0 0 0 O A

WO 01/46792 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
28 June 2001 (28.06.2001)

A 00 00O A 00

(10) International Publication Number

WO 01/46792 Al

(51) International Patent Classification’: GOG6F 3/06 5845 West 118th Circle, Westminster, CO 80020 (US).
MOLLER, Gregory, Paul; 2914 Sandpiper Place, Long-
(21) International Application Number: PCT/US00/29503 mont, CO 80503 (US). HAINES, Jonathan, Williams;

2285 Autumn Ridge Boulevard, Lafayette, CO 80026-8834

(22) International Filing Date: 26 October 2000 (26.10.2000) Us).

(25) Filing Language: English (74) Agents: BRUESS, Steven, C.; Merchant & Gould P.C.,
P.O. Box 2903, Minneapolis, MN 55402-0903 et al. (US).

(26) Publication Language: English

(30) Priority Data:
60/171,779

(71) Applicant: SEAGATE TECHNOLOGY LLC [US/US};
Intellectual Property, Building 15, 920 Disc Drive, Scotts

22 December 1999 (22.12.1999)

Valley, CA 95066 (US).

(72) Inventors: WILLIAMS, Steven, Scott; 1832 Juniper
Street, Longmont, CO 80501 (US). COOK, Brett, Alan;

(81) Designated States (national): CN, DE, GB, JP, KR, SG.

UsS
Published:

With international search report.
With amended claims and statement.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: BUFFER MANAGEMENT SYSTEM FOR MANAGING THE TRANSFER OF DATA INTO AND OUT OF A BUFFER
IN A DISC DRIVE

APPLICATICN
HOST MODULE DISC
2!
140 2 108

y

CONTROL
MODULE

208

202

(57) Abstract: A method and system for managing the transfer of data
into and out of a buffer in a disc drive is disclosed. The operation of the
vectored buffer management (VBM) system is administered by a software-
based control module. The control module creates and maintains a buffer
table by dividing the buffer table into buffer sectors. The buffer sectors
are further arranged into buffer segments, or circularly linked lists upon
which the buffer table is partitioned. The control module effectuates the
transfer by implementating an application module across the buffer table.
Once the application module is arbitrarily positioned at an index sector
by the control module, data transfer is accomplished when the application
module walks through a particular buffer segment identified by the index
sector. Specific control of the application module across a buffer segment
is administered through host and disc address pointers, which are coupled
to host and disc next pointers, respectively.

WO 01/46792 PCT/US00/29503

10

15

20

25

30

BUFFER MANAGEMENT SYSTEM FOR MANAGING THE TRANSFER
OF DATA INTO AND OUT OF A BUFFER IN A DISC DRIVE

Field of the Invention

This application relates generally to disc drive caching techniques and more
particularly to a buffer management system for controlling the transfer of data

between a host computer and a disc of a disc drive.

Background of the Invention

In a disc drive, data is stored on one or more discs coated with a
magnetizable medium. Data is written to the discs by an array of transducers,
typically referred to as read/write heads, mounted to a radial actuator for movement
of the heads relative to the discs. The information is stored on a plurality of
concentric circular tracks on the discs until such time that the data is read from the
discs by the read/write heads. Each of the concentric tracks is generally divided into
a plurality of separately addressable data sectors. The heads are used to transfer data
between a desired track and an external environment, which includes, among many
components, a host computer. During a read operation the head senses the data
previously written on the disc track and transfers the information to the external
environment. During a write operation, data is written onto the disc track. Once the
data is written to the disc, each sector holds a block of data, which is the absolute
smallest quantity that can be written to the disc during a single write operation.
Adjacent blocks, commonly referred to as chunks, or clusters, are typically written to
the disc during a single write operation referred to as a command. Critical to both of
these operations - reading and writing - is the accurate locating of the head over the
center of the desired track.

Typically, the heads are positioned with respect to the disc surfaces by an
actuator voice coil motor. The voice coil motor is responsible for pivoting the
actuator body about a pivot shaft, thus moving the heads across the disc surfaces.
The actuator thus allows the heads to move back and forth in an accurate fashion
between an inner radius and an outer radius of a disc. The actuator arm is driven by
a control signal fed to the voice coil motor at the rear end of the actuator arm. A
servo control system 1s used to sense the position of the actuator and control the
movement of the head above the disc using servo signals read from a disc surface in

1

WO 01/46792 PCT/US00/29503

10

15

20

25

30

the disc drive. The servo control system relies on servo information stored on the
disc. The signals from this information generally indicate the present position of the
head with respect to the disc, i.e., the current track position. The servo control
system uses the sensed information to maintain head position or determine how to
optimally move the head to a new position centered above a desired track. The
servo control system then delivers a control signal to the voice control motor to
position the head over a desired new track or to maintain the position over the
desired current track.

The transfer of files between the host computer and the disc is controlled in a
multi-level setting characterized by a bi-level transfer scheme. At a macroscopic
level, track sectors are selected to contain the data sectors of which the file is
divided. More specifically, and in a microscopic sense, cells along a track are
magnetized to correspond to the bit structure of the file for the purposes of
subsequent reading. A disc drive typically includes a buffer to implement this bi-
level transfer scheme. The purpose of the buffer is to accept the sectors of data
during its transfer between the host computer and the disc and then transfer the data
to the proper component - either the host computer or the disc.

Typically, the system microprocessor contains programming designed to
locate the sectors on the track where the data is to be read from or written to. The
microprocessor is also programmed to control the transfer of the file at the sector, or
macroscopic, level. The transfer of data to and from the buffer is accomplished in
character-by-character fashion. The conventional method of accomplishing a
transfer in a character-by-character environment is through the use of state machines,
such as a buffer controller, a host interface controller, and a disc interface controller.

As described in U.S. Patent 5,276,662, the transfer of files between the host
and the discs is carried out under the overall control of the system microprocessor
and a more precise control of the state machine controllers. For example, when a
file is to be written to a disc, the host computer prompts the system microprocessor
with generalized information which allows the microprocessor to define the sectors
on the track to which the file is to be written. The microprocessor then initiates the
transfer by implementing operations which result in transfer at the sector level. Such

operations include commanding the servo control system to position the head over

WO 01/46792 PCT/US00/29503

15

25

30

the selected track which is to receive the file and identifying a segment of the buffer
which 1s to be used in the transfer. The microprocessor commands the host interface
controller to initiate the transfer of the data to the buffer segment. Conventionally,
the host interface controller, working in conjunction with the buffer controller and
the host computer, provides precise control over the buffer in the transfer of
characters of the file into sector blocks of the buffer segment. The disc interface
controller controls the transfer of the blocks of data from the buffer segment to the
appropriate sectors on a disc pursuant to commands issued by the system
microprocessor once the read/write heads are positioned over the track that is to
recetve the file. A read/write circuit connected to the read/write heads then
magnetizes the cells along the data tracks.

Conventionally, counters and interrupts are used in conjunction with the
buffers to "watch over" the transfer of data to the buffer. The counters, which are
typically located within the host and disc interface controllers, count the number of
transfers that occur between both the host and the buffer and the disc and the buffer.
Based upon this calculation, an interrupt generator supplies an interrupt to the
microprocessor immediately after a selected number of transfers to the buffer have
occurred. The use of counters and interrupts is to inquire as to whether the buffer is
full when a transfer is to take place.

The most significant drawback of disc drives is a relatively long delay
between the time that a read or write operation is initiated and the time that it is
mechanically completed. This delay includes a seek latency, the time during which
the read/write heads are moved to a desired track, a rotational latency, the time
during which the disc rotates until a desired track sector is under the read/write head,
and an additional delay corresponding to the time during which data blocks are read
from or written onto the disc surface. Due to the aforementioned delays, the speed
with which a disc drive operates is typically slower than that of the other
components of the computer system. That being the case, it is advantageous. for
total system performance, for the host system to transfer the data it wishes to write to
a buffer, then allow the drive to commit that data to a disc at a later time that is

optimal for the drive to perform the (mechanical) task of putting the data on the

WO 01/46792 PCT/US00/29503

10

15

20

25

30

media. This concept, usually called write caching, is common to data storage
devices.

A well-known means for reducing the number of disc accesses associated
with almost any software application involves the use of a single common cache
memory. The cache memory, typically a volatile random access memory (VRAM)
device, stores blocks of data that are read from, or blocks that are to be written onto,
the disc. Once the system issues a disc read operation the cache is first checked to
see if the requested data block is already available, thus avoiding the typical physical
disc read. If the data block is not available, then the system instructs the read/write
heads to perform a disc read, from which the data is transferred to the cache.

As described in U.S. Patent 5,765,193, it is common for requests of data
from a disc to be specific as to related data, such as data files. The data files will be
written to and stored on the disc in adjacent sectors of the track. Accordingly, a

principle of reference is commonly known among computer programmers

n

illustrating "when data is stored or to be stored at one location, it is highly probable

that data stored or to be stored at physically adjacent locations will be accessed
either simultaneously or soon thereafter each other." To realize this principle, data,
which is to be written to a disc, is commonly transferred to a write cache prior to
recording on the disc. This procedure is advantageous in two respects. First, it
allows the host to quickly access the data without having to perform an actual read
operation on the disc. In order to read directly from the write cache, the system must
keep track of which data blocks are being held in the cache instead of the disc.
Second, it gives the read/write heads time to catch up with the other components of
the computer.

