

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2015-143708
(P2015-143708A)

(43) 公開日 平成27年8月6日(2015.8.6)

(51) Int.Cl.	F 1	テーマコード (参考)
GO 1 N 35/08 (2006.01)	GO 1 N 35/08	A 2 G 058
GO 1 N 37/00 (2006.01)	GO 1 N 37/00	1 O 1 4 G 035
BO 1 F 3/02 (2006.01)	GO 1 N 35/08	B 4 G 075
BO 1 F 3/04 (2006.01)	BO 1 F 3/02	
BO 1 F 3/08 (2006.01)	BO 1 F 3/04	Z
審査請求 有 請求項の数 1 O L 外国語出願 (全 103 頁)		最終頁に続く
(21) 出願番号	特願2015-82691 (P2015-82691)	(71) 出願人 512265308 オプコ・ダイアグノスティクス・リミテッド・ライアビリティ・カンパニー O P K O D I A G N O S T I C S, L L C アメリカ合衆国 O 1 8 0 1 マサチューセッツ州ウォーバーン、コンスティテューション・ウェイ 4 番、スウィート・イー
(22) 出願日	平成27年4月14日 (2015.4.14)	
(62) 分割の表示	特願2012-541187 (P2012-541187) の分割	
原出願日	平成22年11月24日 (2010.11.24)	
(31) 優先権主張番号	61/263,981	
(32) 優先日	平成21年11月24日 (2009.11.24)	
(33) 優先権主張国	米国 (US)	
		(74) 代理人 100100158 弁理士 鮫島 瞳 (74) 代理人 100068526 弁理士 田村 恭生 (74) 代理人 100132252 弁理士 吉田 環
		最終頁に続く

(54) 【発明の名称】マイクロ流体システムにおける流体混合および輸送

(57) 【要約】

【課題】通常マイクロ流体システムにおいて流体を混合し輸送するためのシステムおよび方法を開示する。

【解決手段】所定の実施例において、流体は、1つ以上の化学的反応または生体反応に関与することができる試薬を含む。いくつかの実施例は、制御可能に流れ、且つ／またはマイクロ流体システム内の流体の部分を混合するために1つ以上の通気弁を使用するシステムおよび方法に関する。好適に、流体の流れの順序および流速の変化のうち少なくともいずれか一方のような流体の制御は、1つ以上の通気弁を開閉することにより、および略定圧にて操作される流体流（例えば真空）の単一の源の付与により行われ得る。これにより、意図した使用者による装置の操作および使用を単純化することができる。

【選択図】なし

【特許請求の範囲】**【請求項 1】**

主チャネルと、

第1の流体を含む第1の分岐チャネルと、

第2の流体を含む第2の分岐チャネルであって、前記第1の分岐チャネルおよび第2の分岐チャネルは、交差部にて接合し且つ主チャネルに連通する、前記第2の分岐チャネルと、

第1の分岐チャネルの一部と主チャネルの一部との間に配置された通気弁とを備える装置を提供する工程と、

通気弁を駆動する工程と、

10

第1の流体および第2の流体を交差部に略同時に流れ込ませる工程と、

混合流体を生成すべく第1の流体および第2の流体の少なくとも一部を混合する工程とを含むことを特徴とする方法。

【請求項 2】

第1の流体を含む上流のチャネル部と、

第1の流体とは異なる第2の流体を含む下流のチャネル部と、

上流のチャネル部と下流のチャネル部との間に配置される通気弁とを備える装置を提供する工程と、

第1の流体および第2の流体が相互に繋がりをもった状態で、第1の流体を実質的に流すことなく第2の流体を下流のチャネル部に流す工程と、

20

第2の流体を流した後に第1の流体を上流のチャネル部から下流のチャネル部に流す工程とを含むことを特徴とする方法。

【請求項 3】

入口と、

出口と、

入口と連通する上流のチャネル部と、

出口と連通する下流のチャネル部と、

下流のチャネル部と上流のチャネル部との間に配置される通気弁と、

上流のチャネル部および下流のチャネル部のうち少なくとも一方に収容される第1の流体とを備え、装置は、初めて使用されるに先立って少なくとも1時間にわたって装置に第1の流体を収容するようにシールされ、構成されることを特徴とする装置。

30

【請求項 4】

入口と、

出口と、

入口と出口との間の主チャネルと、

入口と出口との間の主チャネルに沿って直列に配置された第1の通気弁および第2の通気弁とを備えることを特徴とする装置。

【請求項 5】

前記チャネルの少なくとも1つはマイクロ流体チャネルであることを特徴とする請求項1乃至4のいずれか一項に記載の装置または方法。

40

【請求項 6】

前記第1の流体および第2の流体のうち少なくともいずれか一方を流す工程は、第1の流体および第2の流体のうち少なくともいずれか一方を含む1つ以上のチャネルに圧力勾配を付与する工程を含むことを特徴とする請求項1乃至5のうちいずれか一項に記載の装置または方法。

【請求項 7】

前記第1の流体および第2の流体のうち少なくともいずれか一方を流す工程は、第1の流体および第2の流体のうち少なくともいずれか一方を含むチャネルの一端に真空を付与する工程を含むことを特徴とする請求項1乃至6のうちいずれか一項に記載の装置または方法。

50

【請求項 8】

前記第1の流体は液体であることを特徴とする請求項1乃至7のうちいずれか一項に記載の装置または方法。

【請求項 9】

前記第1の流体は気体であることを特徴とする請求項1乃至8のうちいずれか一項に記載の装置または方法。

【請求項 10】

前記第2の流体は液体であることを特徴とする請求項1乃至9のうちいずれか一項に記載の装置または方法。

【請求項 11】

前記第2の流体は気体であることを特徴とする請求項1乃至10のうちいずれか一項に記載の装置または方法。

10

【請求項 12】

前記流体の少なくとも1つは全血であることを特徴とする請求項1乃至11のうちいずれか一項に記載の装置または方法。

【請求項 13】

前記装置は、

第1の分岐チャネルを含む上流のチャネル部と、

第2の分岐チャネルを含む上流のチャネル部とを備え、

第1の分岐チャネルおよび第2の分岐チャネルは交差部にて接合するとともに、下流のチャネル部に連通することを特徴とする請求項1乃至12のうちいずれか一項に記載の装置または方法。

20

【請求項 14】

前記第1の流体および第2の流体を略同時に交差部に流し込む工程を更に含むことを特徴とする請求項1乃至13のうちいずれか一項に記載の装置または方法。

【請求項 15】

混合流体を形成するために、前記第1の流体および第2の流体の少なくとも一部を混合する工程を更に含むことを特徴とする請求項1乃至14のうちいずれか一項に記載の装置または方法。

30

【請求項 16】

前記第1の分岐チャネルおよび第2の分岐チャネルは、第1の流体が収容される間に主チャネルと連通することを特徴とする請求項1乃至15のうちいずれか一項に記載の装置または方法。

【請求項 17】

前記装置は第1の分岐チャネルに収容される第2の流体を含むことを特徴とする請求項1乃至16のうちいずれか一項に記載の装置または方法。

【請求項 18】

前記第1の流体は金属溶液であることを特徴とする請求項1乃至17のうちいずれか一項に記載の装置または方法。

【請求項 19】

前記第2の流体は還元剤であることを特徴とする請求項1乃至18のうちいずれか一項に記載の装置または方法。

40

【請求項 20】

前記チャネルに含まれる流体は、最初に使用されるに先立って少なくとも1時間にわたってチャネルに収容されることを特徴とする請求項1乃至19のうちいずれか一項に記載の装置または方法。

【請求項 21】

前記第1の流体および第2の流体は、第1の流体および第2の流体の両者と混合不能な第3の流体によって分離されることを特徴とする請求項1乃至20のうちいずれか一項に記載の装置または方法。

50

【請求項 2 2】

前記弁は、第1の流体と第2の流体との間に配置されることを特徴とする請求項1乃至21のうちいずれか一項に記載の装置または方法。

【請求項 2 3】

前記弁は、第1の流体と第3の流体との間に配置されることを特徴とする請求項1乃至22のうちいずれか一項に記載の装置または方法。

【請求項 2 4】

前記弁は第1の分岐チャネルの一部に配置されることを特徴とする請求項1乃至23のうちいずれか一項に記載の装置または方法。

【請求項 2 5】

前記弁は第2の分岐チャネルの一部に配置されることを特徴とする請求項1乃至24のうちいずれか一項に記載の装置または方法。

【請求項 2 6】

前記第1の流体および第2の流体は略異なる粘性を有することを特徴とする請求項1乃至25のうちいずれか一項に記載の装置または方法。

【請求項 2 7】

前記混合された第1の流体および第2の流体を、第1の流体および第2の流体の混合工程の10分以内に反応領域に接触させる工程を更に含むことを特徴とする請求項1乃至26のうちいずれか一項に記載の装置または方法。

【請求項 2 8】

前記上流のチャネル部は、第1の分岐チャネルであり、前記装置は、第2の分岐チャネルを更に備え、前記第1の分岐チャネルおよび第2の分岐チャネルは交差部にて接合し、且つ下流のチャネル部に連通することを特徴とする請求項1乃至27のうちいずれか一項に記載の装置または方法。

【請求項 2 9】

前記第1の分岐チャネルおよび第2の分岐チャネルの交差部は、混合領域を含み、同混合領域は、第1の分岐チャネルまたは第2の分岐チャネルのいずれかより大きな横断面積を有することを特徴とする請求項1乃至28のうちいずれか一項に記載の装置または方法。

【請求項 3 0】

前記混合領域は通気弁を含むことを特徴とする請求項1乃至29のうちいずれか一項に記載の装置または方法。

【請求項 3 1】

前記第1の流体および第2の流体の少なくとも一部を混合する工程は、乱流混合工程を含むことを特徴とする請求項1乃至30のうちいずれか一項に記載の装置または方法。

【請求項 3 2】

前記主チャネルは拡散によって第1の流体および第2の流体を完全に混合できるように十分に長いことを特徴とする請求項1乃至31のうちいずれか一項に記載の装置または方法。

【請求項 3 3】

前記交差部の下流の反応領域に配置される結合パートナーを更に含むことを特徴とする請求項1乃至32のうちいずれか一項に記載の装置または方法。

【請求項 3 4】

前記流体の少なくとも1つは、化学的反応および生体反応のうち少なくともいずれか一方のための試薬を含むことを特徴とする請求項1乃至33のうちいずれか一項に記載の装置または方法。

【請求項 3 5】

前記第1の流体は、化学的反応および生体反応のうち少なくともいずれか一方のための第1の試薬を含み、第2の流体は、化学的反応および生体反応のうち少なくともいずれか一方のための、第1の試薬とは異なる第2の試薬を含むことを特徴とする請求項1乃至3

10

20

30

40

50

4のうちいずれか一項に記載の装置または方法。

【請求項 3 6】

前記1つ以上の試薬は、異種混合の親和性反応に関与することを特徴とする請求項1乃至35のうちいずれか一項に記載の装置または方法。

【請求項 3 7】

前記第1の流体を実質的に流すことなく第2の流体を下流のチャネル部にて流す工程は、通気弁が開放されるように通気弁を始動させる工程を含むことを特徴とする請求項1乃至36のうちいずれか一項に記載の装置または方法。

【請求項 3 8】

前記第2の流体を流した後に第1の流体を上流のチャネル部から下流のチャネル部に流す工程は、通気弁が閉鎖されるように通気弁を始動させる工程を含むことを特徴とする請求項1乃至37のうちいずれか一項に記載の装置または方法。

【請求項 3 9】

通気弁が開放されるように通気弁を始動させることによって通気弁に隣接するチャネルに気体のセグメントを導入する工程を更に含むことを特徴とする請求項1乃至38のうちいずれか一項に記載の装置または方法。

【請求項 4 0】

前記チャネルへ気体のセグメントを導入する工程は、チャネルに含まれる流体を、気体のセグメントによって分離される第1の部分および第2の部分に分割する工程を含むことを特徴とする請求項1乃至39のうちいずれか一項に記載の装置または方法。

【請求項 4 1】

第1の分岐チャネルおよび第2の分岐チャネルの少なくとも1つの横断面積は、等圧が第1の分岐チャネルおよび第2の分岐チャネルに付与される場合に、第1の流体および第2の流体が交差部に略同時に流れ込むように選択されることを特徴とする請求項1乃至40のうちいずれか一項に記載の装置または方法。

【請求項 4 2】

前記第1の流体および第2の流体を実質的に流すことなく通気弁を始動させるに先だって主チャネルに第3の流体を流す工程を含むことを特徴とする請求項1乃至41のうちいずれか一項に記載の方法。

【請求項 4 3】

略一定の圧力が主チャネルの出口に付与され、第1の流体、第2の流体、および第3の流体の流れのタイミングは、通気弁の始動のタイミングによって定まることを特徴とする請求項1乃至42のうちいずれか一項に記載の装置または方法。

【請求項 4 4】

前記第1の流体および第2の流体の少なくとも一部を所定量混合させるべく通気弁を始動させた後に所定の時間待機する工程と、第1の分岐チャネルおよび第2の分岐チャネルにそれぞれ残留する第1の流体および第2の流体の流れを止めるべく通気弁を続いて開放する工程とを含み、これにより所定の混合量の第1の流体および第2の流体を主チャネルに流すことを特徴とする請求項1乃至43のうちいずれか一項に記載の方法。

【発明の詳細な説明】

【技術分野】

【0 0 0 1】

マイクロ流体システムにおいて流体を混合し輸送するためのシステムおよび方法が開示される。所定の例において、流体は、1つ以上の化学的反応または生体反応に関与することができる試薬を含む。

【背景技術】

【0 0 0 2】

流体の処理は化学、微生物学および生化学のような分野において重要な役割を果たす。これらの流体は液体や気体を含み、化学的または生物学的工程に、試薬、溶媒、反応物あるいは洗い流し液を供給する。マイクロ流体の分析のような様々なマイクロ流体の方法お

10

20

30

40

50

より装置により、低成本で高感度且つ正確なプラットフォームが得られるが、複数の流体の混合、サンプル導入、試薬の導入、試薬の収容、流体の分離、廃棄物の収集、オフチップ分析のための流体の抽出、および1つのチップから次のチップへの流体の移動のような流体の操作により、コストおよび複雑さが更に増大する。

【発明の概要】

【発明が解決しようとする課題】

【0003】

従って、マイクロ流体システムにおいてコストを低減し、使用を単純化し、且つ／または流体の操作を改善することのできる分野における進歩が好適であろう。

10

【課題を解決するための手段】

【0004】

マイクロ流体システムにおいて流体を混合し輸送するためのシステムおよび方法が開示される。本発明の主題は、所定の例において、相互に関係する製品、所定の課題の代替解決策、および／または1つ以上のシステムおよび／または物の複数の異なる用途を含む。

【0005】

一組の実施例において、一連の方法が提供される。一実施例において、方法は、主チャネル、第1の流体を含む第1の分岐チャネル、第2の流体を含む第2の分岐チャネル、第1の分岐チャネルの一部と主チャネルの一部との間に配置される通気弁を含む装置を提供する工程を含み、第1の分岐チャネルおよび第2の分岐チャネルは、交差部にて連通し、且つ主チャネルに連通する。方法は、通気弁を始動させる工程と、交差部に第1の流体および第2の流体を略同時に流れ込ませる工程と、混合流体を形成するために第1の流体および第2流体の少なくとも一部を混合する工程とを含む。

20

【0006】

別例において、方法は、第1の流体を含む上流チャネル部、第1の流体とは異なる第2の流体を含む下流チャネル部、および上流チャネル部と下流チャネル部との間に配置される通気弁を含む装置を提供する工程を含む。第1のチャネル部および第2のチャネル部は、相互に連通するが、第2の流体は、第1の流体を実質的に流すことなくチャネル部を下流に流れる。方法は、第1の流体を流した後に、第2の流体を上流チャネル部から下流チャネル部に流す工程を更に含む。

30

【0007】

別の組の実施例において、一連の装置が提供される。一実施例において、装置は入口、出口、入口と連通する上流チャネル部、出口と連通する下流チャネル部、および下流チャネル部と上流チャネル部との間に配置される通気弁を備える。第1の流体は、上流チャネル部および下流チャネル部の少なくとも一方に収容され、装置は、初めて使用されるに先立って少なくとも1時間にわたって第1の流体を装置に収容するようにシールされ構成される。

【0008】

別例において、装置は、入口、出口、入口と出口との間の主チャネル、入口と出口との間の主チャネルに沿って直列に配置される第1の通気弁および第2の通気弁を含む。

40

本発明の他の効果および新規な特徴は、本発明を制限するものではない様々な実施例の後述の詳細な開示から、添付の図面と組み合わせて考慮することにより、明らかになるであろう。本明細書およびここに開示される文献が、矛盾し且つ／または一貫しない開示を含む場合は、本明細書の記載が優先するものとする。ここに開示される2つ以上の文献が相互に矛盾し且つ／または一貫しない開示を含む場合は、後の発効日を有する文献の記載が優先するものとする。

【図面の簡単な説明】

【0009】

【図1】一組の実施例による複数の通気弁を含む装置を示す概略図。

【図2A】一組の実施例によるここに開示される装置において使用可能な通気弁を示す断面図。

50

【図2B】一組の実施例によるここに開示される装置において使用可能な通気弁を示す断面図。

【図2C】一組の実施例によるここに開示される装置において使用可能な通気弁を示す断面図。

【図2D】一組の実施例によるここに開示される装置において使用可能な通気弁を示す断面図。

【図2E】一組の実施例によるここに開示される装置において使用可能な通気弁を示す断面図。

【図2F】一組の実施例によるここに開示される装置において使用可能な通気弁を示す断面図。

10

【図3A】一組の実施例による1つ以上の通気弁を含むチャネルの例示的な概略図。

【図3B】一組の実施例による1つ以上の通気弁を含むチャネルの例示的な概略図。

【図3C】一組の実施例による1つ以上の通気弁を含むチャネルの例示的な概略図。

【図3D】一組の実施例による1つ以上の通気弁を含むチャネルの例示的な概略図。

【図4A】一組の実施例による分岐チャネルを示す概略図。

【図4B】一組の実施例による分岐チャネルを示す概略図。

【図4C】一組の実施例による分岐チャネルを示す概略図。

【図4D】一組の実施例による分岐チャネルを示す概略図。

【図4E】一組の実施例による分岐チャネルを示す概略図。

【図4F】一組の実施例による分岐チャネルを示す概略図。

20

【図4G】一組の実施例による分岐チャネルを示す概略図。

【図4H】一組の実施例による分岐チャネルを示す概略図。

【図4I】一組の実施例による分岐チャネルを示す概略図。

【図5A】一組の実施例による装置のチャネルの流体プラグを示す概略図。

【図5B】一組の実施例による装置のチャネルの流体プラグを示す概略図。

【図6A】一組の実施例による装置のチャネルの流体プラグの様々な構成を示す例示的な概略図。

【図6B】一組の実施例による装置のチャネルの流体プラグの様々な構成を示す例示的な概略図。

【図6C】一組の実施例による装置のチャネルの流体プラグの様々な構成を示す例示的な概略図。

30

【図7】一組の実施例による複数の検知領域を含む装置を示す例示的な概略図。

【図8】時間の関数として一組の実施例による混合流体の蓄積量を示すプロット。

【発明を実施するための形態】

【0010】

本発明の実施例は、概略図であって正確な寸法に描かれるものではない添付の図面を参照して例示により開示されるが、これらの実施例に限定されるものではない。図において、図示の同一または略同一の要素はそれぞれ、単一の参照符号によって通常示される。明瞭にすべく、全図において全ての要素に符号が付されているとは限らず、図示が当業者に本発明を理解させる上で必要ない場合には、本発明の各実施例の全ての要素が示されるものではない。

40

【0011】

マイクロ流体システムにおいて流体を混合し輸送するためのシステムおよび方法が開示される。所定の例において、流体は、1つ以上の化学的反応や生体反応に関与する試薬を含む。いくつかの実施例は、マイクロ流体システムにおいて流体の部分を制御可能に流し、且つ/または混合するために1つ以上の通気弁を使用するシステムおよび方法に関する。通気弁は、例えば、流体が配置されるマイクロ流体チャネルに連通するポートを含み、ポート開口部を覆うようにシールを位置決めすることにより、あるいはシールをポート開口部から取り払うことにより始動される。所定の実施例において、シールは、ポートと連通するチューブに処理的に関連する機械弁のような弁機構を含む。通常、通気弁を開放す

50

ることにより、ポートを通気孔として機能させることができる。ポートが、通気孔として機能する場合に、通気弁の一方の側に配置される流体は流れるが、第1の流体に対して通気弁の反対側に配置される流体は静止した状態を保持する。弁が閉鎖される場合に、ポートは通気孔としては機能しないため、通気弁の両側に配置される流体は、システムを通って出口に向かって流れる。好適に、流体の流れの順序および流速の変化のうち少なくともいずれか一方のような流体の制御は、1つ以上の通気弁を開閉し、略定圧にて操作される流体流の1つの源（例えば真空）を付与することによって行われ得る。これにより、意図した使用者による装置の操作および使用を単純化することができる。

【0012】

マイクロ流体システムにおける流体の移動を制御するように通気弁を始動することができる。例えば、流体は、チャネルに連続して収容可能であり、チャネルに沿って配置される通気弁を閉鎖した後に、流体はチャネル出口に向かって連続して流れる。所定の場合に、流体は個別の交差するチャネルに収容され、通気弁を閉鎖した後に、流体は交差部の地点に向かって一体的に流れる。この組の実施例は、例えば、流体が一体的に流れるとときに制御可能に流体を混合することに使用することができる。輸送のタイミングおよび輸送される流体の量は、例えば通気弁始動のタイミングによって制御することができる。

【0013】

好適に、ここに開示される通気弁は、先行技術における所定の弁により生じるであろう操作するマイクロ流体チャネルの断面の収縮を伴うことなく操作することができる。そのような操作モードは、弁を横断して漏れが生じるのを防止することに好適である。更に、通気弁を使用することができるので、ここに開示される所定のシステムおよび方法は、例えば高コスト、組立ての複雑さ、脆弱性、混合気体および液体システムと相溶性の制限、および／またはマイクロ流体システムの低信頼性による課題を生じ得る所定の内部弁を使用することを要求するものではない。通気弁のような外部弁を使用することによって、マイクロの規模（マイクロの規模ではなく）の機械的な特徴が利用され、これは通常組立が高価でなく、操作においてより堅固である。付加的に、ここに開示される外部弁は、異種混合の流体（例えば気体および液体の組み合わせ）、並びに泡、小滴および／または粒子を含む流体と組み合わされて好適に機能する。

【0014】

所定の実施例において、ここに開示されるシステムにおいて使用される流体は、システム自体の内部に収容される。外部弁は試薬輸送のタイミングを制御するが、液体試薬の注入は、上述した所定のシステムを操作することに要求されるものではない。流体源への外部接続を形成することなくシステムを操作する性能により、操作を非常に単純化することができる。

【0015】

ここに開示される物とシステムは低コストにて形成可能であり、所定の場合に、使い捨てであってもよい。付加的に、いくつかの実施例において、ここに開示される物とシステムは、機械的特徴が複雑ではないため迅速に形成可能である。これらの効果により、多数の化学的および生物学的システム（例えば生物活性実験）に好適な広い範囲の構成を実験し、実施することができる。他の効果はより詳細に以下に開示される。

【0016】

ここに開示されるシステムおよび方法は、様々な分野に応用可能である。所定の場合に、システムおよび方法は、例えば特にマイクロ流体ポイントオブケア診断、マイクロ流体ラボ化学分析システム、細胞培養や生物反応槽における流体制御システムのような様々なマイクロ流体システムにおける流体流および混合を制御することに使用することができる。ここに開示される物、システム、および方法は、低コストで堅固且つ使い捨て可能なマイクロ流体装置が要求される所定の場合に、特に好適である。ここに開示される流体の制御は、任意の好適な化学的反応および生体反応のうち少なくともいずれか一方を行うために使用されてもよい。特定の例として、ここに開示される流体の制御は、例において後述する銀溶液分析のような不安定な反応先駆体を使用する抗体分析における試薬輸送を制御

10

20

30

40

50

することに使用される。

【0017】

ここに開示される物、要素、システム、および方法は、2004年12月20日に出願され、発明の名称が「Assay Device and Method」である国際公開第WO2005/066613号明細書（国際出願公開第PCT/US2004/043585号明細書）、2005年1月26日に出願され、発明の名称が「Fluid Delivery System and Method」である国際公開第WO2005/072858号明細書（国際特許出願公開第PCT/US2005/003514号明細書）、2006年4月19日に出願され、発明の名称が「Fluidic Structures Including Meandering and Wide Channels」である国際公開第WO2006/113727号明細書（国際特許出願公開第PCT/US06/14583号明細書）、2008年5月1日に出願され、発明の名称が「Fluidic Connectors and Microfluidic Systems」である米国特許出願公開第12/113,503号明細書、2008年8月22日に出願され、発明の名称が「Liquid containment for integrated assays」である米国特許出願公開第12/196,392号明細書、2009年4月22日に出願され、発明の名称が「Flow Control in Microfluidic Systems」である米国特許出願公開第12/428,372号明細書、2008年12月18日に出願され、発明の名称が「Reagent Storage in Microfluidic Systems and Related Articles and Methods」である米国特許出願公開第61/138,726号明細書、2009年2月2日に出願され、発明の名称が「Structures for Controlling Light Interaction with Microfluidic Devices」である米国特許出願公開第61/149,253号明細書と組み合わされてもよい。これらの明細書は、その全体がここに開示されたものとする。

【0018】

通気弁および他の要素を含む一連の例示的な装置が以下に開示される。

図1は、一組の実施例による、1つ以上の通気弁および1つ以上の流体を含む装置の例示的な概要図である。図1に示す実施例において、装置10は、入口14、出口15、上流部16、および下流部18を含むチャネル12を備える。チャネルは、上流チャネル部および下流チャネル部の少なくとも1つに第1の流体20のような流体を更に含む。チャネルは、第1の流体に付加的に、あるいは第1の流体に代えて、第2の流体22を更に含んでもよい。複数の流体が収容される実施例において、これらの複数の流体は、1つ以上の混合不能な分離する流体プラグ（例えば気体（例、空気）や油のような分離流体）によって相互に分離することができる。いくつかの実例において、装置（任意の入口、出口および通気弁を含む）は、意図される使用者により初めて使用されるに先立って装置に流体（例、流体20および22のいずれかまたは両者）を収容するように、シールされ、構成される。

【0019】

図1に示すように、第1の流体20および第2の流体22は、相互に直接的に接触しない。例えば、チャネル内に第1の流体および第2の流体は、第1の流体および第2の流体の両者と混合不能な第3の流体21によって分離される。一組の実施例において、流体20および22はいずれも、例えばそれらの間に配置される気体のプラグによって分離される液体であってもよい。別例において、流体20および22は両方の液体と混合不能な第3の液体によって分離される液体である。2以上の流体が使用される場合に、気体と液体の任意の好適な組み合わせがチャネル内の流体の複数の部分を分離するために使用されてもよい。

【0020】

装置10は、下流チャネル部と上流のチャネル部との間に配置される通気弁24を更に

10

20

30

40

50

含む。ここに使用されるように、「通気弁」は、チャネルと連通するポートを含む弁、およびポートを開閉するために操作可能な機構を示し、通気弁はチャネル内部に対する外部の環境にチャネル内部を暴露するか、外部の環境からチャネル内部をシールする。例示的な外部の環境は、例えば、周囲の環境（例えば空気）、および流体（例えば加圧された気体または加圧されない気体）を含むタンクを含む。

【0021】

図2A乃至図2Fは、通気弁の例示的な断面図である。図2Aおよび図2Bに示す実施例の組において、通気弁24Aはチャネル12に隣接して配置される。通気弁はチャネルと連通するポート26Aを含む。付加的に、通気弁は、アクチュエータ30Aによって移動可能なシール28A（例えばカバー）を含む。図2Aにおいて、通気弁は、チャネル12がポート26Aを介して周囲の環境32に暴露されるように開放される。図2Bにおいて、通気弁は、チャネル12がシール28Aによって周囲の環境32から隔離されるように閉鎖される。図2Cおよび図2Dの実施例に示すように、通気弁24Bは、ポート26Bの開口部を閉鎖することができるプラグの形態のシール28Bを含む。シール28Bはいくつかの実施例において変形可能である。

10

【0022】

図2Eおよび図2Fの実施例に示すように、通気弁24Cは、流体を流すチャネル（例えばマイクロ流体チャネル）を形成するチューブ33と処理的に関連する弁機構31を含む。チューブは、マイクロ流体基板（例えば外側表面27）に対して押圧されると気密なシールを形成するプレート35に取り付けられる。シールは、圧縮したガスケットやOリング37、あるいはより詳細に後述する他の任意の好適な要素を使用して形成されてもよい。これに代えて、チューブはポートへ圧入されてもよい。図2Eおよび図2Fに示すように、弁はポート26Cと連通する。弁は弁機構31を始動させることにより開閉される。例えば、図2Eに示すように、弁が開放されると、チューブ33内の流体は、自由に弁機構を横断して流れる。上記実施例、および別例において、チャネル12は、チューブの他端にて環境39に暴露され、連通する。例えば、図2Fに示すように、弁が閉鎖されると、チューブ33内の流体は、弁機構を横断してもはや流れないため、チャネル12は、チューブの他端にて環境39と隔離され、連通しなくなる。環境39は、周囲の環境（例えば、チューブが空気に開放される）と、流体（例えば圧縮空気や窒素のような気体）を含むタンクとを含む任意の好適な環境であるものといえる。

20

【0023】

当業者は、好適な所定の応用に使用される始動機構およびシールのうち少なくともいずれか一方を選択することができるであろう。チューブや通気弁の他の任意の好適な要素に処理的に関係する弁機構の例は、ダイアフラム弁、ボール弁、ゲート弁、蝶形弁、玉形弁、ニードル弁、ピンチ弁、ボベット弁あるいはピンチ弁を含むが、これらに限定されるものではない。ソレノイド、モータを含む任意の好適な手段により、手動により、あるいは水圧や空圧により、弁機構は始動されてもよい。付加的に、任意の好適なシールが使用可能である。いくつかの実施例において、シールは、所定の場合にシステム内の1つ以上の流体と混合しても化学反応を生じないように選択されるゴムや他のエラストマ材料を含む。好適なシール材料は、天然ゴム、熱可塑性物質、合成ゴム（例えばフッ素重合体、ネオプレン、ニトリル、シリコン、フルオロシリコン（fluorosilicone）等）、あるいはこれらの組み合わせを含むが、これらに限定されるものではない。シールは、いくつかの実施例において通気弁の表面に貼り付けられるか、表面に一体的に形成される。

30

【0024】

所定の場合に、シールは、装置の表面の対応する切り欠きに係合するように設計される通気弁の表面のリップ部（図示しない）を含み（逆もまたしかり）、これにより通気弁が閉鎖位置にあるときに、シールを形成するためにリップ部が切り欠きに係合する。所定の場合に、1つ以上の通気弁が、電子的に始動される。例えば、いくつかの実施例において、センサは、システム内にて決定された信号に応じて通気弁を開閉可能なアクチュエータ

40

50

およびマイクロプロセッサのうち少なくともいずれか一方と作用する関係にある。所定の場合に、例えばマイクロプロセッサによって実行される予め定義したプログラムによって命令されるタイミングに基づいて、通気弁は電気的に始動されてもよい。ここに開示される任意の好適な制御システムおよび技術は、潜在的に他の制御システムと組み合わせて設計られてもよく、これらの他のシステムは、特に他の、あるいは付加的な機能を有することが開示されるものではない。

【0025】

通気弁は、所定の場合に、ポートがマイクロ流体チャネルの少なくとも一部に（例えば覆うように）隣接するように配置される。図2Aおよび図2Bに示すように、例えば、いくつかの実施例において、ポートはチャネルが形成される装置の外側表面27にチャネル内部を接続する開口部を含む。図2Aおよび図2Bは、外側表面27に直接隣接するポートの開口部を示すが、図2Cおよび図2Dに示す別例において、ポートの開口部は、介在するチャネル29によってチャネル内部に接続されてもよい。いくつかの実施例において、チャネルは物に形成され、ポートは物の平面から実質的に退出する方向に延びるように形成される。例えば、いくつかの実施例において、ポートは、チャネルが形成される基板の天面にドリルにより穴を空けることにより形成されてもよい。別例において、例えば、例1に示すように、ポートは型枠の空洞に配置されるピンを使用して射出成形によって形成される基板にモールド成型されてもよい。

【0026】

通気弁はチャネルシステム内の流体の移動を制御するために使用することができる。図1を参照すると、真空が出口92に（出口15を閉鎖した状態で、あるいは出口92を閉鎖した状態で出口15に）付与され、これにより、流体22を出口に向かって矢印52の方向に引くことができる。通気弁24が開放されているときに、環境外部からチャネル内部までの流体は通気弁を通して、チャネル内に引くことができる。例えば、外部環境における流体が周囲空気である場合に、空気は通気弁の開放時にチャネル内部に進入する。

【0027】

所定の場合に、外部環境からのこの流体は、チャネルシステム内の流体と混合される。例えば、通気弁24に配置される流体21が気体である実施例において、チャネルに進入する周囲空気は、流体21と混合される。通気弁のポートが周囲空気と連通する場合のような所定の場合に、流体21や流体20に隣接する任意の他の流れに対する抵抗は、流体20の流れ自体に対する抵抗より小さく、そのような場合、真空源が流体20の下流に適用されても、流体20は略静止した状態を保持する。これにより、流体20を実質的に流すことなくチャネルの下流部を通して流体22を流すことができる。通気弁24が閉鎖している場合に、周囲空気は、通気弁を通してチャネルに引くことができず、流体20は矢印52の方向にチャネル12を通して輸送される。

