional
modules and/or sub-modules, combinations of modules and/or sub-modules, expansions of
the modules and/or sub-modules depicted, etc.

[0061] While FIG. 10 depicts example software functional modules for plugging a
transport stack, such as a media stack, into an overall system to assist with tunneling RDP
data over RTP/SRTP, FIG. 11 illustrates example operational steps 1100 for tunneling
RDP data over RTP/SRTP using a pluggable transport stack in accordance with an
embodiment of the present disclosure. Process 1100 is initiated with START operation
1102 and proceeds to operation 1104, in which a relay server between a client and a
remote RTP endpoint is contacted, such as via a Web service call, for example, to
configure an SRTP channel for tunneling RDP data. Next, the configuration component
configures a pluggable media stack 1106 and, in so doing, optionally (as shown by dashed
lines) communicates with the remote RTP endpoint for a connectivity check 1107. The
RTP endpoint responds with information as shown by the bi-directional nature of the
arrow between 1106 and 1107. The client then sends/receives RDP data via HTTP to and
from relay engine 1108. The relay engine, in turn, communicates with the media stack to
obtain RDP data 1110. To obtain the RDP data, the media stack exchanges RTP messages
with the remote RTP endpoint 1112. Process 1100 terminates at END operation 1114.
FIG. 11 is an example of possible operational characteristics for tunneling RDP data over
RTP/SRTP using a pluggable transport stack in accordance with embodiments disclosed
herein. Operational steps depicted may be combined into other steps and/or rearranged.
Further, fewer or additional steps may be used, for example.

[0062] Finally, FIG. 12 illustrates an example computing system 1200 upon which
embodiments disclosed herein may be implemented. A computer system 1200, such as
client computer 202, relay server 206, or remote server 208, which has at least one
processor 1202 for exchanging message data as shown in FIG. 2, is depicted in accordance
with embodiments disclosed herein. The system 1200 has a memory 1204 comprising, for

example, system memory, volatile memory, and non-volatile memory. In its most basic

10

15

20

25

30

WO 2011/130038 PCT/US2011/031103

25

configuration, computing system 1200 is illustrated in FIG. 12 by dashed line 1206.
Additionally, system 1200 may also include additional storage (removable and/or non-
removable) including, but not limited to, magnetic or optical disks or tape. Such
additional storage is illustrated in FIG. 12 by removable storage 1208 and non-removable
storage 1210.

[0063] The term computer readable media as used herein may include computer storage
media. Computer storage media may include volatile and nonvolatile, removable and non-
removable media implemented in any method or technology for storage of information,
such as computer readable instructions, data structures, program modules, or other data.
System memory 1204, removable storage 1208, and non-removable storage 1210 are all
computer storage media examples (i.e., memory storage.) Computer storage media may
include, but is not limited to, RAM, ROM, electrically erasable read-only memory
(EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage
or other magnetic storage devices, or any other medium which can be used to store
information and which can be accessed by computing device 1200. Any such computer
storage media may be part of device 1200. The illustration in FIG. 12 is intended in no
way to limit the scope of the present disclosure.

[0064] The term computer readable media as used herein may also include
communication media. Communication media may be embodied by computer readable
instructions, data structures, program modules, or other data in a modulated data signal,
such as a carrier wave or other transport mechanism, and includes any information
delivery media. The term “modulated data signal” may describe a signal that has one or
more characteristics set or changed in such a manner as to encode information in the
signal. By way of example, and not limitation, communication media may include wired
media such as a wired network or direct-wired connection, and wireless media such as
acoustic, radio frequency (RF), infrared, and other wireless media.

[0065] System 1200 may also contain communications connection(s) 1216 that allow
the device to communicate with other devices. Additionally, to input content into the
fields of a User Interface (UI) on client computer 202, for example, as provided by a
corresponding UI module (not shown) on client computer 202, for example, in accordance
with an embodiment of the present disclosure, system 1200 may have input device(s) 1214
such as a keyboard, mouse, pen, voice input device, touch input device, etc. Output

device(s) 1212 such as a display, speakers, printer, etc. may also be included. All of these

10

15

20

WO 2011/130038

PCT/US2011/031103
26

devices are well known in the art and need not be discussed at length here. The
aforementioned devices are examples and others may be used.