Once the cache is filled, the system microprocessor initiates write operations
to transfer the data blocks in the cache to the disc drive. As further described in U.S.
Patent 5,765,193, there are several methods for managing the "orderly" transfer of
data from the write cache to the disc. One common technique for managing the
write cache is to supplement the disc write operation with instructions to search the
write cache for adjacent data blocks. The existence of at least two adjacent data
blocks defines a cluster, which the system will transfer in whole pursuant to the disc

write operation. By reducing the number of disc accesses, this technique decreases

4

WO 01/46792 PCT/US00/29503

10

15

20

25

30

the overall number of time-consuming seek operations. A second known technique
involves keeping a "least recently used" (LRU) queue, which comprises a list of data
blocks in its order of use. This technique uses a virtual block number, a number
assigned to the data block in relation to its intended storage location on the disc, to
rank the data blocks in relation to the order of most recent use by the system. Based
on a theory that data blocks more recently used are more likely to be used again
prior to less recently used data blocks, the system transfers the latter to the disc
while retaining the former in the write cache for quick access by the central
processing unit. A third, and more outdated, technique is to simply remove blocks
from the cache on a first-in-first-out basis.

While all three techniques relating to the transfer of data from the buffer to
the disc provide an effective means of implementing the storage and retrieval of data
files, problems have arisen in conjunction with data transfer to a disc from buffers of
limited data space. Particularly, if the data from the buffer is not transferred to the
disc 1n first-in-first-out fashion, then the buffer sectors from which the data was
transferred cannot be re-used until the buffer sectors lower in order from the emptied
sectors were, in fact, emptied. For example, in a 100-sector buffer, if sectors 45
through 50 were written to the disc, then that particular buffer space cannot be re-
used by the host until buffer sectors 1 through 44 have been emptied. When dealing
with disc drives of limited amounts of buffer data space, this "sequential” buffer

accessing method is a significant disadvantage to the host computer with respect to

write caching.

Summary of the Invention

Against this backdrop the present invention has been developed. The present
invention is a means for rearranging buffer sectors so that buffer data space can be
used more efficiently. In particular, the vectored buffer management system, in
accordance with the present invention, hereinafter called "VBM," provides a means
for rearranging the buffer space so that transfer of data into and out of the buffer can
be done in an arbitrary or random fashion. In essence, VBM allows data to be
written to and from the buffer sectors in a non-sequential fashion. VBM contains

three components: an algorithmic component, a hardware component, and a software

component.

WO 01/46792 PCT/US00/29503

(94

10

15

20

25

30

The algorithmetic component defines a model, referred to as the VBM table,
of the data buffer as a logically organized singly linked list of sectors. Each entry in
the VBM table represents a single sector of the buffer. Each sector of the buffer
stores a data block having a logical block address (LBA) representing a sector on a
disc in the disc drive. The buffer sector where the hardware component is currently
positioned is referred to as the index sector. The value of each index sector is "next"
sector, a physical buffer sector number denoting the "next" sector for the hardware
component to reference upon conclusion of the transfer of data to or from the current
index sector.

The hardware component is responsible for the physical transfer of data into
and out of the buffer. During a disk write operation, the hardware component uses
the "VBM" table as the basis for the management of the data transfer. This is
accomplished by setting a host address pointer (HAP), which is responsible for
committing the data to the buffer, and the disc address pointer (DAP), which is
responsible for transferring the data from the buffer to the disc. The initial value of
these pointers is arbitrarily selected by the software component. The HAP and the
DAP both are coupled to a host next pointer (HNP) and a disc next pointer (DNP),
respectively. The functions of the next pointers are to read the next sector value
from the index sector in order to direct the address pointers to the next sector. The
hardware also provides an automated traversal function independent of the task that
is managing the buffer allocation such that the function can still traverse a large
number of table entries, even when the CPU is performing another task.

The software component maximizes the advantage of write caching by
ensuring that the maximum possible number of buffer sectors are available to new
host write commands at any given time, and by minimizing the number of disk
operations needed to complete the requests from the host. More particularly, the
software provides the mechanism for creating and maintaining the VBM table that is
used by hardware to direct data transfers into and out of the data buffer. The
software component is further responsible for administering control of the hardware
component. By creating a list of free buffer sectors, the software component also
provides for the ability of VBM to separate cached data from free space, merge

buffer segments of the buffer table into single disc operations when beneficial, reuse

WO 01/46792 PCT/US00/29503

10

15

20

25

30

any buffer sectors that hold redundant data, and return buffer sectors to the free list
in any order.

These and various other features, as well as advantages which characterize
the present invention, will be apparent from a reading of the following detailed

description and a review of the associated drawings.

Brief Description of the Drawings

FIG. 1 is a plan view of a disc drive incorporating a preferred embodiment of
the present invention showing the primary internal components.

FIG. 2 is a functional block diagram generally showing the main functional
components used to control the disc drive of FIG. 1.

FIG. 3 is a plan view of the disc generally showing the main components on
the surface of the disc.

FIG. 4 is a functional block diagram of the buffer management system in
accordance with a preferred embodiment of the present invention.

FIG. 5 is a functional block diagram of the buffer management system more
particularly focusing on the application and control modules of FIG. 4.

FIG. 6 1s a schematic representation of the components of the application
module of FIG. 4.

FIG. 7 1s a flow diagram illustrating the operation of the control module in
response to a write instruction by a host computer.

FIG. 8 is a flow diagram 1llustrating the arrangement of sectors of the
free_list into one or more segments.

FIG. 9 is a flow diagram illustrating the mending process.

FIG. 10 is a flow diagram illustrating the operation of the control module
when given an instruction to commit data from a buffer to a disc.

FIG. 11 is a flow diagram illustrating the merging process.

FIG. 12 is a flow diagram generally illustrating the operation of the present
invention,

FIG. 13 is a schematic representation of the traverser component of the

application module of FIG. 4.

WO 01/46792 PCT/US00/29503

wn

15

20

25

30

Detailed Description

A disc drive 100 constructed in accordance with a preferred embodiment of
the present invention i1s shown in FIG. 1. The disc drive 100 includes a base 102 to
which various components of the disc drive 100 are mounted. A top cover 104,
shown partially cut away, cooperates with the base 102 to form an internal, sealed
environment for the disc drive 100 in a conventional manner. The components
include a spindle motor 106 which rotates one or more discs 108 at a constant high
speed. Information is written to and read from tracks 160 (FIG. 3) on the discs 108
through the use of an actuator assembly 110, which rotates about a bearing shaft
assembly 112 positioned adjacent to the discs 108. The actuator assembly 110
includes a plurality of actuator arms 114 which extend towards the discs 108, with
one or more flexures 116 extending from each of the actuator arms 114. Mounted at
the distal end of each of the flexures 116 is a head 118 which includes an air bearing
slider enabling the head 118 to fly in close proximity above the corresponding
surface of the associated disc 108.

The spindle motor 116 is typically de-energized when the disc drive 100 is
not in use for extended periods of time. The heads 118 are moved over park zones
120 near the inner diameter of the discs 108 when the drive motor is de-energized.
The heads 118 are secured over the park zones 120 through the use of an actuator
latch arrangement, which prevents inadvertent rotation of the actuator assembly 110
when the heads 118 are parked.

The radial position of the heads 118 is controlled through the use of a voice
coil motor (VCM) 124, which typically includes a coil 126 attached to the actuator
assembly 110, as well as one or more permanent magnets 128 which establish a
magnetic field in which the coil 126 is immersed. The controlled application of
current to the coil 126 causes magnetic interaction between the permanent magnets
128 and the coil 126 so that the coil 126 moves in accordance with the well-known
Lorentz relationship. As the coil 126 moves, the actuator assembly 110 pivots about
the bearing shaft assembly 112 and the heads 118 are caused to move across the
surfaces of the discs 108.

A flex assembly 130 provides the requisite electrical connection paths for the

actuator assembly 110 while allowing pivotal movement of the actuator assembly

WO 01/46792 PCT/US00/29503

10

15

20

25

30

110 during operation. The flex assembly includes a printed circuit board 132 to
which head wires (not shown) are connected; the head wires being routed along the
actuator arms 114 and the flexures 116 to the heads 118. The printed circuit board
132 typically includes circuitry for controlling the write currents applied to the heads
118 during a write operation and for amplifying read signals generated by the heads
118 during a read operation. The flex assembly terminates at a flex bracket 134 for
communication through the base deck 102 to a disc drive printed circuit board (not
shown) mounted to the bottom side of the disc drive 100.