【0028】

いくつかの実施例において、ここに開示される装置は複数の通気弁を備える。装置は、例えば、主チャネルの入口と出口との間に主チャネルに沿って直列に配置される複数の通気弁を含む。図1に示す実施例の組は、例えば、チャネル12に沿って、入口14と出口15との間に、直列の通気弁24を配置した任意の第2の通気弁34を含む。

【0029】

所定の場合に、装置は、1本以上の分岐チャネル、すなわち交差部にて装置の別のチャネルと交差するチャネルを含む。例えば、いくつかの実施例において、装置は、第1の分岐チャネルを含む第1の上流部、および第2の分岐チャネルを含む第2の上流部を備える。第1および第2の分岐チャネルは所定の場合に相互に交差する。付加的に、1本以上の分岐チャネルは、下流のチャネル部と連通する。所定の場合に、装置は、主チャネルと連通する1本以上の分岐チャネルを含み、それらのうち任意のものは、内部に収容される（例えば初めての使用に先立って）1つ以上の流体を含む。例えば、図1に示す実施例の組において、装置10は、任意にチャネル36および38のうち少なくともいずれか一方を含み、これらは主チャネル12から分岐する。チャネル36および38は、任意の通気弁

10

20

30

40

50

3 4 の位置にて交差し、チャネル 1 2 の下流部（例えば下流部 1 8 ）に連通する。分岐チャネルの各々は、いくつかの実施例において、更に分岐チャネルを含んでもよい。例えばチャネル 3 6 から分岐チャネル 4 0 、 4 2 および 4 4 のうち任意のものが装置に含まれてもよい。付加的に、例えばチャネル 3 8 から分岐チャネル 4 6 、 4 8 および 5 0 のうち任意のものが装置に含まれてもよい。任意に、1 つ以上の通気弁が1 本以上の分岐チャネルに關与してもよい。同じに關連した機能性と同様に通気弁とチャネルの付加的なレイアウトも、より詳細に下に開示される。

【 0 0 3 0 】

1 組の実施例において、（例えば主チャネルの）上流チャネル部は、第 1 の分岐チャネルとして機能し、装置は第 2 の分岐チャネルを更に備え、第 1 の分岐チャネルおよび第 2 の分岐チャネルは交差部にて接続し、下流チャネル部に連通する。図 1 に示す実施例において、主チャネル 1 2 の上流部 1 6 は、第 1 の分岐チャネルとして機能し、チャネル 3 6 および 3 8 のいずれか、あるいは両者は第 2 （あるいは第 3 ）のチャネルとして機能する。

10

【 0 0 3 1 】

ここに開示されるチャネルのレイアウトは任意の好適な構成に流体を収容することに使用することができる。分岐チャネルのうちのいずれも、主チャネル内に含まれる1 つ以上の流体に代えて、あるいはその流体に付加的に1 つ以上の流体を含むことができる。例えば、第 1 の流体は主チャネルに含まれ、第 2 の流体は第 1 の分岐チャネル内に含まれる。所定の例において、第 3 の流体は、第 2 の分岐チャネルに含まれてもよい等である。例えば、図 1 に示す実施例の組において、上流部 1 6 は任意の流体 6 0 を含み、任意の分岐チャネル 3 6 は任意の流体 6 2 を含み、また、任意の分岐チャネル 3 8 は任意の流体 6 4 を含む。付加的に、任意の分岐チャネル 4 0 、 4 2 、および 4 4 は、任意の流体 6 6 、 6 8 、および 7 0 をそれぞれ含み、任意の分岐チャネル 4 0 、 4 2 、および 4 4 は、任意の流体 7 2 、 7 4 、および 7 6 をそれぞれ含む。所定の場合に、そのような流体の1 つ以上は、初めて使用されるに先立って装置に収容されシールされる。

20

【 0 0 3 2 】

通気弁は、装置内の任意の好適な位置に配置される。所定の場合に、通気弁は、2 つの流体（例えば2 つの収容される流体）間に配置される。例えば、図 1 に示す実施例の組において、通気弁 2 4 は、第 1 の流体 2 0 と第 2 の流体 2 2 との間に配置される。付加的に、あるいはこれに代えて、任意の通気弁 3 4 は、任意の第 3 の流体 6 0 と、第 1 の流体 2 0 および第 2 の流体 2 2 のうち少なくともいずれか一方との間に配置されてもよい。所定の場合に、通気弁は、第 1 の分岐チャネルの一部と主チャネルの一部との間に配置される。例えば、通気弁は、分岐チャネルおよび主チャネルの交差部のような、2 本以上のチャネルの交差部に配置される。例えば、図 1 において、任意の通気弁 3 4 は、チャネル 1 2 と、任意のチャネル 3 6 および 3 8 との交差部に配置される。付加的に、任意の通気弁 7 8 は、任意のチャネル 4 0 、 4 2 、 4 4 および 3 6 の交差部に配置される。所定の場合に、1 つ以上の通気弁が分岐チャネルの一部に配置される。例えば、図 1 において、分岐チャネル 4 6 、 4 8 、および 5 0 は、通気弁 8 0 、 8 2 および 8 4 をそれぞれ含み、これらは分岐チャネルの非交差部に配置される。

30

【 0 0 3 3 】

流体を輸送し、且つ／または混合する方法も開示される。一組の実施例において、方法は、1 つ以上の流体を移動させる一方、1 つ以上の他の流体を略静止した状態に保持する工程を含む。例えば、図 1 に示す実施例の組において、圧力勾配は、例えば出口（例えば、出口 9 2 を閉鎖した状態の出口 1 5 、あるいは出口 1 5 を閉鎖した状態の出口 9 2 ）に負圧を付与することによってチャネル 1 2 に付与される。通気弁 2 4 が開放位置にある場合に、圧力勾配は、矢印 5 2 の方向にチャネル 1 2 を通して流体 2 2 を流す。ここに開示されるような流体 2 0 を実質的に流すことなくこれは生じる。いくつかの実施例において、チャネル 1 2 内の流体 2 0 より流体の流れに対して低い抵抗を有する周囲空気は、流体 2 0 が実質的に静止した状態を保持できるように通気弁 2 4 を通して引かれる。いくつか

40

50

の実施例において、第1の流体が流される部分の上流のチャネル部からの第2の流体は、通気弁が閉鎖されるように上流チャネル部と下流チャネル部との間の通気弁を始動させることによって輸送される。例えば、図1において、通気弁24が閉鎖位置にあり、且つ上流の入口(例、入口14)や通気弁(例、通気弁34)が開放されるときに、圧力勾配により、矢印52の方向にチャネル12を通して流体20が流される。

【0034】

流体の流れのタイミングは、ここに開示されるシステムおよび方法を使用しても制御することができる。例えば、いくつかの実施例において、流体22および20は、(例えば通気弁24を閉鎖した後に真空を付与することによって)チャネル12を通して略同時に輸送することができる。例えば、いくつかの実施例において、流体22および20は、(例えば通気弁24を閉鎖するに先だって最初に真空を付与し、これにより流体22を輸送し、続いて通気弁24を閉鎖し、流体20を輸送することによって)チャネル12を通して連続して輸送することができる。これら的方法は、負圧源と、チャネル内に流すこと要求される流体との間の好適な通気弁を閉鎖することによって、任意のチャネル内の任意の流体の流れを制御することに通常使用可能である。例えば、任意の流体62の輸送が要求されると、負圧が出口92に付与されるが、出口15および通気弁24、34および94は、閉鎖される(且つ通気弁78のような流体62の上流の弁は、開放した状態を保持する)。所定の場合に、この輸送は、分岐部16および38のような他の分岐部が入口を含むとき、あるいは分岐部に含まれる任意の流体の上流に配置される通気弁が、閉鎖した位置、または分岐部16および38のような他の分岐部を含まない装置に配置されるときに行われる。これらおよび他の方法を使用して、流体は、流体システム内の所望の位置(すなわち、反応部位)に所定の時点にて所定の順に輸送され、反応あるいは他の流体の工程が実施される。更に、ここに開示される物および方法により、第1の組の工程を、第2の組の工程から切り離すことができる。例えば、これらの工程の各々を独立して制御することができる所以、1つ以上の混合領域内の2つ以上の流体の混合時間は、反応領域内のサンプルの滞留時間から分離可能である。更なる効果および例がここに開示される。

【0035】

2つ以上の流体を混合する方法も開示される。混合工程は、所定の場合に分岐チャネルを使用する工程を含む。いくつかの実施例において、方法は、主チャネル、第1の流体を含む第1の分岐チャネル、および第2の流体を含む第2の分岐チャネルを含む装置を提供する工程を含み、第1の分岐チャネルおよび第2の分岐チャネルは、交差部にて連通し、且つ主チャネルに連通する。いくつかの実施例において、第1の分岐チャネルは、交差部の上流にある主チャネルの一部を含む。例えば、図1に示す実施例の組において、主チャネルはチャネル12を含み、第1の分岐チャネルは(流体60を含む)上流部16を含み、第2の分岐チャネルは(流体62を含む)チャネル36を含む。所定の場合に、第1の分岐チャネルおよび第2の分岐チャネルの両者は、主チャネルからの方向から逸脱する。例えば、図1において、主チャネルはチャネル12を含み、第1の分岐チャネルは(流体62を含む)チャネル36を含み、第2の分岐チャネルは(流体64を含む)チャネル38を含む。いくつかの実施例において、装置は、第1の分岐チャネルの一部と主チャネルの一部との間に配置される通気弁を含む。所定の場合に、通気弁は、第1の分岐チャネルおよび第2の分岐チャネルの交差部に配置されてもよい。例えば、図1において、通気弁34は、チャネル12、38および36の交差部に配置される。いくつかの実施例において、通気弁は、分岐チャネルの交差部から上流に配置される。例えば、図1において、任意の通気弁94はチャネル36および38の交差部の上流にチャネル36を覆うように配置される。いくつかの実例において、装置は、第2の分岐チャネルの一部と主チャネルの一部との間に配置される通気弁を含む。図1において、通気弁34は、第2の分岐チャネル38と主チャネル12との間に配置される。付加的に、任意の通気弁96は、第2のチャネル38の一部と、主チャネル12との間に配置される。

【0036】

いくつかの実施例において、混合方法は、少なくとも1つの通気弁を始動させる一方、

10

20

30

40

50

第1の流体および第2の流体を2本以上のチャネルの交差部に流れ込ませるべく装置（例えば入口および出口）の2つの開口部を横断して圧力勾配を付与する工程を含む。交差部内への第1の流体および第2の流体の流れは、略同時に生じる。所定の場合に、交差部に輸送される流体の各々の少なくとも一部は、混合流体を形成すべく混合されてもよい。单一の通気弁を始動して、2つ以上の流体を流すことができる。例えば、図1において、通気弁34が閉鎖される場合（且つ任意の通気弁94および96が設けられない場合）に、2つ以上の流体62、60、および64は、これらの流体の各々の上流の少なくとも1つの入口あるいは通気弁が開放されている限り、チャネル12、36、および／または38の交差部に向かって流れる。別例として、任意の通気弁78が閉鎖される場合（弁79と圧力勾配源との間の他の通気弁も閉鎖される場合）に、2つ以上の流体66、68、および70は、これらの流体の各々の上流の少なくとも1つの入口あるいは通気弁が開放されている限り、チャネル40、42、および／または44の交差部に向かって輸送される。

【0037】

いくつかの実施例において、装置は、主チャネル、第1の流体を含む第1の分岐チャネル、および第2の流体を含む第2の分岐チャネルを含み、第1の分岐チャネルおよび第2の分岐チャネルは、交差部にて連通し、且つ主チャネルに連通する。第3の流体が、主チャネルに任意に設けられてもよく、これは例えば分岐チャネルの下流である。通気弁は、第1の分岐チャネルの一部と、主チャネルの一部との間に（例えば第1のチャネルおよび第2のチャネルの交差部に、あるいは主チャネルに沿って）配置されてもよい。システムを操作する工程は、通気弁を始動させる工程と、交差部に第1の流体および第2の流体を略同時に流れ込ませる工程と、混合流体を形成するために第1の流体および第2流体の少なくとも一部を混合する工程とを含む。いくつかの実施例において、主チャネルの第3の流体は、第1の流体および第2の流体を実質的に流すことなく通気弁（あるいは一連の通気弁）を始動させるに先だって流れてもよい。第3の流体が主チャネル（例えば反応部位あるいは装置の他の一部への）で流された後に、上述したように第1の流体および第2の流体を流すべく、第1の分岐チャネルの一部と主チャネルの一部との間に配置される通気弁を始動してもよい。いくつかの実例において、略一定の真空が、主チャネルの出口に付与され、第3の流体、第2の流体、および第1の流体の流れのタイミングが、通気弁の始動のタイミングによって得られる。システムを操作する工程は、所定の場合に、（例えば第1の流体および第2の流体の全てを混合させないように）所定量を混合させるべく通気弁を始動させた後に所定の時間待機する工程と、第1の分岐チャネルおよび第2の分岐チャネルに残留する第1の流体および第2の流体がそれぞれ主チャネルに流れることを防止すべく通気弁を繰り返して開放する工程とを含む。従って、所定の混合量の第1の流体および第2の流体が、このタイミングの方法を使用して、主チャネルに輸送される。

【0038】

いくつかの実施例において、チャネル交差部に向かって2つ以上の流体を流すべく複数の通気弁が始動される。例えば、図1において、通気弁94および96の両者は（例えば略同時に）閉鎖され、これにより、流体62および64がチャネル36および38の交差部に向かって（例えば略同時に）流される。入口14も、存在する場合に、閉鎖した状態を保持する。流体は、例えば出口92にて低減された略一定の圧力を付与するとともに、全ての他の入口、出口、あるいは流体と出口92との間の通気弁を閉鎖した状態を保持することによって生ぜられる圧力勾配の存在により流れる。付加的に、通気弁80、82、および84は（例えば略同時に）閉鎖され、これにより流体72、74、および76がチャネル38の部分98に向かって（例えば略同時に）流される。所定の実施例において、流体は共通の領域（例えば交差部、混合領域等）に略同時に至る。共通の領域に2つ以上の流体を略同時に輸送および／または輸送することは、例えば2つ以上の流体間の共通の表面積を最大限にすることによって、2つの流体を効率的に混合することができる点において好適である。付加的に、より詳細に後述するように、共通の領域に2つ以上の流体を略同時に輸送することにより、2つ以上の流体を略等量輸送することが補助される。これは、流体の正確な量の混合が要求される工程において重要である。所定の場合に、より詳

10

20

30

40

50

細に後述するように、共通の領域に2つ以上の流体を略同時に輸送することにより、混合流体とシステム内の他の流体との間の泡の形成を回避することが補助される。

【0039】

所定の場合に、装置の1つ以上のパラメータは、装置を通して輸送される2つ以上の流体が装置の領域内にて相互に略同時に接触するように、選択される。例えば、所定の場合に、少なくとも2本のチャネル（例えば2本の分岐チャネル、分岐チャネルおよび主チャネル等）の断面積、混合される流体の粘性、混合される流体の相対的な量、混合される流体を含むチャネルの直線状の長さ、付与される圧力の量、流体の各々から交差部の地点への距離は、等圧が2本のチャネルの各々に付与されるときに、これらのチャネル内の流体が交差部、あるいは他の共通の領域に略同時に流れ込むように選択される。

10

【0040】

システム内の混合を制御するために、システムにおける流体の流速を制御することは有用であろう。例えば、1つの流体（例えば図1における流体62）が別の流体（例えば図1における流体60）に先だって通気弁のような共通の領域に至る場合に、課題が生じ得る。そのような場合、予想されるように、混合が生じない可能性がある。例えば、所定の場合に、第1の流体（例えば流体62）は、第2の流体（例えば流体60）に先だって通気弁34に至ると、通気弁を満たし、通気弁と第2の流体の前方端部との間の分離する流体プラグの泡を効率よく捉えることができる。この場合に、流体62の一部は、流体60と混合することなく分離され、主チャネルの下流に流れるであろう。いくつかの実施例において、これにより、第1の量の混合されていない試薬（例えば流体62中の試薬）に対して分析の反応領域あるいは他の領域が暴露され、分離する流体プラグのセグメントがこれに続き、流体60および62の略再生不能な混合物がこれに続く。いくつかのそのような場合において、反応領域に生じる化学的反応や生体反応は、再生不可能である。

20

【0041】

理論によって拘束されることなく、発明者は、チャネルシステム内を流れる流体の流速、チャネル容量、および粘性間の関係をより良好に理解することに後述する理論を使用することができると思料する。ポアズイユの法則は、圧力によって駆動されるチューブ内の圧縮不能な一様な粘性流体（例えばニュートン流体）の層流を示し、これは以下のように表される：

【数1】

30

$$Q = \frac{\pi R^4}{8\eta} \cdot \frac{\Delta P}{L}$$

例えば、Qは容積測定の流速（例えばm³/秒）であり、Rはチューブ（m）の半径であり、Pはチューブ（Pa）を横断する圧力の変化であり、ηは動的な流体の粘性（Pa·s）であり、Lはチューブ（m）の長さである。任意の閉鎖されるチャネルへの円形のチューブを越えて一般化するために、この方程式を次のように表すことができる：

【数1b】

40

$$Q = \frac{AR_H^2}{8\eta} \cdot \frac{\Delta P}{L}$$

Aはチャネルの断面積であり、RHは水力半径であり、Pはチャネルのパラメータであり、RH = 2A/Pである。円形のチューブにおいて、ARH² = R⁴である。幅wおよび深みdの矩形のチャネルにおいて、ARH² = (wd)³ / (w+d)²である。複数の流体を制御して混合する場合に、個別の流体の流れに影響する要因を考慮することが重要である。P、η、RH²およびLが等しいように設計されるシステムにおいて、流体の両者は、同様の態様にて流れる必要があり、流体の再生可能な混合がなされる必要がある。これらのパラメータのうちの1つ以上が流体において異なる場合に、システムの設計は、差異が相殺されるようになされる必要がある。

50

【0042】

いくつかの実施例において、混合される2つ以上の流体は、略等しい量を有する。2つ以上の流体は更に同様の粘性を有し、同様のチャネル断面を有するチャネルに配置される。所定の場合に、混合される流体の前方の接合部と、これらが混合される交差部（例えば混合室）との間の1つ以上の分離する流体プラグの量は、試薬の両者に対して類似する。これにより、流体が交差部に移動を開始するときに流体が交差部に略同時に確実に至ることが補助される。これらおよび他のパラメータにより、2つ以上の流体は共通の領域に略同時に輸送され、これにより、再生可能な混合を生じる。

【0043】

第1の流体が第1の量を有し、第2の流体が第1の量とは異なる第2の量を有するいくつかの実施例において、より小容量の流体の速度は、比較的より小容量の流体が示す流体流に対する比較的小さな抵抗により、より大容量の流体に対して増加する（液体の流れに対する流体力学的抵抗は、 $1/L$ に等しく、 L は流体セグメントの長さである。チャネルの寸法および粘性が等しい場合に、より短い流体セグメントは、より長い流体セグメントと比較して速く流れる）。これにより要求される混合比からずれが生じ得る。この理由として、より大容量の流体に対して付加されるより小容量の流体が比較的大量に生じてしまうことによる。この作用は自己增幅である。その理由として、より小容量の流体が、より速く移動すると、その容量は不均衡に減少し、これにより速度が更に高められることによる。この潜在的な課題を解決すべく、チャネルの流体流に対して等しい抵抗が生じるよう、チャネルの断面を選択することができ、あるいは、混合される流体の粘性を選択することができる。例えば、より小容量の流体に対する抵抗を高めるべく、より小容量の流体は、より大容量の流体の全体的な抵抗と整合すべくより大容量の流体を含むチャネルと比較してより小さな断面を有するチャネルに配置される。付加的に、あるいはこれに代えて、より少量の流体の粘性は、より大容量の流体の全体的な抵抗と整合させるべく流体流に対するその抵抗を増加させるために増加されてもよい。

10

20

30

【0044】

所定の場合に、チャネル内の流体の輸送および混合のうち少なくともいずれか一方は、比較的少量の表面の粗さを備えたチャネルを使用することによって促進することができる。各液体と混合室の収容位置間のチャネルの表面の異質性（例えば粗さ、チャネル表面の欠陥、チャネル表面の化学的堆積の変化）は、流体部分と分離する流動性のプラグの間の接合面（すなわち、液体の大部分）の前進に影響を付与し得る。従って、ここに開示されるいくつかの実施例において、チャネル表面は比較的低い表面の粗さを有する。チャネルの表面は、例えば約 $5 \mu m$ 未満の二乗平均平方根（RMS）の表面の粗さを有する。別例において、RMSの表面の粗さは、約 $3 \mu m$ 未満、約 $1 \mu m$ 未満、約 $0.8 \mu m$ 未満、約 $0.5 \mu m$ 未満、約 $0.3 \mu m$ 未満あるいは約 $0.1 \mu m$ 未満である。

30

【0045】

流体に湿潤剤を付加することによっても、チャネル内の流体の再生可能な進行を促進することができる。湿潤剤は、流体と分離する流体プラグとの間の接合部を固定させ、且つ/またはチャネルの表面への異質部分の影響を低減することができる。いくつかの実施例において、湿潤剤は流体内において1つ以上の要素（例えば試薬）と悪い反応をしないものを選択することができる。好適な湿潤剤の例は、非イオン性洗剤（例えば登録商標 Tween 20 および登録商標 Triton、脂肪アルコールのようなポリ（エチレンオキシド）誘導体）、陰イオン洗剤（例えば、デシル硫酸ナトリウム、硫酸オクタデシルナトリウム、あるいは脂肪酸塩のような、より短いかより長いアルカン鎖を備えるデシル硫酸ナトリウムおよび関連する洗剤）、陽イオン洗剤（例えば、臭化セチルトリメチルアンモニウムのような第四アンモニウム陽イオン）、両性イオン界面活性剤（例えばドデシル・ベタイン）およびパーカルオロ界面活性剤（例えば登録商標 Capstone FS-10）を含むが、これらに制限されるものではない。

40

【0046】

付加的に、あるいはこれに代えて、チャネルの表面は流体流（例えば疎水性または親水

50

性の試薬)の抑制あるいは増強を促進するために物質により処理されてもよい。

いくつかの実施例において、チャネル内の流体の比較的高い流速を使用することによって、予測不能な流体の反応を防止することができる。流速は、要因の中で特に、輸送される流体の粘性、輸送される流体の量、流体を含むチャネルの断面積および断面形状のうち少なくともいずれか一方、圧力勾配等の要因に依存する。所定の場合に、チャネル内の少なくとも1つの流体は、少なくとも約1mm/秒、少なくとも約5mm/秒、少なくとも約10mm/秒、あるいは少なくとも約15mm/秒、少なくとも約25mm/秒、あるいは少なくとも約100mm/秒の直線的な流れの速度にて輸送される。いくつかの実施例において、直線的な流れの速度は、約1mm/秒と約100mm/秒の間、約5mm/秒と約100mm/秒の間、約10mm/秒と約100mm/秒の間、約15mm/秒と約100mm/秒の間、約1mm/秒と約25mm/秒の間、約5mm/秒と約25mm/秒の間、約10mm/秒と約25mm/秒の間、あるいは約15mm/秒と約25mm/秒の間である。異なる流速が、輸送される流体および装置において行なわれる工程のうち少なくともいずれか一方に応じて異なる時点にて実施される。例えば、1組の実施例において、第1の工程の間にサンプルが比較的緩慢に(例えば0.5mm/秒にて)反応領域を通して流れるが、第2の工程の間に2つの流体が比較的より高い流速(例えば15mm/秒)にて混合地域において混合されることが望ましい。ここに開示される通気弁、並びに他の物および方法は、2009年4月22日に出願され発明の名称が「Flow Control in Microfluidic Systems」である米国特許出願公開第12/428,372号明細書に開示されるシステムおよび方法と任意に組み合わせて使用され、装置の操作においてそのような流速および流量の変化を制御し実施してもよい。同明細書はその全体がここに開示されたものとする。装置において行なわれる処理の2つの異なる工程の間に適用される直線的な2つの流速は、例えば、等倍、5倍、10倍、15倍、20倍、25倍、30倍、40倍あるいは50倍より大きな差異を有してもよい。例えば、15mm/秒の比較的高い直線的な流れの速度は、0.5mm/秒の比較的遅い直線的な流れの速度より30倍速い。所定の場合に、そのような流体の制御は、任意に1つ以上の工程において圧力あるいは減圧された圧力(例えば真空)源が装置に略連続して付与される場合にも1つ以上の通気弁を使用して行なわれる。

【0047】

ここに開示されるように、2本以上のチャネルの交差部は混合領域を含む。そのような領域は、複数のチャネルから交差部まで流れる複数の流体の混合を促進することに好適である。いくつかの実施例において、混合領域は、混合領域にて交差する第1の、第2の、(あるいは第3の、第4等の)チャネル(例えば分岐チャネル)のいずれより大きな断面積を有し得る。例えば、混合領域は、混合地域と交差する最大のチャネルの平均断面積の少なくとも1.2倍、少なくとも1.5倍、少なくとも1.7倍、少なくとも2倍、少なくとも3倍あるいは少なくとも5倍である平均断面積を有し得る。交差部にて比較的大容量を有する混合室により、2本以上のチャネルの交差部における2つ以上の流体の到着時間の不一致を補償することが補助される。

【0048】

しかしながら、別例において、比較的より小さな混合領域がここに開示される装置に設けられてもよい。例えば、混合領域は、混合地域と交差する最大のチャネルの平均断面積の5倍未満、3倍未満、2倍未満、1.7倍未満、1.5倍未満、あるいは1.2倍未満である平均断面積を有し得る。所定の場合に、混合領域は、混合領域と交差する最大のチャネルの平均断面積と略同じである平均断面積を有する。

【0049】

所定の場合に、混合領域は通気弁を含む。例えば、通気弁のポートにより、複数の流体が混合される容量が得られる。いくつかの実施例において、要素(例えばチャネル、通気弁要素(例えばポート)、混合領域等)の断面積、長さや他のパラメータは、要素内に2つ以上の流体を流すことで所望の混合結果が得られるように選択され得る。例えば、いくつかの実施例において、通気弁(例えば通気弁のポート、あるいは通気弁の開口部に主チ

10

20

30

40

50

チャネルを接続する通気弁の介在するチャネル)の容量は、2つ以上の流体が、通気弁内におけるこれらの滞留時間において(例えば拡散によって)完全に混合され得るように選択される。任意の介在するチャネルも含む通気弁の容量は、例えば、50 μ L未満、約20 μ L未満、約10 μ L未満、約5 μ L未満、約3 μ L未満、約1 μ L未満、約0.1 μ L未満、約0.01 μ L未満、約10 nL未満あるいは約1 nL未満である。更に、他の量も可能である。

【0050】

層流環境(これはほとんどのマイクロ流体システムに共通である)において、試薬の混合は拡散に略依存する。本明細書において、試薬がチャネルに沿ってともに流れるにつれ、試薬間の混合は徐々に増加する。そのような場合に、主チャネルの長さ(例えば混合が生じる通気孔と、反応領域のような混合試薬の使用点との間)は、2つ以上の流体をチャネル内におけるそれらの滞留時間中に完全にまたは十分に(例えば拡散によって)混合することができるように選択され得る。

10

【0051】

拡散に基づく混合は、混合流体のチャネル内における滞留時間を増加させることによっても増加され得る。所定の場合に、滞留工程をシステムに付加することができる。例えば、略一定の圧力が出口92に付与され、通気弁34(通気弁34、24、および15が閉鎖した状態)の上流に2つの混合した液体を有するシステムにおいて、これらの液体は、通気弁15を開放することにより(あるいは、任意に通気弁24を開放することにより)、チャネル12内に滞留され得る。通気弁15(または24)を開放することによって、空気は通気弁15(または24)を通して出口92に向かって優先的に引かれ、これにより液体がチャネル12内の所定の位置に保持される。十分な滞留の後に、通気弁15(または24)は閉鎖され、これにより、反応領域86内に液体を流れ込ませる。好適に、本実施例および別例に示すように、略一定の真空源あるいは流体流の他の源が装置に付与されるときにも、流体流の制御が可能である。

20

【0052】

いくつかの実施例において、交差部や他の好適な混合領域内への1つ以上の流体の流れは、流体の全容量が交差部または混合領域に移動するに先立って遮断することができる。これは、例えば流体の部分が通気弁の反対側のチャネルに位置される間に通気弁を開放することによって可能である。例えば、流体の第1の部分は下方に配置されるチャネルの第1のチャネル部に配置され、流体の第2の部分は下方に配置されるチャネルの第2のチャネル部に配置され、第1のチャネル部および第2チャネル部は、通気弁の反対側に配置される。通気弁が開放されるとともに流体がそのポートの下方に配置される場合に、例えば周囲空気のような、チャネル内部に対する外的環境からの流体は、外的環境における流体流に対する抵抗が通気弁の下方の流体の残りの部分の流体流に対する抵抗より小さい場合に、ポートを介してチャネル内部に輸送可能である。例えば、チャネルへ気体のセグメントを導入することによって、チャネルに含まれる流体は、気体のセグメントによって分離される第1の部分および第2部分に分割することができる。

30

【0053】

図3A乃至図3Dは、通気弁を始動させることにより流体の流れを遮断することができる方法を示す概要図である。図3A乃至図3Dに示す実施例の組において、チャネル100は、入口102、出口104および通気弁106を含む。付加的に、チャネル100は流体108を含む。図3A乃至図3Dに、流体流の方向を矢印によって示す。図3Aにおいて、通気弁106が開放されることにより、負圧が出口104に付与される場合に通気弁106を介して外部流体をチャネルに流れ込ませる。図3Bにおいて、通気弁106が閉鎖されるとともに入口102が開放されることにより、チャネル100を介して流体108を出口104に向かって流す。図3Cにおいて、通気弁106は、流体108が通気弁を完全に通過するに先だって開放されることにより、外部流体に通気弁のポートを通過させ、チャネル内に至らしめ、流体108からセグメント110を分離する。この工程の繰り返しは、元の単一の流体から複数の流体セグメントを形成する。図3Dにおいて、例

40

50

えば、流体セグメント 110、111、112、および 113 は、通気弁 106 を 4 回開閉することにより形成されている。そのような方法は、予め選択された長さ、容量、あるいは他の好適な特徴を備える 1 つ以上の流体部を形成することに使用される。

【0054】

单一の流体セグメントに由来する一連の流体セグメントまたは部分の形成は、所定の場合に、单一の流体セグメントにおける 2 つ以上の要素の混合と比較して、複数の流体における 2 つ以上の要素の混合を改善する。例えば、流体セグメント内の要素（例えば粒子、試薬あるいは他の要素）は、セグメント化された流れにて視認されるように、セグメントの直線的な流れ時にセグメント内で再循環する。いくつかの実施例において、混合される 2 つ以上の要素を含む流体は、通気弁の下方を通過し、例えば各流体部内における 2 つ以上の要素の混合を促進するために流体の複数の部分を形成すべく開閉される。この特徴は、乱流が生じないシステムにおいて（例えば多くのマイクロ流体システムにおいて）特に好適である。

10

【0055】

分離された流体部を形成すべく通気弁を開閉することは、混合以外の工程においても好適である。单一の試薬の複数のプラグは、所定の状況において单一の長手のプラグに対して好ましく、その状況は、2005 年 1 月 26 日に出願され発明の名称が「Fluid Delivery System and Method」である国際公開第 WO 2005 / 072858 号明細書（国際特許出願公開第 PCT / US 2005 / 003514 号明細書）に開示され、その全体がここに開示されたものとする。所定の例として、いくつかの実施例において、洗い流し流体の複数の部分により、单一の長尺状をなす流体部と比較して表面のより良好な洗い流しや洗浄が行われる。

20

【0056】

2 つ以上の流体部に单一の流体部を分離することは、所定の場合に、混合領域や他の領域内にて混合するための流体の好適な容量を得ることに使用される。例えば、所定の場合に、第 1 の分岐チャネルは第 1 の流体を含み、第 2 の分岐チャネルは、第 1 の流体より実質的に大きな容量を備えた第 2 の流体を含む。第 1 の流体および第 2 の流体は、第 1 の分岐チャネル、第 2 の分岐チャネル、および / または主チャネルの交差部に向かって流れる。いくつかの実施例において、第 1 の流体および第 2 の流体のうち少なくともいずれか一方の全容量が交差部を横断して通過するに先だって、第 1 の分岐チャネルまたは第 2 分岐チャネルの少なくとも 1 つの通気弁は、第 1 の流体および第 2 の流体のうち少なくともいずれか一方が第 1 のセグメントおよび第 2 のセグメントに分割されるように開放される。別例において、第 1 の流体および第 2 の流体のうち少なくとも一方の全容量が交差部を横断して通過するに先だって、第 1 の分岐チャネルまたは第 2 分岐チャネルの少なくとも 1 つの通気弁は、第 2 の流体がより小さな複数のセグメントに（例えば第 1 の流体の容量に匹敵するように）分割されるように開放される。第 2 の流体のセグメントのうちの 1 つのみが第 1 の流体の全てまたは部分と混合するように交差部に輸送されてもよい。これらおよび他の方法により、所定の場合に、等量または好適な量の第 1 の流体および第 2 の流体が、（例えば第 1 の流体および第 2 の流体が共通の領域に略同時に輸送される場合に）主チャネル、混合領域、反応領域、あるいは他の好適な目的地に輸送され得る。従って、いくつかの実施例において、第 1 の流体の全てではなく一部、および第 2 の流体の全てではなく一部のうち少なくともいずれか一方が、使用されるか好適な目的地に輸送される混合流体を形成すべく一体的に混合される。