[0066] Having described embodiments of the present disclosure with reference to the
figures above, it should be appreciated that numerous modifications may be made to the
embodiments that will readily suggest themselves to those skilled in the art and which are
encompassed within the scope and spirit of the present disclosure and as defined in the
appended claims. Indeed, while embodiments have been described for purposes of this
disclosure, various changes and modifications may be made which are well within the
scope of the present disclosure.

[0067] Similarly, although this disclosure has used language specific to structural
features, methodological acts, and computer-readable media containing such acts, it is to
be understood that the subject matter defined in the appended claims is not necessarily
limited to the specific structure, acts, features, or media described herein. Rather, the
specific structures, features, acts, and/or media described above are disclosed as example
forms of implementing the claims. Aspects of embodiments allow for multiple client
computers, multiple remote servers, multiple relay servers, and multiple networks, etc.
Or, in other embodiments, a single client computer with a single remote server, single
relay server, and single network are used. One skilled in the art will recognize other
embodiments or improvements that are within the scope and spirit of the present
disclosure. Therefore, the specific structure, acts, or media are disclosed as example
embodiments of implementing the present disclosure. The disclosure is defined by the

appended claims.

10

15

20

25

30

WO 2011/130038 PCT/US2011/031103

27

WHAT IS CLAIMED IS:
L. A computer-implemented method for extending functionality of a client by
tunneling protocol data over a Hypertext Transfer Protocol (HTTP) through a relay server,
the method comprising;:

receiving a communication at the relay server, from the client, to create a relay
session with a remote endpoint;

authenticating the client, wherein authenticating the client comprises sending
challenge response data to the client;

configuring the relay session;

generating a session identifier for the relay session;

sending the session identifier to the client; and

transferring HTTP requests and responses to the client to exchange data with the
remote endpoint, wherein the HTTP requests comprise the session identifier.
2. The method of claim 1, wherein the session identifier is used to group requests
belonging to the same relay session.
3. The method of claim 2, wherein the session identifier is generated by a
cryptographic random number generator.
4. The method of claim 1, wherein sequence numbers and acknowledgement numbers
are assigned to HTTP requests and responses belonging to the same session.
5. The method of claim 1, wherein initial requests and responses initiate the relay
session, and wherein subsequent HTTP requests transfer Session Initiation Protocol (SIP)
data via HTTP to the remote endpoint via the relay server.
6. The method of claim 5, where the SIP data is transferred via HTTP onto a transport
mechanism, and wherein the transport mechanism comprises one from the group
consisting of: Transmission Control Protocol (TCP), User Datagram Protocol (UDP), or
Transport Layer Security (TLS).
7. The method of claim 1, wherein initial requests and responses initiate the relay
session, and wherein subsequent HTTP requests transfer Remote Desktop Protocol (RDP)
data via HTTP to the remote endpoint via the relay server.
8. The method of claim 7, wherein the RDP data is transferred via HTTP onto a
transport mechanism, and wherein the transport mechanism comprises one from the group

consisting of: RTP/SRTP, TLS, UDP, or TCP.

10

15

20

25

30

WO 2011/130038 PCT/US2011/031103

28

9. One or more computer storage media storing computer-executable instructions that
when executed by a processor perform a method for extending functionality of a client by
tunneling protocol data over the Hypertext Transfer Protocol (HTTP) through a relay
server, the method comprising:

receiving a communication at the relay server, from the client, to create a relay
session with a remote endpoint;

authenticating the client, wherein authenticating the client comprises sending
challenge response data to the client;

configuring the relay session;

generating a session identifier for the relay session;

assigning the session identifier to the client

transferring HTTP requests to exchange data with the remote endpoint, wherein the
HTTP requests comprise the session identifier and a sequence number, and wherein the
sequence number is received by the relay server as an HTTP header;

transferring HTTP requests and responses to the client, wherein the HTTP requests
to the client comprise the session identifier;

consuming, by the relay server, the sequence number;

generating an acknowledgment number; and

passing the acknowledgment number with an HTTP response to the client.
10. The one or more computer storage media of claim 9, further comprising:

using the session identifier to group requests belonging to the same relay session,

wherein a group of requests comprises RDP requests.

11. The one or more computer storage media of claim 9, wherein the session identifier
is a GUID.
12. The one or more computer storage media of claim 9, wherein the authenticating is

performed with an authentication broker at the relay server.