Referring now to FIG. 2, shown therein is a functional block diagram of the
disc drive 100 of FIG. 1 generally showing the main functional circuits which are
resident on the disc drive printed circuit board and used to control the operation of
the disc drive 100. The disc drive 100 is shown in FIG. 2 to be operably connected
to a host computer 140 in which the disc drive 100 is mounted in a conventional
manner. Control communication paths are provided between the host computer 140
and a disc drive microprocessor 142, the microprocessor 142 generally providing top
level communication and control for the disc drive 100 in conjunction with
programming for the microprocessor 142 stored in microprocessor memory (MEM)
143. The MEM 143 can include random access memory (RAM), read only memory
(ROM), and other sources of resident memory for the microprocessor 142. The
discs 108 are rotated at a constant high speed by a spindle control circuit 148. The
radial position of the heads 118 is controlled through the application of current to a
coil in the actuator assembly 110. A servo control circuit 150 provides such control.

Data is transferred between the host computer 140 and the disc drive 100 by
way of a disc drive interface 144, which includes a buffer 145 to facilitate high
speed data transfer between the host computer 140 and the disc drive 100. Data to
be written to the disc drive 100 are thus passed from the host computer 140 to the
buffer 145 and then to a read/write channel 146, which encodes and serializes the
data and provides the requisite write current signals to the heads 118. To retrieve
data that has been previously stored by the disc drive 100, read signals are generated
by the heads 118 and provided to the read/write channel 146. The interface 144
performs read signal decoding, error detection, and error correction operations. The

interface 144 then outputs the retrieved data to the buffer 145 for subsequent transfer

9

WO 01/46792 PCT/US00/29503

10

15

20

25

30

to the host computer 140. Such operations of the disc drive 100 are well known in
the art and are discussed, for example, in U.S. Pat. No. 5,276,662 issued Jan. 4,
1994, to Shaver et al.

Referring now to FIG. 3, shown therein is a plan view of the disc 108,
generally showing the main components on the surface of the disc 108. The discs
108 are circumferentially divided into a plurality of concentric circular tracks 160.
The number of tracks 160 per disc 108 will vary with each particular manufactured
disc 108. A one-time revolution (INDEX) 162 around each track 160 is typically
indicated by a mark that extends the radius of the disc 108.

The disc 108 is radially divided into a plurality of servo segments 164. The
servo segments 164 begin at the center 166 of the disc 108 and terminate at the outer
edge 168 of the disc 108. As with the number of tracks 160 per disc 108, the
number of servo segments 164 per disc 108 varies with each particular manufactured
disc 108. Each track 160 is composed of spaced servo segments 164 with data
sectors between the servo segments 164.

In a general sense, FIG. 12 illustrates, in operations 399 through 417, a
preferred embodiment of the overall operation 400 of the buffer management system
for the buffer 145, in accordance with the present invention. In operation 402, a
buffer table 206 (FIG. 4) is maintained by representing the buffer 145 as divided into
a plurality of equally sized buffer sectors 208 (FIG. 4). In operation 404, the buffer
sectors 206 are arranged into circularly linked lists, referred to as buffer segments
210 (FIG. 4). In operation 406, a particular buffer segment 210 is arbitrarily selected
by the control module 202 to store the data file. In operation 408, data, which is
actually transferred from a host 140 (FIG. 4) to the buffer 145 as a file, is
represented as being transferred into a buffer segment 210. In operation 410, the
data file is stored in the buffer 145 for an indefinite period of time. The data file is
represented as stored in the buffer segment until, in operation 412, the data is
removed from the buffer 145 and relocated to the disc 108, thus effectuating the
transfer from the host 140 to the disc 108. In operation 414, a determination is made
as to whether either "look-up," the transfer or removal was administered
prematurely. If not, then the process is finished. However, if a look-up was

premature, then, if the look-up was a transfer, operation 416 re-initiates the transfer

10

WO 01/46792 PCT/US00/29503

10

15

20

in operation 408. If the look-up was a removal and replacement, then operation 416
reinitiates the removal in operation 412.

Referring now to FIG. 4, a functional block diagram of a buffer management
system 200 for managing the transfer of data to and from the buffer 145 is shown.
The buffer management system 200 manages the transfer of data between the host
computer 140 and the disc 108 through the implementation of three main
components: a control module 202, an application module 204, and a buffer table
206. The buffer table 206 is divided into n equal buffer sectors 208, each having a
capacity to store 512 bytes. Each buffer sector 208 is further incorporated into a
circularly linked list, or buffer segment 210. The buffer table 206 can be divided
into as many as n buffer segments 210 or can be made of only one buffer segment
210 having n buffer sectors 208. Table 1. below, depicts a buffer table 206

containing n = 9 buffer sectors 208 and two circularly linked buffer segments 210.

Sector # Next sector
(offset) instruction

0 1

1 2

2 3

3 0

4 7

5 6

6 8

7 5

8 4
Table 1

For simplicity, Table 1 can be broken down into 2 independent buffer

segments 210, as shown in Tables 2 and 3:

11

WO 01/46792 PCT/US00/29503

Sector # Next sector
(offset) Instruction
0 1
1 2
2 3
3 0
Table 2
Sector # Next sector
(offset) instruction
4 7
5 6
6 8
7 5
8 4
Table 3

With respect to the buffer table 206, each buffer sector 208 contains two

5 instructions important to the operation of the buffer management system 200: an
offset value 214 ("offset") and a next sector instruction value 212 ("next sector
instruction"). Both instructions are crucial to the operation of the buffer
management system 200 in that, taken as a whole, the offset 214 and the next sector
instruction 212 define the circular aspect of the buffer segment 210. For example,

10 referring back to Table 3, the values in the left column are referred to as the offset
values 214 and the values in the right column are referred to as the next sector
instruction values 212. When the application module 204 is positioned at the current
buffer sector 208 "4," the application module 204 reads the next sector instruction
212 and moves to the next buffer sector 208 "7." Once positioned at current buffer

15 sector 208 "7," the application module 204 reads the next sector instruction 212 and
moves to the next buffer sector 208 "5." This procedure is repeated until the
application module 204 is positioned back to the buffer sector 208 having offset 214
value "4," thus enclosing the circularly linked segment 210. According to the
preferred embodiment, the maintenance of the buffer table 206 and the operation of

12

WO 01/46792 PCT/US00/29503

w

10

15

20

25

30

the application module 204 on the buffer table 206 are both administered by the
control module 202. Greater detail of the application module 204 and the control
module 202 are discussed below.

Referring now to FIG. 5, a more specific functional block diagram of the
system 200 of FIG. 4 is shown. In particular, functional blocks of the components of
the application module 204 are depicted. The application module 204 is the
hardware component of the buffer management system 200. The application module
204 is divided into two main sub-modules: a host address pointer (HAP) 220
coupled to a host next pointer (HNP) 222 and a disc address pointer (DAP) 224
coupled to a disc next pointer (DNP) 226. The application module 204 walks
through the buffer table 206 in segment-by-segment fashion. The host next pointer
222 and the disc next pointer 226 effectively control the positioning of the next
buffer sector 208 position of the host address pointer 220 and the disc address
pointer 224, respectively. As noted above, the operation of the application module
204 is controlled through the control module 202.

The host address pointer 220 is responsible for committing the data blocks to
the buffer 145. In the preferred embodiment, committing data to the buffer 145 is
accomplished by reference to the buffer table 206. In its operation, the host next
pointer 222 communicates to the host address pointer 220 the value of the "next"
sector 208 of the particular buffer segment 210 upon which the host address pointer
220 is operating. The host next pointer 222 receives the offset value 214 of the
"next" sector 208 in the buffer segment 210 from the next sector instruction 212.
The host address pointer 220 walks through the particular buffer segment 210 in
response to the next sector instruction 212 read by the host next pointer 222. After
the host address pointer 220 commits data to the current buffer sector 208, it
immediately jumps to the next buffer sector 208 as communicated by the host next
pointer 222. Ultimately, the next sector instruction value 212 of the last buffer
sector 208 will equal the offset value 214 of the initial buffer sector 208 referenced
by the host address pointer 220 in the buffer segment 210. This
is the point at which the circular segment wraps. The host address pointer 220

continues to walk through the segment 210, wrapping as needed, until all the data for

the current command has been transferred.

13

WO 01/46792 PCT/US00/29503

10

15

20

25

30

When data is to be transferred from the buffer 145 to the disc 108, the
application module 204 generally operates in the same fashion as when data is
transferred from the disc 108 to the buffer 145. The disc address pointer 224 is
responsible for committing the data from the buffer 145 to the disc 108. In the
preferred embodiment, committing data to the disc 108 is accomplished by reference
to the buffer table 206. In its operation, the disc next pointer 226 communicates to
the disc address pointer 224 the position of the "next" buffer sector 208 of the
particular buffer segment 210 upon which the disc address pointer 226 is operating.
The disc next pointer 226 receives the offset value 214 of the "next" buffer sector
208 in the buffer segment 210 from the next sector instruction 212. The disc address
pointer 224 walks through the particular buffer segment 210 in response to the next
sector instruction 212 read by the disc next pointer 226. After the disc address
pointer 224 commits data from the buffer sector 208 to the disc 108, it immediately
Jjumps to the next buffer sector 208 as dictated by the disc next pointer 226.
Ultimately, the next sector instruction value 212 of the last buffer sector 208 will
equal the offset value 214 of the initial buffer sector 208 referenced by the disc
address pointer 224 in the buffer segment 210. This is the point at which the circular
segment wraps. The disc address pointer 224 continues to walk through the segment
210, wrapping as needed, until all the data for the current command has been
transferred.

