There is disclosed a cushion improved structure of shoe ventilating insole comprises a top insole (1) having air inlet (15) and outlet (16) ports, a bottom insole (3) and a middle smaller area foam pad (2), wherein said top insole adhered with a cloth or leather and made of plastic material (12) is integrally formed with a raised face (18) on top of the heel area at the top surface thereof, and a plurality of air inlet ports (15) are made at lower peripheral edge of said raised face, further, several grooves (19) in any arbitrary shapes having a plurality of air outlet ports (16) at the inside bottoms thereof is integrally made on the front sole area, and a larger density foam pad is distributively punched with several small holes (21) while unpressed arch area of foot is densely punched with several big holes (22), whereby the enhanced smooth air flow and best air change effect due to increased air volume are obtained.

Fig. 1
Description

BACKGROUND OF THE INVENTION

FIELD OF THE INVENTION

[0001] A cushion improved structure of shoe ventilating insole is a flexible insole which comprises a top insole having improved air inlet and outlet ports, a bottom insole and a middle smaller area foam pad, a raised face is integrally made on top of the heel area at the top surface of said top insole, and a plurality of air inlet ports are made at lower peripheral edge of said raised face, several grooves in any arbitrary shapes having a plurality of air outlet ports at the inside bottoms thereof is integrally made on the front sole area, and a larger density and anti-compressive foam pad is distributionly punched with several small holes, or the unpressed arch area of foot is densely punched with several big holes, whereby through said structure, air flow and air change effects are significantly strengthened.

DESCRIPTION OF THE PRIOR ART

[0002] A ventilating insole has a air bladder, wherein the top insole above the air bladder is made with an air inlet port at heel area thereof, and made with several air outlet ports at the front sole area thereof.

[0004] Prior patents for insole internal air bladder to be insertingly installed with foam pad (or sponge pad) can be referred to US patent No. 4224746, Sep.30,1980; US Patent No. 6006447, Dec. 28, 1999; WO 97/04676A1; and UK patent No. GB 2429629, May 7, 2007, etc.

[0005] However, regarding known ventilating insole structure on the streets and in the prior patents, if the top insole is made to a level plane, then when the foot is raised above ground, air inlet ports are easily covered by heel of the foot for a tight shoe, so air is difficult to flow in air bladder through said air inlet ports; on the other hand, when the insole is pressed by the foot, if the air outlet ports are covered by front sole of the foot, air inside air bladder is difficult to flow out through air outlet ports thereby to achieve an active effect of smooth air change.

[0006] In addition, if said air bladder of ventilating insole structure is constituted by the top and bottom insoles and a middle foam pad, wherein the foam pad with large porosity and low density is used, although it has a larger air volume, it is easily squelched due to elastic fatigue, on the contrary, if a foam pad with small porosity and larger density is used, although it is advantageous to have a good elasticity and therefore is not easily squelched, however, its air flow is unsmooth due to smaller air volume and there is other imperfections such as heat source generated by impingement and friction when air is flowed through the larger density foam pad.

SUMMARY OF THE INVENTION

[0007] The main purpose of the invention is to disclose a cushion improved structure of shoe ventilating insole, wherein it is characterized in that a raised surface of a gentle cone or other cylindrical or cone shaped bodies is installed on top of the heel area at the top surface of top insole in contact with sole of the foot is matchingly made with air inlet ports at lower peripheral edges thereof, when the shoe wearer raises his foot above ground, as heel of the foot is pushed against by the overhead raised face, air inlet ports are not covered up by heel of the foot so that air can be allowed to enter air bladder through air inlet ports thereby to achieve an active air change effect.

[0008] The second purpose of the invention is to disclose a cushion improved structure of shoe ventilating insole, wherein it is characterized in that wherein several grooves having a plurality of air outlet ports at the inside bottoms thereof, when the shoe wearer is walking and his foot is pressing on the insole, air outlet ports are not covered up by front sole of the foot, so that air inside air bladder is easy to flow out through air outlet ports thereby to achieve an active effect of smooth air change.

[0009] The third purpose of the invention is to disclose a cushion improved structure of shoe ventilating insole, wherein it is characterized in that a small porosity and larger density foam pad is distributionly punched with several small holes to increase air volume for convenience of air flow thereby to achieve a flow of air change.

[0010] The fourth purpose of the invention is to disclose the unpressed arch area of foot is densely punched with several big holes to increase air volume for convenience of air flow thereby to achieve a large flow of air change.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Fig. 1 is a perspective view showing the decomposition of a cup type ventilating insole structure of the invention.

[0012] Fig. 1-A is a perspective view showing the top surface of top insole as in Fig. 1.

[0013] Fig. 1-B is a perspective view showing the decomposition of another embodiment of the top insole as shown in Fig. 1-A.

[0014] Fig. 2 is a perspective view showing the decomposition of the plane ventilating insole structure
of the invention.

Fig. 2-A is a perspective view showing top surface of the top insole as shown in Fig. 2.

Fig. 3-A is a sectional schematic view showing air inlet at heel area as shown in Fig. 1.

Fig. 3-B is a sectional schematic view showing air outlet at front sole area as shown in Fig. 1.

DETAIL DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0012] The embodiments and application examples of the disclosed invention are described along with accompanying Figs. herein, and reference is made to Fig. 1, Fig. 1-A, Fig. 2, Fig. 2-A first:

[0013] It is clearly understood that the invention mainly comprises an integrally formed top insole 1, 1A made of plastic material 12, 12A being capable of adhering a cloth or leather 11, 11A on the surface thereof, a raised face 18, 18A is installed on top of the heel area at the top surface 1-1, 1A-1 thereof, and a plurality of air inlet ports 15, 15A are made at lower peripheral edge 17, 17A of said raised face 18, 18A, wherein said raised face 18, 18A can be a gentle cone (as shown in Fig. 1-A) or other cylindrical or cone shaped bodies (as shown in Fig. 2-A).

[0014] In which, the raised face 18, 18A can be integrally formed with top insole 1, 1A, or raised piece 181 can be pasted on the heel area of top insole 1, 1A for a raise installation (as shown in Fig. 1-B) to obtain the same effect as of integrally formed raised face 18 as shown in Fig. 1-A.

[0015] Further, several grooves 19, 19A having a plurality of air outlet ports 16, 16A at the inside thereof is integrally made on the front sole area P2 of the front section at the top surface 1-1, 1A-1 of said top insole 1 and a containing space 14, 14A forming with frame 13, 13A at the surrounding thereof for housing a foam pad 2 having flexibility, porosity and ventilation to be constituted by foam products of different material is integrally concavely made at the center area of bottom surface 1-2, 1A-2 of said insole 1.

[0016] Furthermore, said frame 13, 13A formed at the surrounding of said containing space 14, 14A is stickily adhered with bottom insole 3, thereby the bottom insole 3, 3A and the frame 13, 13A formed at the surrounding of bottom surface 1-2, 1A-2 of said top insole 1 are adhered together to form an air bladder R for insole ventilation (refer to Figs. 3-A, 3-B).

[0017] Through above said structure as shown in Fig. 3-A for the case of the shoe wearer to walk with the improved ventilation insole of the invention, wherein when the shoe wearer raises his foot above ground, as heel of the foot P1 is pushed against by the overhead raised face 18, air inlet ports 15 are not covered up by heel of the foot P1 so that a large volume of air (AIR) is allowed to enter air bladder R through air inlet ports 15 thereby to achieve an active air change effect.

[0018] Further as shown Fig. 3-B for the case of the shoe wearer to walk with the improved ventilating insole of the invention, wherein when the shoe wearer is walking and his foot is pressing on the insole, the overhead grooves 19 then prevents the air outlet ports 16 from being covered up by front sole of the foot P2, so that air (AIR) inside air bladder R is easy to flow out through air outlet ports 16 thereby to achieve a smooth air change effect.

[0019] Further as shown in Figs. 3-A, 3-B: A foam pad 2 with smaller porosities and higher density can be adopted for the ventilating insole of the invention, wherein said foam pad 2 is distributingly punched with several small holes 21, or the unpressed arch area of foot P3 can be densely punched with several big holes 22 to increase air volume during continuous pressing and recovery process of foam pad 2 and to be more helpful for air flow increase thereby to achieve a large flow of air change.

[0020] In summary there is disclosed a cushion improved structure of shoe ventilating insole (see e.g. Fig. 1) comprising a top insole 1 having air inlet 15 and outlet 16 ports, a bottom insole 3 and a middle smaller area foam pad 2, wherein said top insole adhered with a cloth or leather and made of plastic material 12 is integrally formed with a raised face 18 on top of the heel area at the top surface thereof, and a plurality of air inlet ports 15 are made at lower peripheral edge of said raised face, further, several grooves 19 in any arbitrary shapes having a plurality of air outlet ports 16 at the inside bottoms thereof is integrally made on the front sole area, and a larger density foam pad is distributingly punched with several small holes 21 while unpressed arch area of foot is densely punched with several big holes 22, whereby the enhanced smooth air flow and best air change effect due to increased air volume are obtained.

Claims

1. A cushion improved structure of shoe ventilating insole comprises a top insole (1) having air inlet (15) and outlet (16) ports being made of plastic material (12), a bottom insole (3) and a middle smaller area foam pad (2), wherein it is characterized in that a raised face (18) is installed on top of the heel area at the top surface of said top insole, and a plurality of air inlet ports (15) are made at lower peripheral edge of said raised face, further, several grooves (19) having a plurality of air outlet ports (16) at the inside bottoms thereof is integrally made on the front sole area (P2), whereby the smooth air change through said air inlet and outlet ports are not obstructed by user’s pressing foot (P1) during the air change flow process.

2. The cushion improved structure of shoe ventilating...
insole as claimed in claim 1, wherein it is characterized in that raised piece (181) can be pasted on the heel area of top insole for a raise installation to obtain the same effect as of integrally formed raised face.

3. The cushion improved structure of shoe ventilating insole as claimed in claim 1 or 2, wherein it is characterized in that said raised surface (18) installed on top of the heel area at the top surface of top insole in contact with sole of the foot can be a gentle cone or other cylindrical or cone shaped bodies applicable for providing a overhead effect for said air inlet ports made at the lower peripheral edges thereof.

4. The cushion improved structure of shoe ventilating insole as claimed in one of the preceding claims, wherein it is characterized in that said grooves (19) made at the front sole area of the top surface of top insole in contact with sole of the foot can be of any arbitrary shapes and quantities applicable for providing an overhead effect for air outlet ports made at the lower locations thereof.

5. The cushion improved structure of shoe ventilating insole as claimed in one of the preceding claims, wherein it is characterized in that said middle smaller area foam pad (2) insertingly installed between top insole and bottom insole can be constituted by a flexible, porous and ventilating foam product with a larger density, wherein said foam pad is distribut- ingly punched with several small holes (21) to increase air volume during continuous pressing and recovery process of foam pad and to be more helpful for air flow increase thereby to achieve a flow of air change.

6. The cushion improved structure of shoe ventilating insole as claimed in one of the preceding claims, wherein the unpressed arch area of foot is densely punched with several big holes (22) to increase air volume during continuous pressing and recovery process of foam pad and to be more helpful for air flow increase thereby to achieve a large flow of air change.
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D, Y</td>
<td>GB 2 429 629 A (LIN CHUNG-JEN [TW]) 7 March 2007 (2007-03-07) * paragraphs [0022] - [0024]; figures 1-3,1a</td>
<td>1,2,4-6</td>
<td>INV. A43B13/12 A43B17/08 A43B17/14</td>
</tr>
<tr>
<td>Y</td>
<td>ES 2 199 012 A1 (AGNELLI'S L [ES]) 1 February 2004 (2004-02-01) * the whole document</td>
<td>1,2,4-6</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>DE 41 18 311 A1 (LEDERER STEFAN [DE]) 10 December 1992 (1992-12-10) * the whole document</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>EP 1 764 008 A (SABATINI FEDERICO [IT]) 21 March 2007 (2007-03-21) * the whole document</td>
<td>1</td>
<td>A43B</td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims.

Place of search: The Hague
Date of completion of the search: 29 May 2009
Examiner: Cianci, Sabino

CATEGORY OF CITED DOCUMENTS

T: theory or principle underlying the invention
E: earlier patent document, but published on, or after the filing date
D: document cited in the application
L: document cited for other reasons
A: technological background
O: non-written disclosure
P: intermediate document
B: member of the same patent family, corresponding document
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

29-05-2009

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES 2199012 A1</td>
<td>01-02-2004</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2004020078 A1</td>
<td>05-02-2004</td>
<td>AT 422830 T</td>
<td>15-03-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1526786 A1</td>
<td>04-05-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008155858 A1</td>
<td>03-07-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006130366 A1</td>
<td>22-06-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004134095 A1</td>
<td>15-07-2004</td>
</tr>
<tr>
<td>DE 4118311 A1</td>
<td>10-12-1992</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 4224746 A [0003] [0004]
- WO 9704676 A1 [0003] [0004]
- CN 925176 [0003]
- US 6006447 A [0004]
- GB 2429629 A [0004]