AT 002 970 U2

Repub1ik
(19) Osterreich (11) Nummer: AT 002 970 U2

Patentamt

) GEBRAUCHSMUSTERSCHRIFT

(21) Anmeldenummer: 232/98 51 Int.C1.5 . GO6F 17/60

(22) Anmeldetag: 2. 4.1998
(42) Beginn der Schutzdauer: 15. 6.1999
(45) Ausgabetag: 26. 7.1999

(73) Gebrauchsmusterinhaber:

CFC INFORMATIONSSYSTEME ENTWICKLUNGSGMBH
A-1010 WIEN (AT).

(54) VERFAHREN ZUR GENERATIVEN FERTIGUNG YON OBJEKTORIENTIERTER SOFTWARE AUF BASIS VON
METAMODELLINFORMATION

(57) Das hier beschriebene Verfahren dient zur
generativen Fertigung von objektorientierter
lient/Server—Software auf Basis von
Metamodellinformation. Das hier beschriebene Verfahren
unterscheidet sich wie folgt von den anderen,
herkdmmlichen Verfahren zur Entwicklung solcher Systeme
(ndmlich die Verwendung einer 4GL Sprache oder eines
Frameworks):
. In dem Verfahren wird die gewlnschte Funktionalitit
in einem sogenannten Modell beschrieben. Die formale
Sprache, die verwendet wird, um das Modell zu
beschreiben, ist das Metamodell. Das Verfahren ist
dadurch gekennzeichnet, daB ein eigenes Metamodell, das
genau fur den Zweck der Modellierung solcher Systeme
entworfen wurde, zur Beschreibung des Modells verwendet
wird. Weiters ist man durch die Anwendung des
Verfahrens in der lLage, die zur Implementierung des
unter Verwendung des Metamodells beschriebenen Systems
notwendige Programmlogik mit Hilfe von Generatoren
automatisch zu erstellen. Durch die Verwendung des
Metamodells wird gewdhrleistet, daB sich die gewlinschte
Programmlogik wirklich generieren 1d8t und man dadurch
diga gwﬁnschte Qualitdts- und Produktivititssteigerung
er .

. Die Beschreibung des Verfahrens gliedert sich in
die folgenden Abschnitte. Zuerst wird das Metamodell
beschrieben, das zur Modellierung der Funktionalitdt
verwendet wird. Danach wird beschrieben, welche
Programmlogik aufgrund des Modells generiert werden
kann, und wie diese Generierung vonstatten geht.

DYR 0078018

AT 002 970 U2

Beschreibung

Die Beschreibung des Verfahrens gliedert sich in die folgenden Abschnitte. Zuerst wird das Metamodell
beschrieben, dal zur Modellierung der Funktionalitdt verwendet wird. Danach wird beschrieben, welche
Programmlogik aufgrund des Modells generiert werden kann, und wie diese Generierung vonstatten geht.

Das METAMODELL

Es existieren heute bereits eine Reihe von
Metamodellen fiir die Modellierung von
objektorientierten Systemen (z.B. UML von
Booch, Rumbaugh, Jacobson [Literatur-
empfehlung: UML Distilled von Martin Fowler,
Addison Wesley 1997] oder OOA von Coad,
Yourdon [Object-Oriented Analysis von Coad
und Yourdon, Prentice-Hall 1991]). Das
Metamodell unseres Verfahrens unterscheidet
sich von diesen anderen Metamodellen dadurch,
daB die Bedeutung (die Semantik) der einzelnen
Sprachelemente genau definiert ist und es dadurch
gewihrleistet ist, daB sich bei Verwendung des
Modells die gewiinschte Programmlogik
vollstandig und richtig generieren 14Bt, wahrend
die Verwendung von herkémmlichen
Metamodellen nur die Generierung von
Programmgertisten erlaubt, und die eigentliche
Programmlogik manuell erstellt werden muB.
Das Metamodell bedient sich der folgenden
Begriffe: Entity, ModelObject, ValueHolder,
ValueHolderWithString, Relationship, Attribute,
Reference, Inverse, Aspect, AspectRelationship,
Interaction, CheckExistence Interaction, Read
Interaction, Read AndModify Interaction, Create
Interaction, Delete Interaction, Search Interaction,
ModelAspect, SearchAspect, Subaspect.
Zeichnung 3 zeigt die Beziehungen und
Zusammenhinge zwischen den einzelnen
Begriffen auf. Diese Begriffe werden im
folgenden definiert.

Entity

Entities dienen zusammen mit den Relationships
zur Beschreibung des statischen Teils des
Modells. Der statische Teil bildet die Grundlage
fiir die dynamischen Aspekte des Modells, die die
eigentlichen Funktions-Abliufe beschreiben. Alle
Entititen des Modells werden durch Entities
ausgedriickt. Entity ist der Oberbegriff fiir
ModelObject und ValueHolder. Entities haben
Beziehungen (Relationships) zu anderen Entities.
Entities sind insbesondere dadurch
gekennzeichnet, daB sie unvollstindig,
inkonsistent oder ungiiltig sein konnen. Durch
diese scheinbar einfache und naheliegende
Erweiterung der Semantik werden eine Rethe von
Funktionalitdten erst moglich; diese sind:
Verschiedene Funktionen, die sich auf die selben
Entities beziehen, bendtigen unterschiedliche
Ausschnitte aus dem Modell. Diese werden durch

El_Eﬁ

Aspects definiert. Damit dies iiberhaupt méglich
ist, ist es notwendig, ein Entity nur teilweise, also
unvollstdndig zu instanzieren.

Moderne, objektorientierte Benutzerschnittstellen
sind dadurch gekennzeichnet, da der Benutzer
die Reihenfolge der Aktionen im Zuge der
Interaktion mit dem System festlegt; dadurch ist
es moglich, daB ein Entity temporér in einen
inkonsistenten Zustand gerat (z.B. kann eine
Person mehrere, jedoch mindestens eine Adresse
haben. Wird die letzte Adresse geldscht, und dann
eine neue Adresse angelegt, so hat die Person
temporir keine Adresse. Wenn man diesen
inkonsistenten Zustand nicht zuldBt, so wird der
Benutzer unndtigerweise gezwungen, zuerst die
neue Adresse anzulegen, und erst dann die alte
Adresse zu 16schen).