With respect to the operation of disc address pointer 224, data is transferred
from the buffer 145 in sector-by-sector fashion. Once the data has been extracted
from the particular buffer sector 208, it is transferred to the disc 108 according to the
particular servo segment 164 and track 160 upon which the file is to be located.

Referring now to FIG. 6, a schematic representation of the application
module 204 is shown operating on the buffer 145. The disc current address counter
244 and the disc current page register 246 form the disc address pointer 224.
Similarly, the host current address counter 252 and the host current page register 250
form the host address pointer 220. The disc next page register 240 and the host next
page register 242 serve as the disc next pointer 226 and the host next pointer 222,
respectively. The remap base address register 248 sets the disc remap address 247

and the host remap address 249 at the base of the VBM table 206 in the buffer 145.

14

WO 01/46792 PCT/US00/29503

10

15

20

25

30

Accordingly, in a preferred embodiment, the output of the remap base address
register 248 uses either the disc remap address 247 or the host remap address 249 to
address the buffer 145, depending upon which acknowledgment control line (241 or
243) is enabled. If the disc interface controller requests data to be read from the
buffer 145, then the disc remap acknowledgment line 241 is enabled and the disc
remap address 247 is used to access the buffer 145. If the host interface controller
requests data to be written to the buffer 145, then the host remap acknowledgement
line 243 is enabled and the host remap address 249 is used to address the buffer 145.

The disc next page register 240 loads the disc current page register 246 with
the next sector instruction value 212 of the next sector 208 that is to be read from the
buffer table 145. Data is read from the current sector 208 so long as the disc data
address line 245 originating from the output of the disc current address counter 244
1s enabled. The output of the disc current address counter 244 is tied to a sector
comparator 256. The value of the disc current address counter 244 is input B to the
sector comparator 256. Input A of the comparator 256 is a constant value of the
buffer sector 208 size, typically 512 bytes. When the value of the disc current
address counter 244 equals input A, a signal is transmitted from the output of the
comparator 256 to the disc current page register 246 requesting a switch to the next
buffer sector 208, which has a value loaded in the disc current page register 246 by
the disc next page register 240. The next buffer sector 208 value is defined by the
next sector instruction value 212 loaded into the disc next page register 240 from the
buffer 145.

The host next page register 242 loads the host current register 250 with the
next sector instruction value 212 of the next sector 208 that is to be written to the
buffer 145. Data is read from the current sector 208 so long as the host data address
line 251 originating from the output of the host current address counter 252 is
enabled. The output of the host current address counter 252 is tied to a sector
comparator 258. The value of the host current address counter 252 is input A to the
sector comparator 258. Input B of the comparator 258 is a constant value of the
buffer sector 208 size, typically 512 bytes. When the value of the host current
address counter 252 equals input B, a signal is transmitted from the output of the

comparator 258 to the host current page register 250 requesting a switch to the next

15

WO 01/46792 PCT/US00/29503

10

15

20

25

30

buffer sector 208, which has a value loaded in the host current page register 250 by
the host next page register 242. The next buffer sector value is the next sector
instruction value 212 loaded into the host next page register 242 from the buffer 145.

Referring now to FIG. 13, a schematic representation of the traversal
component of the application module 204 is shown. The traversal component 260
includes a traverse state machine 262, a traverse down counter 264, and a next
traverse address register 266. The traverse state machine 262 is loaded with the
value 214 of the offset base address. The offset value 214 is latched into the next
traverse address register 266 as the next sector 208 position for the traverse
component 260. The traversal component 260 traverses the application module 204
over a buffer segment 210 once the traverse state machine 262 initializes the traverse
down counter 264. The traversal component 260 receives the traverse address from
the next traverse address register 266 and continually executes a traversal of the
application module 204 until the traverse down counter 264 completes counting.
The count for the traverse down counter 264 is loaded by the microprocessor 142,
thereby allowing the application module 204 to iteratively hop a particular buffer
segment 210 a predetermined number of times. The next sector instruction value
212 dictates the next sector 208 to traverse and is communicated to the traversal
component 260 through the next traverse address register 266. After the value 214
of the offset base address is initially transmitted to the traverse state machine 262,
the next sector instruction value 212 is the only control parameter controlling the
subsequent sector 208 of traversal until the traverse down counter 264 completes
counting, at which time, the traversal component 260 is initialized to await the next
value 214 of the offset base address.

As noted above, maintenance of the buffer table 206 and operation of the
application module 204 are both administered by the control module 202. The
control module 202 is the software component of the buffer management system
200. The control module 202 maximizes the method of write caching by ensuring
that the maximum possible number of sectors 208 of the buffer 145 are available to
the host 140 for write commands at any given time. In short, the control module 202

provides a mechanism for maintaining the buffer table 206 that is used by the

16

WO 01/46792 PCT/US00/29503

10

15

20

application module 204 to direct data transfers into and out of the data buffer 145,
via the host 220 and disc 226 address pointers.

Referring to FIG. 7, a flow diagram, generally described in operations 299
through 317, illustrates the operation of the control module 202 when employed to
transfer data from the host 140 to the buffer 145. In operation 300, the control
module 202 organizes the sectors 208 of the buffer 145 into a free list in order to
maximize the possible number of sectors 208 available to the host 140 for write
commands at any given time. The free_list is initialized to be a circularly linked
segment 164 of all the free sectors 208 in the write buffer 145. Table 4 is an

illustration of the free_list, as initialized:

Sector # Next sector
(offset) instruction
0 1
1 2
2 3
n-2 n-1
n-1 0
Table 4

Once the control module 202 completes organization of the sectors 208 into
the free_list, the physical transformation of the data from the host 140 to the buffer
145 is initiated. It is during this process that the control module 202 divides the
buffer table 206 into one or more buffer segments 210. In operation 308, the control
module 202 arbitrarily selects a buffer sector 208 - in the preferred embodiment,
referred to as the first index sector 208 - in the free_list as "free_space_start," which
is the buffer sector 208 that the control module 202 selects as the beginning sector
208 for data transfer to the buffer 145. The control module 202 controls the
application module 204 such that the host address pointer 220 is positioned to the
first index sector 208 labeled free_space start. In operation 302, the control module

202 receives the incoming data to be cached. In operation 310, the control module

17

WO 01/46792 PCT/US00/29503

W

10

15

20

25

30

202 directs the host address pointer 220 to transfer the first block of the file to the
sector identified as free_space start. In operation 312 the control module 202
determines whether transfer of the file is complete. If all data blocks have been
transferred, the control module jumps to operation 316. However, if the transfer is
not complete, then, in operation 314, the control module 202 positions the host
address pointer 220 to the next "index" sector 208 (each current position of the host
address pointer 220 is preferably referred to as the "index" sector) pursuant to the
next sector instruction 212 of the previous index sector 208. The host address
pointer 220 transfers the data block as the host next pointer 222 references the next
index sector 208. In operation 316, once the control module 202 determines that the
transfer of the file is complete, it assigns the label "free_space_start" to the sector
208 in the free_list that appears directly after the last buffer sector 208 in the current
buffer segment 210. The determination of the size of the buffer segment 210 and
where in the buffer table 206 the division of the free_list into buffer segments 210
occurs is described in more detail by FIG. 8 and Table 5.

Referring to FIG. 8, a flow diagram, generally described in operations 329
through 339, illustrates the arrangement of the sectors 108 of the free_list into one
or more segments 210. The control module 202 effectively arranges the free_list
into one or more circularly linked lists segments 210 once a command of length "L"
buffer sectors 108 is sent by the host 140 to the buffer management system 200. In
operation 330, which is the same as operation 310 in FIG. 7, the control module 202
directs the host address pointer 220 to transfer the first block of the file to the first
index sector 208, which, in the preferred embodiment, is labeled "free_space_start."
Operation 332 locates the last buffer sector 208 of data for this particular command,
L.e., the last sector 208 of that particular buffer segment 210 by traversing with the
traversal component 260 the singly linked free_list starting at free_space_start and
going "L - 1" sectors down the buffer table 206. Operation 334 designates the value
of the next sector instruction 212 of the buffer sector 208 corresponding to "L - 1"
steps down the table as "free_space_start." Since this buffer sector 208 now
incorporates the next sector instruction 212 "free_space_start," the circularly linked

list is enclosed to illustrate that the particular buffer segment 210 is an independent

list from the free_list.

18

WO 01/46792 PCT/US00/29503

15

20

Operation 336 traverses the remaining buffer sectors 208 in the free_list in
order to illustrate the remaining circularly linked list. In operation 338, designation
of the next sector instruction 212 of the last sector 208 in the free_list as
"free_space_start" encloses the remaining sectors 208 of the buffer table 206 in an
independent circularly linked list. Thus, the end result is an illustration of how the
free_list is divided into one or more buffer segments 210 once the host 140 transfers
data to the buffer 145. Table 5 depicts a better illustration of the arrangement of

buffer sectors 208 into buffer segments 210 by applying an instruction of L = 3 to
the initialized free list of Table 4.

