wo 20187052814 A1 | I0E 000 OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
22 March 2018 (22.03.2018)

(10) International Publication Number

WO 2018/052814 A1l

WIPO I PCT

(51) International Patent Classification:
GO6F 9/54 (2006.01)

(21) International Application Number:
PCT/US2017/050796

(22) International Filing Date:

08 September 2017 (08.09.2017)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

62/395,183 15 September 2016 (15.09.2016) US
62/402,890 30 September 2016 (30.09.2016) US
15/400,590 06 January 2017 (06.01.2017) Us

(71) Applicant: TALEND, INC. [US/US]; 800 Bridge Park-
way, Suite 200, Redwood City, California 94065 (US).

a2

74

62y

Inventors: HIRT, Michaél Guillaume Maurice; 4
Allee de Chamonix, 78180 Montigny-Le-Bretonneux (FR).
DYNES, Ciaran; Blainroe Lower, Wicklow (IE).

Agent: ROBERTS, Steven E.; PATTERSON & SHERI-
DAN, LL.P, 24 Greenway Plaza, Suite 1600, Houston,
Texas 77046 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA,CH,CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(54) Title: DATA INTEGRATION JOB CONVERSION

7

~\

n2

[Processing Application J

\Data Processing System

110

Job Definition
Model
108

Conversion Tool

IDE Application 106
" =

2
Ne—

Data Integration
Jobs
109

Developer System 105
——

FIG. 1

Input Data Store
1

)

il

Output Data Store
12

100

(57) Abstract: Techniques for converting a data integration job from one framework to a target are disclosed herein. A conversion
tool receives a data integration job comprising a plurality of components. Each component performs an assigned task. The first data
integration job is of a given framework. The conversion tool receives a request to convert the data integration job to a data integration
job of a target framework. In response to the request, the conversion tool converts the data integration job by determining whether,
for each component of the data integration job, a corresponding component in the target framework is available. The conversion tool
converts the components to corresponding components and stored the new data integration job in a data store.

[Continued on next page]

WO 2018/052814 A1 I INDE A0 00O

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2018/052814 PCT/US2017/050796

DATA INTEGRATION JOB CONVERSION

BACKGROUND
Field

[0001] Embodiments of the present disclosure generally relate to data
processing, and more specifically, to converting a processing job from one

framework to another.

Description of the Related Art

[0002] An organization may process large amounts of data for various
purposes, such as for analytics, inventory, and marketing. Big data can be
statistically analyzed to determine trends that can inform decision-making by
the organization. Typically, the organization may design data integration
workflows (also referred to herein as “jobs”) comprising tasks for combine
data from a variety of sources into a unified view of the data. For example, an
extract-transform-and-load (ETL) job generally takes, as input, a set of data
from homogeneous or heterogeneous sources, formats the data for

subsequent analysis, and stores the data in a target data store.

[0003] As data integration technology has progressed, many different
frameworks for processing large amounts of data have become available. For
example, MapReduce is a programming model that processes large data sets
in parallel using a combination of Map and Reduce functions on a given data
set to produce a useful set of data for analysis. As another example, some
cluster computing frameworks may ingest data in mini-batches and perform

resilient distributed dataset (RDD) transformations on those mini-batches.

[0004] A developer may choose a framework that is appropriate for a
desired data integration job, considering factors such as fastest processing
time given the type of data, complexity of the job, and amount of data.
However, given the disparate amount of frameworks available for processing
large amounts of data, a developer might not be immediately certain of which
framework to use. For example, for a given data integration job, a standard

Java framework might yield results faster than if performed using a
1

WO 2018/052814 PCT/US2017/050796

MapReduce framework. Or given a size of the underlying data, a batch

streaming job might best use resources efficiently to process the data.

[0005] Consequently, the developer may desire to experiment with
different frameworks for a given data integration job. However, the developer
may be required to manually create the job for each framework. Further, a
developer may want to migrate a data integration job from one system to
another, whether the system executes jobs under a different framework.
Therefore, the developer would need to recode the job using that framework.
Because each framework may have disparate underlying components, a data
integration job in one framework will have different complexities relative to the
same data integration job in another framework. As a result, re-creating a
data integration job in another framework can be a time-intensive and error

prone process.

SUMMARY

[0006] One embodiment presented herein describes a method for
converting a data integration job from a source framework to a target
framework. The method generally includes receiving a request to convert a
first data integration job of a first framework to a second data integration job of
a second framework. The first data integration job comprises a plurality of
components. Each component performs an assigned task as part of the first
data integration job. In response to the request, the method generally
performs the following steps for each component of the first data integration
job: determining whether a component in the second framework that
corresponds to the component in the first data integration job is available. If
so0, a converted component to include in the second data integration job is
generated. [If not, the component is flagged for review. The second data

integration job is stored in a data store.

[0007] Another embodiment presented herein describes a computer-

readable storage medium storing instructions, which, when executed on a

processor, performs an operation for converting a data integration job from a
2

WO 2018/052814 PCT/US2017/050796

source framework to a target framework. The operation itself generally
includes receiving a request to convert a first data integration job of a first
framework to a second data integration job of a second framework. The first
data integration job comprises a plurality of components. Each component
performs an assigned task as part of the first data integration job. Inresponse
to the request, the operation generally performs the following steps for each
component of the first data integration job: determining whether a component
in the second framework that corresponds to the component in the first data
integration job is available. If so, a converted component to include in the
second data integration job is generated. If not, the component is flagged for

review. The second data integration job is stored in a data store.

[0008] Yet another embodiment presented herein describes a system
having a processor and a memory. The memory stores program code, which,
when executed on the processor, performs an operation for converting a data
integration job from a source framework to a target framework. The operation
itself generally includes receiving a request to convert a first data integration
job of a first framework to a second data integration job of a second
framework. The first data integration job comprises a plurality of components.
Each component performs an assigned task as part of the first data
integration job. In response to the request, the operation generally performs
the following steps for each component of the first data integration job:
determining whether a component in the second framework that corresponds
to the component in the first data integration job is available. If so, a
converted component to include in the second data integration job is
generated. [If not, the component is flagged for review. The second data

integration job is stored in a data store.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] So that the manner in which the above recited features of the
present disclosure can be understood in detail, a more particular description
of the disclosure, briefly summarized above, may be had by reference to

embodiments, some of which are illustrated in the appended drawings. It is to

3

WO 2018/052814 PCT/US2017/050796

be noted, however, that the appended drawings illustrate only exemplary
embodiments and are therefore not to be considered limiting of its scope, may

admit to other equally effective embodiments.

[0010] Figure 1 illustrates an example computing environment, according

to one embodiment.

[0011] Figure 2 illustrates a conceptual diagram of the conversion tool

described relative to Figure 1, according to one embodiment.

[0012] Figure 3 Illustrates a conceptual diagram of a universal job

definition model, according to one embodiment.

[0013] Figure 4 illustrates a method for converting a data integration job of
a given framework to a data processing job of another framework, according

to one embodiment.

[0014] Figure 5 illustrates an example computing system configured to
convert a data processing job of a given framework to a data integration job of

another framework, according to one embodiment.

[0015] To facilitate understanding, identical reference numerals have been
used, where possible, to designate identical elements that are common to the
figures. It is contemplated that elements and features of one embodiment may

be beneficially incorporated in other embodiments without further recitation.

DETAILED DESCRIPTION

[0016] Embodiments presented herein disclose techniques for converting a
data integration job from one framework (e.g., a standard Java framework, a
MapReduce framework, a batch processing framework, etc.) to another
framework. Embodiments provide an integrated development environment
(IDE) application that allows a developer to design a data integration job
comprising a number of tasks for receiving a set of input data, processing the

data, and generating output based on the processed data.

WO 2018/052814 PCT/US2017/050796

[0017] In one embodiment, the IDE application provides a conversion tool
that uses a unified job definition model to translate underlying source code,
graphical flow descriptions, and connection metadata between data
integration jobs of a given framework to jobs of another framework. The
unified job definition model may include definitions for a variety of frameworks,
such as a standard Java, MapReduce, batch processing, and stream

processing frameworks.

[0018] As further described below, the conversion tool may convert data
integration jobs using the job definition model. For example, the conversion
tool may analyze each component of an input job against the job definition
model. The conversion tool identifies a corresponding component of a target
framework. If identified, the conversion tool translates that component to the

corresponding component.

[0019] Figure 1 illustrates a computing environment 100, according to one
embodiment. As shown, the computing environment 100 includes a
developer system 105, a data processing system 110, an input data store
115, and an output data store 120, each interconnected via a network 125,

e.g., the Internet.

[0020] Generally, the data processing system 110 includes a processing
application 112. The processing application 112 performs a data integration
job that includes a variety of tasks to be performed as a workflow for retrieving
data from the input data store 115 (and other sources of data), processing the
data (e.g., transforming the data to be further analyzed), and loading the
processed data into the output data store 120. For example, the data
integration job may be an extract-transform-and-load (ETL) processing job

performed under some data processing framework, such as MapReduce.

[0021] In one embodiment, a developer may design a data integration job
to be performed by the processing application 112. In particular, the
developer system 105 includes an IDE application 106 that allows the

developer to design data integration jobs 109. For instance, the IDE

5

WO 2018/052814 PCT/US2017/050796

application 106 may provide a graphical user interface (GUI) that includes a
canvas for a given data integration job. The developer may drag graphical
representations of design components and connectors onto the canvas to

create a given data integration job 109.

[0022] Each component performs and underlying function associated with
that component. For example, a component for a file input path may include
source code that retrieves a file input path in the data integration job 109. The
developer may link a given component with another component to create a
flow for the data integration job 109. Jobs created under the IDE application
106 are stored under a modeling framework. The modeling framework stores
information relating to a given data integration job 109, such as a graphical

flow description and connection metadata.

[0023] The IDE application 106 supports a variety of data processing
frameworks. Example frameworks include Java, Apache Hadoop, Apache
Spark, and the like. When creating a data processing job 109, the developer
may select one of the frameworks, and in turn, the IDE application 106
retrieves components and connectors that are associated with that
framework. In some cases, a developer may desire to port a given data
integration job 109 of one framework (e.g., MapReduce) to a corresponding

data integration job 109 of another framework (e.g., Apache Spark).

[0024] To do so, the IDE application 106 includes a conversion tool 107
that automatically converts the data integration job 109 to various frameworks.
For example, the developer may access the conversion tool 107 through the
GUI and select the desired data integration job 109 of a particular data
processing framework. The developer may also select a target framework to
which to convert the data integration job 109. In one embodiment, the
conversion tool 107 includes a job definition model 108 that is a unified model
which provides definitions (e.g., class and object definitions) for each
component of all supported frameworks. The job definition model 108 may

map common definitions across frameworks to one another.

WO 2018/052814 PCT/US2017/050796

[0025] Figure 2 illustrates a conceptual diagram of the conversion tool 107,
according to one embodiment. As shown, the conversion tool 107 includes a
retrieval component 205, a generation component 210, an evaluation
component 215, a conversion component 220, a storage component 225, and
the job definition model 108

[0026] Generally, the retrieval component 205 receives requests to convert
a data integration job 109 from one framework to another framework. The
retrieval component 205 may retrieve the data integration job 109 itself from a
data store as well as the information relating to the job from the model
framework of the IDE application 109. Such information can include a type of
data integration job, underlying framework, graphical flow descriptions,
connector metadata, and the like. The generation component 210 initializes a
new data processing job 109 file that includes the content provided in the
original data integration job 109. The generation component 210 may update
the properties of the file such that the framework metadata specifies the target

framework.

[0027] The evaluation component 215 may analyze each of the
components of the data integration job 109 to identify parameters, values, and
variables specified in the component. Further, the evaluation component 215
may determine a corresponding component in the target framework for the
purpose of conversion. For example, a tFilelnputDelimited component in a
standard data integration framework may correspond to a tFilelnputDelimited

component in Apache Spark.

[0028] Further, the evaluation component 215 may evaluate any additional
translation policies to identify whether any special conversions should be
made to the component. For example, a tRedshiftConnection component (for
initiating a Redshift JDBC connection to a server) in a standard data
integration job might not ordinarily have a corresponding component in
Apache Spark. A policy instead may specify that the tRedShiftConnection

should be converted to a tRedshiftConfiguration component in Apache Spark.

WO 2018/052814 PCT/US2017/050796

[0029] The evaluation component 215 may also determine that a
corresponding component is not available for a given component in the data

integration job 109.

[0030] The conversion component 220 receives results for a given
analyzed component in the evaluation component 215. The conversion
component 220 may then copy variables, values, and the like from the original
component to the corresponding component. The conversion component 220
may also retrieve a corresponding graphical representation of that component
for presentation in the GUI. In the event that the evaluation component 215 is
unable to identify a corresponding component, the conversion component 220
may flag the underlying component for a review by the developer. In turn, the
developer may determine an appropriate component to use for the target
framework. For example, in response to flagging the underlying component
for review, the IDE application 106 may present the flagged component via a
graphical user interface to the developer. In turn, the developer may evaluate
the flagged component to determine the appropriate component. Once
determined, the developer may specify the corresponding component via the
IDE application 106, which in turn receives the specification and converts the

component to the specified component.

[0031] The storage component 225 saves the resulting data integration job
109 to a data store, e.g., a local disk on the developer system 105, a cloud
storage location, etc. In addition, the developer may view the resulting data
integration job 109 via the GUI of the IDE application 106 and make any
further modifications (e.g., to components flagged by the conversion

component 220).

[0032] Figure 3 illustrates a conceptual diagram of an example universal
job definition model 300, according to one embodiment. The IDE application
106 includes a universal job definition model that can be translated into a
variety of runtimes. For example, this can include a standard job in Java, a
MapReduce job, a Spark Batch job, a Spark streaming job, and a Storm job in

Java.

WO 2018/052814 PCT/US2017/050796

[0033] In one embodiment, the IDE application 106 uses a modeling
framework (e.g., an Eclipse Modeling Framework) to store information related
to a given job. Such information includes a graphical flow description,
connection metadata, and the like. The modeling framework allows the IDE
application to save and restore models as jobs. In the modeling framework,
jobs are generally based on a main class called Processltem, as illustrated at
305.

[0034] Big Data Batch jobs are based on a modeling framework class
called MapReduceProcessltem, which extends the Processltem class. The
definition of the job is contained in the ProcessType object (which is illustrated
at 310). Big Data streaming jobs are based on the modeling framework class
called StormProcessltem, which extends the Processltem class. The

definition of the job is contained in the ProcessType object 310.

[0035] Note, when any job is converted, by default, the setup of
components remains the same in that all variables are maintained. Thus, the
main change takes place in the class containing the components. A job is
composed of a sequence of directed acyclic graphs called subjobs. Subjobs

may contain multiple components.

[0036] Figure 4 illustrates a method 400 for converting a data integration
job of a given framework to a data processing job of another framework,
according to one embodiment. As shown, method 400 begins at step 405,
where the retrieval component 205 receives a request to convert a data
integration job from one framework to another. The request may include the
data integration job file, metadata describing the underlying framework of the
data integration job, and a target framework. For example, the request may
specify converting the data integration job from a MapReduce framework to
an Apache Spark framework. The retrieval component 205 may retrieve the
data processing job 109 from storage as well as any metadata associated

with the data processing job 109 stored in the model framework.

WO 2018/052814 PCT/US2017/050796

[0037] At step 410, the generation component 210 initializes a new data
integration job file that includes the content (components, connectors, and the
like) of the original data integration job. The generation component 210 may
also specify (e.g., in metadata for the new file) that the data integration job file

is of the target framework.

[0038] At step 415, the method 400 enters a loop for each component of
the new data integration job. At step 420, the evaluation component 215
determines whether the component has a corresponding component in the
target framework. The evaluation component 215 may do so by evaluating
the job definition model 108. At step 425, the evaluation component 215
determines whether the corresponding component is available. The
evaluation component 215 may send the result of the determination to the
conversion component 220. If the corresponding component is available,
then the conversion component 220 converts the original component to the
corresponding component. The conversion component 220 may populate
parameters for the component with variables and values retrieved from the

original component.

[0039] If no corresponding component is available, then at step 430, the
evaluation component 215 evaluates a translation policy to determine whether
there are any special conversion rules available for that particular component.
If so, then at step 435, the conversion component 220 applies the rule to that
component. Otherwise, at step 440, the conversion component 220 may flag

the component for review by the developer.

[0040] At step 445, the storage component 225 saves the new data
integration job to a storage location (e.g., a local disk in the developer system

105, a cloud storage location, file server, etc.).

[0041] Figure 5 illustrates an example computing system 500 configured to
convert a data processing job of a given framework to a data integration job of
another framework, according to one embodiment. As shown, the computing

system 500 includes, without limitation, a central processing unit (CPU) 505, a

10

WO 2018/052814 PCT/US2017/050796

network interface 515, a memory 520, and storage 530, each connected to a
bus 517. The computing system 500 may also include an I/O device interface
510 connecting I/0 devices 512 (e.g., keyboard, mouse, and display devices)
to the computing system 500. Further, in context of this disclosure, the
computing elements shown in computing system 500 may correspond to a
physical computing system (e.g., a system in a data center) or may be a

virtual computing instance executing within a computing cloud.

[0042] The CPU 505 retrieves and executes programming instructions
stored in the memory 520 as well as stores and retrieves application data
residing in the memory 520. The interconnect 517 is used to transmit
programming instructions and application data between the CPU 505, I/0
devices interface 510, storage 530, network interface 515, and memory 520.
Note, CPU 505 is included to be representative of a single CPU, multiple
CPUs, a single CPU having multiple processing cores, and the like. And the
memory 520 is generally included to be representative of a random access
memory. The storage 530 may be a disk drive storage device. Although
shown as a single unit, the storage 530 may be a combination of fixed and/or
removable storage devices, such as fixed disc drives, removable memory
cards, or optical storage, network attached storage (NAS), or a storage area-
network (SAN).

[0043] lllustratively, the memory 520 includes an IDE application 522. The
storage 530 includes a job definition model 532 and one or more data
integration jobs 534. The IDE application 522 itself includes a conversion tool
523 configured to convert a specified data integration job 534 from one
framework to another. To do so, the conversion tool 523 may analyze
individual components of the data integration job 534 against the job definition
model 532. The job definition model 532 provides unified definitions for
components of each framework. The conversion tool 523 may convert each
component to a corresponding component in the framework or perform a

special conversion according to rules in the event that a corresponding

11

WO 2018/052814 PCT/US2017/050796

component is not present. The resulting data integration job 534 generally

maintains its original flow structure.

[0044] One embodiment of the present disclosure is implemented as a
program product for use with a computer system. The program(s) of the
program product defines functions of the embodiments (including the methods
described herein) and can be contained on a variety of computer-readable
storage media. Examples of computer-readable storage media include (i)
non-writable storage media (e.g., read-only memory devices within a
computer such as CD-ROM or DVD-ROM disks readable by an optical media
drive) on which information is permanently stored; (ii) writable storage media
(e.q., floppy disks within a diskette drive or hard-disk drive) on which alterable
information is stored. Such computer-readable storage media, when carrying
computer-readable instructions that direct the functions of the present
invention, are embodiments of the present disclosure. Other examples media
include communications media through which information is conveyed to a
computer, such as through a computer or telephone network, including

wireless communications networks.

[0045] In general, the routines executed to implement the embodiments of
the present disclosure may be part of an operating system or a specific
application, component, program, module, object, or sequence of instructions.
The computer program of the present disclosure is comprised typically of a
multitude of instructions that will be translated by the native computer into a
machine-readable format and hence executable instructions. Also, programs
are comprised of variables and data structures that either reside locally to the
program or are found in memory or on storage devices. In addition, various
programs described herein may be identified based upon the application for
which they are implemented in a specific embodiment of the present
disclosure. However, it should be appreciated that any particular program
nomenclature that follows is used merely for convenience, and thus the
present disclosure should not be limited to use solely in any specific

application identified and/or implied by such nomenclature.

12

WO 2018/052814 PCT/US2017/050796

[0046] In sum, embodiments presented herein disclose techniques for
converting a data integration job from one framework to another framework.
Advantageously, such conversion allows a developer to port a complex data
integration job to other frameworks with relatively little effort. Doing so
provides the developer with multiple options for determining which framework
to use in deploying a given job without needing to manually recode the same

job in a different framework.

[0047] Additional examples of converting a data integration job of one
framework to a data integration job of another framework are provided in the

attached appendix.

[0048] While the foregoing is directed to embodiments of the present
disclosure, other and further embodiments of the disclosure may be devised
without departing from the basic scope thereof, and the scope thereof is

determined by the claims that follow.

13

WO 2018/052814 PCT/US2017/050796

What is claimed is:

1. A method for converting a data integration job from a source framework to a
target framework, the method comprising:
receiving a request to convert a first data integration job of a first framework
to a second data integration job of a second framework, the first data integration job
comprising a plurality of components, wherein each component performs an
assigned task as part of the first data integration job;
in response to the request, for each component of the first data integration
job:
determining whether a component in the second framework that
corresponds to the component in the first data integration job is available,
upon determining a component in the second framework is available,
generating a converted component to include in the second data integration
job, and
upon determining that a component in the second framework that
corresponds to the component in the first data integration job is not available,
flagging the component for review; and

storing the second data integration job in a data store.

2. The method of claim 1, further comprising, upon flagging the component for
review:

presenting the component via an application; and

receiving a specification of a component to include in the second data

integration job in place of the flagged component.

3. The method of claim 1, further comprising, upon determining the component
in the second framework that corresponds to the component in the first data
integration job is not available:

identifying one or more conversion rules associated with the component;

applying the identified one or more conversion rules to the component.

14

WO 2018/052814 PCT/US2017/050796

4. The method of claim 1, wherein determining the component in the second
framework is available comprises:
evaluating a job definition model unifying the first framework to the second

framework.

. The method of claim 1, wherein the request includes a file corresponding to
the first data integration job, metadata describing the first framework, and a

specification of the second framework.

6. The method of claim 1, further comprising:
presenting the second data integration job via a graphical user interface;
receiving a selection of one or more modifications to at least a first
component in the second data integration job; and
converting the at least the first component based on the one or more

modifications.

7. The method of claim 1, further comprising, upon generating the converted
component:
populating parameters in the component of the first data integration job in the

converted component.

8. A computer-readable storage medium storing instructions, which, when
executed on a processor, performs an operation for converting a data integration job
from a source framework to a target framework, the operation comprising:

receiving a request to convert a first data integration job of a first framework
to a second data integration job of a second framework, the first data integration job
comprising a plurality of components, wherein each component performs an
assigned task as part of the first data integration job;

in response to the request, for each component of the first data integration
job:

determining whether a component in the second framework that

corresponds to the component in the first data integration job is available,

15

WO 2018/052814 PCT/US2017/050796

upon determining a component in the second framework is available,
generating a converted component to include in the second data integration
job, and

upon determining that a component in the second framework that
corresponds to the component in the first data integration job is not available,
flagging the component for review; and

storing the second data integration job in a data store.

9. The computer-readable storage medium of claim 8, wherein the operation
further comprises, upon flagging the component for review:

presenting the component via an application; and

receiving a specification of a component to include in the second data

integration job in place of the flagged component.

10. The computer-readable storage medium of claim 8, wherein the operation

further comprises, upon determining the component in the second framework that

corresponds to the component in the first data integration job is not available:
identifying one or more conversion rules associated with the component;

applying the identified one or more conversion rules to the component.

11. The computer-readable storage medium of claim 8, wherein determining the
component in the second framework is available comprises:
evaluating a job definition model unifying the first framework to the second

framework.

12. The computer-readable storage medium of claim 8, wherein the request
includes a file corresponding to the first data integration job, metadata describing the

first framework, and a specification of the second framework.

13. The computer-readable storage medium of claim 8, wherein the operation
further comprises:

presenting the second data integration job via a graphical user interface;

16

WO 2018/052814 PCT/US2017/050796

receiving a selection of one or more modifications to at least a first
component in the second data integration job; and
converting the at least the first component based on the one or more

modifications.

14. The computer-readable storage medium of claim 8, wherein the operation
further comprises, upon generating the converted component:
populating parameters in the component of the first data integration job in the

converted component.

15. A system, comprising:
a processor; and
a memory storing program code, which, when executed on the processor,
performs an operation for converting a data integration job from a source framework
to a target framework, the operation comprising:
receiving a request to convert a first data integration job of a first framework
to a second data integration job of a second framework, the first data integration job
comprising a plurality of components, wherein each component performs an
assigned task as part of the first data integration job;
in response to the request, for each component of the first data integration
job:
determining whether a component in the second framework that
corresponds to the component in the first data integration job is available,
upon determining a component in the second framework is available,
generating a converted component to include in the second data integration
job, and
upon determining that a component in the second framework that
corresponds to the component in the first data integration job is not available,
flagging the component for review; and

storing the second data integration job in a data store.

17

WO 2018/052814 PCT/US2017/050796

16. The system of claim 15, wherein the operation further comprises, upon
flagging the component for review:

presenting the component via an application; and

receiving a specification of a component to include in the second data

integration job in place of the flagged component.

17. The system of claim 15, wherein the operation further comprises, upon
determining the component in the second framework that corresponds to the
component in the first data integration job is not available:

identifying one or more conversion rules associated with the component;

applying the identified one or more conversion rules to the component.

18. The system of claim 15, wherein determining the component in the second
framework is available comprises:
evaluating a job definition model unifying the first framework to the second

framework.

19. The system of claim 15, wherein the operation further comprises:
presenting the second data integration job via a graphical user interface;
receiving a selection of one or more modifications to at least a first

component in the second data integration job; and
converting the at least the first component based on the one or more

modifications.

20. The system of claim 15, wherein the operation further comprises, upon
generating the converted component:
populating parameters in the component of the first data integration job in the

converted component.

18

PCT/US2017/050796

WO 2018/052814

1/5

001

L Old

ocl
210)s ejeq ndinQ

547

\ﬂ wa)sAg Bo_o_m>mn_)

601
sqor
uoneabaju| ejeqg

(307 uonesyddy 3a)

St
210)S ejeq Induj

Nﬂ wa)sAg Buissasoud Emn_)
41
uoneslddy Buissasoid
\. J

4 N\

01
|OO] UOISI9AUOD

801
[9pOIN
uoniuyaq qor

PCT/US2017/050796

WO 2018/052814

2/5

¢ Ol

801
[9pOIN
uoniuyaq qor

701 1001 :o_whm>:oo)

(5144
juauodwon abeiojg

(1744
jusauodwon UoISIdAUOD

(%4
jusuodwos uolenjeAy

(11%4
juauodwon uoljeisuar)

G0c
juauodwon |eAsLIDY

PCT/US2017/050796

WO 2018/052814

3/5

wmEsaigiumesngreahia

¢ Ol

1183

(=

Go¢c

HIRG RSN 1

1] 2%

afdiiazann g

WO 2018/052814

Receive request to convert a data
integration job from one framework to a
target framework

PCT/US2017/050796

!

Initialize a new data integration job having
the content of the original data integration
job

:

job

‘ﬁor each component of the new data integration

|

Determine, based on the job definition
model, whether the component has a
corresponding component in the target
framework

Corresponding
component available?

Done

Convert the component to the
corresponding component

4/5
400
4
’1/05
41
adY 0
415
<U
42
aY 0
440
~
430
Special conversion Flag)
rules available? component
4
‘1/35
Apply special conversion rule >

Store new data integration job

FIG. 4

WO 2018/052814 PCT/US2017/050796

5/5

I/0 Devices
To
212
Network

T A

' I
CPU I/0O Device Network
505 Interface Interface
. 210 215
¢ 517
(Memory m\ (Storage ﬂ\
s N e A
. Job Definition Model
Conversion Tool 532
523 \ I
(D | ion Job
IDE Application ata "teg;itm" obs
(222 y . J
. J _ J
\Computing System 500

FIG. 5

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/050796

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/54
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2005/243604 Al (ASCENTIAL SOFTWARE 1-20
CORPORATION) 3 November 2005 (2005-11-03)
abstract
paragraphs [0028] - [0034]
paragraphs [0037] - [0041]
paragraph [0050]
paragraphs [0053] - [0055]
paragraphs [0116] - [0119]
paragraph [0135]
paragraph [0149]
paragraph [0191]
paragraph [0196]
figure 2
A US 2005/256892 Al (ASCENTIAL SOFTWARE 1-20
CORPORATION) 17 November 2005 (2005-11-17)
the whole document
- / -

See patent family annex.

Further documents are listed in the continuation of Box C.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

"E" earlier application or patent but published on or after the international

- "X" document of particular relevance; the claimed invention cannot be
filing date

considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

10 November 2017

Date of mailing of the international search report

20/11/2017

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Tomas Blanch, F

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/050796

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

CORPORATION) 31 March 2016 (2016-03-31)
the whole document

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2007/127064 Al (CANON KABUSHIKI KAISHA) 1-20
7 June 2007 (2007-06-07)
the whole document
A US 2015/154011 Al (HUAWEI TECHNOLOGIES 1-20
CO., LTD.) 4 June 2015 (2015-06-04)
the whole document
A US 20167092049 Al (ORACLE INTERNATIONAL 1-20

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2017/050796
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2005243604 Al 03-11-2005 NONE
US 2005256892 Al 17-11-2005 NONE
US 2007127064 Al 07-06-2007 JP 4689453 B2 25-05-2011
JP 2007156671 A 21-06-2007
US 2007127064 Al 07-06-2007
US 2012019866 Al 26-01-2012
US 2015154011 Al 04-06-2015 CN 103631632 A 12-03-2014
EP 2894561 Al 15-07-2015
US 2015154011 Al 04-06-2015
WO 2015078139 Al 04-06-2015
US 2016092049 Al 31-03-2016 US 2016092049 Al 31-03-2016
US 2016092499 Al 31-03-2016

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - wo-search-report
	Page 27 - wo-search-report
	Page 28 - wo-search-report