13. The one or more computer storage media of claim 9, wherein the protocol data
tunneled over HTTP comprises arbitrary protocol data.

14. The one or more computer storage media of claim 9, wherein the protocol data
comprises one or more from the group consisting of: Remote Desktop Protocol (RDP) data
and Session Initiation Protocol (SIP) data.

15. A system configured to tunnel protocol data over the Hypertext Transfer Protocol
(HTTP) through a relay server between a client and a remote endpoint, the system

comprising:

WO 2011/130038 PCT/US2011/031103
29

a processor; and
memory coupled to the processor, the memory comprising computer program
instructions executable by the processor to provide:

a session management component within the relay server, wherein the

S session management component generates a session identifier (session ID) to group HTTP
requests and returns the session ID to the client;

a relay engine component within the relay server, wherein the relay engine
component assigns one or more sequence numbers and one or more acknowledgment
numbers to HTTP requests and responses;

10 a platform services component within the relay server, wherein the platform
services component enables authentication of the client to extend functionality of the
client; and

a plug-in transport module within the relay server, wherein the plug-in
transport module supports the protocol data tunneling.

15

PCT/US2011/031103

WO 2011/130038

1/13

141"

vecl
l/ "O1N F3LIANI
>

9Ll
l/ "O1N 14300V
>

d3Nd3S dIS

"O1N 3LIANI

oLl

00l

PCT/US2011/031103

WO 2011/130038

2/13

80¢

NOILVYNILS3Ad

474

0c¢e ¢cce
[&D 10001044 l/ dSNOdS3d S/dL1H
> >

d3AG3S AV AN3ITO ONIMANNNL

-
(1Sano3ay /u
d11H a3ddvaMNN) 1S3N03 S/dLLIH Pz
91z

v1vad 7000104d
90¢

T

PCT/US2011/031103
313

WO 2011/130038

¢ "B

gLe
SENYER 9l¢
AV13Y SdL1H/dLIH \|
/ 4
Y31ANVH
0ce aam 8z¢ 20¢
cee dl1H NIV1d AW
1HOdSNYHL dNOD
ANIONT AV13d
IN3ID
/~| a3asvsd
. 42> -43SMOYS
MANYES | gle e
\
FLONTY] 7\N |5
N 3DIAY3S
/ ~
80€ \ L\ WM |“ gam 4OM
9ze 2 SIOINYAS R 2ze
| WYO4lvld | dINOD LINOI
] NOISS3S |—u

02< \ L vze v0¢

00¢€

WO 2011/130038

Server for :
\Session?
Auth. Data : < 7

I
I
| Remote |<--->/ Create
I
|

no |
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

| End

PCT/US2011/031103

4/13

Receive Contact to Create By 404
Relay Session

Configure Relay [¢=410
Session

'

Generate Session | S~ 412
ID

'

414
Assign Session ID ;

:

Send Session ID to By 416
Client

:

Receive HTTP
Request with _ 418

Session ID

|

Exchange Data with| _§~ 420
Remote Server

422

WO 2011/130038 PCT/US2011/031103

5/13

502

500 K

504

Configure Relay Server to

Tunnel Data? no

528

518 =

Tunnel
RDP?

Plug-In TLS/SSL
Transport Module

520 no

1004
510 -& Plug-In RTP/SRTP
Transport Module

Tunnel Arb.
Data?

526

530 Plug-in
_k Appropriate Prot.

522

Other Plug- Transport
Plug-ln Ins? Module
Authentication yes
Broker

Plug-In

524 L

Other Plug-

514 Ins?

yes

Other Plug-

End

Plug-In ~
516 MO
534

WO 2011/130038 PCT/US2011/031103

6/13

600 —K

o

604 2| Receive Request to Create
Relay Session

;

606 Create Relay
Session

:

Generate Random No. with

608 - Crypto. Algorithm for
Group 1

:

Fi 6 610 Assign Random No.
g' to ldentify Group 1

|

612 Send Group No. to
Client for Group 1

|

614 Receive Request
for RDP Data

:

616 ! Generate Random
No. for Group 2

v

620 End Send Group No. to — 618
Client for Group 2

WO 2011/130038 PCT/US2011/031103

713
N, i
> Generate HTTP Request at — 704

Client & Assign Sequence No.

|

Receive at Relay Server 706
> HTTP Request with L
Sequence No.

|

Consume
Sequence No. at

Relay Server
722 i

— 708

Generate Ack. No. ¢ 710
at Relay Server

Retry Sending l

R t
eques Send Ack. No. to 712
Client with L

Response

Receive Ack. at Client? 714

720

More
Requests to
Send?