Sector # Next sector
(offset) instruction
0 1
1 2
2 0
3 4
n-2 n-1
n-1 3
Table 5

Whereas sectors 0 through 2 represent the buffer segment 210 to which the
control module 202 is currently instructing the host address pointer 220 to fill with
data, sectors 3 through "n - 1" represent the remaining buffer sectors 208 in the
free_list. In this example, sector "3" is the next "free_space_start" position upon
which the control module 202 will direct the host address pointer 220 the next time
that the host 140 implements a transfer of data. Hence, the free_list of the buffer
table 206 is divided, in this example, into two separate buffer segments 210, one of
length 3 and one of length "n - 3." Similar manipulations can be done in order to
either further subdivide various buffer segments 210 or to merge segments 210 back
into single loops.

Referring now to FIG. 9, a flow diagram, illustrating a mending process
programmed in the control module 202 that is initiated any time a write command is

issued, is shown. Although the mending process of FIG. 9 is actually a separate

19

WO 01/46792 PCT/US00/29503

15

20

process than that defined in FIG. 8, the two processes are concurrent with each other
and the mending process ultimately concludes with operation 300. The mending
process is initiated, in operation 320, when the host 140 sends a new write command
that is received by the control module 202. In operation 322, once a new write
command is received by the control module 202, the control module 202 first checks
to determine whether any of the logical block addresses (LBA's) of the data from the
new command overlap any of the LBA's of data cached into the buffer sectors 208
from previous commands. If an overlap is not found, then operation 300 is initiated
and the data is transferred to the buffer 145 in accordance with the flow diagram in
FIG. 8.

[f an overlap of LBA's is found, then the control module, in operation 324,
takes the buffer sectors 208 corresponding to the old write command and adds them
to the end of the free_list. This is accomplished by replacing the next sector
instruction value 212 of the buffer sector 208 located at the end of the free_list with
the old write sectors 208. The data from these buffer sectors 208 is considered
"redundant” data; thus the buffer sector 208 is mended to the free_list. Once the two
buffer sectors 208 are mended, in operation 324, operation 300 is initiated and the
data is transferred to the buffer 145 in accordance with the flow diagram in FIG. 8.
Table 6 is an illustration of the buffer table 206 as it goes through the mending
process depicted in FIG. 8.

Sector # Next sector Next sector
(offset) instruction instruction
before "mend" | after "mend"”
0 1 1
1 2 2
2 0 4
3 4 0
4 5 5
5 6 6
6 3 3
Table 6

20

WO 01/46792 PCT/US00/29503

10

15

20

25

30

In this example, a list of L=3 has been mended to a list of L=4 to make a new
list of L=7. An overlap was found with respect to the LBA of the data blocks
contained in the buffer sectors 208 0, 1, and 2 and the LBA of data blocks related to
a new write command. Hence, the mending process added the first index sector 208
(sector 0) of the "redundant” buffer segment 210 to the end of the original free_list
(sectors 3, 4, 5, and 6) by replacing the next sector instruction 212 of sector 3 with
the offset value 214 of sector 0. Sector 3 denotes the end of the free_list since 3 is
the buffer sector 208 to where one complete circle of the singly linked list
terminates. The control module 202 then administers the write command by
positioning the host address pointer 222 at sector 0, which will be the first index
sector 208 of the particular buffer segment 210.

Referring to Figure 10, a flow diagram, generally described in operations 349
through 359, illustrates the operation of the control module 202 when employed to
transfer data from the buffer 145 to the disc 108. In operation 350, the buffer sector
208 storing the first data block of the file to be transferred is designated the "index"
sector 108. In operation 352, the index sector 208 is added to the end of the
free_list. In operation 354, the control module 202 directs the disc address pointer
224 to transfer the data block in the index sector 208 to the disc 108. Thus, at the
instant the data from a buffer sector 208 is committed to the disc 108, that particular
buffer sector 208 is immediately freed for use by next host 140 write commands.

In operation 356, the control module 202 determines whether all the data
blocks within the file to be transferred have been committed to disc. If not, then, in
operation 358, the control module 202 positions the disc address pointer 224 on the
next "index" sector 208, as instructed by the next sector instruction 212 of the
previous index sector 208. After positioning the disc address pointer 224 on the next
index sector 208, the control module 202 jumps to operation 352 and repeats the
procedure from there. Once the disc address pointer 224 has completely transferred
the particular buffer segment 210 storing the file, as determined in operation 356, the
task is finished and the control module 202 initializes the disc address pointer 210 to
await instructions for subsequent transfers.

The process of adding buffer sectors 208 that are to be written to the disc 108

to the end of the free_list is greatly advantageous if a new write command comes to

21

WO 01/46792 PCT/US00/29503

15

20

the control module 202 that is sequential in LBA space, thus immediately following
on the disc 108, with the buffer sectors 208 being committed to the disc 108. This
advantage is realized in that no manipulation of the buffer table 206 is necessary for
the new write command because the control module 202 will write the new data to
the disc 108 during the same operation as it is committing the old data to the disc

108. Table 7 provides the best analysis for an illustration of this process:

Sector # (offset) Next sector
instruction
0 1
1 2 <disc address pointer
2 3
3 4 €< free space_start
4
5 6
6 3
Table 7

In this example, the data relating to the new write command would have a
first index sector 108 of "3," since sector 3 corresponds to the free_space_start. If
the new write command is larger (more sectors) than the segment 210 - in this case
sectors 3, 4, 5, and 6 - the control module 202 uses the free_list as a circular loop.
Since the buffer sectors 208 which had stored the data being committed to the disc
108 have already been added to the end of the free_list, such sectors 208 become
part of the circular free_list. The control module 202 directs the disc address pointer
224 to follow the host address pointer 220 (initiated at the first index sector 208),
which, in turn, is following the disc address pointer 224 as data from buffer sectors
208 are committed to the disc 108. Hence, the control module 202 implements a
real time circular loop using the disc 224 and host address 220 pointers.

One more advantage of the buffer management system 200 is the ability of
the control module 202 to merge two or more cached commands into one buffer
segment 210. It is advantageous to merge one buffer segment 210 into another
because such a process allows the data to be written from the buffer 145 to the disc

108 in one operation. If two or more buffer segments 210 contain data files that are

22

WO 01/46792 PCT/US00/29503

10

15

20

to be written onto adjacent servo segments 164 on the disc 108, the control module
202 will "merge" such buffer segments 210 of the buffer table 206 into one buffer
segment 210.

Referring to FIG. 11, a flow diagram, generally described in operations 379
through 385, illustrates the merging process of the control module 202. In operation
380, cached writes contained in buffer segments 210 are compared to determine
whether the data files are to be committed to the disc 108 on adjacent, or sequential,
servo segments 164. In operation 382, if such data is not to be committed to
adjacent servo segments 164, then operation 381 checks to see if all buffer segments
210 in the table 206 have been compared to each other. If not, then the comparison
routine of operation 380 is repeated. If all buffer segments 210 have been compared,
the process has finished without merging any buffer segments 210.

[f the data from the buffer segments 210 are to be committed in sequential
position on the disc 108, then the actual merging process will begin in operation
384. In operation 384, the next sector instruction value 212 of the last buffer sector
208 of either of the buffer segments 210 is replaced with the offset value 214 of the
first index sector 208 of the other buffer segment 210. Hence, the two segments 210
are merged into one circularly linked list. Once the merge is complete, the process is
initiated again with operation 380 until all buffer segments 210 are compared to one
another, as determined by operation 381. In essence, this is an ongoing process due
to the frequency of cached writes to the buffer 145. Tables 8 and 9 provide further

illustration of the merging process operation 384:

Sector # (offset) Next sector instruction
0 1
1

AN] R W
N B] o W ©

Table 8

23

WO 01/46792 PCT/US00/29503

10

15

20

Sector # (offset) Next sector instruction

0 1

Nl] K W
| O v &N W

Table 9

In this example, Table 8 illustrates the buffer table 206 prior to the merge.
Table 8 contains 3 separate buffer segments 210: segment 0:1, segment 4:5, and
segment 2:3:6. In this illustration, the data blocks contained in segment 0:1 are to be
placed on the disc 108 in adjacent servo segments 210. Therefore, since segments
0:1 and 4:5 are sequential on the disc 108, the control module 202 will merge the
two buffer segments 210, resulting in Table 9. As shown, Table 9 only contains two
buffer segments 210: segment 0:1:4:5, and segment 2:3:6.

In summary, the present invention may be viewed as a buffer management
system (such as 200) for managing a transfer of data from a host computer (such as
140) to a recordable disc (such as 108) in a disc drive (such as 100). The disc drive
(such as 100) operates on the host computer (such as 140). The recordable disc
(such as 108) is radially divided into one or more equal servo segments (such as
164) and circumferentially divided into one or more rotational tracks (such as 160).
Thus, the tracks (such as 160) are divided by the servo segments (such as 164).