ModelObject

Ein ModelObject ist ein Entity, das mehrere
Beziehungen zu anderen Entities aufweist. Person
oder Adresse sind Beispiele fiir ModelObjects.
ModelObjects haben mehrere Attribute-
Beziehungen zu ValueHolders, bei einer Person
z.B. deren Name und Vorname, und mehrere
Attribute- oder Reference-Beziehungen zu
anderen ModelObjects. ModelObjects sind
dadurch gekennzeichnet, daf sie eine Identitit
besitzen, d.h. daB sie durch einen Schliissel (Key)
identifiziert werden konnen. Sie sind des weiteren
persistent, d.h. sie behalten ihren Zustand iiber die
Zeit ihrer Existenz (vom Zeitpunkt der Erzeugung
bis zum Zeitpunkt des Loschens) hinweg; der
Zustand wird in einer Datenbank gespeichert. Die
Existenz von ModelObjects wird durch die Art
der Beziehung, deren Teil sie sind, eingeschrinkt:
ist das ModelObject Teil einer Attribute-
Beziehung, so wird es beim Loschen des
iibergeordneten Objekts implizit mitgeldscht. Ist
das ModelObject nicht Teil einer Attribute-
Beziehung, so wird es PrimaryObject genannt,
und kann nur explizit geldscht werden.

ValueHolder

Ein ValueHolder ist ein einfaches Entity, das zur
Speicherung eines Namens, einer Zahl, eines
Boolean-Wertes, eines Datums oder eines
Zeitpunktes verwendet wird. Ein ValueHolder ist
normalerweise iiber eine One-Attribute-
Beziehung an ein ModelObject gebunden. Dieses
wird auch als der Eigentiimer (Owner) des

AT 002 970 U2

ValueHolders bezeichnet. Es sind aber auch alle
anderen Arten von Beziehungen zu einem
ValueHolder méglich. Der ValueHolder selbst
kann keine weiteren Beziehungen zu anderen
Entities haben.

In manchen anderen Metamodellen werden
ValueHolder auch Attribute genannt. In unserem
Metamodell sind die Konzepte der Struktur
(Komplexe Objekte vs. einfache Attribute) und
der Beziehung (Aggregation vs. Relationship)
klar und streng orthogonal (d.h. unabhingig
voneinander und uneingeschrinkt kombinierbar)
getrennt.

ValueHolderWithString

Ein ValueHolderWithString ist eine erweiterte Art
von ValueHolder, der zusitzlich zu seinem Wert
auch eine textuelle Reprisentation seines Werts
beinhaltet. Durch die explizite Darstellung in zwei
unterschiedlichen Reprisentationen ist es
moglich, die textuelle Darstellung an spezielle
Anforderungen wie z.B. Normen, vereinfachte
Benutzereingabe, Sprach- und Landerspezifika
anzupassen, ohne die Programmlogik zu
beeinflussen.

Relationship

Eine Relationship stellt eine Beziehung zwischen
zwei Entities her. Relationship ist der Oberbegriff
zu Attribute, Reference und Inverse. Jede dieser
Beziehungen gibt es in den Kardinalitidten One
und Many. Die Kardinalitit der Beziehung sagt
liber die Anzahl der in Bezug genommenen
Entities aus. Eine Many-Relationship von Person
zu Adresse sagt z.B. aus, daB jede Person mehrere
Adressen haben kann. Die Kardinalitit der
Beziehung ist weiters genauer spezifiziert durch
ein Kennzeichen das besagt ob die Beziehung
obligatorisch (Mandatory) ist. Das Gegenteil von
Mandatory wird Optional genannt. Eine
Mandatory One-Beziehung muB immer auf ein
giiltiges Entity weisen, bei einer Optional One-
Beziehung ist dies nicht der Fall. Eine Mandatory
Many-Relationship muB auf mindestens ein Entity
verweisen, eine Optional Many-Relationship kann
auch leer sein, d.h. auf gar keine Entities
verweisen.

Relationships haben, dquivalent zu Entities, die
Eigenschaft, temporar unvollstiandig oder ungiiltig
sein zu kénnen, mit den selben wie bei den
Entities beschriebenen Vorteilen.

Attribute

Eine Attribute-Beziehung sagt aus, daB das Ziel-
Entity der Beziehung ein integraler Bestandteil
des ilibergeordneten ModelObjects ist. Wenn das
tibergeordnete ModelObject geldscht wird, wird
immer auch das untergeordnete Entity geloscht.

Jedes Entity kann nur Attribut genau eines Quell-
ModelObjects sein.

In anderen Metamodellen wird diese Art der
Beziehung manchmal Aggregation genannt.
Unser Metamodell unterscheidet sich von anderen
Metamodellen dadurch, daB sowohl
ModelObjects als auch ValueHolders als Ziel
einer Attribute-Beziehung fungieren knnen.

Reference

Eine Reference-Beziehung impliziert, daB das
referenzierte ModelObject vom referenzierenden
ModelObject existentiell unabhingig ist. Wenn
das referenzierende ModelObject geldscht wird,
bleibt das referenzierte ModelObject dennoch
bestehen. Es ist eigenstindig. Ein ModelObject
kann mit beliebig vielen anderen ModelObjects
iiber Reference-Beziehungen verbunden sein.
Wird ein ModelObject geldscht, so werden die
Integrititsregeln der Reference-Beziehungen,
deren Teilnehmer es ist, gepriift und das Loschen
moglicherweise verhindert. Wird keine
Integritatsregel durch das Loschen verletzt, so
wird das ModelObject automatisch aus den
Referenzen entfernt und sodann geléscht.

Inverse

Eine Inverse-Beziehung kann fiir jede Attribute-
und Reference-Beziehung definiert sein. In
diesemn Fall stellt die Inverse-Beziehung die
Riickbeziehung vom untergeordneten
ModelObject zum tibergeordneten ModelObject
dar. Dadurch kann das untergeordnete
ModelObject auf das iibergeordnete ModelObject
zugreifen. Es kann sozusagen die Attribute- oder
Reference-Beziehung riickwirts entlanggehen.