30

【0057】

図 4 A および 4 B に、共通の領域（例えば 2 つ以上のチャネルの交差部）に略等量の複数の流体を輸送する方法の一例を概略的に示す。図 4 A において、主チャネル 200 は出口 202 を含み、通気弁 208 にて分岐チャネル 204 および 206 に連通する。分岐チャネル 204 は入口 210 を備え、流体 212 を含み、分岐チャネル 206 は、入口 214 を備え、流体 216 を含む。図 4 A において、流体 212 は、流体 216 より容量において実質的により小さい。図 4 A において、通気弁 208 が開放されることにより、負圧

40

50

が出口に付与されると、通気弁を介し、且つ主チャネル 200 を介して（矢印によって示すように）外部流体が流れる。図 4 B において、通気弁 208 が閉鎖されるとともに入口 210 および 214 が開放され、負圧を付与されると流体 212 および 216 を出口 202 に向かって流す。実施例のこの組において、流体の粘性、およびチャネル 204 および 206 の断面寸法は、流体 212 および 216 がチャネル 204 および 206 の交差部にて相互に略同時に接触するように選択される。図 4 C において、流体 212 および 216 がチャネル 204 および 206 の交差部を完全に通過するに先だって通気弁 208 が開放されることにより、流体 212 および流体 216 の略等しい部分を含む混合流体のセグメント 218 が形成される。

【0058】

10

いくつかの実施例において、混合流体の複数の部分は、通気弁 208 を任意の回数開閉することによって形成される。例えば、流体 212 および 216 が分岐チャネルの交差部にて最初に相互に同時に接触しない場合に、そのような実施例は好適である。いくつかのそのような場合において、混合流体の第 1 の部分は第 2 の流体よりむしろ第 1 の流体を含み、混合流体の後続の部分は略等量の第 1 の流体および第 2 の流体を含む。いくつかの実例において、混合流体の第 1 の部分は下流の加工に好適ではないため、主チャネルあるいは装置の他の領域から離間するように配流される。例えば、混合流体の望ましくない第 1 の部分は、廃棄物格納領域に通じる分岐チャネルに向かって案内される。流体流は、ここに開示される方法と組み合わされて 1 つ以上の弁（例えば外部弁）を使用することによって任意に制御することができる。混合流体の 1 つ以上の後続の部分（下流の加工に好適である）は、主チャネルあるいは反応領域のような装置の他の領域に輸送される。

20

【0059】

図 4 D 乃至 4 I に混合流体（あるいは任意の他の流体）の一部を転換する一方法を示す。図 4 D 乃至図 4 I に示す実施例に示すように、出口 220 を有する分岐チャネル 215 が含まれる。この出口は、出口 202 に処理的に関連する同じ真空源に処理的に関係する。例えば、管材料（図示しない）が、真空源に出口の各々を接続してもよい。所定の場合に、弁機構（図示しない）は、管材料に処理的に関与する。出口はそれぞれ個別に制御される弁を備える。図 4 D に示すように、混合流体を形成すべく流体 212 および 216 を混合するために、システムは、出口 220 を開放し、出口 202 を閉鎖することによって操作される。図 4 E に示すように、通気弁 208 は混合を開始すべく閉鎖され、続いて図 4 F に示すように主チャネル 220 内に流体 218 の第 1 の部分のみを輸送すべく開放される。混合部分が主チャネルに至ると、出口に処理的に関与する弁機構（図示しない）が駆動され、図 4 G に示すように真空と出口 202 との間を連通させるとともに真空と出口 220 とを連通させる。真空が出口 220 に付与されているため、図 4 H に示すように、流体 218 は、主チャネルから分岐チャネル 215 に配流される。出口に処理的に関与する弁機構が始動され、図 4 I に示すように、真空と出口 202 とを連通させるとともに真空と出口 220 とを連通させる。

30

【0060】

40

单一の流体部を 2 つ以上の流体部に分離する工程により、流体を混合し流体セグメントを形成することとは別に他の効果が得られる。例えば、所定の場合に、流体の後縁が通気弁に至ると、液体の僅かな破裂が、通気弁（例えば通気弁のポートに向かって、あるいは通気弁に関与するアクチュエータに向かって）に向かって放出され得る。所定の場合に、放出された液体は、外部の弁機構を妨害し得る。所定の場合に、これは通気弁の機能に直接影響するものではないが、期間にわたって、例えば流体の要素（例えば化学薬品）による通気弁の汚染のような、処理の低下を生じ得る。機構（例えば複数の実験を行なうこと）を繰り返し使用する際に、そのような汚染は、外部の弁機構の正常な機能を変更し得る。出願人は、本発明のいくつかの実施例において、流体の全てが弁の下方のチャネルを通過するに先だって（例えば、複数の流体セグメントを形成するように）通気弁を開放することによって、ほとんどあるいは全く後縁が通気弁に至らず、液体の放出が生じないことを発見した。

50

【0061】

いくつかの実施例において、ここに開示されるシステム、装置、および方法は、1つ以上の化学的反応および生体反応のうち少なくともいずれか一方を行なうことに使用することができる。ここに開示される装置は、そのような目的および他の目的（例えば血液サンプル分析）に好適である付加的な要素を含んでもよい。所定の場合に、装置は例えば主チャネルの下流に配置される反応領域を含む。図1に示す実施例の組は、主チャネル12の下流の任意の反応領域86を含む。反応領域は、主チャネルの出口（例えば図1における出口15）に連通する。反応領域は、例えば化学的反応および生体反応のうち少なくともいずれか一方が生じ得る量として機能する。いくつかの実施例において、試薬および触媒のうち少なくともいずれか一方は、反応領域内に配置される（例えば、反応領域の壁部に固定される）。例えば、いくつかの実施例において、結合パートナーが、反応領域（例えば表面に、あるいは反応領域に含まれる要素に、あるいはその要素内に）に配置されてもよい。ここに開示される装置において使用可能な例示的な反応領域は、2006年4月19日に出願され、発明の名称が「Fluidic Structures Including Meandering and Wide Channels」である国際公開第WO2006/113727号明細書（国際特許出願公開第PCT/US06/14583号明細書）、2008年5月1日に出願され、発明の名称が「Fluidic Structures Including Meandering and Wide Channels」である米国特許出願公開第12/113,503号明細書、および2008年8月22日に出願され、発明の名称が「Liquid containment for integrated assays」である米国特許出願公開第12/196,392号明細書に開示され、これらの全体がここに開示されたものとする。
10

【0062】

付加的に、いくつかの実施例において、流体廃棄物室は、例えば反応領域の下流に含まれる。流体廃棄物室は、例えば装置の操作時に負圧源（例えば真空）に使用済みの流体が流れ込まないように使用済み流体を収容可能な容積を設ける点において有用である。例えば、図1に示す実施例の組は、使用済みの流体が反応領域86から流されるときに流体を保持する廃棄物室88を含む。ここに開示される装置において使用することができる例示的な廃棄物格納領域は、2008年8月22日に出願され、発明の名称が「Liquid containment for integrated assays」である米国特許出願公開第12/196,392号明細書に開示され、その全体がここに開示されたものとする。
20

【0063】

図1に示す実施例の組において、負圧源は、例えば出口15、地点90、および出口92のうちの任意のものに付与される。例えば、所定の場合に、図1における流体22はサンプル（例えば血液サンプル）を含む。サンプルは様々な方法を使用して、装置に導入可能である。ここに開示された装置と組み合わせて使用することができるサンプル導入のための例示的な方法および物は、2008年5月1日に出願され、発明の名称が「Fluidic Connectors and Microfluidic Systems」である米国特許出願公開第12/113,503号明細書、2008年8月22日に出願され、発明の名称が「Liquid containment for integrated assays」である米国特許出願公開第12/196,392号明細書に開示され、これらはその全体がここに開示されたものとする。サンプルは、最初に反応領域86、続いて廃棄物格納領域88に流れ込むことができる。反応領域は、それに反応領域の要素の特性を決定することができる検知器に関与する。サンプルが反応領域を通過することにより、所定の場合に、サンプルの1つ以上の要素（例えば抗原）と反応領域の1つ以上の要素（例えば抗体）との間を相互に作用（例えば、バインド）させる。いくつかの実施例において、反応領域の要素は、初めて使用されるに先立って反応領域に収容される乾燥した試薬の形態にあってもよい。この相互作用は、バインド対錯体のような製品を形成する。所定の場合に、この相互作用は、単独でマイクロ流体システムに関連する検知器に
30

よって信号を決定させる（例えば、測定される）。他の場合において、正確な信号が検知器によって決定されるために、製品は1つ以上の試薬によって処理される。例えば、流体は、サンプルの抗原と相互に作用する標識抗体を含んでもよい。この相互作用により、製品は標識を設けられるか、あるいは製品からの信号が増幅される。

【0064】

いくつかの実施例において、サンプルおよび試薬のうち少なくともいずれか一方は、所定の時間にわたって反応領域内に滞留する。異種混合の親和性反応が使用される場合に、例えば、サンプルの種は、反応領域の表面に固定される捕捉プローブにバインドされるであろう。例えばサンプルが反応領域を通過して流れるのに必要な時間を制御することによって、十分な滞留時間が得られる。通気弁から真空源までのシステムの流速は、システム（例えば、流れの隘路として機能する）のチャネルの最も小さな断面積によって最も高い相対粘度流体の流量に依存し得る。いくつかの実施例において、システムの1つ以上の特性は、反応領域内の流体（例えばサンプル）の所望の滞留時間が得られるように選択することができる。滞留時間を制御すべく調整可能なパラメータの例は、サンプルの入手可能性によって決定されるか使用者の便宜に応じて決定されるサンプル自体の量（例えば、血液のフィンガーピックを使用する分析のための血一滴の量）；サンプルの粘性；システムの（負圧を付与するための）出口に付与されるか、システムの（正圧を付与するための）入口に付与される差圧（ p ）；並びに流速隘路の外形（例えば断面積、長さ等）および位置の変化を含むが、これらに限定されるものではない。いくつかの実施例において、システム・パラメータは、システムの1つ以上の混合領域（例えば通気弁）内の2つ以上の流体の混合の時間が、反応領域内のサンプルの滞留時間から独立して選択される。

10

20

30

40

【0065】

所定の場合に、システム・パラメータは、2つ以上の流体を混合した後に、2つ以上の流体が所定期間内に反応領域と接触することができるよう選択することができる。例えば、いくつかの実施例において、混合流体は、混合流体内の2つ以上の流体を混合する10分以内に反応領域と接触することができる。例えば、混合流体内の1つ以上の要素が比較的短期間の後にそれらの有効性を分解し且つ／または失う場合に、そのような実施例は好適である。所定の例として、いくつかの実施例において、銀塩溶液は還元剤と混合可能であり、混合の10分以内に効果的に使用可能な活性化された銀溶液を生成する。様々な還元剤が写真工業によって開発されており、ここに開示される実施例において使用することができる。最もよく使用される還元剤のうちのいくつかは、ヒドロキノン、クロロヒドロキノン、ピロガロール、メトール（登録商標）、4-アミノフェノールおよびフェニドンを含む。

【0066】

視認されるように、混合条件および時間は、サンプルの滞留時間とは独立したものとすることが好適である（これにより、より長い滞留時間であってもより長い混合時間を生じるものではない）。ここに開示される通気弁および方法の効果が明白になる。所定の場合に、反応領域のチャネルの寸法や、流体流を生じさせるべく付与される圧力等のような流体システムの所定の要素は、反応領域においてサンプル滞留時間がどれだけ必要とされてもいいように設計され、また、試薬の混合のタイミングは1つ以上の通気弁によって制御される。

【0067】

ここに開示される装置において様々な流体を使用することができること（例えば、配置され、流され、あるいは収容される）を認識する必要がある。いくつかの実施例において、1つ以上の流体は、分析されるサンプルを含む。例えば、所定の場合に、流体は全血を含む。所定の場合に、流体は、試薬（例えば抗体流体）、洗い流し流体、あるいは任意の他の好適な流体を含む。所定の場合に、流体は、金属溶液を含む。例えば、流体は、コロイド懸濁液を形成することができる金属粒子（例えば銀、金等）の懸濁液を含む。所定の場合に、流体は、例えばヒドロキノンのような還元剤を含む。いくつかの実施例において、1つ以上の流体は、化学的または生物学的検定法の一部になり得る。

50

【0068】

チャネル内の流体の各々は、略類似の、あるいは異なる化学的性質を有する。例えば、いくつかの実施例において、チャネルの第1の流体は、分析されるサンプル（例、血液）を含み、第2の流体は、例えば第3の流体の通路を予め下流部に形成すべく使用される洗い流し溶液を含む。いくつかの実施例において、第1の流体は、化学的反応および生体反応のうち少なくともいずれか一方のための第1の試薬を含み、第2の流体は、化学的反応および生体反応のうち少なくともいずれか一方のための、第1試薬とは異なる第2の試薬を含む。

【0069】

付加的に、チャネル内の流体の各々は、略類似するか、異なる物理的特性を有する。例えば、いくつかの実施例において、チャネル内の第1の流体および第2流体は略異なる粘性を有する。粘性の差により、チャネルに圧力を付与すると流量に差が生じる。

10

【0070】

ここで注目されるように、いくつかの実施例において、ここに開示されるマイクロ流体システムは、装置の初めて使用されるに先だって、且つ／または装置内へのサンプルの導入に先立って収容される試薬を含む。収容される試薬を使用することにより、装置を操作するために使用者が行う必要のある工程の数が最小限となるため、使用者によるマイクロ流体システムの使用が単純化される。この単純化により、ここに開示されるマイクロ流体システムは、ポイントオブケア設定のような操作を練習していない使用者によっても操作可能となる。マイクロ流体装置に収容される試薬は、免疫測定を行うように設計される装置に特に好適である。

20

【0071】

ここで使用されるように、「装置が初めて使用されるに先立って」とは、販売後に意図される使用者によって初めて装置が使用される前の1つ以上の段階を示す。最初の使用は、使用者による装置の操作を要求する任意の1つ以上の工程を含む。例えば、最初の使用は、装置の中への試薬を導入する密封した入口を穿刺する工程、チャネル間を連通させるべく2本以上のチャネルを接続する工程、サンプルの分析に先だって装置を準備する工程（例えば、装置に試薬を装填する）、装置にサンプルを装填する工程、装置の領域にサンプルを準備する工程、サンプルにより反応を行う工程、サンプルを検知する工程等の1つ以上の工程を含む。最初の使用は、本明細書において、装置の製造業者によって行われる製造工程や他の準備工程、あるいは品質管理工程を含むものではない。当業者は、本明細書における最初の使用の意味を認識し、本発明の装置が最初の使用を行われたか否かを容易に判断することができるであろう。本発明の1組の実施例において、装置は初めて使用された後に使い捨てでき、初めて使用された後に装置を使用することは通常非実用的であるため、使い捨てであることは、そのような装置が初めて使用される場合に特に明白である。

30

【0072】

試薬は流体および乾燥した形態のうち少なくともいずれか一方にて装置に収容され且つ／または配置され、収容または配置の方法は特定の用途に依存する。試薬は、液体、気体、ゲル、複数の粒子あるいはフィルムとして、例えば収容され、且つ／または配置される。試薬は、任意に試薬収容領域の一部となるチャネル内、タンク、表面上、薄膜内または上を含む、装置の任意の好適な部分に配置されるが、これらに限定されるものではない。試薬は任意の好適な方法にてマイクロ流体システム（あるいはシステムの要素）に関係する。例えば、試薬はマイクロ流体システム内の表面上に（例えば共有結合によりあるいはイオン結合により）架橋され、吸収され、あるいは吸着されてもよい（physisorbed）。所定の一実施例において、（流体接続部の流体通路や装置基板のチャネルのような）チャネルの全てまたは一部は、抗凝血剤（例えばヘパリン）により覆われる。所定の場合に、液体は、初めて使用されるに先だって、且つ／または装置内へのサンプルの導入に先立って装置のチャネルやタンク内に含まれる。

40

【0073】

50

いくつかの実施例において、乾燥した試薬はマイクロ流体装置の一セクションに収容され、濡れた試薬はマイクロ流体装置の第2のセクションに収容される。これに代えて、装置の2つの個別のセクションの両者が乾燥した試薬および濡れた試薬のうち少なくともいずれか一方を含んでもよい。第1のセクションおよび第2のセクションは、いくつかの実例において、初めて使用されるに先だって、且つ／または装置内へのサンプルの導入に先立って相互に連通する。他の場合において、セクションは、初めて使用されるに先だって、且つ／または装置内へのサンプルの導入に先立って相互に連通するものではない。初めて使用される時に、収容される試薬は、装置の一方のセクションから他方のセクションに移動する。例えば、流体の形態にて収容される試薬は、第1のセクションおよび第2のセクションが流体通路（例えば流体接続部であり、これは2008年5月1日に出願され、発明の名称が「Fluidic Connectors and Microfluidic Systems」である米国特許出願公開第12/113,503号明細書、2008年8月22日に出願され、発明の名称が「Liquid containment for integrated assays」である米国特許出願公開第12/196,392号明細書により詳細に開示され、これらはその全体がここに開示されたものとする）を介して接続された後に第1のセクションから第2のセクションに移動可能である。他の場合において、乾燥物として収容される試薬は、流体により水和され、続いてセクションの接続の際に第1のセクションから第2のセクションまで移動する。更なる他の場合において、乾燥物として収容される試薬は、流体により水和されるが、セクションの接続の際に一方のセクションから他方のセクションまで移動するものではない。

10

20

30

40

【0074】

試薬収容領域において試薬の各々間で混合されない流体（分離流体）を保持することによって、収容される流体は、試薬収容領域から順に輸送されるとともに、収容される流体のうちの任意のものの間ににおける接触が回避される。収容される試薬を分離する任意の混合されない流体は、反応領域の状態を変更することなく反応領域に適用される。例えば、抗体抗原結合が反応領域の検知領域のうちの1つにて生じている場合に、生じた結合に最小限の影響を付与するか、全く影響を付与しないように、空気が部位に付与される。

【0075】

ここに開示されるように、マイクロ流体システムに試薬を収容することにより、下流の工程において試薬を所定の順に投与することができる（例えば、反応領域の信号を増幅する）。試薬に対して所定の暴露時間が要求される場合に、マイクロ流体システムにおける各流体の量は、試薬が下流の反応領域に暴露される時間の量に比例する。例えば、第1の試薬に対して要求される暴露時間が、第2の試薬に対して要求される暴露時間の2倍である場合に、チャネルの第1の試薬の量は、チャネルの第2の試薬の量の2倍となる。略一定の圧力差、あるいは流体流の源がチャネルから反応領域へ試薬を流す際に付与される場合、および流体の粘性が同じか類似する場合に、反応領域のような所定の地点の各流体の暴露時間は、流体の相対的な量に比例する。チャネル外形、圧力、あるいは粘性のような要因も、チャネルからの所定の流体の流速を変更するために変更されてもよい。ここに開示される通気弁、並びに他の物および方法を使用する使用者によって、収容される流体は、収容（例えば最初の使用）後に操作されてもよい。

【0076】

付加的に、順に試薬を収容するこの方針（特に増幅試薬）は、広範囲の化学作用に適合される。例えば、光信号（例えば吸光度、蛍光、光あるいはフラッシュ化学発光、電気化学発光）、電気的信号（例えば無電解工程によって形成される金属構造体の抵抗、伝導性あるいはインピーダンス）、あるいは磁気信号（例えば磁気玉）を生成する様々な増幅の化学作用が、検知器によって信号を検知させるべく使用される。

【0077】

試薬は様々な時間量にわたってマイクロ流体システムに収容され得る。例えば、試薬は1時間以上、6時間以上、12時間以上、1日以上、1週間以上、1か月以上、3か月以上、6か月以上、1年以上、あるいは2年以上収容されてもよい。任意に、マイクロ流体

50

システムは収容期間を延長すべく好適な方法にて処理されてもよい。例えば、内部に収容される試薬を含むマイクロ流体システムは、真空シールされ、暗い環境に収納され、且つ／または、低温（例えば、2乃至8に、あるいは0未満に冷却される）にて収納される。収容期間は、使用される所定の試薬、収容される試薬の形態（例えば、濡れているか乾燥している）、基板およびカバー層を形成することに使用される寸法および材料、基板およびカバー層を取り付ける方法、および装置が全体としてどのように処理され収容されるか等の1つ以上の要因に依存する。

【0078】

いくつかの実施例において、入口、出口および／または通気弁のうち任意のものが、初めて使用されるに先立ってシールされ得る。入口、出口および／または通気弁をシールすることにより、装置内に配置されるか収容される流体の蒸発および汚染のうち少なくともいずれか一方を防止することができる。入口、出口および／または通気弁を覆うシールは、外部流体が入口および通気弁のうち少なくともいずれか一方に進入できるように貫通されるか、取り扱われるか、破壊される。所定の例として、いくつかの実施例において、通気弁24および入口14は初めて使用されるに先立ってシールされ、これらのシールは外部流体が進入できるように貫通されるか、取り扱われるか、破壊される。所定の実施例において、通気弁からカバーを取り扱った後にのみ通気弁は始動される。付加的に、出口15（あるいは地点90または出口92）は初めて使用されるに先立ってシールされ、負圧（例えば真空）の付与の直前に、あるいは、（例えば正圧が入口に付与される場合に）通気させるべく貫通されるか、取り扱われるか、破壊される。

10

20

30

40

【0079】

所定の一実施例において、装置10はヒトIgGのための免疫測定を行なうために使用することができ、信号増幅のために銀による増強を使用することができる。ヒトIgGを含むサンプル（例えば流体22）をチャネル12から反応領域に輸送した後に、ヒトIgGおよび収容される乾燥した試薬、反ヒトIgG間の結合が行われる。この結合により、反応領域近傍の検知領域（例えば、検知器を含む）にバインド対錯体を形成することができる。チャネル12の上流部からの収容される試薬は、続いてこのバインド対錯体を覆うように流れる。収容される流体（例えば流体20）のうちの1つは、検知される抗原（例えばヒトIgG）に特に結合する金属コロイド（例えば金結合抗体）の溶液を含む。この金属コロイドにより、検知領域の表面に、金属（例えば複数の銀の粒）の層のような不透明な材料の堆積のための触媒の表面が得られる。金属の層は、2つの要素のシステムを使用することにより形成することができる。所定の場合に、金属先駆体（例えば銀塩溶液）がチャネル36に収容される流体62に含まれ、還元剤（例えばヒドロキノン、あるいは上述した他の還元剤）が、チャネル38に収容される流体64に含まれる。混合されると信号を増幅することができるこれらの2つの要素は、相互に反応し、数分間のみ混合物として保持される。その理由により、これらは個別に収容され、流れにより溶液の両者が通気弁34近傍の交差部に向かって移動されるまで、相互に混合されない。負圧が出口92に付与され、通気弁24および34が閉鎖されると、銀塩およびヒドロキノン溶液は、通気弁34近傍の交差部にて混合される。これらはチャネル12に沿って流れるにつれ、緩慢に（例えば拡散により）混合され、続いて反応領域を覆うように流れる。従って、抗体抗原結合が反応領域において生じる場合に、領域を金属先駆体溶液が流れることにより、抗体抗原複合体に関連する触媒の金属コロイドの存在により銀層のような不透明な層が形成される。不透明な層は、1つ以上の波長にて光の伝達を妨害する物質を含む。マイクロ流体チャネルに形成される任意の不透明な層は、抗体や抗原を含まない領域の一部と比較して、例えば反応領域（例えば蛇行するチャネル）の一部を介した光線透過率の低減を測定することにより、光学上検知することができる。これに代えて、フィルムが検知領域に形成されているので、光線透過率の変化を測定することにより信号を時間の関数として得てもよい。不透明な層を形成しない技術と比較すると、不透明な層は、分析感度を高める。

【0080】

50

免疫測定が主として開示されるが、ここに開示される装置は、任意の好適な化学的反応および生体反応のうち少なくともいずれか一方に使用されてもよく、例えば、タンパク質や他の生体分子（例えばDNA、RNA、炭水化物）、あるいは非天然素材の分子（例えばアプタマーや合成アミノ酸）間の親和性反応に関する他の固相分析を含むものといえる。

【0081】

チャネル内の流体流は任意の好適な方法により得られる。いくつかの実施例において、流れは、流体が含まれるチャネル内の圧力勾配を確立することによって得られる。そのような圧力勾配は、例えばチャネル（例えばチャネルの出口）の一端に負圧を付与することによって確立される。負圧を付与する例示的な方法は、出口への真空ポンプの取り付け、出口に取り付けられる注射器からの空気の排出、あるいは他の好適な方法を含むが、これらに限定されるものではない。

【0082】

圧力勾配は、1つ以上の通気弁に正圧を付与し、周囲圧力のような比較的より小さな圧力を出口に付与することによっても確立することができる。例えば、図4A乃至4Cにおいて、出口202は周囲圧力に暴露される。周囲圧力より大きな正圧を開放した通気弁208を介して付与してもよく、これにより、入口210および214が閉鎖された状態を保持する限り、図4Aに示す矢印の方向に流体流が生じる。図4Bに例示的に示すように、通気弁208が閉鎖され、入口210および214が周囲圧力より大きな圧力に対して開放されてもよい。図4Cに示すような流体の混合プラグを移動させるために、入口210および214が閉鎖されるとともに通気弁208が正圧に対して再び開放されてもよい。正圧の使用は、流れの要求される通路における通気弁以外の装置に関する全ての通気弁を閉鎖する工程を含む。任意の通気弁の閉鎖は気密である。正圧は、例えばポンプによって、重力を使用して、あるいは他の好適な方法によって、付与することができる。

【0083】

所定の実施例において、流体流の源（例えば真空またはポンプ）から流体流（例えば正圧または負圧）を生じさせるべく付与される圧力は、チャネルシステムに流体流の源が最初に付与された後は、ここに開示される弁および他の要素のうち少なくともいずれか一方が始動される場合においても、装置における工程（例えば反応）の実行時において、略一定に保持される。しかしながら、チャネルの流体の直線的な流れの速度は変化し、2009年4月22日に出願され、発明の名称が「Flow Control in Microfluidic Systems」である米国特許出願公開第12/428,372号明細書に開示されるような様々な方法によって制御される。同明細書はその全体がここに開示されたものとする。別例において、流体流の源からの圧力は、装置の操作時に変更可能である。

【0084】

いくつかの実施例において、化学的反応および生体反応のうち少なくともいずれか一方は結合を含む。異なるタイプの結合が、ここに開示される装置において行われてもよい。用語「結合」は、相互に親和性や結合能力を示す分子の対応する対間の相互作用、通常生化学的、生理学的、および/または製薬的相互作用を含む特異的または非特異的結合や相互作用を示す。生物学的な結合は、タンパク質、核酸、糖タンパク質、炭水化物、ホルモン等を含む分子の対間に生じる一種の相互作用をなす。所定の例は、抗体/抗原、抗体/ハブテン、酵素/基質、酵素/阻害剤、酵素/共同因子、結合蛋白質/基質、キャリア蛋白質/基質、レクチン/炭水化物、受容器/ホルモン、受容器/エフェクター、核酸の相補鎖、タンパク質/核酸、抑制因子/誘発物、配位子/細胞の表面にある受容体、ウィルス/配位子等を含む。

【0085】

所定の場合に、不均一反応（あるいは分析）がチャネルにおいて行われてもよく、例えば、結合パートナーは、チャネルの表面に関与し、相補的な結合パートナーが、流体相に設けられてもよい。用語「結合パートナー」は、所定の分子と結合可能な分子を示す。生

10

20

30

40

50

生物学的な結合パートナーが例であり、例えば、タンパク質 A は、生体分子 I g G の結合パートナーであり、その逆も結合パートナーである。同様に、抗体はその抗原の結合パートナーであり、その逆も結合パートナーである。他の場合において、均一系反応がチャネルにて生じる。例えば、結合パートナーの両者は、流体相にて（例えば 2 流体層流システムにおいて）設けられる。蛇行するチャネルシステムにおいて行われる通常の反応の例は、化学反応、酵素の反応、免疫ベースの反応（例えば抗原抗体）および細胞ベースの反応を含むが、これらに限定されるものではない。

【0086】

装置は任意の好適な材料から形成される。材料の例は、ポリマ（例えばポリエチレン、ポリスチレン、ポリカーボネート、ポリ（ジメチルシロキサン）、PMMA、PFFE、環状オレフィンコポリマ（COC）、および環状オレフィンポリマー（COP）、ガラス、石英、およびシリコンを含むが、これらに限定されるものではない。当業者は、例えばその剛性、例えば、その剛性は、通過する流体に対するその不活性（例えば、流体による劣化からの解放）、所定の装置が使用される温度におけるその堅牢性、および／または（例えば、紫外線および可視領域内における）光に対するその透過性／不透過性に基づいて容易に好適な材料を選択することができる。いくつかの実施例において、基板の材料および寸法（例えば厚み）は、基板が水蒸気を略通さないように選択される。

10

【0087】

いくつかの実例において、マイクロ流体基板は、上述したような 2 つ以上の材料の組み合わせから構成される。例えば、装置のチャネルは、第 1 の材料（例えばポリ（ジメチルシロキサン）にて形成され、第 2 の材料（例えばポリスチレン）にて形成されるカバーは、チャネルをシールすることに使用される。別例において、装置のチャネルはポリスチレンや他のポリマ（例えば射出成形による）にて形成され、生体適合性を備えたテープがチャネルをシールすることに使用される。様々な方法が、マイクロ流体チャネルやチャネルの部分をシールすることに使用される。方法は、接着剤の使用、接着、接合、溶接（例えば超音波）、あるいは機械的方法（例えば、クランプ）を含むが、これらに限定されるものではない。

20

【0088】

チャネルは任意の断面形状（円形、半円形、橍円形、半橍円形、三角形、不規則、正方形、あるいは矩形等）を有し、覆われていても覆われていなくてもよい。チャネルが完全に覆われる実施例において、チャネルの少なくとも一部は、完全に包囲される断面を有するか、あるいはチャネル全体がその入口と出口を除きその全長に沿って完全に包囲される。チャネルには更に少なくとも 2 : 1、通常少なくとも 3 : 1、5 : 1、あるいは 10 : 1 以上の縦横比（平均の断面寸法に対する長さ）を有する。開放された、あるいは部分的に開放されたチャネルは、設けられる場合に、流体の輸送に対して容易に制御可能である特徴、すなわち構造的な特徴（長尺状をなす刻み目）、および／または物理的または化学的特徴（疎水性対親水性）、あるいは流体に圧力（例えば包含圧力（containing force））を付与可能な特徴を含む。チャネル内の流体は、部分的にあるいは完全にチャネルを満たしてもよい。開放されるチャネルが使用される所定の場合に、流体は、例えば表面張力（例えば凹面または凸面のメニスカス）を使用して、チャネル内に保持される。

30

【0089】

いくつかの実施例において、本発明のシステムはマイクロ流体であるが、所定の実施例において、本発明はマイクロ流体システムに制限されるものではなく、他のタイプの流体システムに関するものであってもよい。ここに使用されるような「マイクロ流体」は、1 mm 未満の断面寸法を有し、最大の断面寸法に対する長さの比が少なくとも 3 : 1 である少なくとも 1 本の流体チャネルを含む器具、装置、あるいはシステムを示す。ここに使用される「マイクロ流体チャネル」は、これらの基準を満たすチャネルである。

40

【0090】

チャネルの「断面寸法」（例えば直径）は、流体流の方向に直交するように測定される

50

。本発明の要素におけるほとんどの流体チャネルは、2 mm未満の、所定の場合に、1 mm未満の最大の断面寸法を有する。1組の実施例において、本発明の実施例を含む全ての流体チャネルは、マイクロ流体であるか、あるいは最大でも2 mm以下あるいは1 mm以下の断面寸法を有する。別の組の実施例において、本発明の実施例を含むチャネルの最大の断面寸法は、500マイクロメートル未満、200マイクロメートル未満、100マイクロメートル未満、50マイクロメートル未満あるいは25マイクロメートル未満である。所定の場合に、チャネルの寸法は、流体が物や基板を自由に流れることができるように選択される。更に、チャネルの寸法は、例えば、チャネルの流体の所定の容積測定や直線的な流れの速度測定ができるように選択される。もちろん、チャネルの数およびチャネルの形状は当業者に周知の任意の方法によって変更可能である。所定の場合に、1本以上のチャネルや毛細管が使用されてもよい。

10

【0091】

いくつかの実例において、試薬はマイクロ流体チャネルシステムの完全な組立てに先立ってチャネルに配置される。例えば、包囲されるチャネルを有するように設計されるシステムがなお完全に包囲されていないチャネルを有する場合に、マイクロ流体チャネルシステムは完全ではない。チャネルの少なくとも一部が完全に包囲される断面を有する場合に、あるいは全チャネルがその全長に沿ってその入口および出口のうち少なくともいずれか一方を除いて完全に包囲される場合に、チャネルは包囲される。

【0092】

システムのチャネルが完全に覆われた後に、濡れた試薬はマイクロ流体システムに通常収容される。システムに収容される流体の試薬は、チャネルの入口へ導入されてもよく、チャネルを流体により少なくとも部分的に満たした後にチャネルの入口および出口のうち少なくともいずれか一方は、例えば、流体を保持し、且つ外部源からの汚染を防止すべくシールすることができる。

20

【0093】

ここに使用される用語「測定」は、通常、例えば定量的、あるいは質的な（例えば反応部位内の）物質の測定および分析のうち少なくともいずれか一方、あるいは物質の存在または不存在の検知を示す。更に「測定」は、例えば、定量的あるいは質的な、2つ以上の物質間の相互作用の測定および分析のうち少なくともいずれか一方、あるいは相互作用の存在または不存在の検知を示す。

30

【0094】

様々な測定（例えば、測定、計量、検知、および制限）技術が使用される。測定技術は、光送信、吸光度、光散乱、光反射および視覚的な技術のような光学に基づいた技術を含む。測定技術は、さらにホトルミネセンス（例えば蛍光）、化学発光、生物発光、および/または電気化学発光のような発光技術を含む。使用される測定技術に従ってマイクロ流体装置を修正する方法は当業者に周知である。例えば、測定に使用される化学発光の種を含む装置に関して、不透明且つ/暗い背景が好ましい。金属コロイドを使用した測定に関して、透明な背景が好ましい。更に、任意の好適な検知器もここに開示される装置と組み合わせて使用されてもよい。例えば、公知の分光光度計および光学読み取り装置（例えば96-wellプレートリーダ）と同様に単純な光学検波器を使用することができる。

40

【0095】

（例）

次の例は、本発明の所定の実施例を示すことを意図するが、本発明の範囲を完全に示すものではない。

【0096】

（例1）

マイクロ流体チャネルシステムを組み立てる方法が開示される。

図1Aおよび1Bに示すチャネルシステムは、コンピュータ利用設計（C A D）プログラムにより設計される。マイクロ流体装置は、S U 8 フォトレジスト（マサチューセッツ州ニュートンに所在するMicroChem社）にて製造されたマスタを使用して迅速な

50

プロトタイピングによって、ポリ(ジメチルシロキサン) Sy1gard 184 (PDMS、登録商標ダウコーニング、ウィスコンシン州ジャーマンタウンに所在するエルズワース社)にて形成される。マスタはシリコンウェハに設けられ、PDMSにネガ・パターンを複製することに使用される。マスタは2レベルのSU8を含み、1レベルは、70マイクロメートル以下の厚み(高さ)を有し、免疫測定領域においてチャネルを形成し、且つ360マイクロメートル以下の第2の厚み(高さ)を有し、試薬収容領域および廃棄物格納領域を形成する。別のマスタは33μmの厚み(高さ)を有するチャネルにより設計される。マスタは(トリデカフルオロ-1,1,2,2-テトラヒドロオクチル)トリクロロシラン(独国ABC-R社)によりシラン処理される。PDMSはメーカーの指示によって混合され、マスタに注がれる。重合(4時間、65°)の後に、PDMSの複製が、マスタからはぎ取られ、アクセス・ポートが鋭端(直径1.5mm)を備えるステンレス鋼管材料を使用して、PDMSを打ち抜いて形成される。流体のネットワークを完成させるべく、スライド・ガラス、シリコンウェハ、ポリスチレン表面、PDMSのフラットスラブ、あるいは接着テープのような平坦な基板が、カバーとして使用され、PDMS表面に対して配置される。カバーは、分子間力によって適所に保持されても、接着剤を使用してマイクロ流体装置に固定されてもよい。

10

【0097】

別例において、マイクロ流体チャネルは、射出成形によってポリスチレン、環状オレフィンコポリマ、あるいは他の熱可塑性物質にて形成される。この方法は当業者に周知である。射出成形キャビティの容量は、成形品の厚みを決定する中空の構造によって分離される底面および天面によって定められる。物の2つの対向側にチャネル特徴部および/または他のマイクロ寸法の要素を含む物において、成形キャビティの底面および天面は、物の両側にチャネル特徴部を形成する隆起した特徴部を含む。物の一方の側にのみチャネル特徴部を含む物については、成形キャビティの天面または底面のみがそのような特徴を含む。物の厚み全体を貫通する貫通孔が、キャビティを横断し、キャビティの1つ以上の表面に埋め込まれ、反対側と接触するピンによって形成される。例えば、ピンは、天面のみから、底面のみから、あるいは天面および底面の両者から延びてもよい。キャビティが加圧され溶解したプラスチックにより満たされ、続いて冷却されると、一方の側または両側にチャネルを備え、且つ接続部や入口および出口として機能する穴を備える物が形成される。流体のネットワークを完成させるべく、接着テープがチャネルをシールすべく物の表面に貼り付けられる。

20

【0098】

(例2)

本例は、流体の移動を制御するために少なくとも1つの通気弁が組み込まれる1本のチャネルを含むマイクロ流体システムにおける流体の移動の制御について開示する。図5Aおよび図5Bは、本例に開示されるシステムの概要を示す。

30

【0099】

図5Aに示すシステムは1本のチャネルを含み、このチャネルに入口、出口、通気弁が形成される。本システムは、例1に開示されるような射出成形によって形成される。単一のチャネル302は、矢印308の方向に流体部304および306を流すように構成される。水が本実験において流体部304および306に使用され、これらの流体部は空気のプラグによって分離される。チャネルは通気弁310、および通気弁310の上流の入口312を含む。実験全体において、マイクロ流体チャネルを横断して圧力を降下させるべく-40kPaの略定圧にて作用する真空がチャネル出口314に付与される。

40

【0100】

通気弁310は開放されると、選択的弁として機能し、これは弁を通過して流れる空気が出口を通過してシステムを退出する流体に代わることを示す。通気弁310(弁310と入口312との間の流体を含む)の上流に配置される流体は、入口が開放されているか閉鎖されているかにかかわらず流れない。通気弁310が閉鎖されていると、入口312が開放されている限りチャネルの全ての流体は流れる。このように、通気弁310はマイ

50

クロ流体チャネルの流体の輸送を制御することに使用される。通気弁 310 および入口 312 の両者が閉鎖されると、流体は（真空が付与されると、所定の運動が流体の膨張により観察されるが）チャネルを流れないものといえる。

【0101】

図 5 B に示すシステムは 1 本のチャネルを含み、このチャネルに 3 つの通気弁が組み込まれる。単一のチャネル 320 は、矢印 308 の方向に流体部 322、324、326、および 328 を流すように構成される。チャネルは入口 330、通気弁 332、334、および 336 を含む。図 5 A に開示されるシステムと同様に、マイクロ流体チャネルを横断して圧力を降下させるべく真空がチャネル出口 340 に付与される。

【0102】

一実験において、通気弁 332 が開放され、出口 340 に真空が付与されると、流体 322 のみがチャネル 320 を通して輸送される。続いて、通気弁 332 が閉鎖されるとともに弁 334 が開放されると、流体 324 のみがチャネル 320 を通して輸送される。次に、通気弁 332 および 334 が閉鎖されるとともに弁 336 が開放されると、流体部 326 がチャネルを通して輸送される。次に、通気弁 332、334、および 336 が閉鎖されるとともに入口 330 が開放されると、流体部 328 がチャネルを通して輸送される。

【0103】

実験の別例において、複数の流体が、チャネルを通して同時に輸送される。一例において、初めて使用されるに先立って、通気弁 332 は閉鎖されるが、弁 334 は開放される。出口 340 に真空を付与すると、流体部 322 および 324 は、矢印 308 の方向にチャネル 320 を通して同時に輸送される。別の実験において、初めて使用されるに先立って、通気弁 332 および 334 は閉鎖されるが、弁 336 は開放される。出口 340 に真空を付与すると、流体部 322、324、および 326 は、矢印 308 の方向にチャネル 320 を通して同時に輸送される。最後に、一実験において、通気弁の全てが閉鎖されるとともに入口 330 が開放される場合に、出口 340 に真空が付与されると、流体部 322、324、326、および 328 が同時に輸送される。

【0104】

この例は、流体プラグのタイミングを含む流体の制御が、装置において、1 つ以上の通気弁を開閉し、装置の使用全体にわたって略定圧にて操作される流体流の 1 つの源（例えば真空）を付与することによって行われ得ることを示す。

【0105】

（例 3）

本例は、流体の移動を制御するために複数のチャネルおよび少なくとも 1 つの通気弁を備えるマイクロ流体システムにおける流体の移動の制御について開示する。図 6 A 乃至 6 C は、本例に開示されるシステムの概要を示す。図 6 A に示す装置において、マイクロチャネル 410 は、通気弁 416 で交差する 2 本の分岐チャネル 412 および 414 に連通する。マイクロチャネル 410 は流体 418 を含む。付加的に、流体 420 および 422 は、分岐 412 および 414 にそれぞれ収容される。チャネル 410 が出口 424 に接続されるとともに分岐 412 および 414 が入口 426 および 428 にそれぞれ接続される。装置における全ての流体は、気体（流体 418、420 および 422 に混ざらない）のプラグによって分離される。

【0106】

実験全体において -40 kPa の略定圧にて作用する真空が、出口 424 に付与される。最初に、通気弁 416 が開放され、これにより流体 418 が矢印 408 の方向にマイクロチャネル 410 を通して流され、空気が通気弁 416 を通して流される。入口 426 および 428 が開放されても、流体 420 および 422 は移動しない。流体 418 が出口 424 を退出した後に、通気弁 416 を通過する気体の流速は、流体 418 によって生じる圧力降下がなくなると、高められる。次に、通気弁 416 が閉鎖される。通気弁が閉鎖されると、図 6 B に示す混合流体 430 を生成すべく流体 420 および 422 が通気弁 41

6 にて混合される。

【 0 1 0 7 】

実験の別例において、流体 4 2 0 および 4 2 2 は、通気弁 4 1 6 を同時にではなく順に輸送される。第 1 の実験における図 6 C に示す実施例において、流体 4 1 8 が出口 4 2 4 を通して輸送された後に、通気弁 4 1 6 および入口 4 2 6 の両者が閉鎖される（とともに入口 4 2 8 は開放される）。入口 4 2 6 を閉鎖することによって、流体 4 2 0 は、入口 4 2 6 に気体が進入できないため、分岐 4 1 2 において略静止した状態を保持される。他方、気体が入口 4 2 8 を通して輸送されると、流体 4 2 2 は分岐 4 1 4 を通して輸送され、閉鎖される通気弁 4 1 6 を通過して輸送される。

【 0 1 0 8 】

この例は、流体プラグの混合およびタイミングを含む流体の制御が、装置において、1 つ以上の通気弁を開閉し、装置の使用全体にわたって略定圧にて操作される流体流の1つの源（例えば真空）を付与することによって行われ得ることを示す。

【 0 1 0 9 】

（例 4 ）

本例は、金の粒子上に無電解に銀を析出させることによって光学上検知可能な信号の分析を行なうための分岐チャネルシステムの使用を開示する。図 7 は、本例において使用される分析装置 3 0 0 を示す概略図である。本例において使用される分析は、通常 2 0 0 4 年 1 2 月 2 0 日に出願され、発明の名称が「A s s a y D e v i c e a n d M e t h o d」である国際公開第 W O 2 0 0 5 / 0 6 6 6 1 3 号明細書（国際特許出願公開第 P C T / U S 2 0 0 4 / 0 4 3 5 8 5 号明細書）に開示され、その全体がここに開示されたものとする。

【 0 1 1 0 】

装置は反応領域 5 1 0 、廃棄物格納領域 5 1 2 、および出口 5 1 4 を含む。反応領域は、全長 1 7 5 mm 、深み 5 0 マイクロメートル、幅 1 2 0 マイクロメートルのマイクロ流体チャネルを含む。装置は、更にマイクロ流体チャネル 5 1 6 、並びに分岐チャネル 5 1 8 および 5 2 0 （それぞれ入口 5 1 9 および 5 2 1 を含む）を含む。チャネル 5 1 6 、並びに分岐 5 1 8 および 5 2 0 は、深みが 3 5 0 マイクロメートル、幅が 5 0 0 マイクロメートルである。付加的に、チャネル 5 1 6 は、長さ 3 9 0 mm であり、分岐 5 1 8 および 5 2 0 は、各々長さ 3 6 0 mm である。例 1 に開示されるように、反応領域およびマイクロ流体チャネルは形成される。チャネルをシールするに先だって、反 P S A 抗体が、反応領域 5 1 0 のセグメントにおいて装置の表面に取り付けられる。

【 0 1 1 1 】

初めて使用されるに先立って、装置に液体試薬が装填される。液体が、2 マイクロリットルの水 5 4 2 のプラグ、2 マイクロリットルの緩衝液 5 4 1 のプラグ、コロイド状の金 5 2 6 標識の反 P S A 抗体を含む 2 0 マイクロリットルの水溶液のプラグ、1 マイクロリットル緩衝液 5 2 4 のプラグの順番にてチャネル 5 1 6 に装填される。この連続した流体プラグは、入口ポート 5 3 9 を通してピペットを使用して装填される。銀塩溶液を含む流体 5 2 8 は、ピペットを使用してポート 5 1 9 を通して、分岐チャネルに装填される。還元溶液を含む流体 5 3 0 は、ポート 5 2 1 を通して分岐チャネル 5 2 0 内に装填される。図 7 に示す液体の各々は、空気のプラグによって他の液体から分離される。ポート 5 1 4 、5 1 9 、5 2 1 、5 3 6 、5 3 9 、および 5 4 0 は、容易に取り扱いまたは貫通することができる接着テープによりシールされる。従って、液体は初めて使用されるに先立って装置に収容される。

【 0 1 1 2 】

最初の使用において、ポート 5 1 4 、5 1 9 、5 2 1 、5 3 6 、5 3 9 、および 5 4 0 が開封される。1 0 マイクロリットルのサンプル血液（5 2 2 ）を含むチューブ 5 4 4 は、ポート 5 3 9 および 5 4 0 に接続される。これにより、反応領域 5 1 0 とチャネル 5 1 6 との間に流体の接合部が形成されるが、これがなければ初めて使用されるに先立って反応領域 5 1 0 およびチャネル 5 1 6 は接合されるものではなく、相互に連通するものでも

10

20

30

40

50

ない。-40 kPaの真空がポート514に付与される。サンプル522が、反応領域510において矢印538の方向に流れる。流体が反応領域を通過すると、サンプル522のPSAのタンパク質が反応エリアの壁に固定される反PSA抗体によって捕捉される。サンプルが反応領域を通過するのに5分かかり、その後、サンプルは廃棄物格納領域512に捕捉される。ここに開示される装置において使用可能な例示的な廃棄物格納領域は2008年8月22日に出願され、発明の名称が「Liquid containment for integrated assays」である米国特許出願公開第12/196,392号明細書に開示され、その全体がここに開示されたものとする。

【0113】

流体524、526、541、および542は、反応領域510を介して廃棄物格納領域512に向かってサンプルに続く。これにより流体524が反応領域510に向かって矢印538の方向に輸送される。流体524が反応領域を通過すると、残存する結合していないサンプル要素を洗い流す。流体526が反応領域を通過すると、金標識反PSA抗体は、(サンドイッチ免疫複合体を形成すべく)反応領域の壁に捕捉されるPSAに連結される。流体541および542は、任意の結合していない試薬要素の反応領域に続き更に洗浄する。最後の洗浄流体542(水)は、銀塩(すなわち塩化物、リン酸塩、アジ化物)と反応可能な塩類を洗い流す。

【0114】

信号を增幅するためにコロイドの径を増加させるべく銀が捕捉される金の粒子に堆積される。いくつかの実施例において、信号は光学的濃度として光学的方法によって記録することができる。これを遂行するために、流体528および530は反応的な銀溶液を生成すべく混合される。流体528および530の容量の比は約1:1である。流体528および530の混合を開始すべく、通気弁536が閉鎖されるとともに514にて付与される真空は保持され、これらにより、通気弁536に向かって流体528および530が同時に流れる。通気弁は、最終となる前の流体542が反応領域を退出した後にのみ、混合を開始すべく閉鎖される。閉鎖は、接着テープによりポート536をシールすることによって一実験において行なわれる。別の実験において、電磁弁(SMC社V124A-6G-M5(図示しない))に処理的に関連するチューブ(図示しない)が、通気弁536にOリングにより気密に接続される。電磁弁は図2Eおよび2Fに関してここに開示されたものと類似の方法によりポートをシールするために活性化される(ポートを開封するために後に非活性化される)。流体528および530は、通気弁536にて相互に混合され、約1×10-3Pa sの粘性を備える活性化された銀溶液を生成する。通気弁536下のマイクロ流体チャネルの断面積は、チャネル518および520の断面積の約2倍である。10秒後に、通気弁536が開放される。その時に、流体528および530の両者の約55%が混合され、残りの流体528および530は、チャネル518および520にそれぞれ残される。

【0115】

堆積される銀を得るべく、活性化された銀溶液は、反応領域510を通過して流れる。混合溶液は数分しか(通常10分未満)安定しないため、混合は反応領域510にて使用するに先だって1分未満行なわれる。更に、コロイドに銀を再生可能に堆積できるよう、活性化された銀溶液を生成するための試薬の混合と、反応領域への活性化された銀溶液の輸送との間の時間は、それらが複数の実験間において一貫するように制御される。

【0116】

システムを通して流体を流す場合に、チャネル516および反応領域510内の流体の流速の制御は重要である。反応領域の比較的狭小な横断面積により、反応領域は隘路として機能し、これによりシステムにおける全体的な流速を制御する。反応領域が液体を含む場合に、チャネル516の流体の直線的な流れの速度は、約0.5mm/秒である。分岐チャネル518および520から主チャネル516に流れ込む流体は、この速度においては再生可能に混合されるものではなく、その理由として、一方の流体が他方の流体より速く流れ、これにより、流体528および530の不等な部分を混合させることが挙げられ

10

20

30

40

50

る。他方では、反応領域が空気を含む場合に、チャネル 516、並びに分岐チャネル 518 および 520 における流体の直線的な流れの速度は、約 15 mm / 秒である。このより高い流速にて、分岐チャネル 518 および 520 における流速は等しく、且つ再生可能であり（通気弁 536 が閉鎖されている場合に）、これにより再生可能な混合が行われる。この理由により、通気弁 536 は、流体 542 が反応領域を通して廃棄物格納領域に移動するまで閉鎖される。流体 542 がいつ反応領域 510 を退出したかを視認により（目により）決定可能である。これに代えて、2004 年 12 月 20 日に出願され、発明の名称が「Assay Device and Method」である国際特許第 WO 2005 / 066613 号明細書（国際特許出願第 PCT / US 2004 / 043585 号明細書）に詳細に開示されるように、光学検波器は反応領域 510 の一部を通した光の送信を測定するように配置される。明細書はその全体がここに開示されたものとする。

10

【0117】

図 7 に示すマイクロ流体システムは、通気弁 536 と反応領域 510 との間のチャネルの量が、混合され活性化された銀溶液（すなわち、流体 528 および 530 の結合した部分がチャネル 516 へ移動するとともに、通気弁 536 が閉鎖される）の予想される量より大きくなるように設計される。これにより、比較的高い直線的な流れの速度にて混合の略全てが、活性化された溶液が反応領域に至るに先立って確実に行われる（この時点において液体は反応領域 510 内になく空気のみが反応領域 510 内に配置されるため）。この構成により、再生可能且つ一様な混合の促進が補助される。

20

【0118】

本例に開示される分析において、数分（例えば 2 乃至 10 分）間反応領域内の活性化された銀混合物の流れを保持することが重要である。第 1 の実験において、流体 528 および 530 の 45 マイクロリットルの量が装填され、その一部は、混合に使用される（合計 55 マイクロリットルの活性化された銀溶液を生成する）。この量の結合した流体は、約 300 秒の反応領域における滞留時間を有する。しかしながら、液体のこの比較的少量の使用は、課題を提起し得る。比較的短い長さの流体セグメント 528 および 530 が使用される場合に、1 : 1 の比率にて 2 つの流体を確実に混合することは比較的困難である。セグメント長さにおける小さな変化により、2 つの流体の流速は不均一となり、より長いセグメントと比較してより短いセグメントは（比較的小さな抵抗により流れることにより）比較的高い流速を示す。この結果、混合比にずれが生じ得る。

30

【0119】

この結果を区別するために、第 2 の組の実験が行われ、90 マイクロリットルの量の活性化された銀溶液を生成すべく、45 マイクロリットルの量の銀塩溶液と、45 マイクロリットルの量の還元溶液が混合される。銀塩溶液は、（化学組成の違いによる製造における僅かな差異、およびチャネル形成に使用される加工技術の公差によるチャネル断面の僅かな変動を含む理由の組み合わせにより）還元溶液に対して僅かに速く流れることがわかつたため、真空が付与されるときに分岐を通して僅かに高い流速を示す。図 8 は、銀塩および還元溶液の最初の接触後の経過時間の関数として混合チャネル（単位：マイクロリットル）に進入する銀塩溶液（破線）および還元溶液（実線）の量を示すプロットを含む。図 8 において、流速のこの差は、t = 0 秒乃至 t = 9 秒までの線の傾斜の僅かな差によって示される。t = 9 秒で、セグメントの長さの絶対差は重要なものとなる。また、銀塩溶液（より速い流速を有するため、その分岐により短いセグメントの液体が残る）は、還元溶液に比べて更に速く流れる。この結果は、銀塩の（直線的な推定に対する）曲線の上昇傾向および還元溶液の曲線の下降傾向によって示される。

40

【0120】

付加的に、流体 528 および 530 の試薬のうちの一方の後縁が、通気弁 536 に至ったときに、通気弁 536 の穴の頂部に向かって液体の僅かな爆発が放出されることが観察される。その液体は、外部の弁機構と接触すべく進入すると分かった。これらは弁の効率に迅速にして、且つ顕著な影響を付与するものではないが、弁の望ましくない汚染を生じる。この方法にて（例えば複数の実験を実行すること）弁を繰り返し使用することによつ

50

て、弁の正常機能が変更される。流体 528 および 530 の全てが混合されるに先だって通気弁 536 を再び開放することにより、流体 528 および 530 のいずれの後縁も通気弁 526 には確実に至らず、また、液体の排出も確実に生じない。従って、(流れる際に流体 528 および 530 の長さ間に大きな変化が確実に生じないように) 分岐 518 および 520 に過剰な試薬を装填することによって、および通気弁 536 を再び開放するに先立って約 2/3 未満の量の収容される試薬を使用することによって、一貫した混合比が混合工程の全体にわたって保持されるとともに、通気弁 536 における外部弁機構の液体の突出または汚染が回避される。弁は、所定の組の試薬の流れの状態に応じて完了の様々な段階にて再び開放される。

【0121】

本例は、試薬の混合、流速の変更、および流速のタイミングを含む流体の制御が装置において行われ、1つ以上の通気弁を開閉し、装置の使用全体にわたって略定圧にて操作される流体流の1つの源(例えば真空)を付与することによって分析が行われることを示す。本例は、装置において混合される流体の個別のプラグの流速を制御する重要性を更に示す。

10

【0122】

本発明のいくつかの実施例がここに開示されたが、当業者は機能を実施し、且つ/または結果を得るための様々な他の手段および/または構造体、および/または、ここに開示される1つ以上の効果の構想を容易に描き、そのような変更および/または変形は本発明の範囲内にあるものといえる。通常、当業者はここに開示される全てのパラメータ、寸法、材料、および構成は例示的なものであり、実際のパラメータ、寸法、材料、および/または構成は、本発明の教示が使用される特定の1つ以上の応用に依存することを容易に認識するであろう。当業者は、ただのルーチン実験を使用して、ここに開示される本発明の所定の実施例に対する多くの均等物を認識するかあるいは確認することができるであろう。従って、先の実施例は、添付の特許請求の範囲およびこれらの均等物の範囲内において例示によってのみ示されたものであり、本発明は具体的に開示され特許請求の範囲に請求されるもの以外によって実施されてもよいものといえる。本発明は、ここに開示される個別の特徴、システム、物、材料、キットおよび/または方法に関する。付加的に、2つ以上のそのような特徴、システム、物、材料、キット、および/または方法の任意の組み合わせも、そのような特徴、システム、物、材料、キット、および/または方法が、相互に一貫しないわけではない場合に、本発明の範囲内に含まれる。

20

【0123】

明細書および特許請求の範囲においてここに使用されるような不定冠詞「1つ(a)」および「1つ(an)」は、特に明示されない限り「少なくとも1つ(at least one)」を意味するものといえる。

30

【0124】

明細書および特許請求の範囲においてここに使用される句「および/または(and/or)」は、要素の「いずれかまたは両者(either or both)」を示し、要素がそのように結合されたこと、すなわち、所定の場合に結合して設けられ、他の場合に分離して設けられることを示すものといえる。他の要素は、「および/または(and/or)」節によって特に識別される要素以外に任意に設けられてもよく、反対の趣旨が明示されない限り特に識別される要素に関連づけられても無関係であってもよい。従って、例として、「含む(comprising)」のような非制限的用語と組み合わせて使用される場合に「Aおよび/またはB(A and/or B)」は、一実施例において、Bを伴わないA(B以外の要素を任意に含む)を示し、別例において、Aを伴わないB(任意にA以外の要素を含む)を示し、更なる別例において、AおよびBの両者(任意に他の要素を含む)を示すこと等が挙げられるが、これらに限定されるものではない。

40

【0125】

明細書および特許請求の範囲においてここに使用されるように、「あるいは(or)」は、上述したように「および/または(and/or)」と同じ意味を有するものといえ

50

る。例えば、リスト中の項目を分離する場合に、「あるいは(*or*)」や「および／または(*and/or*)」は、包括的であると解釈されるものとする。すなわち少なくとも1つを包含するが、1つ以上、多数の要素またはリストに示す要素、および任意に付加的なリストに無記載の項目を含む。「～のうち1つのみ(*only one of*)」、「～のうちまさに1つ(*exactly one of*)」、あるいは特許請求の範囲に使用される場合の「～からなる(*consisting of*)」のような、それと反対に明示される用語のみ、多くの要素あるいはリストに挙げられる要素のうちまさに一要素を包含するものとする。通常、ここに使用される用語「あるいは(*or*)」は、「いずれか(*either*)」、「～のうちの1つ(*one of*)」、「～のうち1つのみ(*only one of*)」、「～のうちまさに1つ(*exactly one of*)」のような排他的用語が先行する場合に、排他的な選択肢(すなわち、「一方または他方であるが両者ではない(*one or the other but not both*)」)を示すものとのみ解釈されるものとする。「～のみからなる(*consisting essentially of*)」は、特許請求の範囲において使用される場合に、特許法の分野において使用されるようなその通常の意味を有するものとする。

【0126】

明細書および特許請求の範囲においてここに使用されるように、1つ以上の要素のリストに関する句「少なくとも1つ(*at least one*)」は、要素のリスト中の要素のうちの任意の1つ以上から選択される少なくとも1つの要素を意味するが、具体的にリストされる各要素および全ての要素のうち少なくとも1つを含む必要はなく、要素のリスト中の要素の任意の組み合わせを排除するものではないものといえる。この定義により、要素は、句「少なくとも1つ(*at least one*)」が示す要素のリスト内において特に識別される要素以外に任意に設けられてもよく、特に識別される要素に関係しても無関係であってもよい。従って、例として、「AおよびBのうち少なくとも1つ(*at least one of A and B*)」(あるいは、同義の「AまたはBのうち少なくとも1つ(*at least one of A or B*)」、あるいは、同義の「Aおよび／またはBのうち少なくとも1つ(*at least one of A and/or B*)」)は、一実施例において、少なくとも1つのA、任意に1つ以上のAを含み、Bは設けられない(任意にB以外の要素を含む)ことを示し、別例において、少なくとも1つのB、任意に1つ以上のBを含み、Aは設けられない(任意にA以外の要素を含む)ことを示し、更なる別例において、少なくとも1つのA、任意に1つ以上のA、および少なくとも1つのB、任意に1つ以上のBを含む(任意に他の要素を含む)こと等を示す。

【0127】

特許請求の範囲においては、上記明細書と同様に、「comprising」、「including」、「carrying」、「having」、「containing」、「involving」、「holding」等の全ての移行句は、無制限、すなわち含むがこれらに限定されるものではないことを示すものといえる。移行句「consisting of」、および「consisting essentially of」のみは、米国特許庁の米国特許審査基準セクション2111.03に示すように、それぞれ限定的、または半限定的な移行句である。

10

20

30

40

【図1】

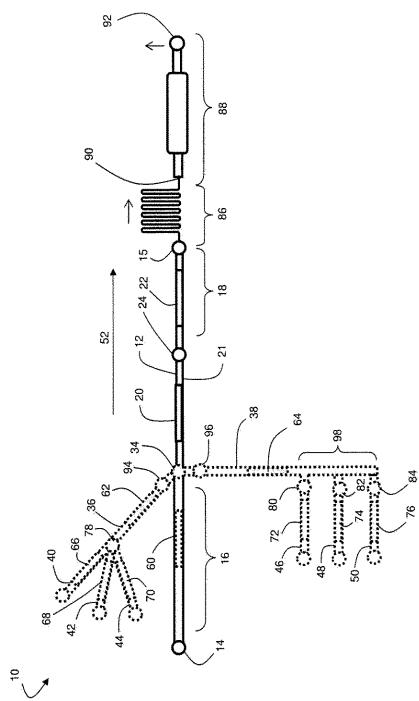


FIG. 1

【図2A】

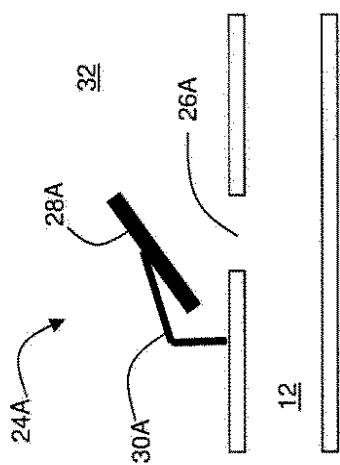


FIG. 2A

【図2B】

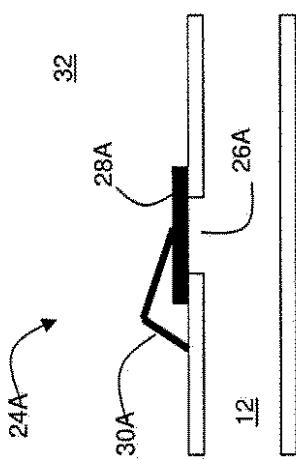


FIG. 2B

【図2C】

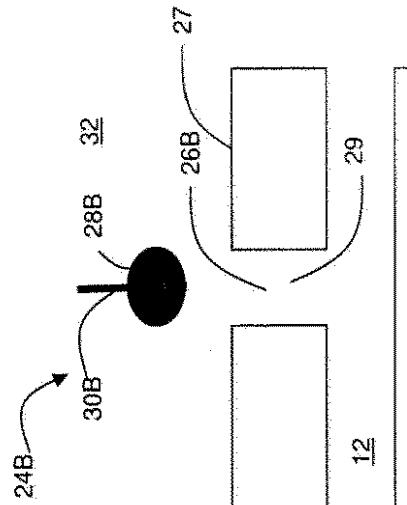


FIG. 2C

【図 2 D】

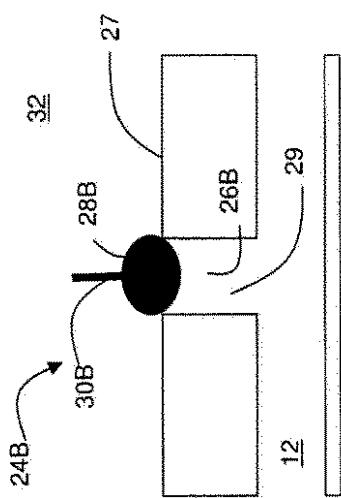


FIG. 2D

【図 2 E】

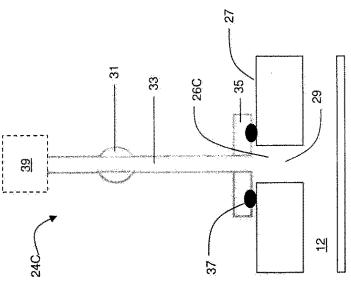


FIG. 2E

【図 2 F】

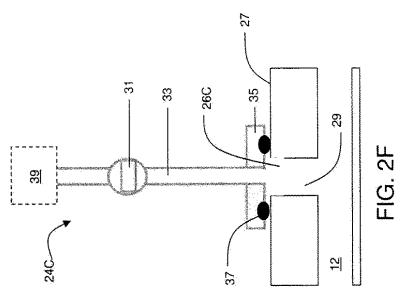


FIG. 2F

【図 3 A】

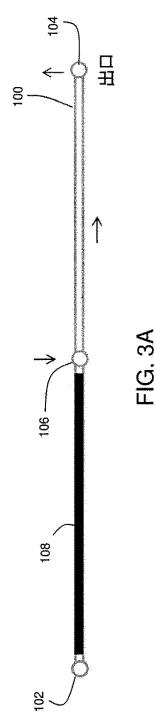


FIG. 3A

【図 3 B】

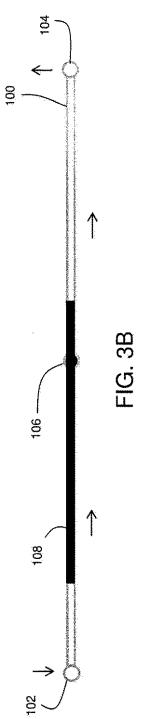


FIG. 3B

【図 3 C】

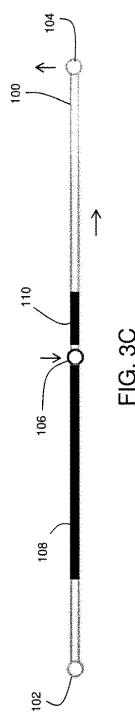


FIG. 3C

【図 3 D】

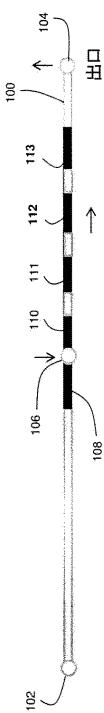


FIG. 3D

【図 4 A】

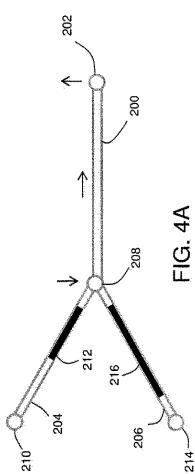


FIG. 4A

【図 4 B】

FIG. 4B

【図 4 C】

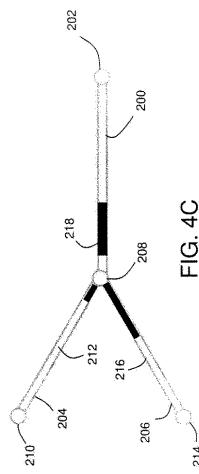


FIG. 4C

【図 4 D】

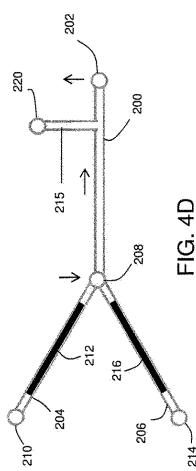


FIG. 4D

【図 4 E】

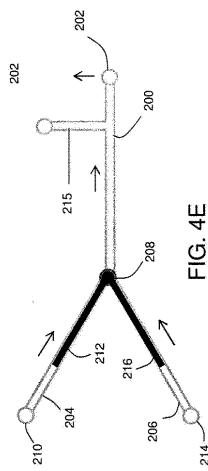


FIG. 4E

【図 4 F】

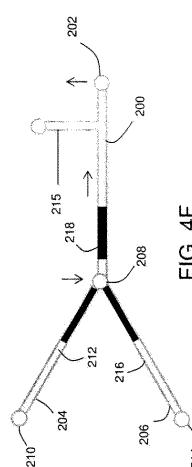


FIG. 4F

【図 4 G】

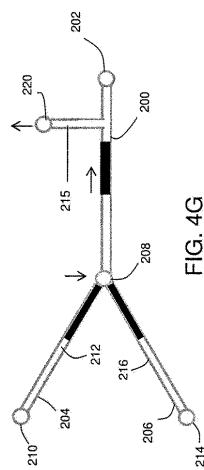


FIG. 4G

【図 4 H】

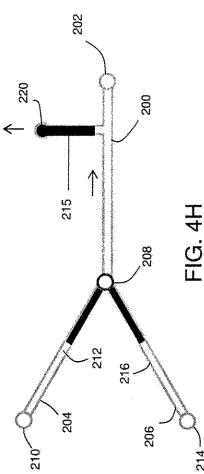


FIG. 4H

【図 4 I】

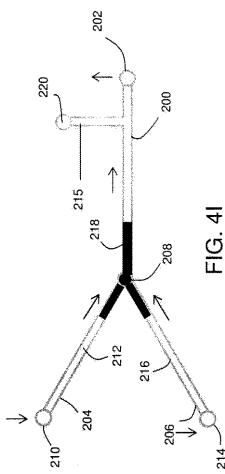


FIG. 4I

【図 5 A】

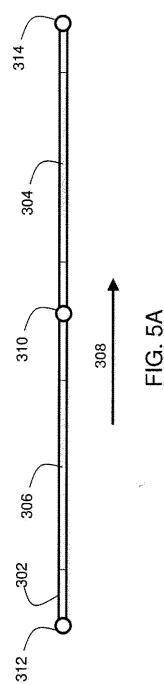


FIG. 5A

【図 5 B】

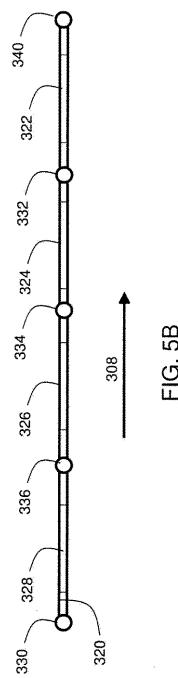


FIG. 5B

【図 6 A】

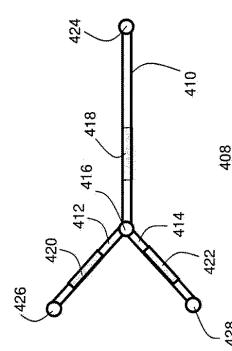


FIG. 6A

【図 6 B】

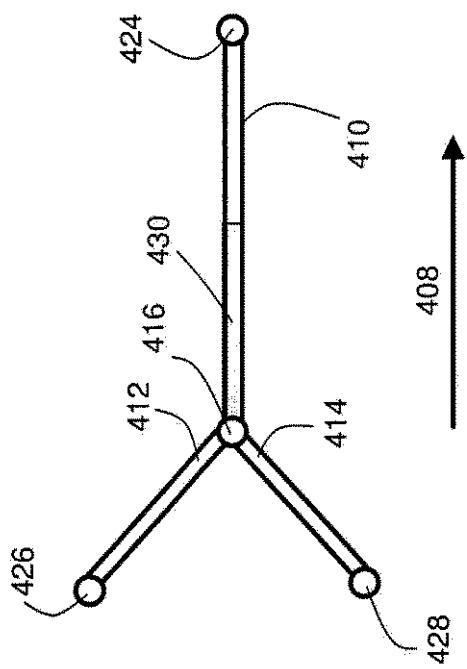


FIG. 6B

【図 6 C】

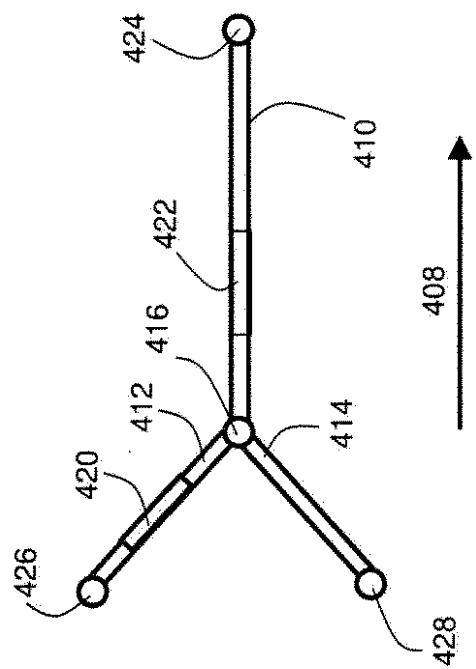


FIG. 6C

【図7】

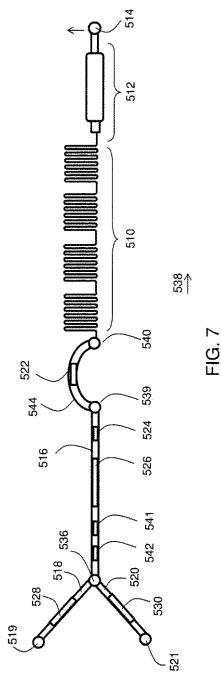


FIG. 7

【図8】

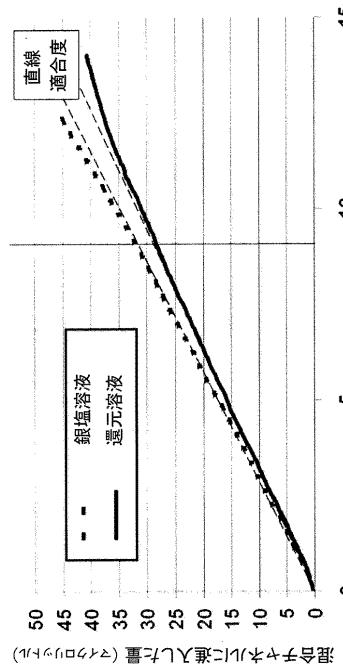


FIG. 8

【手続補正書】

【提出日】平成27年5月12日(2015.5.12)

【手続補正1】

【補正対象書類名】特許請求の範囲

【補正対象項目名】全文

【補正方法】変更

【補正の内容】

【特許請求の範囲】

【請求項1】

第1の流体を含む上流のチャネル部と、

第2の流体を含む下流のチャネル部と、

上流のチャネル部と下流のチャネル部との間に配置される通気弁とを備える装置において、

第1の流体を実質的に流すことなく第2の流体を下流のチャネル部に流す工程と、

第2の流体を流した後に第1の流体を上流のチャネル部から下流のチャネル部に流す工程とを含むことを特徴とする方法。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0127

【補正方法】変更

【補正の内容】

【0127】

特許請求の範囲においては、上記明細書と同様に、「comprising」、「including」、「carrying」、「having」、「containing」、「involving」、「holding」等の全ての移行句は、無制限、すなわち

ち含むがこれらに限定されるものではないことを示すものといえる。移行句「*consisting of*」、および「*consisting essentially of*」のみは、米国特許庁の米国特許審査基準セクション 2111.03 に示すように、それぞれ限定的、または半限定的な移行句である。

本願発明は以下の態様を含む。

(態様 1)

主チャネルと、

第 1 の流体を含む第 1 の分岐チャネルと、

第 2 の流体を含む第 2 の分岐チャネルであって、前記第 1 の分岐チャネルおよび第 2 の分岐チャネルは、交差部にて接合し且つ主チャネルに連通する、前記第 2 の分岐チャネルと、

第 1 の分岐チャネルの一部と主チャネルの一部との間に配置された通気弁とを備える装置を提供する工程と、

通気弁を駆動する工程と、

第 1 の流体および第 2 の流体を交差部に略同時に流れ込ませる工程と、

混合流体を生成すべく第 1 の流体および第 2 の流体の少なくとも一部を混合する工程とを含むことを特徴とする方法。

(態様 2)

第 1 の流体を含む上流のチャネル部と、

第 1 の流体とは異なる第 2 の流体を含む下流のチャネル部と、

上流のチャネル部と下流のチャネル部との間に配置される通気弁とを備える装置を提供する工程と、

第 1 の流体および第 2 の流体が相互に繋がりをもった状態で、第 1 の流体を実質的に流すことなく第 2 の流体を下流のチャネル部に流す工程と、

第 2 の流体を流した後に第 1 の流体を上流のチャネル部から下流のチャネル部に流す工程とを含むことを特徴とする方法。

(態様 3)

入口と、

出口と、

入口と連通する上流のチャネル部と、

出口と連通する下流のチャネル部と、

下流のチャネル部と上流のチャネル部との間に配置される通気弁と、

上流のチャネル部および下流のチャネル部のうち少なくとも一方に収容される第 1 の流体とを備え、装置は、初めて使用されるに先立って少なくとも 1 時間にわたって装置に第 1 の流体を収容するようにシールされ、構成されることを特徴とする装置。

(態様 4)

入口と、

出口と、

入口と出口との間の主チャネルと、

入口と出口との間の主チャネルに沿って直列に配置された第 1 の通気弁および第 2 の通気弁とを備えることを特徴とする装置。

(態様 5)

前記チャネルの少なくとも 1 つはマイクロ流体チャネルであることを特徴とする態様 1 乃至 4 のいずれか一つに記載の装置または方法。

(態様 6)

前記第 1 の流体および第 2 の流体のうち少なくともいずれか一方を流す工程は、第 1 の流体および第 2 の流体のうち少なくともいずれか一方を含む 1 つ以上のチャネルに圧力勾配を付与する工程を含むことを特徴とする態様 1 乃至 5 のうちいずれか一つに記載の装置または方法。

(態様 7)

前記第1の流体および第2の流体のうち少なくともいずれか一方を流す工程は、第1の流体および第2の流体のうち少なくともいずれか一方を含むチャネルの一端に真空を付する工程を含むことを特徴とする態様1乃至6のうちいずれか一つに記載の装置または方法。

(態様8)

前記第1の流体は液体であることを特徴とする態様1乃至7のうちいずれか一つに記載の装置または方法。

(態様9)

前記第1の流体は気体であることを特徴とする態様1乃至8のうちいずれか一つに記載の装置または方法。

(態様10)

前記第2の流体は液体であることを特徴とする態様1乃至9のうちいずれか一つに記載の装置または方法。

(態様11)

前記第2の流体は気体であることを特徴とする態様1乃至10のうちいずれか一つに記載の装置または方法。

(態様12)

前記流体の少なくとも1つは全血であることを特徴とする態様1乃至11のうちいずれか一つに記載の装置または方法。

(態様13)

前記装置は、

第1の分岐チャネルを含む上流のチャネル部と、

第2の分岐チャネルを含む上流のチャネル部とを備え、

第1の分岐チャネルおよび第2の分岐チャネルは交差部にて接合するとともに、下流のチャネル部に連通することを特徴とする態様1乃至12のうちいずれか一つに記載の装置または方法。

(態様14)

前記第1の流体および第2の流体を略同時に交差部に流し込む工程を更に含むことを特徴とする態様1乃至13のうちいずれか一つに記載の装置または方法。

(態様15)

混合流体を形成するために、前記第1の流体および第2の流体の少なくとも一部を混合する工程を更に含むことを特徴とする態様1乃至14のうちいずれか一つに記載の装置または方法。

(態様16)

前記第1の分岐チャネルおよび第2の分岐チャネルは、第1の流体が収容される間に主チャネルと連通することを特徴とする態様1乃至15のうちいずれか一つに記載の装置または方法。

(態様17)

前記装置は第1の分岐チャネルに収容される第2の流体を含むことを特徴とする態様1乃至16のうちいずれか一つに記載の装置または方法。

(態様18)

前記第1の流体は金属溶液であることを特徴とする態様1乃至17のうちいずれか一つに記載の装置または方法。

(態様19)

前記第2の流体は還元剤であることを特徴とする態様1乃至18のうちいずれか一つに記載の装置または方法。

(態様20)

前記チャネルに含まれる流体は、最初に使用されるに先立って少なくとも1時間にわたってチャネルに収容されることを特徴とする態様1乃至19のうちいずれか一つに記載の装置または方法。

(態様 2 1)

前記第1の流体および第2の流体は、第1の流体および第2の流体の両者と混合不能な第3の流体によって分離されることを特徴とする態様1乃至20のうちいずれか一つに記載の装置または方法。

(態様 2 2)

前記弁は、第1の流体と第2の流体との間に配置されることを特徴とする態様1乃至21のうちいずれか一つに記載の装置または方法。

(態様 2 3)

前記弁は、第1の流体と第3の流体との間に配置されることを特徴とする態様1乃至22のうちいずれか一つに記載の装置または方法。

(態様 2 4)

前記弁は第1の分岐チャネルの一部に配置されることを特徴とする態様1乃至23のうちいずれか一つに記載の装置または方法。

(態様 2 5)

前記弁は第2の分岐チャネルの一部に配置されることを特徴とする態様1乃至24のうちいずれか一つに記載の装置または方法。

(態様 2 6)

前記第1の流体および第2の流体は略異なる粘性を有することを特徴とする態様1乃至25のうちいずれか一つに記載の装置または方法。

(態様 2 7)

前記混合された第1の流体および第2の流体を、第1の流体および第2の流体の混合工程の10分以内に反応領域に接触させる工程を更に含むことを特徴とする態様1乃至26のうちいずれか一つに記載の装置または方法。

(態様 2 8)

前記上流のチャネル部は、第1の分岐チャネルであり、前記装置は、第2の分岐チャネルを更に備え、前記第1の分岐チャネルおよび第2の分岐チャネルは交差部にて接合し、且つ下流のチャネル部に連通することを特徴とする態様1乃至27のうちいずれか一つに記載の装置または方法。

(態様 2 9)

前記第1の分岐チャネルおよび第2の分岐チャネルの交差部は、混合領域を含み、同混合領域は、第1の分岐チャネルまたは第2の分岐チャネルのいずれかより大きな横断面積を有することを特徴とする態様1乃至28のうちいずれか一つに記載の装置または方法。

(態様 3 0)

前記混合領域は通気弁を含むことを特徴とする態様1乃至29のうちいずれか一つに記載の装置または方法。

(態様 3 1)

前記第1の流体および第2の流体の少なくとも一部を混合する工程は、乱流混合工程を含むことを特徴とする態様1乃至30のうちいずれか一つに記載の装置または方法。

(態様 3 2)

前記主チャネルは拡散によって第1の流体および第2の流体を完全に混合できるよう十分に長いことを特徴とする態様1乃至31のうちいずれか一つに記載の装置または方法。

(態様 3 3)

前記交差部の下流の反応領域に配置される結合パートナーを更に含むことを特徴とする態様1乃至32のうちいずれか一つに記載の装置または方法。

(態様 3 4)

前記流体の少なくとも1つは、化学的反応および生体反応のうち少なくともいずれか一方のための試薬を含むことを特徴とする態様1乃至33のうちいずれか一つに記載の装置または方法。

(態様 3 5)

前記第1の流体は、化学的反応および生体反応のうち少なくともいずれか一方のための第1の試薬を含み、第2の流体は、化学的反応および生体反応のうち少なくともいずれか一方のための、第1の試薬とは異なる第2の試薬を含むことを特徴とする態様1乃至34のうちいずれか一つに記載の装置または方法。

(態様36)

前記1つ以上の試薬は、異種混合の親和性反応に関与することを特徴とする態様1乃至35のうちいずれか一つに記載の装置または方法。

(態様37)

前記第1の流体を実質的に流すことなく第2の流体を下流のチャネル部にて流す工程は、通気弁が開放されるように通気弁を始動させる工程を含むことを特徴とする態様1乃至36のうちいずれか一つに記載の装置または方法。

(態様38)

前記第2の流体を流した後に第1の流体を上流のチャネル部から下流のチャネル部に流す工程は、通気弁が閉鎖されるように通気弁を始動させる工程を含むことを特徴とする態様1乃至37のうちいずれか一つに記載の装置または方法。

(態様39)

通気弁が開放されるように通気弁を始動させることによって通気弁に隣接するチャネルに気体のセグメントを導入する工程を更に含むことを特徴とする態様1乃至38のうちいずれか一つに記載の装置または方法。

(態様40)

前記チャネルへ気体のセグメントを導入する工程は、チャネルに含まれる流体を、気体のセグメントによって分離される第1の部分および第2の部分に分割する工程を含むことを特徴とする態様1乃至39のうちいずれか一つに記載の装置または方法。

(態様41)

第1の分岐チャネルおよび第2の分岐チャネルの少なくとも1つの横断面積は、等圧が第1の分岐チャネルおよび第2の分岐チャネルに付与される場合に、第1の流体および第2の流体が交差部に略同時に流れ込むように選択されることを特徴とする態様1乃至40のうちいずれか一つに記載の装置または方法。

(態様42)

前記第1の流体および第2の流体を実質的に流すことなく通気弁を始動させるに先だって主チャネルに第3の流体を流す工程を含むことを特徴とする態様1乃至41のうちいずれか一つに記載の方法。

(態様43)

略一定の圧力が主チャネルの出口に付与され、第1の流体、第2の流体、および第3の流体の流れのタイミングは、通気弁の始動のタイミングによって定まることを特徴とする態様1乃至42のうちいずれか一つに記載の装置または方法。

(態様44)

前記第1の流体および第2の流体の少なくとも一部を所定量混合させるべく通気弁を始動させた後に所定の時間待機する工程と、第1の分岐チャネルおよび第2の分岐チャネルにそれぞれ残留する第1の流体および第2の流体の流れを止めるべく通気弁を続いて開放する工程とを含み、これにより所定の混合量の第1の流体および第2の流体を主チャネルに流すことを特徴とする態様1乃至43のうちいずれか一つに記載の方法。

フロントページの続き

(51) Int.Cl. F I テーマコード(参考)
B 01 J 19/00 (2006.01) B 01 F 3/08 Z
B 01 J 19/00 3 2 1

(72)発明者 エンチン・タン
アメリカ合衆国 02420 マサチューセッツ州 レキシントン カール ロード 2
(72)発明者 ヴィンセント・リンダー
アメリカ合衆国 02472 マサチューセッツ州 ウォータータウン キャロル ストリート
58
(72)発明者 ジェイソン・ティラー
アメリカ合衆国 03087 ニューハンプシャー州 ウィンドム フェイス ロード 15
(72)発明者 デビッド・ステインミラー
アメリカ合衆国 02138 マサチューセッツ州 ケンブリッジ ウォーカー コート 2 ナ
ンバー 2
F ターム(参考) 2G058 DA05 DA07 FA07
4G035 AB01 AB04 AB36 AE02
4G075 AA02 AA39 AA61 BB03 BB05 BB10 DA02 EB50 EC25 FA01
FA12 FB06 FB12 FB13

【外国語明細書】

WO 2011/066361

PCT/US2010/057969

- 1 -

FLUID MIXING AND DELIVERY IN MICROFLUIDIC SYSTEMS**FIELD OF INVENTION**

Systems and methods for mixing and delivering fluids in microfluidic systems are generally described. In some cases, the fluids contain reagents that can participate in one or more chemical or biological reactions.

BACKGROUND

The manipulation of fluids plays an important role in fields such as chemistry, microbiology and biochemistry. These fluids may include liquids or gases and may provide reagents, solvents, reactants, or rinses to chemical or biological processes. While various microfluidic methods and devices, such as microfluidic assays, can provide inexpensive, sensitive and accurate analytical platforms, fluid manipulations—such as the mixture of multiple fluids, sample introduction, introduction of reagents, storage of reagents, separation of fluids, collection of waste, extraction of fluids for off-chip analysis, and transfer of fluids from one chip to the next—can add a level of cost and sophistication. Accordingly, advances in the field that could reduce costs, simplify use, and/or improve fluid manipulations in microfluidic systems would be beneficial.

20 SUMMARY OF THE INVENTION

Systems and methods for mixing and delivering fluids in microfluidic systems are generally described. The subject matter of the present invention involves, in some cases, interrelated products, alternative solutions to a particular problem, and/or a plurality of different uses of one or more systems and/or articles.

25 In one set of embodiments, a series of methods are provided. In one embodiment, a method comprises providing a device comprising a main channel, a first branching channel containing a first fluid, a second branching channel containing a second fluid, wherein the first and second branching channels connect at an intersection and are fluidically connected to the main channel, and a vent valve positioned between a portion of the first branching channel and a portion of the main channel. The method involves actuating the vent valve, causing the first and second fluids to flow into the intersection substantially simultaneously, and mixing at least portions of the first and second fluids to produce a mixed fluid.

WO 2011/066361

PCT/US2010/057969

- 2 -

In another embodiment, a method comprises providing a device comprising an upstream channel portion containing a first fluid, a downstream channel portion containing a second fluid different from the first fluid, and a vent valve positioned between the upstream and downstream channel portions. While the first and second channel portions are in fluid communication with one another, the second fluid is flowed in the downstream channel portion without substantially flowing the first fluid. The method also includes flowing the second fluid from the upstream channel portion to the downstream channel portion after the flowing of the first fluid.

In another set of embodiments, a series of devices are provided. In one embodiment, a device comprises an inlet, an outlet, an upstream channel portion in fluid communication with the inlet, a downstream channel portion in fluid communication with the outlet, and a vent valve positioned between the downstream and upstream channel portions. A first fluid is stored in at least one of the upstream and downstream channel portions, and the device is sealed and constructed and arranged for storing the first fluid in the device for at least one hour prior to first use.

In another embodiment, a device comprises an inlet, an outlet, a main channel between the inlet and the outlet, and a first and a second vent valve positioned in series along the main channel between the inlet and the outlet.

Other advantages and novel features of the present invention will become apparent from the following detailed description of various non-limiting embodiments of the invention when considered in conjunction with the accompanying figures. In cases where the present specification and a document incorporated by reference include conflicting and/or inconsistent disclosure, the present specification shall control. If two or more documents incorporated by reference include conflicting and/or inconsistent disclosure with respect to each other, then the document having the later effective date shall control.

BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting embodiments of the present invention will be described by way of example with reference to the accompanying figures, which are schematic and are not intended to be drawn to scale. In the figures, each identical or nearly identical component illustrated is typically represented by a single numeral. For purposes of clarity, not every component is labeled in every figure, nor is every component of each

WO 2011/066361

PCT/US2010/057969

- 3 -

embodiment of the invention shown where illustration is not necessary to allow those of ordinary skill in the art to understand the invention. In the figures:

FIG. 1 includes a schematic illustration of a device including a plurality of vent valves, according to one set of embodiments;

5 FIGS. 2A-2F include, according to one set of embodiments, cross-sectional schematic illustrations of vent valves that can be used in devices described herein;

FIGS. 3A-3D include exemplary schematic diagrams of channels including one or more vent valves, according to one set of embodiments;

10 FIGS. 4A-4I include schematic diagrams of branched channels, according to one set of embodiments;

FIGS. 5A-5B include schematic illustrations of fluid plugs in a channel of a device, according to one set of embodiments;

FIGS. 6A-6C include exemplary schematic illustrations of various arrangements of fluid plugs in channels of a device, according to one set of embodiments;

15 FIG. 7 includes an exemplary schematic illustration of a device including a plurality of detection regions, according to one set of embodiments; and

FIG. 8 includes a plot of cumulative volume of mixed fluid as a function of time, according to one set of embodiments.

20

DETAILED DESCRIPTION

The specification generally discloses systems and methods for mixing and delivering fluids in microfluidic systems. The fluids can contain, in some embodiments, reagents that can participate in one or more chemical or biological reactions. Some embodiments relate to systems and methods employing one or more vent valves to 25 controllably flow and/or mix portions of fluid within a microfluidic system. The vent valves can comprise, for example, a port in fluid communication with the microfluidic channel in which a fluid is positioned, and may be actuated by positioning a seal over the port opening or by removing the seal from the port opening. In certain embodiments, the seal may include a valving mechanism such as a mechanical valve operatively associated 30 with a tube in fluid communication with the port. Generally, opening the vent valve allows the port to function as a vent. When the port functions as a vent, the fluid located on one side of the vent valve flows, while the fluid located on the opposite side of the vent valve relative to the first fluid remains stationary. When the valve is closed, the

WO 2011/066361

PCT/US2010/057969

- 4 -

port no longer functions as a vent, and the fluid located on both sides of the vent valve can flow through the system towards an outlet. Advantageously, fluid control such as a sequence of fluid flow and/or a change in flow rate, can be achieved by opening and closing one or more vent valves and by applying a single source of fluid flow (e.g., a 5 vacuum) operated at a substantially constant pressure. This can simplify the operation and use of the device by an intended user.

Vent valves can be actuated so as to control the movement of fluid in the microfluidic system. For example, fluids can be stored serially in a channel, and after closing a vent valve positioned along the channel, the fluids can flow sequentially 10 towards the channel outlet. In some cases, fluids can be stored in separate, intersecting channels, and after closing a vent valve the fluids will flow together toward a point of intersection. This set of embodiments can be used, for example, to controllably mix the fluids as they flow together. The timing of delivery and the volume of fluid delivered can be controlled, for example, by the timing of the vent valve actuation.

15 Advantageously, the vent valves described herein can be operated without constricting the cross-section of the microfluidic channel on which they operate, as might occur with certain valves in the prior art. Such a mode of operation can be effective in preventing leaking across the valve. Moreover, because vent valves can be used, some 20 systems and methods described herein do not require the use of certain internal valves, which can be problematic due to, for example, their high expense, complexity in fabrication, fragility, limited compatibility with mixed gas and liquid systems, and/or unreliability in microfluidic systems. By using an external valve such as a vent valve, 25 macro-scale (rather than micro-scale) mechanical features are employed, which are generally less expensive to fabricate and more robust in operation. In addition, the external valves described herein function well with heterogeneous fluids (e.g., gas/liquid combinations) and fluids containing bubbles, droplets, and/or particles.

In certain embodiments, the fluids used in the systems described herein can be stored within the systems themselves. While external valves may control the timing of reagent delivery, injection of liquid reagents is not required to operate some such 30 systems. The ability to operate the systems without making external connections to fluid sources can greatly simplify operation.

The articles and systems described herein may be produced inexpensively and, in some cases, may be disposable. In addition, the articles and systems described herein

WO 2011/066361

PCT/US2010/057969

- 5 -

can be fabricated quickly due to the absence of complex mechanical features, in some embodiments. These advantages can allow one to test and implement a wide range of configurations, which may be suitable for a large number of chemical and biological systems (e.g., biological assays). Other advantages are described in more detail below.

5 The systems and methods described herein may find application in a variety of fields. In some cases, the systems and methods can be used to control fluid flow and mixing in a variety of microfluidic systems such as, for example, microfluidic point-of-care diagnostic platforms, microfluidic laboratory chemical analysis systems, fluidic control systems in cell cultures or bio-reactors, among others. The articles, systems, and

10 methods described herein may be particularly useful, in some cases, wherein an inexpensive, robust, disposable microfluidic device is desired. The fluid control described herein may be used to perform any suitable chemical and/or biological reaction. As a specific example, the fluid control described herein may be used to control reagent transport in antibody assays that employ unstable reaction precursors,

15 such as the silver solution assay described in the Examples section.

The articles, components, systems, and methods described herein may be combined with those described in International Patent Publication No. WO2005/066613 (International Patent Application Serial No. PCT/US2004/043585), filed December 20, 2004 and entitled "Assay Device and Method"; International Patent Publication No. 20 WO2005/072858 (International Patent Application Serial No. PCT/US2005/003514), filed January 26, 2005 and entitled "Fluid Delivery System and Method"; International Patent Publication No. WO2006/113727 (International Patent Application Serial No. PCT/US06/14583), filed April 19, 2006 and entitled "Fluidic Structures Including Meandering and Wide Channels"; U.S. Patent Application Serial No. 12/113,503, filed 25 May 1, 2008 and entitled "Fluidic Connectors and Microfluidic Systems"; U.S. Patent Appl. Serial No. 12/196,392, filed August 22, 2008, entitled "Liquid containment for integrated assays"; U.S. Patent Appl. Serial No. 12/428,372, filed April 22, 2009, entitled "Flow Control in Microfluidic Systems"; U.S. Patent Appl. Serial No.: 61/138,726, filed December 18, 2008, entitled, "Reagent Storage in Microfluidic Systems and Related 30 Articles and Methods"; and U.S. Patent Appl. Serial No. 61/149,253, filed February 2, 2009, entitled, "Structures for Controlling Light Interaction with Microfluidic Devices", each of which is incorporated herein by reference in its entirety for all purposes.

- 6 -

A series of exemplary devices including vent valves and other components are now described.

FIG. 1 includes an exemplary schematic illustration of a device comprising one or more vent valves and one or more fluids, according to one set of embodiments. In the 5 set of embodiments illustrated in FIG. 1, a device 10 includes a channel 12 comprising an inlet 14, an outlet 15, an upstream portion 16, and a downstream portion 18. The channel can also contain a fluid in at least one of the upstream and downstream channel portions, such as a first fluid 20. The channel can also contain, in addition to or in place of the first fluid, a second fluid 22. In embodiments in which multiple fluids are stored, 10 the fluids can be separated from one another by one or more immiscible separating fluid plugs (e.g., a separation fluid such as a gas (e.g., air) or an oil). In some instances, the device (including any inlets, outlets, and vent valves) is sealed and is constructed and arranged for storing a fluid (e.g., either or both of fluids 20 and 22) in the device prior to first use of the device by an intended user.

15 As shown illustratively in FIG. 1, first fluid 20 and second fluid 22 are not in direct contact with each other. For example, the first and second fluids within the channel may be separated by a third fluid 21 that is immiscible with both the first and second fluids. In one set of embodiments, fluids 20 and 22 can both be liquids separated by, for example, a plug of gas positioned between them. In another embodiment, fluids 20 and 22 are liquids separated by a third liquid that is immiscible with both liquids. 20 When more than two fluids are employed, any suitable combination of gases and liquids can be used to separate multiple portions of fluid within the channel(s).

Device 10 also comprises a vent valve 24 positioned between the downstream and upstream channel portions. As used herein, a "vent valve" refers to a valve that 25 comprises a port in fluid communication with a channel, and a mechanism that can be operated to open and close the port, wherein the vent valve exposes the channel interior to, or seals the channel interior from, an environment external to the channel interior. Exemplary exterior environments can include, for example, an ambient environment (e.g., air) and a reservoir containing a fluid (e.g., a pressurized or unpressurized gas).

30 FIGS. 2A-2F include exemplary cross-sectional schematic illustrations of a vent valve. In the set of embodiments illustrated in FIGS. 2A-2B, vent valve 24A is positioned adjacent channel 12. The vent valve includes a port 26A in fluid communication with the channel. In addition, the vent valve includes a seal 28A (e.g., a

WO 2011/066361

PCT/US2010/057969

- 7 -

cover) which can be moved by an actuator 30A. In FIG. 2A, the vent valve is open such that channel 12 is exposed to an ambient environment 32 via port 26A. In FIG. 2B, the vent valve is closed such that channel 12 is isolated from ambient environment 32 by seal 28A. As shown in the illustrative embodiments of FIGS. 2C-2D, vent valve 24B 5 includes a seal 28B in the form of a plug that can block an opening of port 26B. Seal 28B may be deformable in some embodiments.

As shown in the illustrative embodiments of FIGS. 2E-2F, vent valve 24C includes a valving mechanism 31 operatively associated with a tube 33 defining a channel (e.g., a microfluidic channel) permitting fluid flow. The tube is attached to a 10 plate 35 which, when pressed against the microfluidic substrate (e.g., exterior surface 27), may form a fluid-tight seal. The seal may be formed using a compressed gasket or o-ring 37, or any other suitable component as described in more detail below.

Alternatively, the tube may be press-fit into the port. As shown in FIGS. 2E-2F, the 15 valve is in fluidic communication with port 26C. The valve can be opened or closed by actuating valving mechanism 31. When the valve is open, e.g., as illustrated in FIG. 2E, fluid in tube 33 can freely flow across the valving mechanism. In such and other 20 embodiments, channel 12 is exposed to and in fluid communication with an environment 39 at the other end of the tube. When the valve is closed, e.g., as illustrated in FIG. 2F, fluid in tube 33 can no longer flow across the valving mechanism; therefore, channel 12 is isolated from and no longer in fluid communication with environment 39 at the other 25 end of the tube. It should be appreciated that environment 39 may be any suitable environment, including an ambient environment (e.g., the tube can be open to air) and a reservoir containing a fluid (e.g., a gas such as compressed air or nitrogen).

One of ordinary skill in the art would be capable of selecting a suitable actuation 30 mechanism and/or seal to be used for a specific application. Non-limiting examples of a valving mechanism which may be operatively associated with a tube or other suitable component of a vent valve include a diaphragm valve, ball valve, gate valve, butterfly valve, globe valve, needle valve, pinch valve, poppet valve, or pinch valve. The valving mechanism may be actuated by any suitable means, including a solenoid, a motor, by hand, or by hydraulic/pneumatic pressure. Additionally, any suitable seal may be used. In some embodiments, the seal can comprise a rubber or other elastomeric material which can be, in some cases, selected to be compatible with one or more fluids within the system. Suitable seal materials include, but are not limited to, natural rubbers,

- 8 -

thermoplastics, synthetic rubbers (e.g., fluoropolymers, neoprene, nitrile, silicone, fluorosilicone, etc.), or combinations of these. The seal can be affixed to or integrally formed on a surface of the vent valve, in some embodiments. In some cases, the seal can comprise a lip (not shown) on a surface of the vent valve designed to engage a corresponding notch on a surface of the device (or vice versa) such that when the vent valve is in a closed position, the lip engages the notch to form a seal.

In some cases, one or more vent valves can be electronically actuated. For example, in some embodiments, a sensor may be in operative association with an actuator and/or a microprocessor able to open or close the vent valve in response to a signal determined within the system. In some cases, a vent valve may be electronically actuated based upon timing dictated, for example, by a pre-determined program executed by a microprocessor. It is to be understood that any suitable control system and technique disclosed herein can potentially be provided in combination with other control systems not specifically described to provide other or additional functionality.

The vent valve can be positioned, in some cases, such that the port is located adjacent (e.g., over) at least a portion of the microfluidic channel. For example, in some embodiments, the port can comprise an opening connecting the channel interior to an exterior surface 27 of the device in which the channel is formed, as illustrated in FIGS. 2A-2B. Although FIGS. 2A-2B show an opening of the port being directly adjacent exterior surface 27, in other embodiments such as those shown in FIGS. 2C-2D, an opening of a port can be connected to a channel interior by an intervening channel 29. In some embodiments, a channel is formed in an article, and the port can be formed such that it extends in a direction that is substantially out of the plane of the article. For example, in some embodiments, the port may be formed by drilling a hole into the top surface of a substrate in which the channel is formed. In other embodiments, the port can be molded into a substrate fabricated by injection molding using a pin located in the mold cavity, e.g., as described in Example 1.

The vent valve can be used to control the movement of fluid within a channel system. Referring back to FIG. 1, a vacuum can be applied to outlet 92 (with outlet 15 closed, or to 15 with outlet 92 closed), which can pull fluid 22 toward the outlet in the direction of arrow 52. When vent valve 24 is open, a fluid from an environment exterior to the channel interior can be drawn through the vent valve, and into the channel. For example, when the fluid in the exterior environment is ambient air, the air can enter into

the channel interior upon opening of the vent valve. In some cases, this fluid from the external environment can mix with a fluid inside the channel system. For instance, in embodiments in which fluid 21, which is positioned at vent valve 24, is a gas, the ambient air entering into the channel can mix with fluid 21.

5 In some cases, such as when the port of the vent valve is in fluid communication with ambient air, the resistance to the flow of fluid 21 or any other fluid adjacent to fluid 20 may be smaller than the resistance to flow of fluid 20 itself, and in such cases fluid 20 can remain substantially stationary inside the channel even when a source of vacuum is applied downstream of fluid 20. This can allow for the flow of fluid 22 through the
10 downstream portion of the channel without substantially flowing fluid 20. When vent valve 24 is closed, ambient air can no longer be drawn into the channel through the vent valve, and fluid 20 is transported through channel 12 in the direction of arrow 52.

In some embodiments, a device described herein includes a plurality of vent valves. A device may comprise, for example, multiple vent valves positioned in series
15 along a main channel between an inlet and an outlet of the main channel. The set of embodiments illustrated in FIG. 1, for example, includes an optional second vent valve 34 that is positioned in series with vent valve 24, between inlet 14 and outlet 15, along channel 12.

In some cases, a device can include one or more branching channels, i.e.,
20 channels that intersect with another channel of the device at a point of intersection. For example, in some embodiments, the device comprises a first upstream portion comprising a first branching channel and a second upstream portion comprising a second branching channel. The first and second branching channels can intersect with each other, in some cases. In addition, one or more branching channels can be fluidically
25 connected with a downstream channel portion. In some cases, a device includes one or more branching channels in fluid communication with a main channel, any of which can contain a one or more fluids stored therein (e.g., prior to first use). For example, in the set of embodiments illustrated in FIG. 1, device 10 optionally includes channels 36 and/or 38, which branch from main channel 12. Channels 36 and 38 intersect at the
30 location of optional vent valve 34, and are fluidically connected to the downstream portions of channel 12 (e.g., downstream portion 18). Each of the branching channels can also include branching channels, in some embodiments. For example, any of channels 40, 42, and 44, which branch from channel 36 may be included in the device.

WO 2011/066361

PCT/US2010/057969

- 10 -

In addition, any of channels 46, 48, and 50, which branch from channel 38 may be included in the device in some instances. Optionally, one or more vent valves may be associated with the one or more branching channels. Additional layouts of vent valves and channels, as well as functionalities associated with the same, are described in more detail below.

In one set of embodiments, an upstream channel portion (e.g., of a main channel) can serve as a first branching channel, and the device can further comprise a second branching channel, wherein the first and second branching channels connect at an intersection and are fluidically connected to a downstream channel portion. In the set of 10 embodiments illustrated in FIG. 1, upstream portion 16 of main channel 12 can serve as the first branching channel, while either or both of channels 36 and 38 can serve as second (or third) branching channels.

The channel layouts described herein can be used to store fluids in any suitable configuration. Any of the branching channels can contain one or more fluids in place of 15 or in addition to one or more fluids which may be contained within the main channel. For example, a first fluid can be contained in a main channel, and a second fluid can be contained within a first branching channel. In some cases, a third fluid can be contained in a second branching channel, and so on. For example, in the set of embodiments illustrated in FIG. 1, upstream portion 16 can contain optional fluid 60, optional 20 branching channel 36 can contain optional fluid 62, and optional branching channel 38 can contain optional fluid 64. In addition, optional branching channels 40, 42, and 44 can contain optional fluids, 66, 68, and 70, respectively, and optional branching channels 40, 42, and 44 can contain optional fluids, 72, 74, and 76, respectively. In some cases, one or more of such fluids can be stored and sealed in the device prior to first use.

25 Vent valves can be positioned in any suitable location within a device. In some cases, vent valves are positioned between two fluids (e.g., two stored fluids). For example, in the set of embodiments illustrated in FIG. 1, vent valve 24 is positioned between first fluid 20 and second fluid 22. Additionally or alternatively, optional vent valve 34 can be positioned between optional third fluid 60, and first fluid 20 and/or 30 second fluid 22. In some cases, a vent valve is positioned between a portion of a first branching channel and a portion of a main channel. For instance, a vent valve can be positioned at the intersection of two or more channels, such as at the intersection of a branching channel and a main channel. For example, in FIG. 1, optional vent valve 34 is

WO 2011/066361

PCT/US2010/057969

- 11 -

positioned at the intersection of channel 12 and optional channels 36 and 38. In addition, optional vent valve 78 is positioned at the intersection of optional channels 40, 42, 44, and 36. In some cases, one or more vent valves can be positioned at a portion of a branching channel. For example, in FIG. 1, branching channels 46, 48, and 50 include 5 vent valves 80, 82, and 84, respectively, which are positioned at non-intersecting portions of the branching channels.

Methods of transporting and/or mixing fluids are also provided. In one set of embodiments, a method comprises causing one or more fluids to move while keeping one or more other fluids substantially stationary. For example, in the set of embodiments 10 illustrated in FIG. 1, a pressure gradient can be applied to channel 12, e.g., by applying a negative pressure to an outlet (e.g., outlet 15 with outlet 92 closed or outlet 92 with outlet 15 closed). When vent valve 24 is in the open position, the pressure gradient can cause fluid 22 to flow through channel 12 in the direction of arrow 52. This can occur without substantially flowing fluid 20 as described herein. In some embodiments, ambient air, 15 having a lower resistance to fluid flow than fluid 20 within channel 12, can be pulled through vent valve 24, allowing fluid 20 to remain substantially stationary. In some embodiments, a second fluid from a portion of the channel upstream of the portion from which the first fluid is flowed can be transported by actuating a vent valve between the upstream and downstream channel portions such that the vent is closed. For example, in 20 FIG. 1, when vent valve 24 is in the closed position and an upstream inlet (e.g., inlet 14) or vent valve (e.g., vent valve 34) is open, the pressure gradient can cause fluid 20 to flow through channel 12 in the direction of arrow 52.

The timing of fluid flow can also be controlled using the systems and methods described herein. For instance, in some embodiments, fluids 22 and 20 can be 25 transported through channel 12 substantially simultaneously (e.g., by applying a vacuum after closing vent valve 24). In other embodiments, fluids 22 and 20 can be transported through channel 12 sequentially (e.g., by first applying a vacuum before closing vent valve 24, thereby transporting fluid 22, and then closing vent valve 24 to transport fluid 20). These methods can be generally used to control the flow of any fluid within any 30 channel by closing appropriate vent valves between the negative pressure source and the fluid one wishes to flow within the channel. For example, if transport of optional fluid 62 is desired, a negative pressure can be applied to outlet 92 while outlet 15 and vent valves 24, 34, and 94 are closed (and while a valve upstream of fluid 62, such as vent

- 12 -

valve 78 remains open). In some cases, this transport takes place when other branches such as branches 16 and 38 include inlets or vent valves, positioned upstream of any fluid contained in the branches, are in the closed position, or in devices that do not include other branches such as branches 16 and 38. Using these and other methods, 5 fluids can be transported to a desired location (e.g., a reaction site) within a fluidic system at specific and predetermined points in time, and in a particular order, to carry out a reaction or other fluidic process. Furthermore, the articles and methods described herein can allow a first set of processes to be decoupled from a second set of processes. For instance, the time of mixing of two or more fluids within one or more mixing regions 10 can be decoupled from the time of incubation of a sample within a reaction area, as each of these processes can be controlled independently. Further advantages and examples are provided herein.

Methods of mixing two or more fluids are also provided. Mixing may involve the use of branching channels in some cases. In some embodiments, a method comprises 15 providing a device with a main channel, a first branching channel containing a first fluid, and a second branching channel containing a second fluid, wherein the first and second branching channels connect at an intersection and are fluidically connected to the main channel. In some embodiments, the first branching channel can include a portion of a main channel that is upstream of the intersection. For example, in the set of 20 embodiments illustrated in FIG. 1, the main channel can comprise channel 12, while the first branching channel can comprise upstream portion 16 (containing fluid 60), and the second branching channel can comprise channel 36 (containing fluid 62). In some cases, the first and second branching channels both deviate in direction from the main channel. For example, in FIG. 1, the main channel can comprise channel 12, with the first 25 branching channel comprising channel 36 (containing fluid 62), and the second branching channel comprising channel 38 (containing fluid 64). In some embodiments, the device can include a vent valve positioned between a portion of the first branching channel and a portion of the main channel. In some cases, the vent valve can be positioned at the intersection of the first and second branching channels. For example, in 30 FIG. 1, vent valve 34 is positioned at the intersection of channels 12, 38, and 36. In some embodiments, the vent valve can be positioned upstream from an intersection of the branching channels. For example, in FIG. 1, optional vent valve 94 is positioned over channel 36, upstream of the intersection of channels 36 and 38. In some instances,

- 13 -

the device can include a vent valve positioned between a portion of the second branching channel and a portion of the main channel. In FIG. 1, vent valve 34 is positioned between second branching channel 38 and main channel 12. In addition, optional vent valve 96 is positioned between a portion of second channel 38 and main channel 12.

5 In some embodiments, a method of mixing can comprise actuating at least one vent valve while providing a pressure gradient across two openings in the device (e.g., an inlet and an outlet) to cause first and second fluids to flow into an intersection of two or more channels. The flow of the first and second fluid into the intersection may occur substantially simultaneously. In some cases, at least a portion of each of the fluids
10 transported to the intersection can be mixed to produce a mixed fluid. A single vent valve can be actuated to cause the flow of two or more fluids. For example, in FIG. 1, when vent valve 34 is closed (and optional vent valves 94 and 96 are absent) two or more of fluids 62, 60, and 64 can be flowed toward the intersection of channels 12, 36, and/or 38, as long as at least one inlet or vent valve upstream of each of these fluids are open.
15 As another example, when optional vent valve 78 is closed (assuming other vent valves between valve 78 and the pressure gradient source are also closed) two or more of fluids 66, 68, and 70 can be transported to the intersection of channels 40, 42, and/or 44 as long as at least one inlet or vent valve upstream of each of these fluids are open.

 In some embodiments, a device may include a main channel, a first branching
20 channel containing a first fluid, a second branching channel containing a second fluid, wherein the first and second branching channels connect at an intersection and are fluidically connected to the main channel. A third fluid may optionally be provided in the main channel, which may be, for example, downstream of the branching channels. A vent valve may be positioned between a portion of the first branching channel and a
25 portion of the main channel (e.g., at the intersection of the first and second channels, or along the main channel). Operating the system may involve actuating the vent valve, causing the first and second fluids to flow into the intersection substantially simultaneously, and mixing at least portions of the first and second fluids to produce a mixed fluid. In some embodiments, the third fluid in the main channel may be flowed
30 before actuating the vent valve (or a series of vent valves) without substantially flowing the first and second fluids. After the third fluid is flowed in the main channel (e.g., towards a reaction site or other portion of the device), the vent valve that is positioned between a portion of the first branching channel and a portion of the main channel may

- 14 -

be actuated to allow the flow of the first and second fluids as described above. In some instances, a substantially constant vacuum is applied at the outlet of the main channel and timing of the flow of the third, second, and first fluids is accomplished by timing of actuation of the vent valve. Operating the system may include, in some cases, waiting a 5 predetermined time after actuating the vent valve in order to allow for a predetermined amount of mixing (e.g., such that not all of the first and second fluids are allowed to combine), and then opening the vent valve to stop the flow of the remaining first and second fluids in the first and second branching channels, respectively, from flowing into the main channel. Accordingly, a predetermined mixed amount of the first and second 10 fluids may be delivered to the main channel using this method of timing.

In some embodiments, multiple vent valves are actuated to cause the flow of two or more fluids toward a channel intersection. For example, in FIG. 1, vent valves 94 and 96 can both be closed (e.g., substantially simultaneously), which can cause fluids 62 and 64 to flow toward the intersection of channels 36 and 38 (e.g., substantially 15 simultaneously). Inlet 14, if present, can also remain closed. The fluids may flow due to the presence of a pressure gradient, which may be formed by, for example, applying a substantially constant reduced pressure at outlet 92, and keeping all other inlets, outlets or vent valves between the fluids and outlet 92 closed. In addition, vent valves 80, 82, and 84 can be closed (e.g., substantially simultaneously) to cause fluids 72, 74, and 76 to 20 flow toward portion 98 of channel 38 (e.g., substantially simultaneously). In certain embodiments, the fluids reach a common region (e.g., an intersection, a mixing region, etc.) substantially simultaneously. Substantially simultaneous transport and/or delivery of two or more fluids to a common region can be useful in achieving efficient mixing of the two fluids, for example, by maximizing the common surface area between two or 25 more fluids. In addition, substantially simultaneous delivery of two or more fluids to a common region can aid in delivering substantially equivalent volumes of two or more fluids, as is discussed in more detail below. This can be important in processes that require the mixing of precise volumes of fluid. In some cases, substantially simultaneous delivery of two or more fluids to a common region helps to avoid the formation of 30 bubbles between the mixed fluid and other fluids within the system, as described in more detail below.

One or more parameters of a device can be chosen, in some cases, such that two or more fluids transported through a device contact each other within a region of the

- 15 -

device substantially simultaneously. For example, in some cases, the cross-sectional areas of at least two channels (e.g., two branching channels, a branching channel and a main channel, etc.), the viscosities of the fluids to be mixed, the relative volumes of the fluids to be mixed, the linear lengths of the channels containing the fluids to be mixed.

5 the amount of pressures applied, and the distances from each of the fluids to the point of intersection are selected such that, when equal pressures are applied to each of the two channels, the fluids within them flow into an intersection or other common region substantially simultaneously.

In order to control mixing within the system, it may be useful to control the flow rates of the fluids in the system. Problems can arise, for example, if one fluid (e.g., fluid 62 in FIG. 1) reaches a common area such as a vent valve before another fluid (e.g., fluid 60 in FIG. 1). In such cases, mixing might not occur as anticipated. For example, in some cases, the first fluid (e.g., fluid 62), upon reaching vent valve 34 before a second fluid (e.g., fluid 60), can fill the vent valve and effectively trap a bubble of a separating fluid plug between the vent valve and the front end of the second fluid. In this case, a portion of fluid 62 will be separated and flowed down the main channel without mixing with fluid 60. In some embodiments, this can lead to exposing the reaction area or other area of analysis to a first volume of an unmixed reagent (e.g., a reagent in fluid 62), followed by a segment of a separating fluid plug, followed by a substantially irreproducible mixture of fluids 60 and 62. In some such cases, the resulting chemical or biological reaction in the reaction area may be irreproducible.

Without wishing to be bound by theory, the inventors believe that the following theory can be used to better understand the relationship between flow rate, channel dimensions, and viscosities of fluids flowing in a channel system. Laminar flow of an 25 incompressible uniform viscous fluid (e.g., Newtonian fluid) in a tube driven by pressure can be described by Poiseuille's Law, which is expressed as follows:

$$Q = \frac{\pi R^4}{8\eta} \cdot \frac{\Delta P}{L} \quad (\text{Equation 1})$$

where Q is the volumetric flow rate (in m^3/s , for example), R is the radius in of the tube (m), ΔP is the change in pressure across the tube (Pa), η is the dynamic fluid viscosity (Pa·s), and L is the length of the tube (m). To generalize beyond circular tubes to any closed channel, this equation can be expressed as:

- 16 -

$$Q = \frac{AR_H^2}{8\eta} \cdot \frac{\Delta P}{L} \quad (\text{Equation 1b})$$

where A is the cross-sectional area of the channel and R_H is the hydraulic radius, $R_H = 2A/P$ with P being the parameter of the channel. For a circular tube, $AR_H^2 = \pi R^4$. For a rectangular channel of width w and depth d , $AR_H^2 = (wd)^3/(w+d)^2$. When performing a controlled mixing of multiple fluids, it is important to consider the factors impacting the flow of each individual fluid. In a system designed such that the ΔP , η , R_H^2 and L are equal, both fluids should flow in a similar manner and reproducible mixing of the fluid should be achievable. When one or some of these parameters differ for the fluids, the design of the system should be such that the differences cancel out.

10 In some embodiments two or more fluids that are to be mixed have substantially equivalent volumes. The two or more fluids may also have similar viscosities, and may be positioned in channels having similar channel cross-sections. In some cases, the volume of one or more separating fluid plugs between the front interfaces of the fluids to be mixed and the intersection (e.g., mixing chamber) in which they are to be mixed can 15 be similar for both reagents. This can help ensure that when the fluids begin moving toward an intersection, the fluids reach the intersection substantially simultaneously. These and other parameters may allow the two or more fluids to be delivered to a common area substantially simultaneously, thereby resulting in reproducible mixing.

20 In some embodiments in which a first fluid has a first volume, and a second fluid has a second volume different than the first volume, the speed of the smaller volume fluid may increase relative to the larger volume fluid, due to the relatively smaller resistance to fluid flow exhibited by the relatively smaller volume fluid (the hydrodynamic resistance to flow for liquids scales as $1/L$, L being the length of the fluid segment; assuming equal channel dimensions and viscosities, the shorter fluid segment 25 will flow faster than the longer fluid segment). This can lead to a deviation from a desired mixing ratio, since it may result in a relatively large amount of the smaller volume fluid being added, relative to the larger volume fluid. This behavior can be self-amplifying, because as the smaller volume fluid moves faster its volume is disproportionately decreased, leading to a further increase in speed. To overcome this 30 potential problem, the cross sections of the channels can be selected, or the viscosities of the fluids to be mixed can be selected, so that there is equal resistance to fluid flow in the channels. For instance, to increase the resistance to flow of the smaller volume fluid, the

- 17 -

smaller volume fluid may be positioned in a channel having a smaller cross-section than that containing the larger volume fluid in order to match the overall resistance of the larger volume fluid. Additionally or alternatively, the viscosity of the smaller volume fluid may be increased to increase its resistance to fluid flow to match the overall 5 resistance of the larger volume fluid.

In some cases, the transport and/or mixing of fluids within a channel can be enhanced by employing a channel with a relatively small amount of surface roughness. Inhomogeneities in the surface of a channel (e.g., changes in roughness, imperfections in channel surfaces, chemical deposits on a channel surface, etc.) between the storage 10 location of each of the liquids and the mixing chamber, can affect the advancement of the interfaces between the fluid portions and the separating fluid plug (and thus, the bulk of the liquids). As such, in some embodiments described herein, a channel surface has a relatively low surface roughness. The surface of a channel may have a root-mean-square (RMS) surface roughness of, for example, less than about 5 μm . In other embodiments, 15 the RMS surface roughness may be less than about 3 μm , less than about 1 μm , less than about 0.8 μm , less than about 0.5 μm , less than about 0.3 μm , or less than about 0.1 μm .

The addition of wetting agents to a fluid can also promote reproducible advancement of a fluid within a channel. The wetting agents can stabilize the interface between the fluid and the separating fluid plug and/or reduce the impact of 20 inhomogeneities on a surface of a channel. In some embodiments, the wetting agent can be selected such that it does not adversely react with one or more components (e.g., a reagent) within a fluid. Examples of suitable wetting agents include, but are not limited to, non-ionic detergents (e.g., poly(ethylene oxide) derivatives like Tween 20 and Triton, fatty alcohols), anionic detergents (e.g., sodium dodecyl sulfate and related detergents 25 with shorter or longer alkane chains such as sodium decyl sulfate or sodium octadecyl sulfate, or fatty acid salts), cationic detergents (e.g., quaternary ammonium cations such as cetyl trimethylammonium bromide), zwitterionic detergents (e.g., dodecyl betaine) and perfluorodetergents (e.g., Capstone FS-10).

Additionally or alternatively, the surface of a channel can be treated with a 30 substance to facilitate inhibition or enhancement of fluid flow (e.g., hydrophobic or hydrophilic reagents).

In some embodiments, unpredictable fluid behavior can be inhibited by employing relatively fast flow rates of the fluids within a channel. The flow rate may

- 18 -

depend on factors such as the viscosities of the fluids to be transported, the volumes of the fluids to be transported, the cross sectional areas and/or cross sectional shapes of the channels containing the fluids, the pressure gradient, among other factors. In some cases, at least one fluid within a channel is transported at a linear flow rate of at least 5 about 1 mm/s, at least about 5 mm/s, at least about 10 mm/s, or at least about 15 mm/s, at least about 25 mm/s, or at least about 100 mm/s. The linear flow rate may, in some embodiments, be between about 1 mm/s and about 100 mm/s, between about 5 mm/s and about 100 mm/s, between about 10 mm/s and about 100 mm/s, between about 15 mm/s and about 100 mm/s, between about 1 mm/s and about 25 mm/s, between about 5 mm/s and about 25 mm/s, between about 10 mm/s and about 25 mm/s, or between about 10 mm/s and about 25 mm/s. Different flow rates may be implemented at different points in time depending on the fluid being transported and/or the process to be carried out in a device. For instance, in one set of embodiments it may be desirable for a sample to be flowed through a reaction area relatively slowly (e.g., 0.5 mm s^{-1}) during a first 10 step, but for two fluids to mix in a mixing region at a relatively higher flow rate (e.g., 15 mm s^{-1}) during a second step. The vent valves and other articles and methods described herein may be used, optionally in combination with the systems and methods described in U.S. Patent Appl. Serial No. 12/428,372, filed April 22, 2009, entitled "Flow Control in Microfluidic Systems", which is incorporated herein by reference, to control and 15 implement such flow rates and change in flow rates during operation of the device. Two linear flow rates applied during two different steps of a process carried out in a device may have a difference of, for example, greater than 1x, 5x, 10x, 15x, 20x, 25x, 30x, 40x, or 50x. For example, a relatively high linear flow rate of 15 mm s^{-1} is 30x faster than a relatively slow linear flow rate of 0.5 mm s^{-1} . In some cases, such fluid control is 20 achieved using one or more vent valves, optionally even when a source of pressure or reduced pressure (e.g., vacuum) is applied substantially constantly to the device during 25 the one or more steps.

As described herein, the intersection of two or more channels can comprise a mixing region. Such a region can be useful in promoting mixing of multiple fluids that 30 are flowed from multiple channels to the intersection. In some embodiments, the mixing region can have a larger cross-sectional area than either of the first or second (or third, fourth, etc.) channels (e.g., branching channels) that intersect at the mixing region. For example, a mixing region may have an average cross-sectional area that is at least 1.2

- 19 -

times, at least 1.5 times, at least 1.7 times, at least 2 times, at least 3 times, or at least 5 times the average cross-sectional area of the largest channel intersecting the mixing region. A mixing chamber at the intersection comprising a relatively large volume can help, for example, in compensating for a mismatch in the arrival times of two or more 5 fluids at an intersection of two or more channels.

In other embodiments, however, a relatively smaller mixing region may be present in devices described herein. For example, a mixing region may have an average cross-sectional area that is less than 5 times, less than 3 times, less than 2 times, less than 1.7 times, less than 1.5 times, or less than 1.2 times the average cross-sectional area of 10 the largest channel intersecting the mixing region. In some cases the mixing region has an average cross-sectional area that is substantially the same as the average cross-sectional area of the largest channel intersecting the mixing region.

In some cases, the mixing region can comprise a vent valve. For example, the 15 port of a vent valve can provide a volume in which multiple fluids are mixed. In some embodiments, the cross-sectional area, length, or other parameter of a component (e.g., a channel, a vent valve component (e.g., a port), a mixing region, etc.) can be chosen such that a desired mixing result is achieved upon flowing two or more fluids within the component. For example, in some embodiments, the volume of the vent valve (e.g., a 20 port of a vent valve, or an intervening channel of the vent valve connecting a main channel to an opening of the vent valve) can be chosen such that complete mixing of two or more fluids can be achieved (e.g., via diffusion) during their residence time within the vent valve. The volume of the vent valve, including any intervening channels, may be, for example, less than about 50 μ L, less than about 20 μ L, less than about 10 μ L, less 25 than about 5 μ L, less than about 3 μ L, less than about 1 μ L, less than about 0.1 μ L, less than about 0.01 μ L, less than about 10 nL, or less than about 1 nL. Other volumes are also possible.

In a laminar flow environment (which is common to most microfluidic systems), the mixing of reagents relies mostly on diffusion. In this context, mixing between 30 reagents gradually increases as the reagents flow together along a channel. In such cases, the length of a main channel (e.g., between the vent where mixing occurs and the point of use of the mixed reagents, such as the reaction area) can be chosen such that complete or sufficient mixing of two or more fluids can be achieved (e.g., via diffusion) during their residence time within the channel.

- 20 -

Mixing based on diffusion can also be increased by increasing the combined fluid's residence time in the channel. In some cases, an incubation step can be added to the system. For example, in a system with a substantially constant vacuum applied at outlet 92, and having combined two liquids upstream of vent valve 34 (with vent valves 5 34, 24, and 15 closed), these liquids can be incubated in channel 12 by opening vent valve 15 (or optionally opening vent valve 24). By opening vent valve 15 (or 24), air would preferentially be drawn toward outlet 92 through vent valve 15 (or 24), thereby allowing the liquids to remain in place in channel 12. After sufficient incubation, vent valve 15 (or 24) could be closed, thereby causing the liquids to flow into reaction area 10 86. Advantageously, as illustrated in such and other embodiments, control of fluid flow can be achieved even when a substantially constant vacuum or other source of fluid flow is applied to the device.

In some embodiments, the flow of one or more fluids into an intersection or other suitable mixing region can be cut off prior to passing the entire volume of fluid to the 15 intersection or mixing region. This may be accomplished, for example, by opening a vent valve while portions of the fluid are in the channel on opposite sides of the vent valve. For instance, a first portion of the fluid may be located in a first channel portion of an underlying channel and a second portion of the fluid may be located in a second channel portion of the underlying channel, the first and second channel portions being on 20 opposite sides of the vent valve. When the vent valve is opened while a fluid is underneath its port, a fluid from an environment external to the channel interior, such as ambient air, can be transported through the port and into the channel interior if the resistance to fluid flow of the fluid in the external environment is less than the resistance to fluid flow of the portion of the remaining portion of the fluid under the vent valve. 25 For example, by introducing a segment of gas into the channel, the fluid contained in the channel can divide into first and second portions which are separated by the segment of gas.

FIGS. 3A-3D include schematic illustrations of a method by which the flow of a fluid can be cut off by actuating a vent valve. In the set of embodiments illustrated in 30 FIGS. 3A-3D, channel 100 includes inlet 102, outlet 104, and vent valve 106. In addition, channel 100 contains fluid 108. The direction of fluid flow in FIGS. 3A-3D is indicated by the arrows. In FIG. 3A, vent valve 106 is open, causing external fluid to flow into the channel via vent valve 106 when negative pressure is applied to outlet 104.

- 21 -

In FIG. 3B, vent valve 106 is closed while inlet 102 is open, causing fluid 108 to flow through channel 100 toward outlet 104. In FIG. 3C, vent valve 106 is opened before fluid 108 has passed completely past the vent valve, causing external fluid to pass through the port of the vent valve and into the channel, separating segment 110 from fluid 108. Repeating this process can produce multiple fluid segments from an original single fluid. For example, in FIG. 3D, fluid segments 110, 111, 112, and 113 have been produced from fluid 108 by closing and opening vent valve 106 four times. Such methods can be used to produce one or more fluid portions with a pre-selected length, volume, or other suitable property.

10 Generating a series of fluid segments or portions from a single fluid segment can, in some cases, improve the mixing of two or more components within the fluids compared to that in the single fluid segment. For example, it is known that components (e.g., particles, reagents, or other entities) within segments of fluid, as might be observed in segmented flow, experience recirculation within the segment during linear flow of the

15 segment. In some embodiments, a fluid containing two or more components to be mixed can be passed under a vent valve, and the vent valve can be opened and closed so as to produce multiple portions of the fluid, for example, to enhance the mixing of the two or more components within each fluid portion. This feature can be particularly advantageous in systems in which turbulent flow is absent (e.g., in many microfluidic

20 systems).

The opening of and closing of a vent valve to create separated fluid portions can be useful outside the context of mixing as well. Multiple plugs of single reagent have been shown to be preferable to a single long plug in certain situations such as those described, for example, in International Patent Publication No. WO2005/072858

25 (International Patent Application Serial No. PCT/US2005/003514), filed January 26, 2005 and entitled "Fluid Delivery System and Method," which is incorporated herein by reference in its entirety for all purposes. As a specific example, multiple portions of a rinsing fluid can provide better rinsing or washing of a surface compared to a single, longer fluid portion in some embodiments.

30 Separating a single fluid portion into two or more fluid portions can be used, in some cases, to produce a suitable volume of fluid for mixing within a mixing or other region. For example, in some cases, a first branching channel can comprise a first fluid, and a second branching channel can comprise a second fluid with a volume substantially

- 22 -

larger than the first fluid. The first and second fluids can be flowed toward an intersection of the first and/or second branching channel and a main channel. In some embodiments, prior to passing the entire volume of the first and/or second fluid across the intersection, at least one vent valve in the first or second branching channel can be 5 opened such that the first and/or second fluids are divided into first and second segments. In other embodiments, prior to passing the entire volume of the first and/or second fluid across the intersection, at least one vent valve in the second branching channel can be opened such that second fluid is divided into smaller segments (e.g., to match the volume of the first fluid). Only one of the segments of second fluid can be delivered to the 10 intersection to combine with all or portions of the first fluid. These and other methods can allow, in some cases, equal or other appropriate volumes of the first and second fluids to be delivered to the main channel, a mixing region, a reaction area, or any other suitable destination (e.g., when the first and second fluids are delivered substantially simultaneously to a common region). Thus, in some embodiments, a portion, but not all, 15 of the first fluid, and/or a portion, but not all, of the second fluid, are combined together to form a mixed fluid that is used or delivered to suitable destination.