The disc drive (such as 100) is of a type wherein data transfers between the
host computer (such as 140) and the disc (such as 108) are effectuated by
transferring a selected number of data blocks constituting a file from either the host
computer (such as 140) or the disc (such as 108) to a buffer (such as 145) for
temporary storage of the file. After temporary storage, the file is transferred to either
the host computer (such as 140) or the disc (such as-108). According to the present
invention, management of the buffer is accomplished by the buffer management
system (such as 200), which includes a buffer table (such as 206), an application

module (such as 204), and a control module (such as 202).

24

WO 01/46792 PCT/US00/29503

10

15

20

25

30

The buffer management system (such as 200) includes a buffer table (such as
206), which is divided into one or more equally sized buffer sectors (such as 208).
Each one of the buffer sectors (such as 208) is a sector in a buffer segment (such as
210). The buffer segment (such as 210) is defined as a circular linked list within the
buffer table (such as 206). The buffer management system (such as 200) also
includes an application module (such as 204) to walk through each particular buffer
segment (such as 210). The buffer table (such as 206) is divided into at least one
buffer segment (such as 210). However, the buffer table (such as 206) may only be
divided into as many buffer segments (such as 210) as the buffer table (such as 206)
has buffer sectors (such as 208).

The buffer management system (such as 200) further includes a control
module (such as 202), which creates and maintains the buffer table (such as 206).
The control module (such as 202) is coupled with the application module (such as
204) in order to administer the walking through the buffer table (such as 206) by the
application module (such as 204). The application module (such as 204) walks
through the buffer table (such as 206) in response to a next sector instruction (such
as 212) in an index sector (such as 208) upon which the application module (such as
204) is currently positioned. In case the data was committed - either to the disc
(such as 108) or the buffer (such as 145) - prematurely, the control module (such as
202) includes a look-up routine (such as in operation 414) that re-initiates the
application module (such as 204) to perform a subsequent look-up of the data.

The application module (such as 204) preferably includes a host address
pointer (such as 220) for committing the data to the buffer (such as 145). The host
address pointer (such as 220) is preferably coupled to a host next pointer (such as
222), which communicates the next sector instruction (such as 212) of the index
sector (such as 208) to the host address pointer (such as 220). Hence, the next sector
instruction (such as 212) controls positioning of the host address pointer (such as
220) within the particular buffer segment (such as 210).

The application module (such as 204) also preferably includes a disc address
pointer (such as 224) for committing the data from the buffer (such as 145) to the
disc (such as 208). The disc address pointer (such as 224) is preferably coupled to a

disc next pointer (such as 226), which communicates the next sector instruction

25

WO 01/46792 PCT/US00/29503

10

15

20

25

30

(such as 212) of the index sector (such as 208) to the disc address pointer (such as
224). Hence, the next sector instruction (such as 212) controls the positioning of the
disc address pointer (such as 224) within the particular buffer segment (such as 210).

In a preferred embodiment, the buffer table (such as 206) includes a free list
of sectors readily available to the system (such as 200) for temporary storage. When
an existing data block is to be written to the disc (such as 108) from an index sector
(such as 208), the control module (such as 202) mends the index sector (such as 208)
into the free list of sectors so that the index sector (such as 208) will become
available to the system (such as 200) as it is committed to the disc (such as 108).
The control module (such as 202) arbitrarily selects the particular buffer segment
(such as 210) from the free list and arbitrarily positions the host address pointer
(such as 220) over a first index sector (such as 208) of the particular buffer segment
(such as 210) when a write instruction is issued from the host (such as 140). The
free list preferably includes any buffer segments (such as 210) that contained data
either written to the disc 108 or considered redundant.

The control module (such as 202) also includes a merging routine (such as in
operations 380 through 384). The merging routine (such as in operations 380
through 384) combines one or more buffer segments (such as 210) that are to be
written onto adjacent servo segments (such as 164). The merging routine (such as in
operations 380 through 384) transforms the plurality of buffer segments (such as
210) into one aggregate buffer segment (such as 210) that can be committed to the
disc (such as 108) in one write process.

The present invention may also be viewed as a method (such as in operation
400) for managing a transfer of data from a host computer (such as 140) to a
recordable disc (such as 108) in a disc drive (such as 100). The method (such as in
operation 400) includes maintaining (such as in operation 402) a buffer table (such
as 206), which is divided into one or more equal-sized buffer sectors (such as 208),
and arranging (such as in operation 404) each of the buffer sectors (such as 208) into
at least one buffer segment (such as 210). The buffer table (such as 206), which is a
singly linked list, is divided into one or more buffer segments (such as 210), which
are circularly linked lists. The method (such as in operation 400) further includes

selecting (such as in operation 406) a particular buffer segment (such as 210) to

26

WO 01/46792 PCT/US00/29503

10

15

20

25

30

temporarily store the file to be transferred from the host computer (such as 140) to
the buffer (such as 145), as well as transferring (such as in operation 408) the file
from the host computer (such as 140) to the buffer (such as 145) by walking through
the particular buffer segment (such as 210) in response to a next sector instruction
(such as 212) contained in an index sector (such as 208). The index sector is the
buffer sector (such as 208) from which the data is being transferred.

The method (such as in operation 400) further includes storing (such as in
operation 410) the file in the particular buffer segment (such as 210) for a temporary
period of time and, eventually, removing (such as in operation 412) the file from the
buffer (such as 145) and relocating the file to the recordable disc (such as 108) by
walking through the particular buffer segment (such as 210) in response to the next
sector instruction (such as 212) contained in the index sector (such as 208).

In a preferred embodiment, the method (such as in operation 400) in
maintaining the buffer table (such as in operation 402) includes the step of creating
(such as in operation 300) a free list of sectors that are readily available to accept a
new data block. The method (such as in operation 400) in the selecting step (such as
in operation 406) preferably includes arbitrarily selecting, once the command to
write the file to the buffer (such as 145) is sent by the host computer (such as 140), a
first index sector (such as 208) as a beginning to the particular buffer segment (such
as 210) that will be used in the storing the data (such as operation 410). The method
(such as in operation 400) in the arranging step (such as operation 404) preferably
includes generating a buffer segment (such as 210) from the free list of sectors by
beginning at the arbitrarly selected first index sector (such as 208) and traversing one
fewer buffer sector than the selected number of data blocks in the file. Ultimately, in
the preferred embodiment, the method (such as in operation 400) accepts (such as in
operation 302) an incoming data file to be cached and places the incoming data file
into the buffer segment (such as 210) at the index sector (such as 208).

As mentioned, the method (such as in operation 400) may arrange (such as in
operation 404) the buffer table (such as 206) by organizing the sectors (such as 208)
into one or more buffer segments (such as 210). However, the buffer table (such as
206) may only be divided into a maximum number of buffer segments (such as 210)

equal to the number of sectors (such as 208) in the buffer table (such as 206). The

27

WO 01/46792 PCT/US00/29503

10

15

20

25

30

method (such as in operation 400) may also mend (such as in operations 354-358)
each sector (such as 208) that is to be committed to the disc (such 108) into the free
list of sectors so that each sector (such as 208) is available to the system as it is
committed to the disc (such as 108).

In a preferred embodiment, the method (such as in operation 400) compares
(such as in operation 322) the data block to be stored in the buffer (such as 145) to
each existing data block in all of the buffer segments (such as 210). If the
comparison (such as in operation 322) reveals a redundancy between the existing
data block and the data block to be stored in the buffer (such as 145), the buffer
segment (such as 210), which stored the existing data block, is mended (such as in
operations 354-358) to the free list. The method (such as in operations 354-358)
also preferably merges (such as in operation 384) together one or more buffer
segments (such as 210) containing data files that are to be written to adjacent servo
segments (such as 208), thus only allowing the write operation to be executed one
time for those segments 164.

In the preferred embodiment, the method (such as in operation 400) includes
transferring (such as in operation 408) data to the buffer (such as 145) by walking
through the particular buffer segment (such as 210) with a host address pointer (such
as 220) coupled to a host next pointer (such as 222). The host next pointer (such as
222) communicates the next sector instruction (such as 212) to the host address
pointer (such as 220). In essence, the next sector instruction (such as 212) controls
positioning of the host address pointer (such as 220) within the particular buffer
segment (such as 210). Further, the method (such as in operation 400) preferably
includes removing and relocating (such as in operation 412) data from the buffer by
walking through the particular buffer segment (such as 210) with a disc address
pointer (such as 224) coupled to a disc next pointer (such as 226). The disc next
pointer (such as 226) communicates the next sector instruction (such as 212) to the
disc address pointer (such as 224). In essence, the next sector instruction (such as
212) controls positioning of the disc address pointer (such as 224) within the
particular buffer segment (such as 210). In case either the data was transferred (such

as in operation 408) or removed and replaced (such as in operation 412)

28

WO 01/46792 PCT/US00/29503

10

15

20

prematurely, either operation may be re-initiated (such as in operations 414, 416)
according to the method (such as in operation 400).

It will be clear that the present invention is well adapted to attain the ends
and advantages mentioned, as well as those inherent therein. While a presently
preferred embodiment has been described for purposes of this disclosure, various
changes and modifications may be made which are well within the scope of the
present invention. For example, VBM may be useful to other types of data storage
devices, such as tape drives, optical drives, and networks, that implement data
transfer using a buffer. Similarly, the control module may be designed using
integrated or logic circuits, as opposed to software, or in combination with software.
Further, the application module may combine the address pointers and the next
pointers into one single component. Additionally, the maintenance of the buffer
table may be construed in various other ways that do not take away from the
invention. For example, the techniques of VBM may be employed to a file
allocation table. Also, the VBM table itself could be built as a doubly linked list
(with both next and previous pointers), and hardware could be constructed to assist
the software in the maintenance of such a table. The entire system could also be set
up to work with collections of data larger or smaller than the standard 512 bytes.
Numerous other changes may be made which will readily suggest themselves to
those skilled in the art and which are encompassed in the spirit of the invention

disclosed and as defined in the appended claims.

29

WO 01/46792 PCT/US00/29503

10

15

20

25

30

Claims

What is claimed is:

1. A buffer management system for managing a transfer of data from a host
computer to a recordable disc in a disc drive, the disc drive operating on the host
computer, the recordable disc radially divided into a plurality of equal servo
segments and circumferentially divided into a plurality of rotational tracks, wherein
the disc drive is of a type that data transfers between the host computer and the disc
are effectuated by transferring a file defined as a selected number of data blocks to a
buffer for temporary storage, the system comprising:

a buffer table divided into a plurality of equal buffer sectors, wherein each
one of the plurality of buffer sectors is a sector in a buffer segment defined as one of
a plurality of circular linked lists upon which the buffer table is divided;

an application module operable to walk through a particular buffer segment,
wherein data is transferred as the buffer segment is walked through; and

a control module to create and maintain the buffer table, the control module
being coupled with the application module such that the control module administers
the walk through by the application module in response to a next sector instruction

in an index sector upon which the application module is currently positioned.

2. The system of claim 1, wherein the application module further comprises:

a host address pointer for committing the data to the buffer, the host address
pointer comprising a host next pointer for communicating the next sector instruction
of the index sector to the host address pointer, such that the next sector instruction
controls positioning of the host address pointer within the particular buffer segment;

a disc address pointer for committing the data from the buffer to the disc, the
disc address pointer comprising a disc next pointer for communicating the next
sector instruction of the index sector to the disc address pointer, such that the next

sector instruction controls the positioning of the disc address pointer within the

particular buffer segment.

3. The system of claim 2, wherein the buffer table comprises a free list of

sectors readily available to the system for temporary storage, wherein the control
30

WO 01/46792 PCT/US00/29503

10

15

20

25

module mends the index sector that is to be written to the disc into the free list, such

that the index sector becomes available to the system as it is committed to the disc.

4. The system of claim 3, wherein the control module selects the particular
buffer segment from the free list in arbitrary fashion, such that the host address

pointer is arbitrarily positioned by the control module over a first index sector of the

particular buffer segment.

5. The system of claim 3, wherein the sector is mended into the free list of
sectors because the data block of the index sector is redundant when compared to the

data block of a new command.

6. The system of claim 2, wherein the control module comprises a look-up
routine, wherein the look-up routine re-initiates the application module in case the

data was committed prematurely.

7. The system of claim 1, wherein the buffer table comprises at least one
buffer segment, wherein the buffer table is divided into a maximum number of

buffer segments equal to the number of buffer sectors in the buffer table.

8. The system of claim 1, wherein the control module further comprises a
merging routine, wherein the merging routine combines a plurality of buffer
segments in the buffer table that are to be written onto a plurality of adjacent servo
segments, such that the merging routine transforms the plurality of buffer segments

into one aggregate buffer segment that can be committed to the disc in one write

process.

9. A method for managing a transfer of data from a host computer to a
recordable disc in a disc drive, the disc drive operating on the host computer, the
recordable disc radially divided into a plurality of equal servo segments and
circumferentially divided into a plurality of rotational tracks, wherein the disc drive
is of a type that data transfers between the host computer and the disc are effectuated
by transferring a file defined as a selected number of data blocks to a buffer for

temporary storage of the file, the method comprising:

31

WO 01/46792 PCT/US00/29503

10

15

20

25

(a) maintaining a buffer table divided into a plurality of equal-sized buffer
sectors,;

(b) arranging each one of the plurality of buffer sectors into at least one
buffer segment defined as a circular linked list upon which the buffer table is
divided;

(c) selecting a particular buffer segment to temporarily store the file to be
transferred from the host computer to the buffer;

(d) transferring the file from the host computer to the buffer by walking
through the particular buffer segment in response to a next sector instruction
contained in an index sector defined as the buffer sector from which the data is being
transferred;

(e) storing the file in the particular buffer segment for a temporary period of
time; and

(f) removing the file from the buffer and relocating the file to the recordable
disc by walking through the particular buffer segment in response to the next sector

instruction contained in the index sector.

10. The method according to claim 9, wherein the maintaining step (a)

comprises creating a free list of sectors that is readily available to accept a new data

block.

11. The method according to claim 10, wherein the selecting step (c)
comprises arbitrarily selecting a first index sector as a beginning to the particular

buffer segment that will be used in the storing step (e).

12. The method according to claim 11, wherein the arranging step (b)
comprises generating a buffer segment from the free list of sectors by beginning at
the arbitrarly selected first index sector and traversing one fewer buffer sector than

the selected number of data blocks in the file.

13. The method according to claim 12, wherein the transferring step (d)

further comprises:

(1) accepting an incoming data file to be cached; and

32

WO 01/46792 PCT/US00/29503

10

15

20

25

(ii) placing the incoming data file into the buffer segment at the index

sector.

14. The method according to claim 9, wherein the arranging step (b)
comprises organizing the sectors into a plurality of buffer segments up to a
maximum number of buffer segments equal to the number of sectors in the buffer

table.

15. The method according to claim 10 further comprising:
(g) mending the index sector that is to be written to the disc into the free list
of sectors such that the index sector becomes available to the system as it is

committed to the disc.

16. The method according to claim 15 further comprising:

(h) comparing a data block to be stored in the buffer to each existing data
block in each of the buffer segments, such that if the comparing step (h) reveals a
redundancy between the existing data block and the data block to be stored in the
buffer, the buffer segment which stored the existing data block is mended into the
free list.

17. The method of claim 9 further comprising:

(g) merging together a particular plurality of buffer segments containing data
files that are to be written to a plurality of adjacent servo segments, such that a write
operation of the particular plurality of buffer segments can be executed in one

operation.

18. The method according to claim 9, wherein the transferring step (d)
comprises walking through the particular buffer segment with an address pointer
coupled to a next pointer, wherein the next pointer communicates the next sector
instruction to the address pointer, such that the next sector instruction controls

positioning of the address pointer within the particular buffer segment.

19. The method according to claim 9 further comprising:
(g) re-initiating the transferring step (d) and the removing and replacing step

(f) in case either one of the steps was performed prematurely.

33

WO 01/46792 PCT/US00/29503
20. A buffer management system for a data storage device comprising:
an application module for transferring data into and out of a buffer in a data
storage device; and
control means for operating the application module such that the application

5 module walks through a buffer table under administration by the control means.

34

10

15

20

25

30

WO 01/46792 PCT/US00/29503
AMENDED CLAIMS

[received by the International Bureau on 24 May 2001 (24.05.01);
original claims 11-20 cancelled;original claim 10 amended;
remaining claims unchanged (3 pages)]

1. A buffer management system for managing a transfer of data from a host computerto a
recordable disc in a disc drive, the disc drive operating on the host computer, the recordable disc
radially divided into a plurality of equal servo segments and circumferentially divided into a
plurality of rotational tracks, wherein the disc drive is of a type that data transfers between the
host computer and the disc are effectuated by transferring a file defined as a selected number of
data blocks to a buffer for temporary storage, the system comprising:

a buffer table divided into a plurality of equal buffer sectors, wherein each one of the
plurality of buffer sectors is a sector in a buffer segment defined as one of a plurality of circular
linked lists upon which the buffer table is divided; and

an application module operable to walk through a particular buffer segment, wherein data
Is ransferred as the buffer segment is walked through;

a control module to create and maintain the buffer table, the control module being coupled
with the application module such that the control module administers the walk through by the

application module in response to a next sector instruction in an index sector upon which the

application module is currently positioned.

2. The system of claim 1, wherein the application module further comprises:
a host address pointer for committing the data to the buffer, the host address pointer
comprising a host next pointer for communicating the next sector instruction of the index sector

to the host address pointer, such that the next sector instruction controls positioning of the host

address pointer within the particular buffer segment;

a disc address pointer for committing the data from the buffer to the disc, the disc address
pointer comprising a disc next pointer for communicating the next sector instruction of the index
sector to the disc address pointer, such that the next sector instruction controls the positioning of
the disc address pointer within the particular buffer segment.

3. The system of claim 2, wherein the buffer table comprises a free list of sectors readily

available to the system for temporary storage, wherein the control module mends the index sector
that is to be written to the disc into the free list, such that the index sector becomes available to

the system as it is committed to the disc.