Aspect

Aspects beschreiben einen Ausschnitt aus dem
durch Entities und Relationships gebildeten
Objektmodell, der fiir eine bestimmte
Anwendungsfunktionalitit bendtigt wird. Nur die
notwendigen, durch den Aspect beschriebenen
Daten werden vom Server aus der Datenbank
gelesen und iiber das Netzwerk an den Client
bzw. umgekehrt- vom Client an den Server
geschickt. Die Daten werden nicht auf einmal,
sondern in Stiicken geschickt. Die Reihenfolge, in
der die Stiicke gesendet werden, ist nicht
festgelegt, sondern hingt von der dynamischen
Verfiigbarkeit der Daten ab. Dies ist insbesondere
von Vorteil, wenn die Daten aus mehreren,
verschiedenen Datenquellen stammen. Der
Empfinger erhilt die Daten so friih wie méglich,
und kann sie bereits verwendet, ohne die
vollstiandige Ubertragung abwarten zu miissen.
Das Konzept, nur Ausschnitte aus dem Modell zu
iibertragen erméglicht es, daB sehr sparsam mit
Speicher- und Netzwerkressourcen umgegangen

AT 002 970 U2

wird. Wenn z.B. zum Zweck der Anzeige nur der
Name einer Person bendtigt wird, wird dafiir ein
Personen-Aspekt verwendet, in dem nur der
Name und der Vorname, nicht aber die Adressen
enthalten sind.

Zu der Beschreibung der Aspects gehért neben
den verwendeten Entities und Relationships auch
die Verwendung der Daten. Die Verwendung der
Daten wird einerseits definiert durch
AspectRelationships, die fiir jede Relationship
angeben, wofiir (lesen, dndern, oder beides) die
Beziehung verwendet wird, und andererseits
durch die Angabe, fiir welche Interactions der
Aspect verwendet wird.

Die durch die AspectRelationships definierte
Information wird verwendet um festzulegen, in
welcher Richtung Daten tibertragen werden (vom
Server zum Client, vom Client zum Server, oder
beides).

Durch die Angabe der moglichen Interactions
wird nur die notwendige Programmlogik
generiert; dabei werden sowohl die
Programmlogik fiir den Client als auch fiir den
Server generiert, und zwar

AspectRelationship

Jeder Aspekt setzt sich aus einzelnen
AspectRelationships zusammen. Eine
AspectRelationship bezieht sich auf eine
Relationship des Objektmodells und enthilt
zusitzliche Informationen. Es wird z.B.
angegeben, ob die Relationship im Aspekt nur
angesehen oder auch geidndert werden darf. Bei
Referenzen wird festgelegt, ob auch die Menge
aller moglichen zuordenbaren ModelObjects Teil
des Aspekts sein und im Speicher gehalten
werden soll.

ModelAspect

Ein ModelAspect hilt ein einzelnes ModelObject
aus Hauptobjekt. Er wird zum Lesen, Erzeugen,
Andern und/oder Loschen eines ModelObjects
verwendet.

Ein ModelAspect kann die folgenden, weiter
unten beschriebenen Interactions durchfithren:
CheckExistence Interaction, Read Interaction,
Read AndModify Interaction, Create Interaction,
Delete Interaction. Die genaue funktionale
Definition der Interactions werden nachfolgend
genau beschrieben.

SearchAspect

Ein SearchAspect enthilt mehrere ModelObjects,
die das Ergebnis einer Suche darstellen.
Zusitzlich definiert ein SearchAspect die fiir die
Suche zu verwendenden Suchkriterien.

Ein SearchAspect ist in der lage, eine Search
Interaction durchzufiithren. Die Suche funktioniert
dabei in Tranchen: Der Client kann selbst die

gewinschte Anzahl von Objekten einer Tranche
anfordern. Somit ist ein "vorwirtsbldttern” im
Suchergebnis méglich, und der Client ist gegen
einen Speicheriiberlauf geschiitzt.

Subaspect

Die Programmlogik des zugrundeliegenden
Objektmodelis unterstiitzt Events nach dem
gingigen Model/View/Controller-Konzept
(MVC). Die in unserem System eingesetzte
Benutzerschnittstelle zeigt eine ganze Rethe von
Attributen in einem View an. Dadurch entsteht
das Problem, daB viele einzelne Anderungen in
einem (Model-)Aspect viele Anderungen am
View ausl6sen, und der Overhead des
Aktualisierens des Views das System substantiell
verlangsamt. Die Losung des Problems sind
Subaspects. Ein Subaspect bezeichnet einen
Teilausschnitt eines Aspects, der die Granularitét
fiir das automatische Update definiert. Wenn sich
ein Entity verindert, sollen diese Anderungen
automatisch in den Views dargestellt werden.
Wenn jedoch mehrere Anderungen eines Entities
kurz hintereinander durchgefiihrt werden, wiirden
sich die Views mehrmals updaten, was auf der
einen Seite zu Performance-Problemen fithrt und
andererseits ein Flimmern des Bildschirms
verursacht. Subaspects vermeiden das, indem sie
trotz mehrerer Anderungen nur einen Update der
Benutzerschnitistelle durchfiihren. Sie “sammeln
die einzelnen Updates und l6sen zu kontrollierten
Zeitpunkten einen einzigen Update aus.

Interaction

Mit Interaction wird eine Konversation zwischen
Client und Server bezeichnet, bei dem die Daten
eines Aspects zwischen Client und Server
ausgetauscht werden. Eine Interaction definiert
ein fixes Kommunikations-Protokoll. Interaction
ist der abstrakte Oberbegriff fiir die folgenden
konkreten Protokolle: CheckExistence
Interaction, Read Interaction (Replicated oder
Precise), ReadAndModify Interaction, Create
Interaction (WithKey oder WithoutKey), Delete
Interaction, Search Interaction (Replicated oder
Precise).)

Die nachfolgenden Beschreibungen der einzelnen
Interactions beinhalten das Kommumnikations-
protokoll zwischen Client und Server. In diesen
Beschreibungen bedeutet — eine Nachricht
(Anforderung) vom Client zum Server, und «
eine Nachricht (Antwort) vom Server zum Client.
Hinter den Pfeilen steht der Inhalt der Nachricht.
Die Kommunikations-Protokolle, die bei unserem
Verfahren zur Anwendung kommen, sind dadurch
gekennzeichnet, daB sie die angeforderten Daten
vom Server zum Client nicht auf einmal, sondern
in einzelnen Teilpaketen gesendet werden. Der
Client ist somit in der Lage, die bereits
angekommenen, jedoch noch unvolistandigen

AT 002 970 U2

Daten bereits zu verarbeiten (z.B. dem Benutzer
anzuzeigen). Der Client ist durch diese
Eigenschaft des Kommunikations-Protokolls in
der Lage, unmittelbar auf Anfragen zu reagieren,
und lange dauernde, unvollstindige Abfragen zu
stornieren.

Alle Interactions werden vom Client aus gestartet
(d.h. der Server ist passiv, im Gegensatz zu
sogenannten aktiven Servern).

In der Beschreibung wird manchmal zwischen
Precise und Replicated-Interactions
unterschieden. Diese Unterscheidung ist nur bei
einer dreistufigen Architektur relevant. Siehe
Zeichnung 1: Unterscheidung zwischen 2-stufiger
und 3-stufiger Architektur. '

Bei einer zweistufigen Architektur kommt nur die
Precise-Interaction zur Anwendung. In einer
dreistufigen Architektur wird bei einer
Replicated-Interaction auf den dezentralen Server
zugegriffen. Bei einer Precise-Interaction wird auf
den zentralen Server zugegriffen.

CheckExistence Interaction

Eine CheckExistence Interaction priift, ob ein
ModelObject am Server existiert. In einer
dreistufigen Architektur wird die Priifung Precise,
also in der zentralen Datenhaltung ausgefiihrt.
Kommunkationsprotokoll:

—key

«—exists oder doesNotExist oder fehler

Der Client sendet den Schliissel des zu
iberpriifenden ModelObjects. Der Server sendet
exists wenn das ModelObject existiert,
doesNotExist wenn das ModelObject nicht
existiert, oder eine Fehlermeldung.

Read Interaction

Diese Interaction veranlaBt den Server, einen
Aspect von der Datenhaltung zu lesen und an den
Client zu senden. Diese Interaction gibt es im Fall
der dreistufigen Architektur in zwei
Ausprdgungen, ndmlich Read-Precise und Read-
Replicated. Die Precise Interaction liest einen
Aspect von der zentralen Datenhaltung. Die
Replicated Interaction liest den Aspect von der
dezentralen Datenhaltung. Die beiden Arten der
Interaction unterscheiden sich vom Protokoll her
nur durch die moglichen Fehlermeldungen.
Variante 1 (Normalfall):

—key

«data

«—data

«readCompleted oder fehler

Der Client sendet den Schliissel des zu Lesenden
Aspects. Der Server sendet die einzelnen
Datenpakete. Nach erfolgreicher Ubertragung
sendet der Server readCompleted. Im Fehlerfall
wird die Ubertragung durch das Senden einer
Fehlermeldung abgebrochen.

Variante 2 (der Vorgang wird abgebrochen, bevor
das Objekt zur Ginze gelesen wurde):

—key

«—data

—cancelRead

«—readCanceled

Der Client kann von sich aus die laufende
Ubertragung abbrechen.

Variante 3 (Fehlerfall):

—key

«fehler

Im Fehlerfall sendet der Server eine
Fehlermeldung.

ReadAndModify Interaction

Die Read AndModify Interaction dient zum
Andern von bereits existierenden Aspects. Der
Server liest einen Aspect und sendet ihn zum
Client. Der Aspect wird am Client verdndert und
zum Schreiben an den Server zuriickgeschickt.
Variante 1 (Normalfall):

—key

«data

«-data

«readCompleted

— data

«<modifyCompleted oder fehler

Der Client sendet den Schliissel des zu dndernden
Aspects. Der Server sendet den Aspect, und
danach die Bestitigung readCompleted. Der
Client sendet die gesnderten Daten des Aspects.
Der Server beendet das Protokoll durch Senden
vom modifyCompleted oder einer Fehlermeldung.
Variante 2 (der Vorgang wird abgebrochen. bevor
das Objekt zur Ginze gelesen wurde):

—key

«—data

—cancelRead

«readCanceled

Variante 3 (der Vorgang wird abgebrochen,
nachdem das Objekt gelesen wurde):

—key

«data

«—data

«readCompleted

—cancelModify

«modifyCanceled

Variante 4 (Fehlerfall):

—key

«fehler

CreateWithKey Interaction

Diese Interaction erzeugt ein neues ModelQbject,
wobei der Schliissel vom Client vorgegeben wird.
Diese Interaction wird angewendet bei dezentraler
Vergabe von Schliisseln oder manueller
Organisation mit Schliissellisten.
Kommunkationsprotokoll:

—key + data

«createCompleted oder fehler

AT 002 970 U2

Der Client sendet den Schliissel und die Daten des
ModelObjects.

CreateWithoutKey Interaction

Eine CreateWithoutKey Interaction erzeugt ein
neues ModelObject, wobei der Schliissel vom
Server vorgegeben wird.
Kommunkationsprotokoll:

—data

«createCompleted + key oder fehler

Der Client sendet die Daten des ModelObjects.
Der Server sendet im Erfolgsfall den Schliissel
des erzeugen ModelObjects, oder eine
Fehlermeldung.

Delete Interaction

Die Delete Interaction dient zum Ldschen von
bereits existierenden ModelObjects. Es kommen
bei der Verwendung dieser Interaction
automatisch die impliziten Loschregeln zur
Anwendung. Das bedeutet, daB zuerst gepriift
wird, ob das ModelObject in Beziechungen
(Relationships) teilnimmt, deren Integritit durch
das Loschen nicht mehr gewdhrleistet ist. Ist die
Gefahr von Inkonsistenzen nicht gegeben, so wird
das ModelObject und alle seine Attribute (und
alle Attribute seiner Attribute und so weiter)
geloscht.

Kommunkationsprotokoll:

—key

«deleteCompleted oder fehler

Search Interaction

Die Suche nach Aspects wird durch die Angabe
eines Suchkriteriums eingeschréankt. Ein
Suchkriterium wird gleich behandelt wie ein
gewohnliches ModelObject.

Die Suche wird quantitativ eingeschrinkt. Dies
wird durch die Verwendung von Such-Tranchen
realisiert. Der Client gibt an, wieviele
Suchergebnisse er empfangen kann/will. Nach
dem Empfang der angegebenen Anzahl an Daten
hat der Client die Moglichkeit, die nachste
Tranche der Suchergebnisse anzufordern.

Die Search Interaction gibt es in zwei Unterarten,
Precise und Replicated. Die Unterscheidung
erfolgt analog zur Read Interaction durch die
Quelle der durchsuchten Daten.

Variante 1 (Normalfall):

—search criteria

«searchStarted (optional: + count)

—fetch next nnn

«data

«—data

«fetchCompleted

—fetch next nnn

«—data

«data

«searchCompleted

Variante 2 (der Suchvorgang wird abgebrochen):

—search criteria

«searchStarted (optional: + count)
—fetch next nnn

«data

—cancel search

«searchCanceled

Variante 3 (Fehlerfall):

—search criteria

«fehler

DiE GENERIERTE PROGRAMMLOGIK

Mit dem hier beschriebenen Metamodell kdnnen
ca. 95% des Source-Codes fir den Filialserver
und fiir den Zentralserver und ca. 50% des
Source-Codes fiir den Client generiert werden.
Die Anteile des Anwendungs-Sourcecodes am
Gesamtumfang hingt von der Art und dem
Funktionsumfang des verwendeten Frameworks
ab. Ein umfangreiches Framework erfordert
wenig generierten Sourcecode und umgekehrt.
Zeichnung 2 verdeutlicht diesen Sachverhalt.
Das Metamodell wurde so entworfen, das nur ein
wenig umfangreiches und machtiges Framework
notwendig ist, um dafiir Sourcecode zu
generieren. Dadurch ist gewahrleistet, daB ein
Umstieg auf ein anderes Framework leicht
moglich ist.

In der Folge werden die einzelnen Generatoren
und die von ihnen generierte Programmlogik
beschrieben.

ModelGenerator

Dieser Generator setzt ein Framework voraus, das
eine abstrakte Superklasse (im Sinn der
objektorientierten Programmiersprache) fiir die
generierten Klassen zur Verfiigung stellt.

Mit diesem Generator werden aus den
ModelObjects Klassen generiert. Fiir die Klassen
werden Instanzvariablen (members) fiir die
Relationships generiert. Weiters werden
Zugriffsmethoden (get und set) fiir die einzelnen
Relationships generiert. Ebenfalls generiert wird
die Programmlogik zum Instanzieren von neuen
Relationships. Die generierte Programmlogik
wird sowohl im Client als auch im Server
verwendet.

AspectGenerator

Dieser Generator setzt ein Framework voraus, das
eine abstrakte Superklasse fiir die generierten
Aspect-Klassen zur Verfiigung stellt.

Mit dem Aspect-Generator werden aufgrund der
Metainformation iiber ModelObjects,
Relationships und Aspects die Aspect-Klassen
generiert. Weiters werden Methoden generiert, die

AT 002 970 U2

zum Instanzieren von Aspects verwendet werden.
Es wird dabei auf die vom ModelGenerator
generierten Methoden zuriickgegriffen. Der
generierte Source-Code wird sowohl im Client als
auch im Server verwendet.

AspectPathGenerator

Mit diesem Generator werden Methoden erzeugt,
mit denen man Aspect-Ausschnitte, sogenannte
AspectPaths, iiber die Client-Server-
Kommunikationsschnittstelle in beide Richtungen
senden kann. Dabei wird darauf geachtet, daB nur
die minimal notwendige Information gesendet
wird, um Probleme mit der Antwortzeit zu
vermeiden. Der generierte Source-Code wird
sowohl im Client als auch im Server verwendet.

TableGenerator

Damit werden die Datenbank- -Scripts aus der
Metainformation iiber Entities und Relationships
erzeugt, mit deren Hilfe man das notwendige
Datcnbankschema fiir die dezentrale und zentrale
Datenbank erstellen kann. Derzeit kénnen die
Scripts fiir die Datenbanken DB2 und Oracle
generiert werden. Die zugrundeliegende Logik ist
Jedoch fiir alle relationalen Datenbanken gleich.
Die generierten Datenbank-Scripts werden nur im
Server verwendet.

RDBViewGenerator

Dieser Generator erzeugt aufgrund der
Metainformation iiber ModelObjects,
Relationships und Aspects Zugriffs-Methoden fiir
die Datenbank, die die einzelnen Aspects
bendtigen. Diese Methoden greifen auf die vom
TableGenerator generierten Datenbanktabellen

zu. Der generierte Source-Code wird nur im
Server verwendet.

ProcessMethodGenerator

Process-Methoden dienen dazu, am Server die fiir
eine bestimmte Interaction eines Aspects
bendtigten Daten aus der Datenbank zu lesen oder
in die Datenbank zu schreiben. Sie sind der Kern
der eigentlichen Serverfunktionalitit und fiir das
Verfahren von eminenter Bedeutung. In den
Process-Methoden werden die vom
RDBViewGenerator generierten
Zugriffsmethoden verwendet, und die vom
AspectPathGenerator generierten
Kommunikations-Methoden verwendet.
AuBerdem werden die Daten je nach Interaction
vom Client gelesen oder zum Client geschickt,
analog zu den in den vorigen Kapiteln
beschriebenen Kommunikationsmustern. Der
generierte Source-Code wird nur im Server
verwendet.

SubaspectGenerator

Damit werden Methoden generiert, die
Subaspects implementieren. Diese werden von
der Benutzerschnittstelle verwendet, um sich auf
Anderungen im Objektmodell zu registrieren. Die
Benutzerschnittstelle wird von den Subaspects
benachrichtigt, wenn sie sich updaten soll, wobei
die Subaspects darauf achten, daB bei kurz
aufeinander folgenden Anderungen des
Objektmodells nur eine Benachrichtigung erfolgt,
sodaB keine Performance-Probleme entstehen.
Der generierte Source-Code wird nur im Client
verwendet.

AT 002970 U2

Anspriiche

1. Verfahren zur Spezifikation von
Clienv/Server-Software, wobei die
Beschreibung der Funktionalitat (das Modell)
ausgedriickt wird durch die Begriffe
Entity und Relationship, gekennzeichnet
dadurch, daB:

die Beschreibung der Funktionalitit

zusitzlich ausgedriickt wird durch die

Begriffe 5.
Aspect,

Interaction, und

Subaspect.

2. Verfahren nach Anspruch 1, gekennzeichnet

dadurch, daB:
der Begriff Entity eine Klasse von
Objekten ist, der weiter verfeinert wird
durch die Varianten (Subklassen)
ModelObject, ValueHolder und
ValueHolderWithString, wobei
ModelObject eine Klasse ist, die
Beziehungen zu anderen Entities haben
kann, ValueHolder eine Klasse ist, die
keine weiteren Beziehungen zu anderen
Entities haben kann und die einen Wert
(value) hat und ValueHolderWithString
eine ValueHolder-Klasse ist, die
zusitzlich zu seinem Wert eine textuelle
Reprisentation seines Werts hat.

der Begriff Aspect einen Ausschnitt aus
dem Modell darstellt, der den
Datenumfang (und somit den
Funktionsumfang) einer Interaction
definiert wobei ein Aspect bezeichnet,
welche Entities und welche
Relationships an der Interaction
teilnehmen.

Verfahren nach Anspruch 1, gekennzeichnet
dadurch, daB:

ein Aspect ausgedriickt wird durch eine
Liste von AspectRelationships wobei ein
AspectRelationship eine Relationship
bezeichnet (somit die Quelle und das
Ziel der Relationship), und die
Verwendung der Relationship und der
zugehorigen Entities eine Interaction;
wobei die Verwendung ausgedriickt wird
durch die Kennzeichen Lesen und
Schreiben, wobei auch beide
Kennzeichen gegeben sein kénnen;
wobei Lesen bedeutet, da8 die die
Relationship représentierenden Daten
vom Server zum Client iibertragen
werden und Schreiben bedeutet, daf die
die Relationship reprisentierenden Daten
vom Client zum Server libertragen
werden.

3. Verfahren nach Anspruch 1, gekennzeichnet 6. Verfahren nach Anspruch 1, gekennzeichnet
dadurch, daB: dadurch, daB:
der Begriff Relationship eine der Begriff Aspect verfeinert wird in die

Verbindung (Beziehung) zwischen zwei
Entities ist, der weiter verfeinert wird
durch die Subklassen Attribute,
Reference, und Inverse, wobei
Relationships gerichtet sind, das heiBt sie
haben eine Quelle (source) und ein Ziel
(target); wobei Attribute bedeutet, daB
das Ziel von der Quelle existentiell
abhingt und wird die Quelle geldscht, so
wird das Ziel automatisch geldscht;
wobei Relationship bedeutet, daB keine
existentielle Abhangigkeit zwischen
Quelle und Ziel existiert, wobei es
jedoch eine Konsistenzregel geben kann,
die das Loschen des Ziels verbindert,
wenn es Teil einer Relationship ist;
wobei Inverse eine Relationship
bedeutet, die symmetrisch zu einem
Attribute oder einer Reference, jedoch in

beiden Subklassen ModelAspect und
SearchAspect wobei ein ModelAspect
die Interactions CheckExistence
Interaction, Read Interaction,

Read AndModify nteraction, Create
Interaction, und Delete Interaction
ausfiihren kann; wobei die Definition des
ModelAspects die Information
beinhaltet, welche der genannten
Interactions unterstiitzt werden; wobei
ein SearchAspect eine Search Interaction
ausfiihren, also Entities suchen kann;
wobei die Definition des SearchAspects
ein Suchkriterium beinhaltet; wobei ein
Suchkriterium analog zu einem
ModelAspect spezifiziert wird und wobei
die AspectRelationships dabei jedoch
immer nur das Schreiben-Kennzeichen
haben.

der anderen Richtung (Quelle und Ziel 7. Verfahren nach Anspruck 1, gekennzeichnet

vertauscht) angelegt ist, wobei Inverse
nur dann verwendet werden, wenn das
Ziel die Notwendigkeit hat, zu seiner
Quelle zu gelangen.
4. Verfahren nach Anspruch 1, gekennzeichnet
dadurch, daB:

dadurch, daB:

der Begriff Interaction ein
Kommunikations-protokoll zwischen
Client und Server zum Zwecke der
jeweiligen Funktionalitit definiert und
verfeinert wird durch die Begriffe
CheckExistence Interaction, Read

10.

11.

12.

AT 002 970 U2

Interaction, ReadAndModify Interaction,
Create Interaction, Delete Interaction und
Search Interaction wobei eine
CheckExistence Interaction iiberpriift, ob
das gesuchte ModelObject existiert;
wobei eine Read Interaction die Daten
eines ModelAspects liest; wobei eine
ReadAndModify Interaction die Daten
eines ModelAspects liest und es erlaubt,
die verinderten Daten zu speichern;
wobei eine Create Interaction es erlaubt,
einen ModelAspect zu erzeugen; wobei
eine Delete Interaction einen
ModelAspect 16scht und wobei eine
Search Interaction zum Suchen von
SearchAspects nach einem komplexen
Suchkriterium dient und die Daten in
Tranchen liefert. .
Verfahren zum Generieren der
Klassendefinitionen aus den ModelObjects
und der Programmlogik gekennzeichnet
dadurch, da8:
es zum Instanzieren der ModelObjects
und seiner unmittelbaren Relationships
aufgrund eines Modells dient, das durch
ein Metamodell entsprechend den
Anspriichen 1 - 7 ausgedriickt ist.
Verfahren zum Generieren von Definitionen,
gekennzeichnet dadurch, da8:
es Aspektklassendefinitionen fiir eine im’
Framework vorhandene Aspect-
Superklasse aus dem Modell
entsprechend den Anspriichen 1 ~ 7
generiert.
Verfahren zum Generieren der
Programmlogik gekennzeichnet dadurch,
daB:
es den Aspect und seine zugeordneten
Entities und Relationships aus dem
Modell entsprechend den Anspriichen 1
— 7 instanziert.
Verfahren zum Generieren der
Programmlogik gekennzeichnet dadurch,
daf:

es AspectPaths aus dem Modell
entsprechend den Anspriichen 1 - 7
durch Entlangwandern (graph traversal)
der Relationships und direkter
Umsetzung in entsprechende Methoden
fiir jede Relationship generiert.
Verfahren zum Generieren von Definitionen
gekennzeichnet dadurch, daB:
der Tabellendefinitionen des
Datenbankschemas aus dem Modell
entsprechend den Anspriichen 1 — 7
generiert werden, wobei zuerst die
Namen der ModelObjects und
Relationships auf die Namenskonvention
der Zieldatenbank normiert weden,
danach fiir jedes ModelObject eine

Tabelle angelegt wird, fiir alle One-
Attributes zu einem ValueHolder ein
Tabellenattribut des dem ValueHolder
entsprechenden Typs angelegt wird, fiir
alle One-Attributes zu einem
ModelObject ein Tabellenattribut fiir den
Schiiissel des Zielobjekts angelegt wird,
fiir alle Many-Attributes eine eigene
Zwischentabelle angelegt wird mit dem
Schliissel des Quellobjekts und einem
Tabellenattribut fiir den ValueHolder
oder dem Schliissel des Zielobjekts, fiir
alle One-References ein Tabellenattribut
fiir den Schliissel des Zielobjekts
angelegt wird und fiir alle Many-
References eine Zwischentabelle mit
dem Schliissel des Quellobjekts und dem
Schiiissel des Zielobjekts angelegt wird.

13. Verfabren zum Genperieren von Definitionen.

gekennzeichnet dadurch, daB:
Viewdefinitionen des Datenbankschemas
aus dem Modell entsprechend den
Anspriichen 1 - 7 generiert werden,
wobei alle ModelObjects, die in einer
Vererbungshierarchie stehen, in einem
Datenbankview zusammengefaBt
werden, die konkrete Klasse des
ModelObjects durch ein eigenes Attribut
erweitert wird, das automatisch mit dem
originiren Tabellennamen des
ModelObjects verkniipft wird und fiir
Jjeden Aspect eigene Views erzeugt
werden, die nur die in dem Aspect
vorkommenden Datenbank-attribute
beinhalten.

14. Verfahren zum Generieren der Programm-

logik gekennzeichnet dadurch, daB:
die Programmiogik fiir das
Serverprogramm generiert wird, das die
Funktionalitit der einzelnen Interactions
fiir die einzelnen Aspects aus dem
Modell entsprechend den Anspriichen 1
— 7 implementiert, wobei die Interactions
dabei logisch in Lese- und Schreib-
Operaticnen aufgetrennt werden; wobei
der Modellausschnitt, der durch den
Aspect vorgegeben ist, analysiert (graph
traversal) wird und fiir jedes involvierte
ModelObject die entsprechende Lese-
beziehungsweise Schreib-Operation
aufgerufen wird; wobei die fiir den
Aspect optimierten Datenbankviews
verwendet werden, falls diese vorhanden
sind, ansonsten die allgemeinen,
generischen Datenbankviews verwendet
werden und die iiberfliissigen
Datenbankattribute verworfen werden;
wobei die gelesenen Daten in
AspectPaths umgeformt und iiber ein
Kommunikationsframework verschickt

AT 002 970 U2

(data-Pakete) werden, wobei die
Programmlogik beriicksichtigt, daB eine
Interaction storniert werden kann, indem
periodische Abfragen des Storno-
kennzeichens geperiert werden.

15. Verfahren zum Generieren von Definitionen

gekennzeichnet dadurch, daB:

Subaspects aus dem Modell
entsprechend den Anspriichen 1 -7
generiert werden, wobei die Subaspect-

10

Definition in die Programmiogik
umgesetzt wird, sodaB fiir jede
Relationship des Subaspects die
Anderungsnachricht (entsprechend der
gingigen Model/View/Controller-Logik)
registriert wird und mittels eines
Verzogerungszihlers (defer count) die
Weiterleitung der Anderungsnachricht
verzdgert zu kontrollierten Zeitpunkten
weitergeleitet werden.

Server

Client

Datenbank

AT 002 970 U2

Zentraler Zentrale
Server Datenbank
Dezentraler Dezentrale
Server Datenbank
Client

Zeichnung 1: Unterscheidung zwischen 2-stufiger und 3-stufiger Architektur.

Anwendungs-
Programm

Framework

Anwendungs-
Programm

Framework

Zeichnung 2: Zusammenhang zwischen Funktionsumfang des Frameworks und Umfang des generierten

Sourcecodes.

1

AT 002 970 U2

——————

Entity ——————— e
Many ‘\o
ValueHolder i ! ModelObject : \ RO
i . \ S
‘ k
Aftribute 1 i Reference : Inverse
L L L
‘f
/
/
/
i
One Many

—_—
i

] Interaction ; ol‘ne———ui L \

i
Aspect Many —> AspectRelationship
L] \ - B
\\) . Many
ModelAspect [SearchAspect Subaspect |

Zeichnung 3: Zusammenhinge zwischen den Begriffen des Metamodells.

12

I

AT 002 970 U2

Anmerkung zum Gebrauchsmusterantrag:
Verfahren zur generativen Fertigung von objektorientierter Software auf Basis von Metamodellinformation

In dem Gebrauchsmusterantrag wird, auf Seite 2, das beschriebene Verfahren mit zwei gangigen Verfahren zur

Beschreibung von Software verglichen: UML und OOA.
In dieser Anmerkung sollen die beiden Methoden kurz beschrieben und Literaturhinweise gegeben werden.

Die UML (Unified Modelling Language) entwickelt sich in jiingster Zeit zum de-facto-Standard fiir
Objektmodellierung. Beinahe alle CASE-Tools unterstiitzen heute die UML-Notation. Es gibt eine groBe Anzahl
an Literatur iber die UML. Wir verwenden und empfehlen fiir den Uberblick das Buch "UML Distilled" von
Martin Fowler (Addison Wesley 1997).

Eine andere, vor allem in den USA gingige Methode ist OOA (Object-Oriented Analysis) von Coad und
Yourdon. Das Standardwerk dazu ist "OOA: Object-Oriented Analysis" von den beiden Erfindern (Prentice-Hall

1991).
Dieser Anmerkung liegen zwei Anlagen bei:

Anlage A ist eine Kopie aus dem Buch "OOA: Object-Oriented Analysis" von Coad und Yourdon und gibt einen
Uberblick iiber die Notation der Methode OOA..

Anlage B ist eine Kopie aus dem Buch "UML Distilled” von Martin Fowler und beschreibt den Zweck von
Metamodellen und Notationen. Bemerkenswert ist hier die Aussage, daB die Modelle hauptsichlich zur
Kommunikation dienen sollen, und es daher notwendig ist, es mit der Semantik nicht so genau zu nehmen ("to
bend the language"). Das beantragte Verfahren geht von einem kontriren Ansatz aus: Nur wenn man die
Semantik genau spezifiziert und auch einhilt, 18t sich Software aus den Modellen generieren und sich ein

Produktivititsvorteil erzielen.

13

(3214135 Yde3 10§ ‘a3e[dwa) By unyIIm pasn) uoyejou HeYD 3014138 1§y ainBjg

(loquifs 1xeu ey jo doy syy 03 P8128uu02) I0josuu0s) _

(ereuILLIB) /106614 Yyeadael fop '9jiym) doo

(83eUILLIB} 48661} ‘uoKIPUOD-aId 41} uonipuon U

100iq Ixe |

(aredwiay 3y} unym pasn) uoneiou weiderq aeig Palq gty 2y

uonIsue.l |

S22

f

ajerdwa) uoyedyads 13[q0-7-sse1d 7'y 2anByg

suoneriou YOO I'V w._.sm_.m

'$30|A135 Buyhyieds 10) spreyy 801A195 pue
swesbei aje)s 100[qQ sesn VOO ‘uoippe uj :ajoN

(pasdeyj0a 10 papuedxs 8q Aews} 19sfgng

L

<

!

lon808Y

w'y

uoloaUL0Y mmmmm&e

lspusg

AL AL A Ltm w2 s g aaral

21oelgo-g-ssejn

- gHed lued

uopdsuUoy eoueISUl }

108q0-3-ssBI

cuopezjiepedsg

AT 002 970 U2

sjuawasnbsyAiowaw
Sjuswaiinbayauwny
Sapogsjeiseqeondde
$8poJAIIGRaOR]

‘papaau se ‘pue

<HBUD 99|AJ8S B BWEBU> 99/4J55
<MBYD 80IAIAS B BWRU> 89/AJ8S
<MBYD 90IAIAS B BWEBU> 99/18S

sajou
siufesisuogeuonippe
weibeigaie;sioalqo

indingreusaixe
indujieusaixs

ainque
ainquiye
ainquije

luopiezjejoedg

84MONAS Lied-sjoum r\mSB\Em, 26dg-usr
w'y w'y
9J0UymMm uofjezjjessusy)
A NETS Z8oInes
{80inion (uopoas woyoq) $80/A18G Leoinieg
c8INQUNY L(uonoss g pIW) senqLy ¢anquly
Lainquily & L8inquyy
SSe|D (uonoas doy) sweN 198[qO-p-sse|n
mwm\o M Tl e LT TPy T

198/q0-%-ss8/D

voneayoads

L6} se|fajens 1 suopelo jo Aiewuing

salBajens 1 suonejop Jo Aewuwing g6

<R

14

e

AT 002 970 U2

NOTATIONS AND META-MODELS

Notations and Meta-Models

The UML, in its current state, defines a notation and a meta-model.

The notation is the graphical stuff you see in models; it is the syntax of
the modeling language. For instance, class diagram notation defines
how items and concepts such as class, association, and multiplicity are
represented.

Of course, this leads to the question of what exactly is meant by an
association or multiplicity or even a class. Common usage suggests
some informal definitions, but many people want more rigor than that.

The idea of rigorous specification and design languages is most preva-
lent in the field of formal methods. In such techniques, designs and
specifications are represented using some derivative of predicate cal-
culus. Such definitions are mathematically rigorous and allow no
ambiguity. However, the value of these definitions is by no means uni-
versal. Even if you can prove that a program satisfies 2 mathematical
specification, there is no way to prove that the mathematical specifica-
tion actually meets the real requirements of the system.

Design is all about seeing the key issues in the development. Formal
methods often lead to getting bogged down in lots of minor details.
Also, formal methods are hard to understand and manipulate, often
harder to deal with than programming languages. And you can’t even
execute them.

Most OO methods have very little rigor; their notation appeals to intu-
ition rather than formal definition. On the whole, this does not seem to
have done much harm. These methods may be informal, but many
people still find them useful—and it is usefulness that counts.

However, OO methods people are looking for ways to improve the
rigor of methods without sacrificing their usefulness. One way to do
this is to define a meta-model: a diagram, usually a class diagram, that
defines the notation. :

Figure 1-1 is a small piece of the UML 1.0 meta-model that shows the
relationship among associations and generalization. (The extract is
there just to give you a flavor of what meta-models are like. I'm not
even going to try to explain it.)

15

AT 002 970 U2

v CHAPTER 1 ¥ INTRODUCTION

Relationship

Generalization Association

1

association
roles

{ordered}| 2.%

Association
Role

Figure 1-1: UML 1.0 Meta-Model Extract

How much does the meta-model affect the user of the modeling nota-
tion? Well, it does help define what is a well-formed model—that is,
one that is syntactically correct. As such, a methods power user should
understand the meta-model. However, most users of methods do not
need such deep understanding to get some value out of using the
UML notation. '

This is why I can write a useful book now, even though the UML meta-
model is not completely- defined—indeed, it won't reach that point
until after the OMG approval process is complete. I will not be rigor-
ous in this book; rather, I will follow the traditional methods path and
appeal to your intuition.

How strictly should you stick to the modeling language? That
depends on the purpose for which you are using it. If you have a
CASE tool that generates code, then you have to stick to the CASE
tool’s interpretation of the modeling language in order to get accept-
able code. If you are using the diagrams for communication purposes,
then you have a little more leeway.

16

AT 002 970 U2

WHY DO ANALYSIS AND DESIGN?

If you stray from the official notation, then other developers will not
fully understand what you are saying. However, there are times when
the official notation can get in the way of your needs. I'll admit that in
these cases, I'm not at all afraid to bend the language. I believe that the
language should bend to help me communicate, rather than the other
way around. But I don’t do it often, and I'm always aware that a bend
is a bad thing if it causes communication problems. In this book, I
mention those places where I'm inclined to do a bit of bending.

17

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