One example of a method for delivering substantially equal volumes of multiple fluids to a common region (e.g., an intersection of two of more channels) is illustrated schematically in FIGS. 4A-4B. In FIG. 4A, main channel 200 includes outlet 202, and is 20 fluidically connected to branching channels 204 and 206 at vent valve 208. Branching channel 204 comprises inlet 210 and contains fluid 212, while branching channel 206 comprises inlet 214 and contains fluid 216. In FIG. 4A, fluid 212 is substantially smaller in volume than fluid 216. In FIG. 4A, vent valve 208 is open, allowing exterior fluid to flow through the vent valve and through main channel 200 (as indicated by the arrows) 25 upon application of negative pressure to the outlet. In FIG. 4B, vent valve 208 is closed, while inlets 210 and 214 are open, causing fluids 212 and 216 to flow toward outlet 202 upon application of negative pressure. In this set of embodiments, the viscosities of the fluids and the cross-sectional dimensions of channels 204 and 206 are chosen such that fluids 212 and 216 contact each other substantially simultaneously at the intersection of 30 channels 204 and 206. In FIG. 4C, vent valve 208 is opened before fluids 212 and 216 have completely passed through the intersection of channels 204 and 206, creating a segment 218 of mixed fluid containing substantially equal parts of fluid 212 and fluid 216.

- 23 -

In some embodiments, multiple portions of mixed fluid can be created by opening and closing vent valve 208 any number of times. Such embodiments may be useful, for example, when fluids 212 and 216 do not initially contact each other simultaneously at the intersection of the branched channels. In some such cases, the first 5 portion of mixed fluid can comprise more of the first than the second fluid, while subsequent portions of mixed fluid can contain substantially equal amounts of the first and second fluids. In some instances, the first portion of mixed fluid is not useful for a downstream process, so it can be diverted away from the main channel or other region of the device. For instance, an unwanted first portion of mixed fluid may be lead towards a 10 branching channel that leads to a waste containment region. Fluid flow can be optionally controlled by the use of one or more valves (e.g., an external valve) in combination with methods described herein. One or more subsequent portions of mixed fluid, which may be useful for a downstream process, can then be delivered to the main channel or other region of the device such as reaction area.

15 One method for diverting a portion of a mixed fluid (or any other fluid) is shown in FIGS. 4D-4I. As shown in the embodiments illustrated in FIGS. 4D-4I, a branching channel 215 having an outlet 220 is included. This outlet may be operatively associated with the same vacuum source operatively associated with outlet 202. For instance, tubing (not shown) may connect each of the outlets to the vacuum source. In some 20 cases, a valving mechanism (not shown) is operatively associated with the tubing. Each outlet is equipped with an individually controlled valve. To combine fluids 212 and 216 to form a mixed fluid, the system is operated with outlet 202 open and outlet 220 closed (FIG. 4D). Vent valve 208 is closed (FIG. 4E) to begin mixing and then opened to deliver only a first portion of fluid 218 into main channel 220 (FIG. 4F). Once the 25 mixed portion is in the main channel, a valving mechanism (not shown) operatively associated with the outlets is actuated to cease fluid communication between the vacuum and outlet 202, while allowing fluid communication between the vacuum and outlet 220 (FIG. 4G). Since the vacuum is now operating at outlet 220, fluid 218 can be diverted from the main channel into branching channel 215 (FIG. 4H). The valving mechanism 30 operatively associated with the outlets can then be actuated to allow fluid communication between the vacuum and outlet 202, while ceasing fluid communication between the vacuum and outlet 220 (FIG. 4I).

- 24 -

Separating a single fluid portion into two or more fluid portions can provide other advantages apart from mixing fluids and producing fluid segments. For example, in some cases, when the trailing edge of a fluid reaches a vent valve, a slight burst of liquid can be ejected toward the vent valve (e.g., toward a port in the vent valve, toward an actuator associated with the vent valve, etc.). In some cases, the ejected liquid can interfere with the external valving mechanism. While, in some cases, this does not have an immediate effect on the function of the vent valve, it can, over time, lead to degradation in performance, such as, for example, contamination of the vent valve with a component (e.g., a chemical) of the fluid. Upon repeated use of the mechanism (e.g., to perform multiple experiments), such contamination can alter the normal function of the external valving mechanism. The inventors have discovered within the context of the invention that, in some embodiments, by opening the vent valve before all of the fluid has passed through the channel underneath the valve (e.g., so as to form multiple fluid segments), little or no trailing edges reach the vent valve, and no liquid ejection occurs.

The systems, devices, and methods described herein can be used, in some embodiments, to perform one or more chemical and/or biological reactions. The devices described herein can comprise additional components that may be useful for such and other purposes (e.g., blood sample analysis). In some cases, the device can comprise a reaction area which can be, for example, located downstream of a main channel. The set of embodiments illustrated in FIG. 1 includes optional reaction area 86 downstream of main channel 12. The reaction area can be fluidically connected to the outlet of the main channel (e.g., outlet 15 in FIG. 1). The reaction area can serve, for example, as a volume in which a chemical and/or biological reaction can take place. In some embodiments, a reagent and/or catalyst can be disposed within the reaction area (e.g., immobilized on a wall of the reaction area). For example, in some embodiments, a binding partner can be disposed in a reaction area (e.g., on a surface, or on or within an entity contained in the reaction area). Exemplary reaction areas that can be used in devices described herein are provided in International Patent Publication No. WO2006/113727 (International Patent Application Serial No.PCT/US06/14583), filed April 19, 2006 and entitled "Fluidic Structures Including Meandering and Wide Channels" and U.S. Patent Application Serial No. 12/113,503, filed May 1, 2008 and entitled "Fluidic Connectors and Microfluidic Systems"; U.S. Patent Appl. Serial No. 12/196,392, filed August 22, 2008, entitled "Liquid containment for integrated assays", which are incorporated herein by reference.

- 25 -

In addition, in some embodiments, a fluid waste chamber can be included, for example, downstream of the reaction area. The fluid waste chamber can be useful, for example, in providing a volume in which used fluids can be contained such that they do not flow into a negative pressure source (e.g., a vacuum) during operation of the device.

5 For example, the set of embodiments illustrated in FIG. 1 includes waste chamber 88 that retains fluids as they are flowed from reaction area 86. Exemplary waste containment regions that can be used in devices described herein are provided in U.S. Patent Appl. Serial No. 12/196,392, filed August 22, 2008, entitled "Liquid containment for integrated assays", which is incorporated herein by reference.

10 In the set of embodiments illustrated in FIG. 1, a negative pressure source can be applied, for example, at any of outlet 15, point 90, and outlet 92. For example, in some cases, fluid 22 in FIG. 1 may contain a sample (e.g., a blood sample). The sample can be introduced into the device using a variety of methods. Exemplary methods and articles for sample introduction that can be used with devices described herein are provided U.S.

15 Patent Application Serial No. 12/113,503, filed May 1, 2008 and entitled "Fluidic Connectors and Microfluidic Systems"; U.S. Patent Appl. Serial No. 12/196,392, filed August 22, 2008, entitled "Liquid containment for integrated assays", which are incorporated herein by reference. The sample can first flow into reaction area 86, and then into waste containment region 88. The reaction area may have associated with it a

20 detector that is capable of determining a property of a component in the reaction area. The passing of the sample through the reaction area can allow, in some cases, interaction (e.g., binding) between one or more components of the sample (e.g., an antigen) and one or more components in the reaction area (e.g., an antibody). In some embodiments, the component(s) of the reaction area may be in the form of dried reagents stored in the

25 reaction area prior to first use. This interaction may form a product such as a binding pair complex. In some cases, this interaction alone causes a signal to be determined (e.g., measured) by a detector associated with the microfluidic system. In other cases, in order for an accurate signal to be determined by the detector, the product is treated by one or more reagents. For example, fluid may contain a labeled-antibody that interacts

30 with an antigen of the sample. This interaction can allow the product to be labeled or the signal from the product to be amplified.

In some embodiments, the sample and/or reagent(s) are incubated within the reaction area for an amount of time. When heterogeneous affinity reactions are

- 26 -

employed, for example, the species in the sample will bind to a capture probe immobilized on the surface of the reaction area. Sufficient incubation time can be achieved by, for example, controlling the time required for the sample to flow through the reaction area. The flow rate of the system from the vent valve to the vacuum source 5 can be dependent upon the flow rate of the highest relative viscosity fluid through the smallest cross sectional area of channel in the system (e.g., acting as a flow bottleneck). In some embodiments, one or more properties of the system can be selected such that a desired residence time of a fluid (e.g., a sample) within the reaction area is achieved. Examples of parameters that can be adjusted to achieve residence time control include, 10 but are not limited to, the volume of sample itself, which can be determined by the availability of sample (e.g., the volume of a drop of blood for an assay using a fingerpick of blood), or determined for convenience for the user; the viscosity of the sample; the pressure difference (Δp) applied to the outlet of the system (for application of negative pressure) or applied to the inlet of the system (for application of positive pressure); and 15 the change in the geometry (e.g., cross-sectional area, length, etc.) and location of the flow rate bottleneck. In some embodiments, the system parameters are chosen such that the time of mixing of two or more fluids within one or more mixing regions (e.g., a vent valve) of the system is independent from the time of incubation of the sample within the reaction area.

20 In some cases, system parameters can be selected such that two or more fluids can be contacted with the reaction area within a predetermined period of time after mixing the two or more fluids. For example, in some embodiments, the mixed fluid can be contacted with the reaction area within 10 minutes of mixing the two or more fluids within the mixed fluid. Such embodiments can be useful, for example, when one or 25 more components within the mixed fluid decompose and/or lose their effectiveness after a relatively short period of time. As a specific example, in some embodiments a solution of silver salts can be mixed with a reducing agent to produce an activated silver solution that can be effectively used within 10 minutes of mixing. A wide variety of reducing agents have been developed by the photographic industry and can be used in 30 embodiments described herein. Some of the most commonly used reducing agents include: hydroquinone, chlorohydroquinone, pyrogallol, metol, 4-aminophenol and phenidone.

- 27 -

As can be seen, it is useful to have mixing conditions and timing independent of sample incubation times (so that longer incubation does not lead to longer mixing times). The advantages of a vent valves and methods described herein become apparent. In some cases, certain components of a fluidic system such as the dimensions of channels 5 of the reaction area, applied pressure to induce fluid flow, etc. can be designed for whatever sample incubation time is necessary in a reaction area, and timing of mixing of reagents is controlled by one or more vent valves.

It should be appreciated that a variety of fluids can be used (e.g., disposed, flowed, stored) in association with devices described herein. In some embodiments, one 10 or more fluids can comprise a sample to be analyzed. For example, in some cases, a fluid can comprise whole blood. In some cases, a fluid can comprise a reagent (e.g., an antibody fluid), a rinse fluid, or any other suitable fluid. In some cases, a fluid can comprise a metal solution. For example, a fluid may comprise a suspension of metal particles (e.g., silver, gold, and the like) which can form a colloidal suspension. In some 15 cases, a fluid can comprise a reducing agent such as, for example, hydroquinone. In some embodiments, one or more of the fluids can be part of a chemical or biological assay.

Each of the fluids within a channel can have substantially similar or different 20 chemical properties. For example, in some embodiments, a first fluid in the channel can comprise a sample to be analyzed (e.g., blood) while the second fluid comprises a rinsing solution that can be used, for example, to prepare the downstream portion for the passage of a third fluid. In some embodiments, the first fluid contains a first reagent for a chemical and/or biological reaction, and the second fluid contains a second reagent for the chemical and/or biological reaction that is different from the first reagent.

25 In addition, each of the fluids within the channel can have substantially similar or different physical properties. For example, in some embodiments, first and second fluids within the channel have substantially different viscosities. Differences in viscosities can cause differences in flow rate upon application of pressure to the channel.

As noted herein, in some embodiments, microfluidic systems described herein 30 contain stored reagents prior to first use of the device and/or prior to introduction of a sample into the device. The use of stored reagents can simplify use of the microfluidic system by a user, since this minimizes the number of steps the user has to perform in order to operate the device. This simplicity can allow microfluidic systems described

WO 2011/066361

PCT/US2010/057969

- 28 -

herein to be used by untrained users, such as those in point-of-care settings. Stored reagents in microfluidic devices are particularly useful for devices designed to perform immunoassays.

As used herein, "prior to first use of the device" means a time or times before the 5 device is first used by an intended user after commercial sale. First use may include any step(s) requiring manipulation of the device by a user. For example, first use may involve one or more steps such as puncturing a sealed inlet to introduce a reagent into the device, connecting two or more channels to cause fluid communication between the channels, preparation of the device (e.g., loading of reagents into the device) before 10 analysis of a sample, loading of a sample onto the device, preparation of a sample in a region of the device, performing a reaction with a sample, detection of a sample, etc. First use, in this context, does not include manufacture or other preparatory or quality control steps taken by the manufacturer of the device. Those of ordinary skill in the art are well aware of the meaning of first use in this context, and will be able easily to 15 determine whether a device of the invention has or has not experienced first use. In one set of embodiments, devices of the invention are disposable after first use, and it is particularly evident when such devices are first used, because it is typically impractical to use the devices at all after first use.

Reagents may be stored and/or disposed in a device in fluid and/or dry form, and 20 the method of storage/disposal may depend on the particular application. Reagents can be stored and/or disposed, for example, as a liquid, a gas, a gel, a plurality of particles, or a film. The reagents may be positioned in any suitable portion of a device, including, but not limited to, in a channel, reservoir, on a surface, and in or on a membrane, which may optionally be part of a reagent storage area. A reagent may be associated with a 25 microfluidic system (or components of a system) in any suitable manner. For example, reagents may be crosslinked (e.g., covalently or ionically), absorbed, or adsorbed (physisorbed) onto a surface within the microfluidic system. In one particular embodiment, all or a portion of a channel (such as a fluid path of a fluid connector or a channel of the device substrate) is coated with an anti-coagulant (e.g., heparin). In some 30 cases, a liquid is contained within a channel or reservoir of a device prior to first use and/or prior to introduction of a sample into the device.

In some embodiments, dry reagents are stored in one section of a microfluidic device and wet reagents are stored in a second section of a microfluidic device.

WO 2011/066361

PCT/US2010/057969

- 29 -

Alternatively, two separate sections of a device may both contain dry reagents and/or wet reagents. The first and second sections may be in fluid communication with one another prior to first use, and/or prior to introduction of a sample into the device, in some instances. In other cases, the sections are not in fluid communication with one another

5 prior to first use and/or prior to introduction of a sample into the device. During first use, a stored reagent may pass from one section to another section of the device. For instance, a reagent stored in the form of a fluid can pass from a first section to a second section of the device after the first and second sections are connected via a fluid path (e.g., a fluidic connector, as described in more detail in U.S. Patent Application Serial

10 No. 12/113,503, filed May 1, 2008 and entitled "Fluidic Connectors and Microfluidic Systems"; U.S. Patent Appl. Serial No. 12/196,392, filed August 22, 2008, entitled "Liquid containment for integrated assays", which are incorporated herein by reference).

15 In other cases, a reagent stored as a dried substance is hydrated with a fluid, and then passes from the first section to the second section upon connection of the sections. In yet other cases, a reagent stored as a dried substance is hydrated with fluid, but does not pass from one section to another section upon connection of the sections.

By maintaining an immiscible fluid (a separation fluid) between each of the reagents in the reagent storage area, the stored fluids can be delivered in sequence from the reagent storage area while avoiding contact between any of the stored fluids. Any

20 immiscible fluid that separates the stored reagents may be applied to the reaction area without altering the conditions of the reaction area. For instance, if antibody-antigen binding has occurred at one of the detection zones of the reaction area, air can be applied to the site with minimal or no effect on any binding that has occurred.

As described herein, storing reagents in a microfluidic system can allow the

25 reagents to be dispensed in a particular order for a downstream process (e.g., amplifying a signal in a reaction area). In cases where a particular time of exposure to a reagent is desired, the amount of each fluid in the microfluidic system may be proportional to the amount of time the reagent is exposed to a downstream reaction area. For example, if the desired exposure time for a first reagent is twice the desired exposure time for a second

30 reagent, the volume of the first reagent in a channel may be twice the volume of the second reagent in the channel. If a substantially constant pressure differential or source of fluid flow is applied in flowing the reagents from the channel to the reaction area, and if the viscosity of the fluids is the same or similar, the exposure time of each fluid at a

- 30 -

specific point, such as a reaction area, may be proportional to the relative volume of the fluid. Factors such as channel geometry, pressure or viscosity can also be altered to change flow rates of specific fluids from the channel. The stored fluids can also be manipulated after storage (e.g., at first use) by a user using the vent valves and other 5 articles and methods described herein.

Additionally, this strategy of storing reagents in sequence, especially amplification reagents, can be adapted to a wide range of chemistries. For example, various amplification chemistries that produce optical signals (e.g., absorbance, fluorescence, glow or flash chemiluminescence, electrochemiluminescence), electrical 10 signals (e.g., resistance, conductivity or impedance of metal structures created by an electroless process) or magnetic signals (e.g., magnetic beads) can be used to allow detection of a signal by a detector.

Reagents can be stored in a microfluidic system for various amounts of time. For example, a reagent may be stored for longer than 1 hour, longer than 6 hours, longer than 15 12 hours, longer than 1 day, longer than 1 week, longer than 1 month, longer than 3months, longer than 6 months, longer than 1 year, or longer than 2 years. Optionally, the microfluidic system may be treated in a suitable manner in order to prolong storage. For instance, microfluidic systems having stored reagents contained therein may be vacuum sealed, stored in a dark environment, and/or stored at low temperatures (e.g., 20 refrigerated at 2-8 degree C, or below 0 degrees C). The length of storage depends on one or more factors such as the particular reagents used, the form of the stored reagents (e.g., wet or dry), the dimensions and materials used to form the substrate and cover layer(s), the method of adhering the substrate and cover layer(s), and how the device is treated or stored as a whole.

25 In some embodiments, any of the inlets, outlets, and/or vent valves can be sealed prior to first use. Sealing inlets, outlets, and/or vent valves can prevent evaporation and/or contamination of fluids disposed or stored within the device. A seal over an inlet, outlet, and/or vent valve can be pierced, removed, or broken to allow external fluids to enter into the inlet and/or vent valve. As a specific example, in some embodiments, vent 30 valve 24 and inlet 14 can be sealed prior to first use, and those seals can be pierced, removed, or broken to allow external fluids to enter. In certain embodiments, a vent valve is actuated only after the removal of a cover from a vent valve. In addition, outlet 15 (or point 90 or outlet 92) can be sealed prior to first use, and pierced, removed, or

WO 2011/066361

PCT/US2010/057969

- 31 -

broken just prior to the application of a negative pressure (e.g., a vacuum) or to allow for venting (e.g., in the case where positive pressure is applied to the inlet).

In one particular embodiment, device 10 can be used for performing an immunoassay for human IgG, and can use sliver enhancement for signal amplification.

5 After delivery of a sample (e.g., fluid 22) containing human IgG from channel 12 to the reaction area, binding between the human IgG and a stored dry reagent, anti-human IgG, can take place. This binding can form a binding pair complex in a detection zone (e.g., comprising a detector) proximate the reaction area. Stored reagents from upstream portions of channel 12 can then flow over this binding pair complex. One of the stored

10 fluids (e.g., fluid 20) may include a solution of metal colloid (e.g., a gold conjugated antibody) that specifically binds to the antigen to be detected (e.g., human IgG). This metal colloid can provide a catalytic surface for the deposition of an opaque material, such as a layer of metal (e.g., a multitude of silver grains), on a surface of the detection zone. The layer of metal can be formed by using a two component system. In some

15 cases, a metal precursor (e.g., a solution of silver salts) can be contained in fluid 62 stored in channel 36, and a reducing agent (e.g., hydroquinone, or other reducing agent listed above) can be contained in fluid 64 stored in channel 38. These two components, which can produce signal amplification upon mixing, are reactive with each others, and can only be maintained as a mixture for a few minutes. For that reason, they are stored

20 individually and they cannot mix with each other until the flow drives both solutions towards the intersection near vent valve 34. When negative pressure is applied to outlet 92, and vent valves 24 and 34 are closed, the silver salt and hydroquinone solutions eventually merge at the intersection proximate vent valve 34, where they can mix slowly (e.g., due to diffusion) as they flow along channel 12, and then flow over the reaction

25 area. Therefore, if antibody-antigen binding occurs in the reaction area, the flowing of the metal precursor solution through the area can result in the formation of an opaque layer, such as a silver layer, due to the presence of the catalytic metal colloid associated with the antibody-antigen complex. The opaque layer may include a substance that interferes with the transmittance of light at one or more wavelengths. Any opaque layer

30 that is formed in the microfluidic channel can be detected optically, for example, by measuring a reduction in light transmittance through a portion of the reaction area (e.g., a meandering channel) compared to a portion of an area that does not include the antibody or antigen. Alternatively, a signal can be obtained by measuring the variation of light

WO 2011/066361

PCT/US2010/057969

- 32 -

transmittance as a function of time, as the film is being formed in a detection zone. The opaque layer may provide an increase in assay sensitivity when compared to techniques that do not form an opaque layer.

Although immunoassays are primarily described, it should be understood that 5 devices described herein may be used for any suitable chemical and/or biological reaction, and may include, for example, other solid-phase assays that involve affinity reaction between proteins or other biomolecules (e.g., DNA, RNA, carbohydrates), or non-naturally occurring molecules (e.g., aptamers, synthetic amino acids).

The flow of fluid within a channel can be achieved by any suitable method. In 10 some embodiments, flow is achieved by establishing a pressure gradient within the channel in which the fluid is contained. Such a pressure gradient can be established, for example, by applying a negative pressure to one end of a channel (e.g., an outlet of a channel). Exemplary methods of applying negative pressure include, but are not limited to, attachment of a vacuum pump to an outlet, withdrawal of air from a syringe attached 15 to an outlet, or by any other suitable method.

A pressure gradient can also be established by applying a positive pressure at one or more vent valves and a relatively smaller pressure, such as ambient pressure, at the outlet. For example, in FIGS. 4A-4C, outlet 202 may be exposed to ambient pressure. Positive pressure above ambient may be applied through an open vent valve 208, which 20 would result in fluid flow in the direction of the arrows shown in FIG. 4A, as long as inlets 210 and 214 remained closed. As shown illustratively in FIG. 4B, vent valve 208 can be closed and inlets 210 and 214 opened to pressure above ambient. To move a mixed plug of fluid as shown in FIG. 4C, inlets 210 and 214 can be closed while 208 is reopened to positive pressure. The use of positive pressure may involve closing all of 25 the vent valves associated with the device, except those on the desired path of flow. The closure of any vent valve may be fluid tight. Positive pressure can be applied, for example, via a pump, by use of gravity, or any other suitable method.

In certain embodiments, the pressure applied to induce fluid flow (e.g., a positive or negative pressure) from a fluid flow source (e.g., a vacuum or a pump) remains 30 substantially constant during the carrying out of a process (e.g., a reaction) in the device after initial application of the fluid flow source to the channel system, even when valves and/or other components described herein are actuated. However, the linear flow rate of fluids in the channel can vary, and may be controlled by various methods such as those

WO 2011/066361

PCT/US2010/057969

- 33 -

described in U.S. Patent Appl. Serial No. 12/428,372, filed April 22, 2009, entitled "Flow Control in Microfluidic Systems", which is incorporated herein by reference. In other embodiments, the pressure from a source of fluid flow can be varied during operation of the device.

5 In some embodiments, a chemical and/or biological reaction involves binding. Different types of binding may take place in devices described herein. The term "binding" refers to the interaction between a corresponding pair of molecules that exhibit mutual affinity or binding capacity, typically specific or non-specific binding or interaction, including biochemical, physiological, and/or pharmaceutical interactions.

10 Biological binding defines a type of interaction that occurs between pairs of molecules including proteins, nucleic acids, glycoproteins, carbohydrates, hormones and the like. Specific examples include antibody/antigen, antibody/hapten, enzyme/substrate, enzyme/inhibitor, enzyme/cofactor, binding protein/substrate, carrier protein/substrate, lectin/carbohydrate, receptor/hormone, receptor/effectector, complementary strands of

15 nucleic acid, protein/nucleic acid repressor/inducer, ligand/cell surface receptor, virus/ligand, etc.

 In some cases, a heterogeneous reaction (or assay) may take place in a channel; for example, a binding partner may be associated with a surface of a channel, and the complementary binding partner may be present in the fluid phase. The term "binding partner" refers to a molecule that can undergo binding with a particular molecule.

20 Biological binding partners are examples; for instance, Protein A is a binding partner of the biological molecule IgG, and vice versa. Likewise, an antibody is a binding partner to its antigen, and vice versa. In other cases, a homogeneous reaction may occur in the channel. For instance, both binding partners can be present in the fluid phase (e.g., in

25 two-fluid laminar flow system). Non-limiting examples of typical reactions that can be performed in a meandering channel system include chemical reactions, enzymatic reactions, immuno-based reactions (e.g., antigen-antibody), and cell-based reactions.

 A device can be fabricated of any material suitable. Non-limiting examples of materials include polymers (e.g., polyethylene, polystyrene, polycarbonate, poly(dimethylsiloxane), PMMA, PFFE, a cyclo-olefin copolymer (COC), and cyclo-olefin polymer (COP)), glass, quartz, and silicon. Those of ordinary skill in the art can readily select a suitable material based upon e.g., its rigidity, its inertness to (e.g., freedom from degradation by) a fluid to be passed through it, its robustness at a

WO 2011/066361

PCT/US2010/057969

- 34 -

temperature at which a particular device is to be used, and/or its transparency-opacity to light (e.g., in the ultraviolet and visible regions). In some embodiments, the material and dimensions (e.g., thickness) of a substrate are chosen such that the substrate is substantially impermeable to water vapor.

5 In some instances, a microfluidic substrate is comprised of a combination of two or more materials, such as the ones listed above. For instance, the channels of the device may be formed in a first material (e.g., poly(dimethylsiloxane)), and a cover that is formed in a second material (e.g., polystyrene) may be used to seal the channels. In another embodiment, a channels of the device may be formed in polystyrene or other 10 polymers (e.g., by injection molding) and a biocompatible tape may be used to seal the channels. A variety of methods can be used to seal a microfluidic channel or portions of a channel, including but not limited to, the use of adhesives, gluing, bonding, welding (e.g., ultrasonic) or by mechanical methods (e.g., clamping).

A channel can have any cross-sectional shape (circular, semi-circular, oval, semi-15 oval, triangular, irregular, square or rectangular, or the like) and can be covered or uncovered. In embodiments where it is completely covered, at least one portion of the channel can have a cross-section that is completely enclosed, or the entire channel may be completely enclosed along its entire length with the exception of its inlet(s) and outlet(s). A channel may also have an aspect ratio (length to average cross sectional 20 dimension) of at least 2:1, more typically at least 3:1, 5:1, or 10:1 or more. An open or partially open channel, if present, may include characteristics that facilitate control over fluid transport, e.g., structural characteristics (an elongated indentation) and/or physical or chemical characteristics (hydrophobicity vs. hydrophilicity) or other characteristics that can exert a force (e.g., a containing force) on a fluid. The fluid within the channel 25 may partially or completely fill the channel. In some cases where an open channel is used, the fluid may be held within the channel, for example, using surface tension (e.g., a concave or convex meniscus).

Though in some embodiments, systems of the invention may be microfluidic, in certain embodiments, the invention is not limited to microfluidic systems and may relate 30 to other types of fluidic systems. "Microfluidic," as used herein, refers to a device, apparatus or system including at least one fluid channel having a cross-sectional dimension of less than 1 mm, and a ratio of length to largest cross-sectional dimension of at least 3:1. A "microfluidic channel," as used herein, is a channel meeting these criteria.

WO 2011/066361

PCT/US2010/057969

- 35 -

The “cross-sectional dimension” (e.g., a diameter) of the channel is measured perpendicular to the direction of fluid flow. Most fluid channels in components of the invention have maximum cross-sectional dimensions less than 2 mm, and in some cases, less than 1 mm. In one set of embodiments, all fluid channels containing embodiments 5 of the invention are microfluidic or have a largest cross sectional dimension of no more than 2 mm or 1 mm. In another set of embodiments, the maximum cross-sectional dimension of the channel(s) containing embodiments of the invention are less than 500 microns, less than 200 microns, less than 100 microns, less than 50 microns, or less than 25 microns. In some cases the dimensions of the channel may be chosen such that fluid 10 is able to freely flow through the article or substrate. The dimensions of the channel may also be chosen, for example, to allow a certain volumetric or linear flowrate of fluid in the channel. Of course, the number of channels and the shape of the channels can be varied by any method known to those of ordinary skill in the art. In some cases, more than one channel or capillary may be used.

15 In some instances, a reagent is positioned in a channel prior to complete fabrication of a microfluidic channel system. A microfluidic channel system is not complete if, for example, a system that is designed to have enclosed channels has channels that are not yet completely enclosed. A channel is enclosed if at least one portion of the channel has a cross-section that is completely enclosed, or if the entire 20 channel is completely enclosed along its entire length with the exception of its inlet(s) and/or outlet(s).

Wet reagents are typically stored in a microfluidic system after channels of the system have been completely covered. A fluid reagent to be stored in the system may be introduced into an inlet of a channel, and after at least partially filling the channel with 25 the fluid, the inlet(s) and/or outlet(s) of the channel can be sealed, for example, to retain the fluid and to prevent contamination from external sources.

The term “determining,” as used herein, generally refers to the measurement and/or analysis of a substance (e.g., within a reaction site), for example, quantitatively or qualitatively, or the detection of the presence or absence of the substance.

30 “Determining” may also refer to the measurement and/or analysis of an interaction between two or more substances, for example, quantitatively or qualitatively, or by detecting the presence or absence of the interaction.

WO 2011/066361

PCT/US2010/057969

- 36 -

A variety of determination (e.g., measuring, quantifying, detecting, and qualifying) techniques may be used. Determination techniques may include optically-based techniques such as light transmission, light absorbance, light scattering, light reflection and visual techniques. Determination techniques may also include 5 luminescence techniques such as photoluminescence (e.g., fluorescence), chemiluminescence, bioluminescence, and/or electrochemiluminescence. Those of ordinary skill in the art know how to modify microfluidic devices in accordance with the determination technique used. For instance, for devices including chemiluminescent species used for determination, an opaque and/or dark background may be preferred. For 10 determination using metal colloids, a transparent background may be preferred. Furthermore, any suitable detector may be used with devices described herein. For example, simplified optical detectors, as well as conventional spectrophotometers and optical readers (e.g., 96-well plate readers) can be used.

15

EXAMPLES

The following examples are intended to illustrate certain embodiments of the present invention, but do not exemplify the full scope of the invention.

Example 1

20

Methods for fabricating a microfluidic channel system are described.

Channel systems, such as the ones shown in FIGS. 1A and 1B, were designed with a computer-aided design (CAD) program. The microfluidic devices were formed in poly(dimethylsiloxane) Sylgard 184 (PDMS, Dow Corning, Ellsworth, Germantown, WI) by rapid prototyping using masters made in SU8 photoresist (MicroChem, Newton, MA). The masters were produced on a silicon wafer and were used to replicate the negative pattern in PDMS. The masters contained two levels of SU8, one level with a thickness (height) of ~70 μ m defining the channels in the immunoassay area, and a second thickness (height) of ~360 μ m defining the reagent storage and waste containment regions. Another master was designed with channel having a thickness 25 (height) of 33 μ m. The masters were silanized with (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane (ABC-R, Germany). PDMS was mixed according to the manufacturer's instructions and poured onto the masters. After polymerization (4 hours,

WO 2011/066361

PCT/US2010/057969

- 37 -

65°C), the PDMS replica was peeled off the masters and access ports were punched out of the PDMS using stainless steel tubing with sharpened edges (1.5 mm in diameter). To complete the fluidic network, a flat substrate such as a glass slide, silicon wafer, polystyrene surface, flat slab of PDMS, or an adhesive tape was used as a cover and 5 placed against the PDMS surface. The cover was held in place either by van der Waals forces, or fixed to the microfluidic device using an adhesive.

In other embodiments, the microfluidic channels were made in polystyrene, cyclo-olefin-copolymer, or other thermoplastics by injection molding. This method is known to those of ordinary skill in the art. The volume of an injection molding cavity 10 can be defined by a bottom surface and a top surface separated by a hollow frame which determines the thickness of the molded article. For an article including channel features and or other microscale elements on two opposing sides of the article, the bottom and top surfaces of the molding cavity may include raised features that create the channel features on either side of the article. For an article including channel features on only 15 one side of the article, only the top or bottom surface of the molding cavity includes such features. Thru-holes that pass through the entire thickness of the article can be produced by pins traversing the cavity, embedded in one or more surfaces of the cavity and contacting the other side. For instance, the pins may extend from only the top surface, only the bottom surface, or from both the top and bottom surfaces. When the cavity is 20 filled with pressurized, molten plastic and then cooled, an article is created with channels on one or both sides and holes serving as connectors or inlets and outlets. To complete the fluid network, adhesive tape was applied to the surfaces of the article to seal the channels.

25

Example 2

This example describes the control of movement of fluids in microfluidic systems comprising a single channel that incorporate at least one vent valve to control the movement of fluid. FIGS. 5A-5B include schematic illustrations of the systems described in this example.

30

The system shown in FIG. 5A includes a single channel in which an inlet, an outlet, a vent valve were fabricated. This system was fabricated by injection molding as described in Example 1. The single channel 302 was configured to flow fluid portions 304 and 306 in the direction of arrow 308. Water was used for the fluid portions 304 and

WO 2011/066361

PCT/US2010/057969

- 38 -

306 in this experiment, and these fluid portions were separated by a plug of air. The channel included vent valve 310 and inlet 312 upstream of vent valve 310. A vacuum operating at a substantially constant pressure of -40 kPa was applied at channel outlet 314 to provide a pressure drop across the microfluidic channel during the entire 5 experiment.

When vent valve 310 was opened, it functioned as a preferential vent, meaning air flowed through the valve to replace the fluid leaving the system through the outlet. Fluids located upstream of vent valve 310 (including the fluid between valve 310 and inlet 312) did not flow regardless of whether the inlet was open or closed. When vent 10 valve 310 was closed, all of the fluid in the channel flowed as long as inlet 312 was open. In this way, vent valve 310 was used to control delivery of a fluid in a microfluidic channel. Note that when both vent valve 310 and inlet 312 were closed, no fluid flowed through the channel (although some motion was observed due to fluid expansion when vacuum was applied).

15 The system shown in FIG. 5B includes a single channel in which three vent valves were incorporated. The single channel 320 was configured to flow fluid portions 322, 324, 326, and 328 in the direction of arrow 308. The channel included inlet 330 and vent valves 332, 334, and 336. Like the system described in FIG. 5A, a vacuum was applied at channel outlet 340 to provide a pressure drop across the microfluidic channel.

20 In one experiment, vent valve 332 was opened and, upon applying the vacuum to outlet 340, only fluid 322 was transported through channel 320. Subsequently, vent valve 332 was closed while valve 334 was opened, resulting in the transport of only fluid 324 through channel 320. Next, vent valves 332 and 334 were closed while valve 336 was opened, and fluid portion 326 was transported through the channel. Finally, vent 25 valves 332, 334, and 336 were closed while inlet 330 was opened, resulting in the transport of fluid portion 328 through the channel.

In another set of experiments, multiple fluids were transported through the channel simultaneously. In one case, prior to first use, vent valve 332 was closed, but valve 334 was opened. Upon applying vacuum to the outlet 340, fluid portions 322 and 324 were simultaneously transported through channel 320 in the direction of arrow 308. In another experiment, prior to first use, vent valves 332 and 334 were closed, but valve 336 was opened. Upon applying vacuum to the outlet 340, fluid portions 322, 324, and 326 were simultaneously transported through channel 320 in the direction of arrow 308.

WO 2011/066361

PCT/US2010/057969

- 39 -

Finally, in one experiment, all of the vent valves were closed, and inlet 330 was opened, resulting in the simultaneous transport of fluid portions 322, 324, 326, and 328, upon applying vacuum to the outlet 340.

This example shows that fluid control, including the timing of fluid plugs, can be
5 achieved in a device by opening and closing one or more vent valves and by applying a single source of fluid flow (e.g., a vacuum) operated at a substantially constant pressure throughout the use of the device.

Example 3

10 This example describes the control of movement of fluids in microfluidic systems comprising multiple channels and at least one vent valve to control the movement of fluid. FIGS. 6A-6C include schematic illustrations of the systems described in this example. In the device illustrated in FIG. 6A, a microchannel 410 was fluidically connected to two channel branches 412 and 414, which intersected at vent valve 416.

15 Microchannel 410 contained fluid 418. In addition, fluids 420 and 422 were stored in branches 412 and 414, respectively. Channel 410 was connected to outlet 424, while branches 412 and 414 were connected to inlets 426 and 428, respectively. All of the fluids in the device were separated by plugs of gas (immiscible with fluid 418, 420 and 422).

20 A vacuum operating at a substantially constant pressure of -40 kPa during the entire experiment was attached to outlet 424. Initially, vent valve 416 was opened, which caused fluid 418 to flow through microchannel 410 in the direction of arrow 408 and air to flow through vent valve 416. Fluids 420 and 422 did not move even though inlets 426 and 428 were open. After fluid 418 exited outlet 424, the flow rate of the gas
25 through vent valve 416 increased, due to the elimination of the pressure drop caused by fluid 418. Next, vent valve 416 was closed. Once the vent valve was closed, fluids 420 and 422 were mixed at vent valve 416 to produce mixed fluid 430 (shown in FIG. 6B).

In another set of experiments, fluids 420 and 422 were transported sequentially, rather than simultaneously, past vent valve 416. In a first experiment, in the embodiment
30 illustrated in FIG. 6C, vent valve 416 and inlet 426 were both closed (while inlet 428 was opened) after fluid 418 was transported through outlet 424. By closing inlet 426, fluid 420 was held substantially stationary in branch 412 due to the inability of gas to

WO 2011/066361

PCT/US2010/057969

- 40 -

enter inlet 426. On the other hand, fluid 422 was transported through branch 414 and past closed vent valve 416 as gas was transported through inlet 428.

This example shows that fluid control, including mixing and the timing of fluid plugs, can be achieved in a device by opening and closing one or more vent valves and

5 by applying a single source of fluid flow (e.g., a vacuum) operated at a substantially constant pressure throughout the use of the device.

Example 4

This example describes the use of a branched channel system to perform an assay

10 in which an optically detectable signal by electrolessly depositing silver onto gold particles. FIG. 7 includes a schematic illustration of the assay device 300 used in this example. The assay used in this example is generally described in International Patent Publication No. WO2005/066613 (International Patent Application Serial No. PCT/US2004/043585), filed December 20, 2004 and entitled "Assay Device and

15 Method," which is incorporated herein by reference in its entirety for all purposes.

The device included reaction area 510, waste containment region 512, and an outlet 514. The reaction area included a microfluidic channel 50 microns deep and 120 microns wide, with a total length of 175 mm. The device also included microfluidic channel 516 and channel branches 518 and 520 (with inlets 519 and 521, respectively).

20 Channel 516 and branches 518 and 520 were 350 microns deep and 500 microns wide. In addition, channel 516 was 390 mm long, and branches 518 and 520 were each 360 mm long. The reaction area and microfluidic channels were fabricated as described in Example 1. Before sealing the channels, anti-PSA antibodies were attached to a surface of the device in a segment of the reaction area 510.

25 Prior to first use, the device was loaded with liquid reagents. The following sequence of liquids were loaded into channel 516: a 2 microliter plug of water 542, a 2 microliter plug of buffer solution 541, a 20 microliter plug of aqueous solution containing anti-PSA antibodies labeled with colloidal gold 526, a microliter plug of buffer solution 524. This sequence of fluid plugs was loaded using a pipette through the

30 inlet port 539. Fluid 528, containing a solution of silver salt, was loaded into branching channel through port 519 using a pipette. Fluid 530, containing a reducing solution, was loaded into branching channel 520 through port 521. Each of the liquids shown in FIG. 7 were separated from the other liquids by plugs of air. Ports 514, 519, 521, 536,

WO 2011/066361

PCT/US2010/057969

- 41 -

539, and 540 were sealed with an adhesive tape that can be easily removed or pierced. As such, the liquids were stored in the device prior to first use.

At first use, the ports 514, 519, 521, 536, 539, and 540 were unsealed. A tube 544 containing 10 microliters of sample blood (522) was connected to ports 539 and 540. 5 This created a fluidic connection between reaction area 510 and channel 516, which were otherwise unconnected and not in fluid communication with one another prior to first use. A vacuum of -40 kPa was applied to port 514. Sample 522 was flowed in the direction of arrow 538 into reaction area 510. As the fluid passed through the reaction area, the PSA proteins in sample 522 were captured by anti-PSA antibodies immobilized 10 on the reaction area walls. The sample took 5 minutes to pass through the reaction area, after which it was captured in the waste containment region 512. Exemplary waste containment regions that can be used in devices described herein are provided in U.S. Patent Apl. Serial No. 12/196,392, filed August 22, 2008, entitled "Liquid containment for integrated assays", which is incorporated herein by reference.

15 Fluids 524, 526, 541, and 542 followed the sample through the reaction area 510 towards waste containment region 512. This resulted in the transport of fluid 524 in the direction of arrow 538 to reaction area 510. As fluid 524 was passed through the reaction area, it washed away remaining unbound sample components. As fluid 526 passed through the reaction area, gold-labeled anti-PSA antibodies were coupled to the 20 PSA captured on the reaction area walls (to form a sandwich immunocomplex). Fluids 541 and 542 followed and further washed the reaction area of any unbound reagent component. The last wash fluid 542 (water) washed away salts that could react with silver salts (i.e., chloride, phosphate, azide).

25 Silver can be deposited on the captured gold particles to increase the size of the colloids to amplify the signal. In some embodiments, the signal can be recorded by optical means as optical density. To accomplish this, fluids 528 and 530 were mixed to produce a reactive silver solution. The ratio of the volumes of fluids 528 and 530 was about 1:1. To initiate the mixing of fluids 528 and 530, vent valve 536 was closed while the vacuum applied at 514 was maintained, resulting in the simultaneous flow of fluids 30 528 and 530 towards vent valve 536. The vent valve was closed to initiate mixing only after the final previous fluid 542 had exited the reaction area. Closure was performed in one experiment by sealing port 536 with an adhesive tape. In another experiment, a tube (not shown) operatively associated with a solenoid valve (SMC V124A-6G-M5, not

WO 2011/066361

PCT/US2010/057969

- 42 -

shown) was connected to vent valve 536 with an o-ring tight fit. The solenoid valve was activated to seal the port (and later deactivated to unseal the port) in a manner similar to that described herein with respect to FIGS. 2E-2F. Fluids 528 and 530 mixed with each other at vent valve 536, producing an activated silver solution with a viscosity of about 5 1×10^{-3} Pa s. The cross-sectional area of the microfluidic channel under vent valve 536 was about twice that of channels 518 and 520. After 10 seconds, vent valve 536 was opened. At that time, approximately 55% of both fluids 528 and 530 had mixed, and the remaining fluids 528 and 530 were left in channels 518 and 520, respectively.

10 The activated silver solution was flowed through reaction area 510 to provide the silver for the deposition. Because the mixed solution is stable for only a few minutes (usually less than 10 minutes) the mixing was performed less than a minute before use in reaction area 510. Moreover, in order to achieve a reproducible deposition of silver on the colloids, the time between mixing of the reagents to produce the activated silver solution and the delivery of the activated silver solution to the reaction area were 15 controlled such that they were consistent among multiple experiments.

10 The control of the flow rates of the fluids within channel 516 and the reaction area 510 were important when flowing fluids through the system. Due to the reaction area's relatively small cross sectional area, it served as a bottleneck, controlling the overall flow rate in the system. When the reaction area contained liquids, the linear flow 20 rates of the fluids in channel 516 was about 0.5 mm s^{-1} . Fluids flowing from branching channels 518 and 520 into main channel 516 might not have mixed reproducibly at this rate, as one fluid might have flowed faster than the other, causing unequal portions of fluids 528 and 530 to be mixed. On the other hand, when the reaction area contained air, the linear flow rates of the fluids in channel 516 and branching channels 518 and 520 25 were about 15 mm s^{-1} . At this higher flow rate, the flow rate in branching channels 518 and 520 were equal and reproducible (when vent valve 536 was closed), producing reproducible mixing. For this reason, vent valve 536 was not closed until fluid 542 passed through the reaction area to the waste containment region. One could determine 30 when fluid 542 had exited the reaction area 510 visually (by eye). Alternatively, an optical detector was positioned so as to measure transmission of light through part of reaction area 510, as described in more detail in more detail in International Patent Publication No. WO2005/066613 (International Patent Application Serial No.

WO 2011/066361

PCT/US2010/057969

- 43 -

PCT/US2004/043585), filed December 20, 2004 and entitled “Assay Device and Method”, which is incorporated herein by reference.

The microfluidic system shown in FIG. 7 was designed such that the volume of the channel between vent valve 536 and reaction area 510 was larger than the expected 5 volume of the mixed activated silver solution (i.e., the combined portion of fluids 528 and 530 which traveled into channel 516 while vent valve 536 was closed). This ensured that substantially all of the mixing took place at a relatively high linear flow rate (since no liquid, and only air, was present in the reaction area 510 at this time), and before the activated solution reached the reaction area. This configuration helped promote 10 reproducible and equal mixing.

For the assay described in this example, it was important to sustain a flow of the activated silver mixture within the reaction area for a few minutes (e.g., 2 to 10 minutes). In a first experiment, 45 microliter volumes of fluids 528 and 530 were loaded, of which 15 a portion was used for mixing (producing a total of 55 microliters of activated silver solution). This volume of combined fluid had a residence time in the reaction area of about 300 seconds. However, the use of this relatively small volumes of liquid could pose a challenge. When relatively short lengths of fluid segments 528 and 530 are used, it can be relatively difficult to ensure that 1:1 ratios of the two fluids were mixed. Small 20 variations in segment length could produce uneven flow rates of the two liquids, with a shorter segment exhibiting a relatively high flow rate (due to a relatively small resistance to flow and) compared to the longer segment. This effect can produce a deviation in mixing ratio.

To characterize this effect, a second set of experiments was performed in which a 45 microliter volume of silver salt solution and a 45 microliter volume of reducing 25 solution were mixed to produce a 90 microliter volume of activated silver solution. The silver salt solution was found to flow slightly faster (for a combination of reasons including slight differences in formulation, due to the difference in chemical composition, and slight variation in channel cross section, due to the tolerances of the machining techniques used for the channel fabrication) relative to the reducing solution, 30 and therefore, exhibited a slightly faster flow rate through its branch when the vacuum was applied. FIG. 8 includes a plot of the volumes of the silver salt solution (dotted line) and the reducing solution (solid line) that have entered the mixing channel (in microliters) as a function of the time elapsed after the initial contact of the silver salt and

- 44 -

reducing solutions. This difference in flow rate is indicated by the slight difference in the slope of the lines in FIG. 8 from $t = 0$ to $t = 9$ seconds. At $t = 9$ seconds, the absolute difference in lengths of the segments becomes important, and the silver salt solution (having a faster flow rate, and thus a shorter segment of liquid remaining in its branch) 5 flowed even faster relative to the reducing solution. This effect is illustrated by upward trend of the silver salt curve (relative to the linear extrapolation), and the downward trend of the reducing solution curve.

In addition, it was observed that if the trailing edge of one of fluids 528 and 530 reagents reached vent valve 536, a slight burst of liquid was ejected toward the top of the 10 hole in vent valve 536. That liquid was found to enter into contact with the external valving mechanism. While this had no immediate observable effect on the valving efficiency, it resulted in unwanted contamination of the valve. Repeated use of the valve in this manner (e.g., to run multiple experiments) might alter the normal function of the valve. By re-opening vent-valve 536 before all of fluids 528 and 530 have mixed 15 ensured that neither of the trailing edges of fluids 528 and 530 reached vent valve 526, and no liquid ejection occurred. Thus, by loading excess reagent into braches 518 and 520 (to ensure there are no large variations between the lengths of fluids 528 and 530 during flow), and by using no more than about 2/3 of the volume of the stored reagent before re-opening vent valve 536, a consistent mixing ratio was maintained throughout 20 the mixing step while avoiding liquid projection/contamination of the external valving mechanism in vent valve 536. The valve may be re-opened at various stages of completion depending of the flow behavior of a specific set of reagents.

This example shows that fluid control, including the mixing of reagents, the changing of flow rates, and the timing of fluid flow can be achieved in a device to 25 perform an assay by opening and closing one or more vent valves and by applying a single source of fluid flow (e.g., a vacuum) operated at a substantially constant pressure throughout the use of the device. This example also shows the importance of controlling flow rates of individual plugs of fluid to be mixed in a device.

30 While several embodiments of the present invention have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the functions and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or

- 45 -

modifications is deemed to be within the scope of the present invention. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific 5 application or applications for which the teachings of the present invention is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and 10 equivalents thereto, the invention may be practiced otherwise than as specifically described and claimed. The present invention is directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not 15 mutually inconsistent, is included within the scope of the present invention.

The indefinite articles "a" and "an," as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean "at least one."

The phrase "and/or," as used herein in the specification and in the claims, should 20 be understood to mean "either or both" of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Other elements may optionally be present other than the elements specifically identified by the "and/or" clause, whether related or unrelated to those elements specifically identified unless clearly indicated to the contrary. Thus, as a non-limiting example, a reference to 25 "A and/or B," when used in conjunction with open-ended language such as "comprising" can refer, in one embodiment, to A without B (optionally including elements other than B); in another embodiment, to B without A (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.

As used herein in the specification and in the claims, "or" should be understood 30 to have the same meaning as "and/or" as defined above. For example, when separating items in a list, "or" or "and/or" shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such

WO 2011/066361

PCT/US2010/057969

- 46 -

as "only one of" or "exactly one of," or, when used in the claims, "consisting of," will refer to the inclusion of exactly one element of a number or list of elements. In general, the term "or" as used herein shall only be interpreted as indicating exclusive alternatives (i.e. "one or the other but not both") when preceded by terms of exclusivity, such as

5 "either," "one of," "only one of," or "exactly one of." "Consisting essentially of," when used in the claims, shall have its ordinary meaning as used in the field of patent law.

As used herein in the specification and in the claims, the phrase "at least one," in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase "at least one" refers, whether related or unrelated to those elements specifically identified. Thus, 15 as a non-limiting example, "at least one of A and B" (or, equivalently, "at least one of A or B," or, equivalently "at least one of A and/or B") can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other 20 than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.

In the claims, as well as in the specification above, all transitional phrases such as "comprising," "including," "carrying," "having," "containing," "involving," "holding," 25 and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases "consisting of" and "consisting essentially of" shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.

What is claimed is:

- 47 -

CLAIMS

1. A method, comprising:
providing a device comprising:
 - a main channel;
 - 5 a first branching channel containing a first fluid;
 - a second branching channel containing a second fluid, wherein the first and second branching channels connect at an intersection and are fluidically connected to the main channel; and
 - 10 a vent valve positioned between a portion of the first branching channel and a portion of the main channel;
 - actuating the vent valve;
 - causing the first and second fluids to flow into the intersection substantially simultaneously; and
 - 15 mixing at least portions of the first and second fluids to produce a mixed fluid.
- 15 2. A method, comprising:
providing a device comprising:
 - an upstream channel portion containing a first fluid;
 - 20 a downstream channel portion containing a second fluid different from the first fluid;
 - a vent valve positioned between the upstream and downstream channel portions;
 - while the first and second fluids are in fluid communication with one another,
 - flowing the second fluid in the downstream channel portion without substantially 25 flowing the first fluid; and
 - flowing the first fluid from the upstream channel portion to the downstream channel portion after the flowing of the second fluid.
- 30 3. A device, comprising:
 - an inlet;
 - an outlet;
 - an upstream channel portion in fluid communication with the inlet;
 - an downstream channel portion in fluid communication with the outlet;

WO 2011/066361

PCT/US2010/057969

- 48 -

a vent valve positioned between the downstream and upstream channel portions;
and

5 a first fluid stored in at least one of the upstream and downstream channel
portions, wherein the device is sealed and constructed and arranged for storing the first
fluid in the device for at least one hour prior to first use.

4. A device, comprising:

an inlet;
an outlet;

10 a main channel between the inlet and the outlet; and
a first and a second vent valve positioned in series along the main channel
between the inlet and the outlet.

5. A device or method as in any one of the preceding claims, wherein at least one of
15 the channels is a microfluidic channel.

6. A device or method as in any one of the preceding claims, wherein causing the
first and/or second fluids to flow comprises applying a pressure gradient to the channel
or channels containing the first and/or second fluids.

20 7. A device or method as in any one of the preceding claims, wherein causing the
first and/or second fluids to flow comprises applying a vacuum to one end of the channel
containing the first fluid and/or second fluids.

25 8. A device or method as in any one of the preceding claims, wherein the first fluid
is a liquid.

9. A device or method as in any one of the preceding claims, wherein the first fluid
is a gas.

30 10. A device or method as in any one of the preceding claims, wherein the second
fluid is a liquid.

WO 2011/066361

PCT/US2010/057969

- 49 -

11. A device or method as in any one of the preceding claims, wherein the second fluid is a gas.
12. A device or method as in any one of the preceding claims, wherein at least one of 5 the fluids comprises whole blood.
13. A device or method as in any one of the preceding claims, wherein the device comprises:
 - an upstream channel portion comprising a first branching channel; and
 - 10 an upstream channel portion comprising a second branching channel, wherein the first and second branching channels connect at an intersection and are fluidically connected to a downstream channel portion.
14. A device or method as in any one of the preceding claims, further comprising 15 causing the first and second fluids to flow into the intersection substantially simultaneously.
15. A device or method as in any one of the preceding claims, further comprising mixing at least portions of the first and second fluids to produce a mixed fluid.
- 20 16. A device or method as in any one of the preceding claims, wherein the first and second branching channels are in fluid communication with the main channel during storage of the first fluid.
- 25 17. A device or method as in any one of the preceding claims, wherein the device comprises a second fluid stored in the first branching channel.
18. A device or method as in any one of the preceding claims, wherein the first fluid comprises a metal solution.
- 30 19. A device or method as in any one of the preceding claims, wherein the second fluid comprises a reducing agent.

WO 2011/066361

PCT/US2010/057969

- 50 -

20. A device or method as in any one of the preceding claims, wherein the fluid contained in the channel is stored in the channel for at least one hour prior to first use.

21. A device or method as in any one of the preceding claims, wherein the first and 5 second fluids are separated by a third fluid immiscible with both the first and second fluids.

22. A device or method as in any one of the preceding claims, wherein the valve is positioned between the first fluid and the second fluid.

10 23. A device or method as in any one of the preceding claims, wherein the valve is positioned between the first fluid and the third fluid.

24. A device or method as in any one of the preceding claims, wherein the valve is 15 located at a portion of the first branching channel.

25. A device or method as in any one of the preceding claims, wherein the valve is located at a portion of the second branching channel.

20 26. A device or method as in any one of the preceding claims, wherein the first and second fluids have substantially different viscosities.

27. A device or method as in any one of the preceding claims, further comprising 25 contacting the mixed first and second fluids with a reaction area w/in 10 minutes of mixing the first and second fluids.

28. A device or method as in any one of the preceding claims, wherein the upstream channel portion is a first branching channel, the device further comprising a second branching channel, wherein the first and second branching channels connect at an 30 intersection and are fluidically connected to the downstream channel portion.

29. A device or method as in any one of the preceding claims, wherein the intersection of the first and second branching channels comprises a mixing region, the

WO 2011/066361

PCT/US2010/057969

- 51 -

mixing region having a larger cross-sectional area than either of the first or second branching channels.

30. A device or method as in any one of the preceding claims, wherein the mixing
5 region comprises a vent valve.

31. A device or method as in any one of the preceding claims, wherein the mixing of
at least portions of the first and second fluids includes turbulent mixing.

10 32. A device or method as in any one of the preceding claims, wherein the main
channel is sufficiently long to allow for complete mixing of the first and second fluids
via diffusion.

15 33. A device or method as in any one of the preceding claims, further comprising a
binding partner disposed in a reaction area downstream of the intersection.

34. A device or method as in any one of the preceding claims, wherein at least one of
the fluids contains a reagent for a chemical and/or biological reaction.

20 35. A device or method as in any one of the preceding claims, wherein the first fluid
contains a first reagent for a chemical and/or biological reaction, and the second fluid
contains a second reagent for the chemical and/or biological reaction that is different
from the first reagent.

25 36. A device or method as in any one of the preceding claims, wherein the one or
more reagents participate in a heterogeneous affinity reaction.

37. A device or method as in any one of the preceding claims, wherein flowing the
second fluid in the downstream channel portion without substantially flowing the first
30 fluid comprises actuating the vent valve such that the vent is open.

38. A device or method as in any one of the preceding claims, wherein flowing the
first fluid from the upstream channel portion to the downstream channel portion after the

WO 2011/066361

PCT/US2010/057969

- 52 -

flowing of the second fluid comprises actuating the vent valve such that the vent is closed.

39. A device or method as in any one of the preceding claims, further comprising
5 introducing a segment of gas into a channel adjacent a vent valve by actuating the vent valve such that the vent valve is open.

40. A device or method as in any one of the preceding claims, wherein introducing a segment of gas into the channel comprises causing a fluid contained in the channel to
10 divide into first and second portions which are separated by the segment of gas.

41. A device or method as in any one of the preceding claims, wherein the cross-sectional areas of at least one of the first branching channel and the second branching channel are selected such that, when equal pressures are applied to the first and second
15 branching channels, the first and second fluids flow into the intersection substantially simultaneously.

42. A method as in any one of the preceding claims, comprising flowing a third fluid in a main channel before actuating the vent valve, without substantially flowing the first
20 and second fluids.

43. A method as in any one of the preceding claims, wherein a substantially constant vacuum is applied at the outlet of the main channel and timing of the flow of the third, second, and first fluids is accomplished by timing of actuation of the vent valve.

25
44. A method as in any one of the preceding claims, comprising waiting a predetermined time after actuating the vent valve in order to allow for a predetermined amount of mixing of the at least portions of the first and second fluids and then opening the vent valve to stop the flow of the first and second fluids remaining in the first and
30 second branching channels, respectively, thereby delivering a predetermined mixed amount of the first and second fluids to the main channel.

(57) Abstract: The specification generally discloses systems and methods for mixing and delivering fluids in microfluidic systems. The fluids can contain, in some embodiments reagents that can participate in one or more chemical or biological reactions. Some embodiments relate to systems and methods employing one or more vent valves to controllably flow and/or mix portions of fluid within the microfluidic system. Advantageously, fluid control such as a sequence of fluid flow and/or a change in flow rate, can be achieved by opening and closing one or more vent valves and by applying a single source of fluid flow (e.g., a vacuum) operated at a substantially constant pressure. This can simplify the operation and use of the device by an intended user.

WO 2011/066361

1/11

PCT/US2010/057969

WO 2011/066361

2/11

PCT/US2010/057969

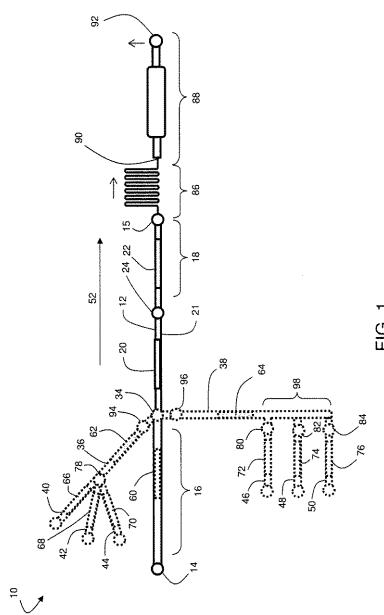


FIG. 1

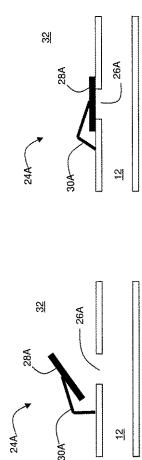
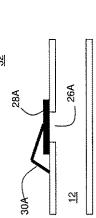



FIG. 2A

2/11

WO 2011/066361

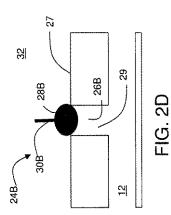


FIG. 2C

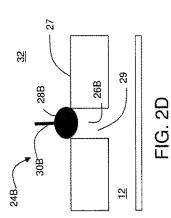


FIG. 2D

WO 2011/066361

3/11

PCT/US2010/057969

WO 2011/066361

6/11

PCT/US2010/057969

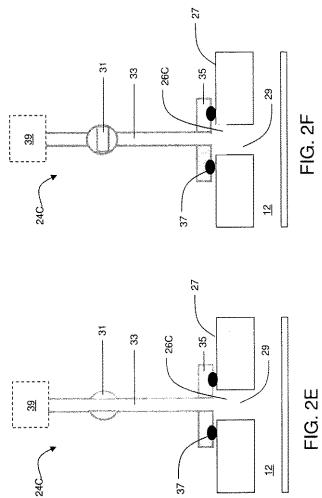


FIG. 2F

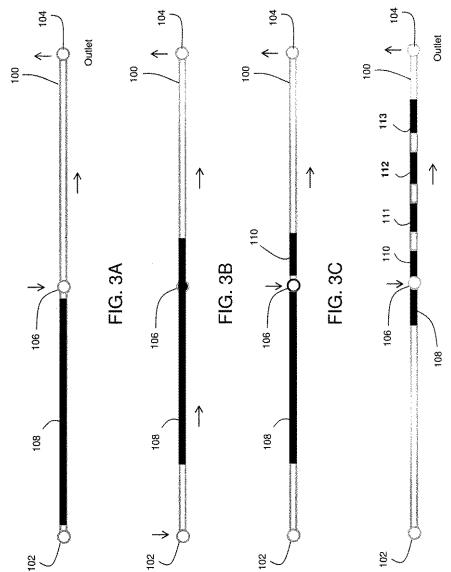

FIG. 2E

FIG. 3A

1

FIG. 3C

FIG. 3D

WO 2011/066361

5/11

PCT/US2010/057969

WO 2011/066361

6 (1)

PCT/US2010/057969

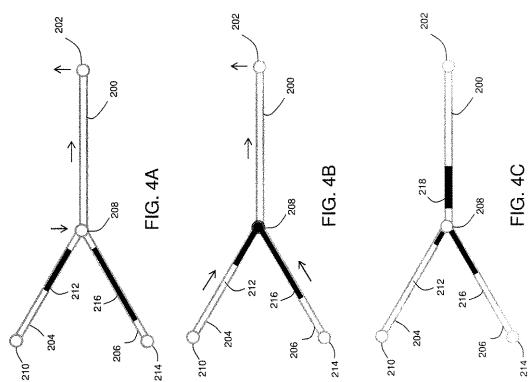


FIG. 4A

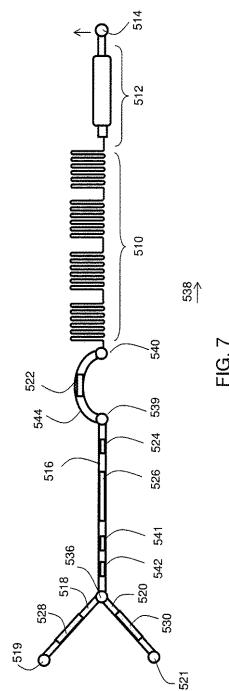
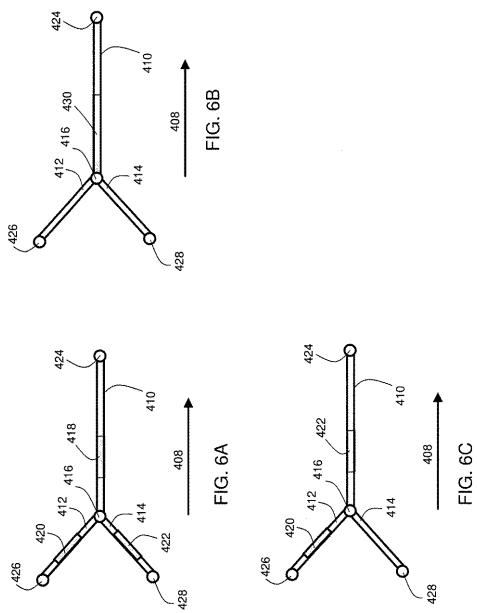
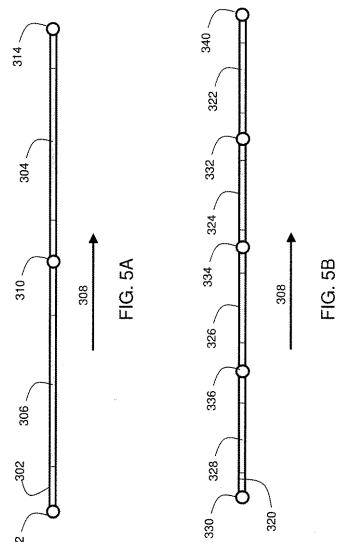
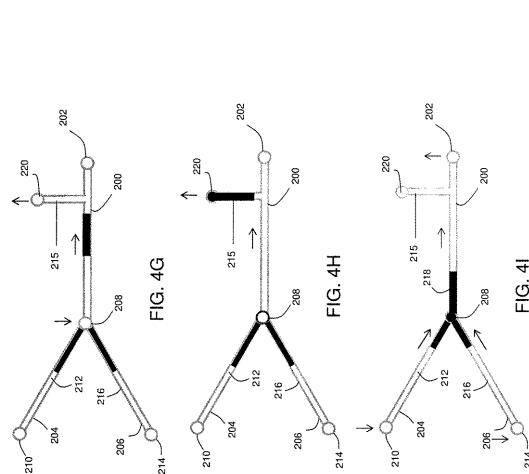




FIG. 4B

FIG. 4C

FIG. 4D

FIG. 4E

FIG. 4F

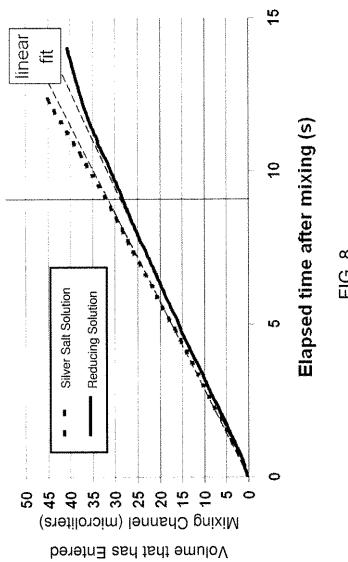


FIG. 8