716

yes

718

End

PCT/US2011/031103

WO 2011/130038

8/13

vs 614

818
NENYEELS o8
AV13Y dISAS)dLLH \u
\ 7
YITIANVH
0e8 aaM 9z8 208
¢es dL1H NIvV1d Am
\/mm_m\/v\. weals 1SS dN09D
1dOdSNVHL INIONT AV1IY
IN3I10
™~ a3sve
. vi8 -43SMoYd
E/NSESTRIRN 908 2Lg
JLoNTY [\ B2

/N/ 128 1”4 T

\ —_—— JOINY3S
\ Ll
808 |\ AN R : B g3am 40M
928 > | uny || R 228
| S30AMES dINOD LWOW
| WHOHLV1d | NOISS3S |—]
\| [Lo

028 |\ e v08

008

WO 2011/130038 PCT/US2011/031103

9/13

RN, >

Receive Contact at Session 838
r————- Management Comp. to y

842 1 i

r——1 g4 t Create Relay Session

| contact | 7N\

| Remote | 7 Auth. to\\ yes
| Server for la--»{ Create > ——————
| Auth. | \ Session? 7/
| Data | \\ // Configure Relay | _¢— 844

I | r Session

|

Generate Session 1D
at Session 846
Management Comp.

v

Assign Session ID
to Client

v

Send Session IDto | _§~ 850
Client

I
I
I
I
I
I
I
I
I
I
I
I
i I
I
I
I
I
I
I
I
I
I
I
I

no

Relay Engine
Interacts with SSL
Stream Module to f~5~ 892

Relay Data To/From
Remote Server

l S 854

SSL Stream Module Exchange Data
with Remote Server

L = 856

WO 2011/130038

10/13

900
K 902

PCT/US2011/031103

904 _K Receive Challenge Data
from Browser-Based Web

Application

!

906 7\

Perform
Authentication to
Generate Challenge
Response

|

908 —/

Send Challenge
Response to
Browser-Based
Web Application

920
End

|

910—/

Receive Data from

Receive New
Request with
Assembled
Challenge
Response

918
- Browser-Based
Web Application

'

Send New Request
with Response to
Remote Server

;

Notify Browser-
916 il Based Web

Application of

Receive Approval
from Remote Server

Approval

\Lgm

PCT/US2011/031103

WO 2011/130038

11/13

1NIOdAdN3
dld
J10N3H

9001 I\

oL "Bid

H3AAY3S vi0lL
AV13Y dLd/AS)dLLIH \n
v
201 dS3TANYH
gam
910l d1lIH NIV1d AW
1/ IANIDONT AV 13
abesso|\ Ny
palesy /V
-d1Y JOVLS AN
9z0l
vIA3an % 0L0L
"
8¢l ERINER
gam 4OM R
Jusuodwo)
uonednbuyuon [—
001

¢cOol ¢001
IN3ITO
a3svd
-d43SMOH4
8Lol

000!l

WO 2011/130038 PCT/US2011/031103

12/13

N, e

Relay Server Is

1104
Contacted to /5_

Configure SRTP
Channel

_____ |

Connectivity I Configuration /‘ 1106

I
1107 j\: Checkat | »| Component
I Remote RTP ¥ Configures Media

Endpoint Stack

|

Receive RDP Data
via HTTP at Relay F—_ 1108
Engine

|

Relay Engine
Communicates

with Media Stack
to Obtain RDP | L 1110
Data

|

Media Stack
Exchanges RTP

Msgs. with Remote _
RTP Endpoint 1112

End 1114

Fig. 11

PCT/US2011/031103

WO 2011/130038

13/13

(s)uonosuuo)
UONEDIUNWIWOD

prz S (s)so1meq indu

zlzl ST (8)921ne@ indino

abeio)s
Olch S 9|qeAoway-UoN

_ abeio)s
8021 ST d|qeroway

nun
Buissao0.d

9|1BJO/\-UON

Alows|\
S|l1EION

Alows|\
walsAs

14945 U

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings

