(12) 特許協力条約に基づいて公開された国際出願
(19) 世界知的所有権機関
国際事務局
(43) 国際公開曰
2012 年 8 月 30 日 (30.08.2012)

(51) 国際特許分類:
F02B 3/10 (2006.01) F02B 1/24 (2006.01)
FOIL 3/02 (2006.01) F02B 3/00 (2006.01)
F02B 77/11 (2006.01) F 16 J 1/01 (2006.01)

(21) 国際出願番号:
PCT/JP2012/000964

(22) 国際出願日:
2012 年 2 月 14 日 (14.02.2012)

(25) 国際出願の言語:
日本語

(26) 国際公開の言語:
日本語

(30) 優先権データ:

(71) 出願人 (米国を除く全ての指定国について):
【名】泽野秀 (JP)
【法人】株式会社 OHKAWA, Hiroshi)
【住所】[JP/JP]; Aichi 4850077

【名】泽野秀 (JP)
【法人】株式会社 OHKAWA, Hiroshi)
【住所】[JP/JP]; Aichi 4850077

(74) 代理人:
大川 宏(MAKINO, Shin) [JP/JP]; 〒4850077 愛知県小牧市大字西之島字鳥海道 3 丁目 1 番地 アクロス株式会社内 Aichi (JP)

(81) 指定国 (表示のない限り、全ての種類の国内保護が可):

(72) 発明者:
【名】泽野秀 (JP)
【法人】株式会社 OHKAWA, Hiroshi)
【住所】[JP/JP]; Aichi 4850077

(84) 指定国 (表示のない限り、全ての種類の広域保護が可):

【名】泽野秀 (JP)
【法人】株式会社 OHKAWA, Hiroshi)
【住所】[JP/JP]; Aichi 4850077

(54) Title: ENGINE AND PISTON

(54) 発明の名称: エンジンおよびピストン

(57) Abstract: A n engine is provided with a cylinder block comprising a bore, a piston that fits into the bore enabling free reciprocal motion so as to form a combustion chamber, a cylinder head with a valve hole that closes the combustion chamber and communicates with the combustion chamber, and a valve that opens and closes the valve hole. For at least one of the pistons, the cylinder head, and the valve a wall surface that faces the combustion chamber is coated by a thermally insulating coating film. The thermally insulating coating film is constituted by a resin and a plurality of nanoscale hollow particles that are embedded in the resin and have diameters less than the thickness of the thermally insulating film and are 500 nanometers or less in size.

(57) 要約:

[続き有]
エンジンは、ポアを有するシリンダブロックと、燃焼室を形成するようにポアに往復移動可能に嵌合されたピストンと、燃焼室を閉じつつ燃焼室に連通するバルブ孔をもつシリンダヘッドと、バルブ孔を開閉させるバルブとを備える。ピストン、シリンダヘッド、バルブのうちいずれか一つ以上において、燃焼室に面する壁面に断熱コーティング膜が被覆されている。断熱コーティング膜は、樹脂と共に樹脂の内部に埋設され断熱コーティング膜の厚みよりも径が小さく且つ500ナノメートル以下のサイズの複数のナノ中空粒子を有する。
明細書
発明の名称：エンジンおよびピストン
技術分野
[0001] 本発明は燃焼室の断熱性を高めたエンジンおよびピストンに関する。
背景技術
[0002] エンジンは、ボアを有するシリンダブロックと、燃焼室を形成するように
ボアに往復移動可能に嵌合されたピストンと、燃焼室を閉じ且つ燃焼室に連
通するバルブ孔をもつシリンダヘッドと、バルブ通を閉閉させるバルブとを
有する。燃費を向上させるためには、燃焼室の断熱性を高めることが好まし
し。特に、ハイブリッド車両、または、アイドリングストップ機能付きの車
両等のように、燃費向上を図る車両では、車両の走行中または一時停車中に
においてエンジンの駆動を一時的に停止させることがある。この場合、エンジ
ンの燃焼室の温度が低下する傾向があるため、エンジンの燃費の向上には限
界がある。
[0003] 特許文献1は、熱伝達率が低いセラミックス製の中空粒状体を無機バイン
ダ（ジルコニア、アルミナ等）で分散させたセラミックス遮熱膜を開示する。
特許文献2は、セラミックス溶膜で形成された多孔質材からなる断熱コーテ
ィング膜をピストンの頂面に形成しているエンジンを開示する。特許文献
3は、ピストン本体の頂面に低熱伝導部材を被覆させたピストンを開示する。
このものでは、低熱伝導部材は、ピストン本体を形成するアルミニウム材
料よりも熱伝導率が低い金属材料（チタン等）で形成されており、ピストン
本体の頂面との間に断熱用の空気膜を形成している。特許文献4は、ピスト
ンの頂面にセラミックス等の断熱材を設けたエンジンを開示する。
先行技術文献
特許文献
[0004] 特許文献1：特開2010-185290号公報
特許文献2：特開2010-71134号公報
上記した特許文献に係る技術では、高い断熱性および高い表面平滑性を備える断熱コーティング膜を形成するには限界があり、エンジンの燃費の向上には限界があった。更に、特許文献２、４は、溶射の断熱材が使われているが、溶射は、溶射処理前より溶射処理後に面が荒れてしまう。このためピストンの頂面にセラミックスを溶射した場合には、表面粗さの微視的な凹凸が点火要因となるヒートスポットになり、エンジンにノッキングが生じる原因となり易い。また、セラミックス溶射は膜が硬質であるため、後加工が困難である。

発明の概要
発明が解決しようとする課題
本発明は上記した実情に鑑みてなされたものであり、ノッキングを抑え、高い断熱性および高い表面平滑性を備える断熱コーティング膜を有することにより燃費の向上に貢献できるエンジンおよびピストンを提供することを課題とする。
課題を解決するための手段
（１）本発明に係るエンジンは、ポアを有するシリンダーブロックと、燃焼室を形成するために前記ポアに往復移動可能に嵌合されたピストンと、燃焼室を閉じ且つ燃焼室に連通するバルブ孔をもつシリンダーヘッドと、バルブ孔を開閉させるバルブとを具備するエンジンであって、ピストン、シリンダーヘッド、バルブのうちいずれか一つ以上において、燃焼室に対面する壁面に断熱コーティング膜が被覆されており、断熱コーティング膜は、樹脂と共に樹脂の内部に埋設され断熱コーティング膜の厚みよりも径が小さく且つ５００ナノメートル以下のサイズの複数のナノ中空粒子を有する。

断熱コーティング膜は、樹脂と共に樹脂の内部に埋設された断熱コーティング膜の厚みよりも径が小さな複数のナノ中空粒子を有する。断熱コーティング膜は高い空隙率を備えており、高い断熱性を有するため、燃焼室の断熱
性を高めることができ、エンジンの燃費向上に貢献できる。

なお、エンジンにおいて、ピストンのうち燃焼室に対面する頂面にセラミックス溶射膜が被覆されている場合には、セラミックス溶射膜の表面粗さの改善には限界があるため、セラミックス溶射膜を微視的にみれば、溶射膜のうち燃焼室に対面する表面には微視的な凸部が多数形成されている。このような凸部は、エンジンの燃焼工程を誘発させる要因となり、エンジンにノッキングが発生する確率が増加する不具合が発生するおそれがある。この点について本発明によれば、断熱コーティング膜は樹脂を含み、セラミックス溶射膜等と異なり、高い表面平滑性を備えており、エンジンの耐ノッキング性が高まる。

本発明に係るエンジンによれば、断熱コーティング膜は、樹脂と共に樹脂の内部に埋設され断熱コーティング膜の厚みよりも径が小さな複数のナノ中空粒子を有するため、樹脂とナノ中空粒子との複合作用を期待できる。即ち、ナノ中空粒子はナノサイズであるため破壊されにくい性質をもつ。爆発工程における燃焼室の圧力を断熱コーティング膜の表面が受圧するとき、樹脂とナノ中空粒子との複合作用を期待でき、断熱コーティング膜の強度を保ちながら樹脂が受圧した圧力をナノ中空粒子の微かな弾性変形で緩和することを期待できる。このため断熱コーティング膜の樹脂に亀裂が発生しにくくなる。なお本発明者に実施した試験例によれば、断熱コーティング膜が樹脂のみで形成されており、ナノ中空粒子を含有していないときには、断熱コーティング膜に亀裂が発生し易かった。

（2）本発明に係るエンジンにおいて、断熱コーティング膜の厚みは10乃至2000マイクロメートルであり、ナノ中空粒子のサイズは10乃至500ナノメートルであることが好ましい。ナノ中空粒子を断熱コーティング膜の内部に分散させる分散性を高めることができ、ナノ中空粒子を断熱コーティング膜の樹脂の内部に効率よく埋設させることができる。

（3）本発明に係るエンジンにおいて、樹脂は、エポキシ樹脂、アミノ樹脂、ポリアミノアミド樹脂、フェノール樹脂、キシレン樹脂、フラン樹脂、
シリコーン樹脂、ポリエーテルイミド、ポリエーテルサルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリアミドイミド、ポリベンゾイミダゾール、熱可塑性ポリイミド、非熱可塑性ポリイミドのうちの少なくとも1種であることが好ましい。このような樹脂であれば、本発明に係る作用を効果的に期待できる。

[0013]耐熱温度および熱分解温度が高い樹脂が好ましい。更に、耐熱性および熱分解温度を考慮すると、エポキシ樹脂、シリコーン樹脂、ポリエーテルイミド、ポリエーテルサルホン、ポリエーテルエーテルケトン、ポリアミドイミドが好ましい。更に高温環境で用いられる場合には、ポリベンゾイミダゾール、熱可塑性ポリイミド、非熱可塑性ポリイミドがより好ましい。更に、好ましくは、熱可塑性ポリイミド、ビロメリット酸二無水物や耐熱性に優れるビフェニルテトラカルボン酸二無水物から得られる非熱可塑性ポリイミドが良い。これらの樹脂をバインダーとして、ナノサイズ（1マイクロメートル未満）のナノ中空粒子を配合することにより、断熱コーティング膜における空隙率を高め、断熱コーティング膜の断熱性を確保することができる。

[0014]本発明に係るピストンは、燃焼室を形成するようにポアに往復移動可能に嵌合されるピストンであって、ピストンのうち燃焼室に対面する壁面に断熱コーティング膜が被覆されており、断熱コーティング膜は、樹脂と共にある樹脂の内部に埋設され断熱コーティング膜の厚みよりも径が小さく且つ5000ナノメートル以下のサイズの複数のナノ中空粒子を有する。

[0015]本発明に係るピストンによれば、断熱コーティング膜は、樹脂と共に樹脂の内部に埋設され断熱コーティング膜の厚みよりも径が小さな複数のナノ中空粒子とを有するため、樹脂とナノ中空粒子との複合作用を期待できる。即ち、ナノ中空粒子はナノサイズであるため破壊されにくい性質をもつ。爆発工程における燃焼室の圧力を断熱コーティング膜の表面が受圧するとき、樹脂とナノ中空粒子との総合作用を期待でき、樹脂が受圧した圧力をナノ中空粒子の弾性変形で緩和することを期待できる。このため断熱コーティング膜
の樹脂に亀裂が発生しにくくなる。なお本発明者が実施した他の試験例によれば、断熱コーティング膜が樹脂のみで形成されており、ナノ中空粒子を含有していないときには、断熱コーティング膜に亀裂が発生し易かった。

発明の効果

josho 16] 本発明によれば、高い断熱性および高い表面平滑性を備える断熱コーティング膜を有することにより、燃焼室の断熱性を高めることができ、エンジンの燃費の向上に貢献できる。更に、ピストンの頂面側の表面平滑性を高めることができるため、エンジンのノッキングを抑制させることができる。

josho 17] 本発明によれば、前述したようにエンジンの燃焼室の断熱性を高めることができるため、エンジンの冷間起動時における熱効率が向上し、エンジンの燃費が向上する。一般的には、エンジンの冷間起動時には燃料の気化が悪いため、通常よりも多くの燃料（ガソリン等）を燃焼室に送り込んでいる。しかし本発明に係る断熱コーティング膜を設ければ、エンジンの燃焼室を効果的に断熱することでき、燃料の気化が改善され、燃費が向上する。特に、近年増えているハイブリッド車両、または、アイドリングストップ付きの車両においては、エンジンの断続運転によりエンジンが充分に暖まらないことが多い。このようなとき、本発明に係る断熱コーティング膜が効果を発揮し、エンジンの燃焼室を高温に維持させ易い。また、燃焼室における燃焼熱がピストン、シリナダブロック、シリナダヘッド等に逃げにくくなるため、燃焼室における燃焼温度が上昇し、ひいては排気ガス中に含まれるHC（ハイドロカーボン）を低減できる効果も期待できる。

図面の簡単な説明

josho 18] [図1]図1は実施形態1に係り、エンジンの燃焼室付近を模式的に示す断面図である。

[図2]図2は実施形態1に係り、ピストンの頂面に形成されている断熱コーティング膜付近を模式的に示す断面図である。

[図3]図3は実施形態2に係り、エンジンの燃焼室付近を模式的に示す断面図である。
図4 はピストンの頂面側を加熱させる試験を模式的に示す図である。
図5 はピストンの頂面側を加熱させる試験において加熱時間と温度との関係を示すグラフである。
図6 はピストンの頂面側を加熱させる試験において加熱時間と温度上昇率との関係を示すグラフである。
図7 は断熱コーティング膜による燃費と排ガス中の有害物質の低減効果を示すグラフである。

発明を実施するための形態

本発明の好ましい形態によれば、中空ナノ粒子を樹脂に配合し、ピストンのうち燃料室に対する頂面に断熱コーティング膜を形成することができる。これによりエンジンの熱効率が向上し、車両の燃費が向上する。樹脂の材質としては、接着性、耐熱性、耐薬品性、強度のあるものが好ましい。樹脂としてはアミノ樹脂、ポリアミノアミド樹脂、フェノール樹脂、キシレン樹脂、フラン樹脂等としても良い。更に、耐熱性および熱分解温度を考慮すると、エポキシ樹脂、シリコーン樹脂、ポリエーテルイミド、ポリエーテルサルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリアミドイミドが好ましい。更に高温環境で用いられる場合には、ポリベンゾイミダゾール、熱可塑性ポリイミド、非熱可塑性ポリイミドがより好ましい。更に、好ましくは、熱可塑性ポリイミド、ビロメリット酸二無水物や耐熱性に優れるビフェニルテトラカルボン酸二無水物から得られる非熱可塑性ポリイミドが良い。これらの樹脂をポリマーとして、ナノサイズ（1マイクロメートル未満）のナノ中空粒子を配合することにより、断熱コーティング膜における空隙率を高め、断熱コーティング膜の断熱性を確保することができる。樹脂は無機材料（例えばアルミナ、チタニア、ジルコニアなど）を含んでいても良い。無機材料は例えば粉末粒子状または繊維状でも良い。無機材料のサイズとしては、ナノ中空粒子と同程度の粒径、ナノ中空粒子よりも小さな粒径が好ましい。

断熱コーティング膜の見掛け体積を100%とするとき、断熱コーティング
グ膜における空隙率は体積比で5乃至50％が好ましい。特に7乃至45％、10乃至40％が例示される。空隙率はナノ中空粒子の配合量に対応し、断熱コーティング膜の断熱性に影響を与え、ナノ中空粒子の配合量が多ければ、空隙率は高くなり、断熱コーティング膜の断熱性が高くなる。ここで、空隙率が過剰に低いと、断熱コーティング膜の断熱性が低下する。空隙率が過剰に高いと、樹脂に対してナノ中空粒子の割合が過多となり、ナノ中空粒子を結合させるバインダが不足し、断熱コーティング膜の成膜性が損なわれたり、断熱コーティング膜の強度が低下するおそれがある。

[0021] 断熱コーティング膜の被覆後の壁面の表面粗さは、被覆前の表面粗さよりも小さいことが好ましい。ナノ中空粒子の材質としては、セラミック系や有機系材料が好ましい。特に、耐熱性に優れるシリカ(SiO₂)、アルミナ(Al₂O₃)、ジルコニア(ZrO₂)、チタニア(TiO₂)がより好ましい。場合によっては、ナノ中空粒子の材質は樹脂でも良いし、金属でも良い。

[0022] ナノ中空粒子の平均粒子径とは10乃至500ナノメートル、好ましくは20乃至300ナノメートル、30乃至150ナノメートルにできる。ナノ中空粒子のサイズは、ビストンのスカート部とシリングボア壁面との間等に形成される油膜の厚みよりも小さい方が好ましい。ナノ中空粒子が断熱コーティング膜から脱落するときであっても、これらの損傷を抑え得るためである。ナノ中空粒子の殻の厚みとしては、ナノ中空粒子の粒子径にもよるが、0.5乃至50ナノメートル、1乃至30ナノメートル、好ましくは5乃至15ナノメートルが例示できる。ナノ中空粒子の形状としては真球状、疑似真球状、疑似的円球状、疑似的多角形状（疑似的立方体形状、疑似的直方体形状を含む）等にできる。ナノ中空粒子を形成する殻の表面は平滑でもよく、微小凹凸があっても良い。

[0023] 数乃至数百マイクロメートルといった大きなサイズの中空粒子では、中空粒子の配合量に限界があり、断熱コーティング膜を薄膜とさせつつ高い断熱性を発揮させるのは困難である。また、サイズが大きな中空粒子が断熱コーティング膜の表面近傍に表出すると、断熱コーティング膜の表面の凹凸が激
しくなり、表面平滑性が低下する。このように断熱コーティング膜の表面の凹凸が激しくなる場合には、断熱コーティング膜の表面において微視的な凹凸がヒートスポットとなり、エンジンのノッキングが生じ易くなる傾向がある。また、何らかの要因で樹脂から中空粒子が脱落した場合には、数乃至数百マイクロメートルのサイズの大きな中空粒子は、エンジンの摺動部の油膜厚さ（約0.5乃至1マイクロメートル）より大きく、且つ、ピストンリングの材質より硬質であることがあり、ピストンリングを摩耗させてしまうおそれがある。これに対して本実施形態によれば、500ナノメートル以下（例えば10乃至500ナノメートル程度）といった極微小サイズの中空粒子は、樹脂（バインダ）への充填量を多くでき、ナノ中空粒子による微小空孔を分散でき、断熱コーティング膜が薄い被膜であっても、断熱コーティング膜の断熱性を確保することが可能である。また、ナノ中空粒子をナノサイズにすることによって、ナノ中空粒子に起因する断熱コーティング膜の表面における凹凸が極めて小さくなり、バインダとなる樹脂のレベリング作用で断熱コーティング膜の表面平滑化が可能となり、エンジンのノッキング限界を高めることができる。ノッキング限界を考慮すると、断熱コーティング膜の表面粗さはRaで10.0以下、7.0以下が好ましい。5.0以下、3.0以下がより好ましい。更に、2.0以下が更に好ましい。更に、ナノ中空粒子は、仮に樹脂から脱落したとしても、前述の油膜厚さより小ささいサイズであるため、油膜に覆われ、ピストンのスカート部、シリンダブロックのポア壁面に損傷させるおそれが抑えられる。

[0024] 断熱コーティング膜の厚さとしては、断熱性、粘着性、空隙率の確保等を考慮すると、10乃至2000マイクロメートル、20乃至1000マイクロメートルが好ましい。50乃至700マイクロメートル、もしくは、100乃至500マイクロメートルとすることもできる。断熱コーティング膜の厚みの上限値としては2000マイクロメートル、1000マイクロメートル、800マイクロメートル、500マイクロメートル、300マイクロメートルが例示される。断熱コーティング膜の厚みの下限値としては20マイ
クロメートル、30マイクロメートル、40マイクロメートルが例示される。
同一単位で、断熱コーティング膜の厚み/ナノ中空粒子の径をαとすると
αは20万乃至20の範囲内、5000乃至20の範囲内、30000
乃至100の範囲内が例示できる。この場合、断熱コーティング膜における
ナノ中空粒子の分散性を高めることができ、断熱コーティング膜の断熱性を
高めると共に断熱ムラを低減させるのに有利である。

上記した特許文献3に示されるような、チタン等の低熱伝導部材を使用す
る場合は、構造上、ミリ単位の厚みが必要である。この場合、ピストンの重
量増は避けられず、高速で動くピストンの動きを阻害し、燃費向上の妨げに
なり、好ましくない。これに対して、表1に示されるように、本発明に係る
断熱コーティング膜は樹脂を含み、アルミニウム合金よりも比重が軽い利点
が得られる。ここで、仮に7ミリメートルの厚みを有するチタンで得られる
断熱性は、ジルコニアの溶射膜の場合には1.65ミリメートルの厚みの断
熱性に相当し、また、本発明に係る断熱コーティング膜では0.021
乃至0.091ミリメートルの厚みに相当する。このように本発明に係る断
熱コーティング膜では、断熱性を確保しつつ薄膜化できるため、断熱コート
ィング膜をピストンの頂面に形成したとしても、ピストンの頂面側の断熱性
を高めつつ、ピストンの重量増はごく僅かであり、ピストンの動作には影響
を与えない利点が得られる。

<table>
<thead>
<tr>
<th>材料</th>
<th>比重</th>
<th>熱伝導率 (W/mK)</th>
<th>必要膜厚 m m</th>
</tr>
</thead>
<tbody>
<tr>
<td>合金（ピストン）</td>
<td>2.7</td>
<td>130</td>
<td>-</td>
</tr>
<tr>
<td>チタン（特許文献3）</td>
<td>4.5</td>
<td>17</td>
<td>7 (推定備)</td>
</tr>
<tr>
<td>ジルコニア（特許文献2、4）</td>
<td>6.0</td>
<td>4</td>
<td>1.65</td>
</tr>
<tr>
<td>本発明に係る断熱コーティング膜</td>
<td>1.0-1.8</td>
<td>0.05-0.22</td>
<td>0.021-0.091</td>
</tr>
</tbody>
</table>
以上説明したように本発明に係る断熱コーティング膜は、複数のナノ中空粒子を埋設しているため、高い空隙率を確保でき、高い断熱性を有することができる。従って、燃焼室の断熱性を高めることができる。本発明に係る断熱コーティング膜を塗布して壁面（燃焼室に対面する壁面）に形成すれば、壁面における成膜が簡単で済む。更に、ナノサイズのナノ中空粒子を樹脂に混ぜ込むことによって、塗料のレベルリング作用を損なわず、塗布前のピストンの表面粗さに対し、塗布後の断熱コーティング膜の表面粗さが小さくなることで、ピストンの比表面積が小さくなり、ピストンからの伝熱が抑制され、ピストンの断熱性能をより向上させることが可能となる。

なお、本発明に係る断熱コーティング膜は、樹脂、ナノ中空粒子の他に、必要に応じて添加剤を含んでいても良い。添加剤としては、ナノ中空粒子の分散性を高める分散剤、接着性や配合粉体前の親和性の向上や接着性の向上を補助するシランカップリング剤、表面張力を調整するレベルリング剤、界面活性剤、チクソトロピック特性を調整させる増粘剤等が必要に応じて挿げられる。

本発明に係る断熱コーティング膜を形成する場合は、樹脂を溶剤に溶解させる等して低粘度化し、これにナノ中空粒子を混合させて分散させることにより塗料を形成できる。分散にあたり、超音波分散機、湿式ジェットミル、ホモジナイザー、3本ロール、高速攪拌機等が挿げられる。燃焼室を形成する壁面に塗料を塗布して塗膜を形成し、塗膜を焼き付けて本発明に係る断熱コーティング膜を形成できる。塗布形態としては、スプレー塗り、刷毛塗り、ローラ塗り、ロールコーダ、静電塗装、浸漬塗装、スクリーン印刷、ノット印刷等の公知の塗装形態が挿げられる。塗装後に、塗装膜を加熱保持して焼き付け、断熱コーティング膜とることができる。焼き付け温度としては、樹脂の材質に等に応じて設定でき、130乃至220℃、150乃至200℃、170乃至190℃が挿げられる。焼き付け時間としては、0.5乃至5時間、1乃至3時間、1.5乃至2時間が例示される。断熱コーティング膜を形成する前のピストン等の壁面に、ショットプラスト、エッチング、
化成処理等の予備処理を行うことが好ましい。

[0029] 更に、本発明に係る断熱コーティング膜は、ピストンの頂面のみに形成しても良いし、あるいは、シリンダーヘッドのうち燃焼室に面する壁面に形成することもできる。更に、吸気用または排気用のバルブ孔を開閉させるバルブのうち燃焼室を形成する壁面にも、本発明に係る断熱コーティング膜を形成することもできる。この場合にも、燃焼室の断熱性を高めることができる。なお、エンジンとしては内燃機関、レシプロエンジン等が挙げられる。エンジンの使用される燃料としては、ガソリン、軽油、LPG等が挙げられる。

[0030] [実施形態 1]

図1および図2は実施形態1の概念を模式的に示す。図1はエンジン1の燃焼室10付近の断面を模式的に示す。エンジン1はピストン式内燃機関である。図1および図2はあくまでも概要図であり、細部まで規定するものではない。エンジン1は、ポート20を有するシリンダーブロック2と、頂面30側に燃焼室10を形成するようにポート20に矢印A1、A2方向に往復移動可能に嵌合されたピストン3と、燃焼室10を閉じ且つ燃焼室10に連通するバルブ孔40をもつシリンダヘッド4と、バルブ孔40を開閉させるバルブ5とを備えている。バルブ孔40は、燃焼室10に連通可能な吸気用バルブ孔40iと排気用バルブ孔40eとを備えている。シリンダヘッド4はガスケット47を介してシリンダーブロック2に被着されている。シリンダーブロック2、シリンダヘッド4、ピストン3は、鍛造系のアルミニウム合金で形成されている。アルミニウム合金としては、アルミニウム—シリコン系合金、アルミニウム—シリコン—マグネシウム系合金、アルミニウム—シリコン—銅系合金、アルミニウム—シリコン—マグネシウム—銅系合金、アルミニウム—シリコン—マグネシウム—鋼系合金が好ましい。亜共晶組成、共晶組成、過共晶組成でも良い。場合によっては、シリンダーブロック2、シリンダーヘッド4、ピストン3のうちの少なくとも一つは、マグネシウム合金系、鍛鉄系（例えば片状黒鉛錶鉄、球状黒鉛錶鉄を含む）で形成しても
良い。

[0031] 図1および図2に示すように、ピストン3のうち燃焼室10に対面する壁面である頂面30の全域またはほぼ全域に、第1断熱コーティング膜7f（厚み：200乃至1000マイクロメートル）が被覆されている。この場合、ピストン3の頂面30のみに第1断熱コーティング膜7fを形成することが好ましい。なお、摩滅等を考慮すると、ピストン3のスカート部の外壁面には形成しないことが好ましい。

[0032] 第1断熱コーティング膜7fは、樹脂と、樹脂に埋設された複数のナノ中空粒子（シリカバーレーションやアルミナバーレーション等のセラミックスバーレーション）とを有する。ナノ中空粒子の平均径は10乃至500ナノメートル以下、特に30乃至150ナノメートルにできる。但しこれに限定されるものではない。ナノ中空粒子の殻の厚みは1乃至50ナノメートル、5乃至15ナノメートルにできる。平均径は電子顕微鏡観察における単純平均とする。ナノ中空粒子の径の下限については、電子顕微鏡観察により、8または9ナノメートルにでき、上限については600または800ナノメートルにできる。

[0033] 樹脂としては、場合によっては、アミノ樹脂、ポリアミノアミド樹脂、フェノール樹脂、キシレン樹脂、フラン樹脂等としても良い。更に、耐熱性および熱分解温度を考慮すると、エポキシ樹脂、シリコーン樹脂、ポリエテルイミド、ポリエーテルカルボン、ポリエーテルケトン、ポリエーテルケトン、ポリウレアドリドが好ましい。更に高温環境で用いられる場合には、ポリビスノイミダゾール、熟可塑性ポリイミド、非熱可塑性ポリイミドがより好ましい。更に、好ましくは、熟可塑性ポリイミド、ピロメリット酸ニ無水物や耐熱性に優れるビフェニルテトラカルボン酸ニ無水物から得られる非熱可塑性ポリイミドが良い。

[0034] ピストン3のうち燃焼室10に対面する頂面30に第1断熱コーティング膜7fが形成されている。この場合、500ナノメートル以下といった極微小サイズの中空粒子は、樹脂（バインダ）への充填量を多くでき、ナノ中空粒子による微小空孔を分散できる。よって、断熱コーティング膜が薄い被膜
であっても、断熱コーティング膜の断熱性、ひいては燃焼室 1 0 の断熱性を確保することができる。

[0035] このため、燃焼室 1 0 の熱がピストン3を介してシリンダブロック2側に逃げることが抑制され、燃焼室 1 0 の断熱性が高まる。なお、ピストン3には連結ピン3 1 を介してコネクティングロッド3 2 が連結されている。燃焼室 1 0 に対面する点火部 4 2 をもつ点火プラグ 4 3 がシリンダヘッド4に設けられている。バルブ5は耐熱鋼で形成されており、棒状のバルブステム部 5 0 と、径方向に拡径した傘部 5 1 とを有する。傘部 5 1 は燃焼室 1 0 に対面するバルブ面 5 3 を有する。バルブ面 5 3 には肉盛膜が肉盛りされていても良い。肉盛膜は銅合金または鉄合金で形成できる。

[0036] 本実施形態によれば、高い断熱性および高い表面平滑性を備える断熱コーティング膜を有することにより、燃焼室の断熱性を高めることができ、エンジンの燃費の向上に寄与できる。更に、ピストンの頂面側の表面平滑性を高めることができるため、エンジンのノッキングを抑制させることができる。エンジン1の爆発工作における燃焼室 1 0 の圧力Fは、断熱コーティング膜 7 f に作用する（図2参照）。圧力Fは、複数のナノ中空粒子を分散状態に埋設させている断熱コーティング膜 7 f により受圧されると考えられる。

[0037] 本実施形態によれば、前述したようにエンジン1の燃焼室 1 0 の断熱性を高めることができるため、エンジン1の冷間始動時における熱効率が向上し、エンジン1の燃費が向上する。一般的には、エンジン1の冷間始動時には燃料の気化が悪いため、通常よりも多くの燃料（ガソリン等）を燃焼室に送り込んでいる。しかし本実施形態に係る断熱コーティング膜 7 f をピストン3の頂面3 0 に積層させれば、エンジン1の燃焼室 1 0 を効果的に断熱することでき、燃料の気化が改善され、燃費が向上する。特に、近年増えているハイブリッド車両、または、アイドリングストップ付きの車両においては、エンジン1の断続運転によりエンジン1が充分に暖まらないことがある。このようなとき、本実施形態に係る断熱コーティング膜 7 f が効果を発揮し、エンジン1の燃焼室 1 0 を高温に維持させ易い。また、燃焼室 1 0 における
燃焼熱がピストン3、シリンダブロック2、シリンダヘッド4等に逃げにくくなるため、燃焼室10における燃焼温度が上昇し、ひいては排気ガス中に含まれるHC（ハイドロカーボン）を低減できる効果も期待できる。なお、被覆後の断熱コーティング膜7fの表面粗さは、断熱コーティング膜7f被覆前の頂面30の表面粗さよりも小さい。

[0038] 本実施例に係る断熱コーティング膜7fを形成する一方法について説明する。まず、樹脂を溶剤に溶解させて低粘度化させ、これにナノ中空粒子を混合させて分散器により分散させることにより塗料を形成する。このような塗料をピストンの頂面にスプレー等で塗布して塗膜を形成した。その後、大気中雰囲気において、塗膜を所定の焼付温度（120乃至400℃の範囲内の任意値）で所定の時間（0.5乃至10時間の範囲内の任意値）焼き付け、断熱コーティング膜7fを形成することができる。

[0039] [実施形態2]
図3は実施形態2を示す。本実施形態は実施形態1と基本的には同様の構成を有しており、作用効果を有する。図3はエンジン1の燃焼室10付近の断面を模式的に示す。ピストン3のうち燃焼室10に対面する壁面である頂面30に、第1断熱コーティング膜7fが被覆されている。更に、シリンダヘッド4のうち燃焼室10に対面する壁面45に、第2断熱コーティング膜7sが被覆されている。第1断熱コーティング膜7fおよび第2断熱コーティング膜7sが形成されているため、燃焼室10の断熱性が高まる。場合によっては、シリンダヘッド4の壁面45に第2断熱コーティング膜7sが形成されている限り、第1断熱コーティング膜7fを廃止しても良い。なお、断熱コーティング膜7f、7sの被覆後の壁面の表面粗さは、被覆前の表面粗さよりも小さい。

[0040] [実施形態3]
本実施形態は実施形態1, 2と基本的には同様の構成を有しており、作用効果を有するため、図1乃至図3を準用できる。ピストン3のうち燃焼室10に対面する壁面である頂面30に、第1断熱コーティング膜7fが被覆さ
れている。更に、シリンダヘッド4 うち燃焼室 10 に対面する壁面4 5 に、第2断熱コーティング膜 7 s が被覆されている。加えて、バルブ5 のうち燃焼室 10 に対面するバルブ面 5 3 に第2断熱コーティング膜 7 f が形成され、シリンダヘッド4 うち燃焼室 10 に対面する壁面4 5 に第2断熱コーティング膜 7 s が形成され、バルブ5 のうち燃焼室 10 に対面するバルブ面 5 3 に第3断熱コーティング膜 7 t が形成されている。このため、燃焼室 10 の断熱性が更に高まる。なお、被覆された断熱コーティング膜 7 f , 7 s, 7 t の表面粗さは、断熱コーティング膜 7 f , 7 s, 7 t の被覆前の頂面3 0 , 壁面4 5 , バルブ面 5 3 等の壁面の表面粗さよりも小さい。

[0041] 第1断熱コーティング膜 7 f の厚みを t 1 とし、第2断熱コーティング膜 7 s を t 2 とし、第3断熱コーティング膜 7 t の厚みを t 3 とするとき、t 1 = t 2 = t 3 , t 1 ≥ t 2 ≥ t 3 にできる (t 1 , t 2 , t 3 は図3において図示せず)。ピストン3 からの逃熱抑制を考慮すると、t 1 > t 2 > t 3 、または、t 1 > t 2 ≥ t 3 としても良い。シリンダヘッド4 からの逃熱抑制を考慮すると、t 2 > t 1 > t 3 、または、t 2 > t 1 ≥ t 3 としても良い。バルブ5 の傘部5 1 のバルブ面 5 3 をこれの垂直方向に投影した投影面積は、ピストン3 の頂面3 0 をこれの垂直方向から投影した投影面積よりも小さいため、第3断熱コーティング膜 7 t を廃止することもできる。

[0042] [実施形態4]
本実施形態は実施形態1 乃至3 の基本的には同様の構成を有しており、作用効果を有するため、図1 乃至図3 を準用できる。特に図示しないものの、ピストン3 のうち燃焼室 10 に対面する壁面である頂面3 0 に第1断熱コーティング膜 7 f が被覆されている。更に、シリンダヘッド4 うち燃焼室 1 0 に対面する壁面4 5 に第2断熱コーティング膜 7 s が被覆されている。このため燃焼室 10 の断熱性が高まる。

[0043] [実施例]
以下、本発明をより具象化した実施例について説明する。実施例1 として
、ピストンのうち燃焼室に対面する頂面に、本発明に係る断熱コーティング膜を塗布して評価を実施した。ピストンの材質はアルミニウム—シリコン—マグネシウム—銅—ニッケル系合金（シリコン：11乃至13質量%、J S A C—8A）とした。断熱コーティング膜の厚みは125マイクロメートルとした。バインダとして機能する樹脂としては、非熱可塑性ポリイミドを採用した。表2に示すように、樹脂100質量部に対してナノ中空粒子は14質量部配合させた。ナノ中空粒子としては、オルトクレイン Anataseトトとし、平均粒子径を108ナノメートルとし、殻の厚み5乃至15ナノメートルとした。

実施例1に係る断熱コーティング膜を形成するにあたり、樹脂を溶剤（N-メチル-2-ピロリドン）に溶解させて低粘度化させ、これにナノ中空粒子を混合させて分散機（超音波分散機）により分散させることにより塗料を形成した。このような塗料をピストンの頂面にスプレー等で塗布して塗膜を形成した。その後、塗膜を電気炉により所定の焼付温度（170乃至190℃）で所定の時間（0.5乃至2時間）焼き付け、断熱コーティング膜を形成した。

ナノ中空粒子の平均粒子径については、断熱コーティング膜をクロスセクションポリッシャーで研磨させた後に、電子顕微鏡（F E — S E M）で観察し、ナノ中空粒子の平均粒子径を測定した。測定数nを20とし、単純平均とした。断熱コーティング膜の見掛け体積を100%とするとき、断熱コーティング膜における空隙率が体積比で15%となるようにナノ中空粒子を配合させた。この場合、ナノ中空粒子の殻で区画された空隙が空隙率として演算される。

実施例1について、断熱コーティング膜の熱伝導率、表面粗さ、ノッキング性、燃費について評価し、表2に示した。燃費については、従来のエンジンの燃費を100と相対表示したときにおける燃費とした。燃費測定条件は次のようにした。
使用エンジン）

（i）エンジン諸元：直列4気筒、水冷式、D0HC、16バルブ、4サイクルエンジン

排気量：1300cc

（ii）ピストン：4個とも頂面（ピストンのうち燃焼室に面した壁面）に

本発明に係る断熱コーティング膜（厚さ25μm）を塗布により形成。

燃費評価条件）

エンジンが冷間状態において、エンジン水温が室温から88℃まで上昇する

間の燃費を平均して測定した。この場合、回転数2500rpmの一定回

転で、一定負荷を加える。

[0047]同様に、比較例1, 2についても評価し、結果を表2に示す。比較例1に

ついては、ピストンの頂面は無処理とし、ナノ中空粒子を含む断熱コーティ

ング膜は形成されていない。比較例2については、ピストンの頂面にジルコ

ニアを溶射し、溶射膜を形成した。

[0048]表2に示すように、比較例1では、熱伝導率は130（W/m.k）であり

、大きく、表面粗さはRaで4.82であった。ノッキングは無しであり、

燃費100として相対表示した。

[0049]比較例2では、ジルコニア溶射膜の熱伝導率は4.0（W/m.k）であり

、本実施例に比較すると約2.5倍（4.0（W/m.k）/ 0.16（W/m.k））

大きかった。溶射膜の表面粗さはRaで3.8であり、実施例1よりも

かなり粗かった。比較例では、エンジンにノッキングが発生し、燃費測定は

測定不可に至った。

[0050]これに対して実施例1では、断熱コーティング膜の熱伝導率は0.16（

W/m.k）と小さく、比較例1に比較すると約1.2×10.3倍（0.16（

W/m.k）/ 130（W/m.k））であり、比較例2に比較すると約0.

04倍（0.16（W/m.k）/ 4.0（W/m.k））であった。実施例1の

断熱コーティング膜の表面粗さはRaで1.79であり、比較例1, 2よ

りも小さかった。実施例1では、ノッキングは無しであり、燃費は102.5

であった。
実施例2では、断熱コーティング膜の熱伝導率は0.12（W/mK）と小さかった。実施例2の断熱コーティング膜の表面粗さはRaで1.86であり、比較例1、2よりも小さかった。実施例2では、ノッキングは無しであり、燃費は103.1であった。

表2

<table>
<thead>
<tr>
<th>断熱コーティング膜</th>
<th>比較例1無処理</th>
<th>比較例2ジルコニア溶射膜</th>
<th>実施例1</th>
<th>実施例2</th>
</tr>
</thead>
<tbody>
<tr>
<td>樹脂</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>ナノ中空粒子</td>
<td>-</td>
<td>-</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td>空隙率（体積%）</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>23</td>
</tr>
<tr>
<td>膜厚（μm）</td>
<td>-</td>
<td>1417</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>平均粒径（ナノメートル）</td>
<td>-</td>
<td>-</td>
<td>108</td>
<td>103</td>
</tr>
<tr>
<td>测定結果</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>熱伝導率（W/mK）</td>
<td>130</td>
<td>4.0</td>
<td>0.16</td>
<td>0.12</td>
</tr>
<tr>
<td>表面粗さ（Ra）</td>
<td>4.82</td>
<td>38</td>
<td>1.79</td>
<td>1.86</td>
</tr>
<tr>
<td>ノッキング</td>
<td>無</td>
<td>有</td>
<td>無</td>
<td>無</td>
</tr>
<tr>
<td>燃費</td>
<td>100</td>
<td>ノッキング発生</td>
<td>102.5</td>
<td>103.1</td>
</tr>
</tbody>
</table>

上記測定結果から、実施例1に係る断熱コーティング膜によりピストンの頂面側の熱伝導率が大幅に下がるだけでなく、表面粗さを低減させて、ノッキングを低減させる効果が確認できた。

次に、ピストンのうち燃焼室に対面する頂面に、本実施例の断熱コーティング膜を成膜した。そして、図4に示すように、加熱源を加熱バーナーとし、ピストンの頂面の断熱コーティング膜側から加熱を継続したとき、ピストンの頂面側の断熱コーティング膜における温度上昇を測定する試験を行った。測定結果を図5および図6に示す。図5および図6において、特性線W1は発明品ピストンを示し、特性線W2は従来品ピストンを示す。発明品ピストンを示す。
トンでは、図5の領域W5において示すように、従来品ピストンに比べて初期の温度上昇の立ち上がりが早く、ピストンの頂面における断熱性が高いことか確認された。更に加熱時間が継続しても、発明品ピストンでは従来品ピストンに比較して、温度βの高温であった。

また図6の矢印W7として示すように、発明品ピストンでは従来品ピストンよりも、ピストンの頂面の温度上昇率が加熱開始から短時間で上昇していることが確認された。これによりエンジンの始動直後でありエンジンが冷間状態のときにおいて、燃焼室での燃料の気化が促進されるため、エンジンの燃費が向上できる。図7は、実施例1に係る断熱コーティング膜を積層させたピストンを適用した場合の本発明品のエンジンの燃費及び排ガス中のHC量を、従来品のエンジンに対して示す。ピストンの頂面に断熱コーティング膜を設けることによって、従来品のエンジンに対して燃費が2.5％向上し、排ガス中に含まれる有害成分であるHCが質量比で12.3％低減できた。

産業上の利用可能性

本発明は、ピストン、シリンダヘッド、バルブのうちのいずれか1つ以上において、燃焼室対面する壁面に断熱コーティング膜が被覆されることにより、燃焼室の断熱性を高めることができ、エンジンの燃費の向上に貢献でき、エンジンのノッキングを抑制させることができるので、特に、ハイブリッド車両等のように、エンジンの断続運転によりエンジンが充分に暖まらない用途に適用できる。

符号の説明

1 エンジン
10 燃焼室
2 シリンダブロック
20 ボア
3 ピストン
30 頂面
4 シリンダヘッド
40 バルブ孔
5 バルブ
7f 断熱コーティング膜
請求の範囲

[請求項1] ボアを有するシリンダブロックと、燃焼室を形成するように前記ボアに往復移動可能に嵌合されたピストンと、前記燃焼室を開じ且つ前記燃焼室に連通するバルブ孔をもつシリンダヘッドと、前記バルブ孔を開閉させるバルブとを具備するエンジンであって、

前記ピストン、前記シリンダヘッド、前記バルブのうちいずれか一つ以上において、前記燃焼室に対面する壁面に断熱コーティング膜が被覆されており、

前記断熱コーティング膜は、樹脂と共に前記樹脂の内部に埋設され前記断熱コーティング膜の厚みよりもやや小さく且つ500ナノメートル以下のサイズの複数のナノ中空粒子を有するエンジン。

[請求項2] 請求項1において、前記断熱コーティング膜の厚みは10乃至2000マイクロメートルであり、前記ナノ中空粒子のサイズは10乃至500ナノメートルであるエンジン。

[請求項3] 請求項1または2において、前記断熱コーティング膜の見掛け体積を100％とするとき、断熱コーティング膜における空隙率が体積比で5乃至50％であるエンジン。

[請求項4] 請求項1乃至3のいずれか一項において、前記樹脂は、エポキシ樹脂、アミノ樹脂、ポリアミノアミド樹脂、フェノール樹脂、キシレン樹脂、フラン樹脂、シリコーン樹脂、ポリエーテルイミド、ポリエーテルサルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリアミドイミド、ポリペンジミダゾール、熱可塑性ポリイミド、非熱可塑性ポリイミドのうちの少なくとも1種であるエンジン。

[請求項5] 請求項1乃至4のいずれか一項において、前記断熱コーティング膜の被覆後の壁面の表面粗さは、被覆前の表面粗さよりも小さいエンジン。

[請求項6] 請求項5において、前記断熱コーティング膜の表面粗さがRaで10.0以下であるエンジン。
【請求項7】請求項1乃至6のいずれか一項において、前記断熱コーティング膜が、前記樹脂、前記ナノ中空粒子に加えて、添加剤として分散剤、シランカップリング剤、レベリング剤、界面活性剤、増粘剤のうちの少なくとも1つを含むエンジン。

【請求項8】請求項1乃至7のいずれか一項において、前記ナノ中空粒子が、シリカ（SiO₂）、アルミナ（Al₂O₃）、ジルコニア（ZrO₂）、チタニア（TiO₂）のうちの少なくとも1種であるエンジン。

【請求項9】燃焼室を形成するようにボアに往復移動可能に嵌合されるピストンであって、

前記ピストンのうち前記燃焼室に対面する壁面に断熱コーティング膜が被覆されており、

前記断熱コーティング膜は、樹脂と共に樹脂の内部に埋設され前記断熱コーティング膜の厚さよりも径が小さく且つ500ナノメートル以下のサイズの複数のナノ中空粒子を有するピストン。

【請求項10】請求項9において、前記断熱コーティング膜の被覆後の壁面の表面粗さは、被覆前の表面粗さよりも小さいピストン。
[図3]
[図4]

[図5]

加熱
温度測定部位
断熱コーティング膜
ピストン

温度 [℃]

加熱時間 [S]
[図6]

温度上昇率 [℃/sec.]

加熱時間 [S]

W1, W2, W7

[図7]

燃費と排ガス低減効果
INTERNATIONAL SEARCH REPORT

INTERNATIONAL APPLICATION No. PCT / JP2 0 12 / 0 0 0 9 64

A. CLASSIFICATION OF SUBJECT MATTER

F02F3/1 0 (2 0 0 6 . 0 1) i, F01 L3/02 (2 0 0 6 . 0 1) i, F02B 7/1 1 (2 0 0 6 . 0 1) i, F02F1 /24 (2 0 0 6 . 0 1) i, F02F3/0 0 (2 0 0 6 . 0 1) i, F1 6 J1 /01 (2 0 0 6 . 0 1) i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
F02F3/10, F01L3/02, F02B77/11, F02F1/24, F02F3/00, F16J1/01

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1922-1996
Kokai Jitsuyo Shinan Koho 1996-2012
Jitsuyo Shinan Toroku Koho 1994-2012

Electronic database consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 4-173833 A (National Space Development Agency of Japan), 22 June 1992 (22.06.1992), Claims; page 3, upper right column, line 14 to page 4, upper right column, line 10 (Family: none)</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>JP 2010-185290 A (Toyota Central Research and Development Laboratory, Inc.), 26 August 2010 (26.08.2010), Paragraph s [0020] to [0036]; fig. 2 to 5 (Family: none)</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>JP 2010-71134 A (Nissan Motor Co., Ltd.), 02 April 2010 (02.04.2010), Paragraph s [0021] to [0023]; fig. 2 (Family: none)</td>
<td>1-10</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search 14 May, 2012 (14.05.12)
Date of mailing of the international search report 22 May, 2012 (22.05.12)

Name and mailing address of the ISA/ Japane se Patent Office
Facsimile No

Authorized officer
Telephone No.

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2005-76471 A (Toyota Motor Corp.), 24 March 2005 (24.03.2005), paragraph s [0035] to [0040]; fig. 2 to 3 (Family: none)</td>
<td>1-1</td>
</tr>
</tbody>
</table>
A. 発明の属する分野の分類（国際特許分類（IPC））
Int.Cl. F02F3/10 (2006.01), F01L3/02 (2006.01), F02B77/11, F01B27/74 (2006.01), F22F1/24 (2006.01), F22F1/00 (2006.01), F16J1/01 (2006.01)

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））
Int.Cl. F02F3/10, F01L3/02, F02B77/11, F02F1/24, F02F3/00, F16J1/01

最小限資料以外の資料で調査を行った分野に含まれるもの
日本国実用新案公報 1922－
日本国公開実用新案公報 1971－2
日本国登録実用新案公報 1996－
日本国登録実用新案公報 1994－

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 4-173893 A（宇宙開発事業団）1992.06.22, 特許請求の範囲、第3頁右上欄14行—第4頁右上欄10行（ファミリーなし）</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>JP 2010-185290 A（株式会社豊田中央研究所）2010.08.26, 10 0 2 0 1－【0 0 3 6】、図2－図5（ファミリーなし）</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>JP 2010-71134 A（日産自動車株式会社）2010.04.02, 10 0 2 1 1－【0 0 2 3】、図2（ファミリーなし）</td>
<td>1-10</td>
</tr>
</tbody>
</table>

以上の特別に引用文献のカテゴリを掲載した文献

日本国出願番号 PCT／JP2012/000964

国際調査報告
<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する 請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2005-76471 A（トヨタ自動車株式会社）2005.03.24.【0035】
−【0040】、図2−図3（ファミリーなし）</td>
<td>1-10</td>
</tr>
</tbody>
</table>

様式PCT/ISA/210（第2ページの続き）（2009年7月）