35

AMENDED SHEET (ARTICLE 19)

WO 01/46792 PCT/US00/29503

20. A buffer management system for a data storage device comprising:

an application module for transferring data into and out of a buffer in a data
storage device; and

control means for operating the application module such that the application

5 module walks through a buffer table under administration by the control means.

36

AMENDED SHEET (ARTICLE 19)

10

15

20

25

30

WO 01/46792 PCT/US00/29503

4. The system of claim 3, wherein the control module selects the particular buffer
segment from the free list in arbitrary fashion, such that the host address pointer is arbitrarily

positioned by the control module over a first index sector of the particular buffer segment.

3. The system of claim 3, wherein the sector is mended into the free list of sectors

because the data block of the index sector is redundant when compared to the data block of a new

command.

6. The system of claim 2, wherein the control module comprises a look-up routine,

wherein the look-up routine re-initiates the application module in case the data was committed

prematurely.

7. The system of claim 1, wherein the buffer tabie comprises at least one buffer segment,
wherein the buffer table is divided into a maximum number of buffer segments equal to the

number of buffer sectors in the buffer table.

8. The system of claim 1, wherein the control module further comprises a merging
routine, wherein the merging routine combines a plurality of buffer segments in the buffer table
that are to be written onto a plurality of adjacent servo segments, such that the merging routine

transforms the plurality of buffer segments into one aggregate buffer segment that can be

committed to the disc in one write process.

9. A method for managing a transfer of data from a host computer to a recordable disc in
a disc drive, the disc drive operating on the host computer, the recordable disc radially divided
into a plurality of equal servo segments and circumferentially divided into a plurality of rotational
tracks, wherein the disc drive is of a type that data transfers between the host computer and the
disc are effectuated by transferring a file defined as a selected number of data blocks to a buffer
for temporary storage of the file, the method comprising the steps of:

(2) maintaining a buffer table divided into a plurality of equal-sized buffer sectors;

(b) arranging each one of the plurality of buffer sectors into at least one buffer segment

defined as a circular linked list upon which the buffer table is divided;

(c) selecting a particular buffer segment to temporarily store the file to be transferred from
the host computer to the buffer;

37

AMENDED SHEET (ARTICLE 19)

WO 01/46792 PCT/US00/29503
112

_ 126

104

PCT/US00/29503

WO 01/46792

212

1TO041LNOD
ONYd3S

A

oLl

8Ll

A

ov“ﬂ,

Y

d31NdINOD
1SOH

A

051 mEN vir
y J waw
! HOSSID0UdOHIIN
TOYLNOD
F1ANIdS g
f Ghl k
8vl Y
d344n4g
> TANNVHO W «—> FOVdINI
ovi ﬁ/v
1445

Y

FIG.3

WO 01/46792 PCT/US00/29503
4/12

APPLICATION
HOST b — MODULE

= | 5
140 204 108

CONTROL

MODULE
L/7

202

208

210

200
.

FIG. 4

PCT/US00/29503

WO 01/46792

512

801

NON\N
__J3naow |
1041INOD
92z
g 902 222
...................................... e Nt T SR S
Y . ' bl
d'N'd ‘d'N'H
H > - H <«——»| ISOH
d'v'd
.
\] 402
vee= by 022 v
802 _

PCT/US00/29503

WO 01/46792

6/12

9 ‘31

s314d TI6 ‘0 23ed

sa14d 716 ‘1 23eq

sa14g 71 ‘uadeq

$914g 71§ ‘Z 98e(

pIom | ‘0 Anuy dewdy

pIlom 1 ‘1 Anug deway

ploar [‘u Anuyg deway

pIom | ‘Z Anuyg dewoy

KIOWIN
Ipng

388 I1SOH 1XoN peo']

eve

Yoy deway
1SOH

1S () S
< a=v _[%eHdadr (¢
I +233eq v
1SOH 1XaN 1sonbay 191UN0y) |4
SSIppY IV EEd
8¢ juaun) 1SOH
:8)1
% |y
(0:051pPY ommip 1015139y 118139y
ele(] 1SOH aged aded
uaun)) IXoN
” gty Lol 1o
W o:11) mvm)/
wva 1918139y
Ao“omw.:%< (T1:00) $S21IppV
BuId
HmoM 1 aseq
w (z1:02) | °5e4 dewoy
Mo”omv.%?« ©0:11) Wi 1915139y 1915139y
BUIY 9SI(] a%eg a8eq
a1y IXaN
6:07)1PPV 81 asIg
Sve eie(osid : L
W < Yre Ia1uno)) Al%
(0:07)1PPY oV eeq
BIR(] 9SI1(J (0:8)appy | SS°IPPV os1
e1B(] 9sI(] ua1In)) 1d
OWNI/ -
1 + 93eg a id
omﬁnﬂxoz 1sanbay] q-v .
XoH Jdd1

Ive

Yoy dewrdy
osid

a8ed osI(] 1XaN peo]

(0:S1)ere 1apng

WO 01/46792 PCT/US00/29503

7M12

99
Start

A 4

Organize Sectors \fSOO
Into Free_List

y

308
Arbitrarily Select J

Free_Space_Start

A 302
Receive \f

Incoming Data

A

Transfer First Data \f'310
Block To

Free_Space_Start

312

Transfer
Of File
omplete?

314
Transfer Next Data I

.— Block Per Next
Sector Instruction

316
Assign Free_Space_Start \f
To First Sector After "L-1"

Steps

Yes

D E——

A 4

End

317

WO 01/46792

812

329
Start

Free_Space_Start

Y

Free_Space_Start

y

y
Label First Sector As /\ 330

Traverse Free_ List "L- /k332
1" Steps Beginning At

Label Next Sector Instruction
Of Sector At End Of "L-1"
Steps As Free_Space_Start

/\334

A4

A\ 4
Traverse To End /\ 336
Of Free_List

Label Next Sector Instruction
Of Sector At End Of Free_List
As Free_Space_Start

/L338

Fig. 8

A 339
Finish ‘

PCT/US00/29503

WO 01/46792 PCT/US00/29503
9112

320'/\ Incoming Write

Command

322 Do LBA's NO Go To 300
Overlap? (FIG. 7)

Yes

Take Sectors From Old
324‘/\ Write And Add To End Of

Free List

Y
Go To Step 300
(FIG. 7)

Move "Index"
Per Next Sector
Instruction Value

Y
Sector Containing

First Data Block Of
0
35 _/\ File Labeled

"Index"

A 4

Go To
Step 352

A
352'/\ "Index" Sector Added
To End Of Free_List

359

Y

D.A.P. Transfers Data
354
_/\ From "Index" Sector

Fig. 10

WO 01/46792
10/12

(Start y 2379

-
<

PCT/US00/29503

Y

Compare Cached
Write Segment To 380
Existing Segments \S—

Sequential No

LBA's?

382

Merge Existing
Segment With New

Segment

\§384

Fig. 11

All Segments
Compared?

381

385

WO 01/46792 PCT/US00/29503
11/12

A
402 Maintaining

Z/ Buffer Table
A

404 Arranging Each Buffer
Z/ Sector Into Segments

A4
406 Selecting A Buffer
Z/ Segment

»i
-

A
Transferring Data To

4082/ Buffer

\ 4

0 Storing Data In
Z/ Buffer

<
<

4

. N

A

Removing And

4122/ Relocating Data From
Buffer To Disc

Look-Up Yes

414
Premature

No

417

Fig. 12

PCT/US00/29503

WO 01/46792

12112

SAAG ZIS ‘0 23egd

s 716 ‘1 28eg

Sa1Ag 7S ‘uadeq

SIA{ 71§ Z a8eg

plom | ‘0 Anusg dewdy

piom 1 ‘1 Anug deway

piop 1 ‘u Anuyg deway

piom | ‘z Anuy dewoy

KIowalA 13png

¢l "Bi4

bayj as10AeI]

EEIRET g -
W SE JOV SSIdARI],
asienel]

N__ 79

<
auo(g
18juno)
umoq
DSJoAel |
$9z
(0:8)1ppV
< (Z1:00) aseq dewoay
T —\
O:QLIPPY (01D (-1 ppY

ISISABI] XN

99¢ \\

1918163y [ssappy 1xoN yore]
ssalppy
astanes] | (0:11)\

IXeN

(0:s1)ere 1apng

INTERNATIONAL SEARCH REPORT

Inter »nal Application No

PCT/US 00/29503

A. CLASSIFICATIOI SUBJECT MATTER

N OF
IPC 7 GO6F3/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system foliowed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consuited during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X EP 0 528 273 A (FUJITSU LTD) 20
24 February 1993 (1993-02-24)
A column 3, line 21 -column 4, line 5 1,2,
7-10,14,
17-19

column 5, 1ine 30 -column 6, Tine 11
column 19, line 44 - line 56; figures 1,2
A US 5 276 662 A (DESAI DHIRU ET AL) 1,9,20
4 January 1994 (1994-01-04)
cited in the application
abstract; figures 1,2

A EP 0 473 314 A (IBM) 1,2,9,20
4 March 1992 (1992-03-04)

column 4, 1ine 50 -column 7, line 30;
figures 1,2

D Further documents are listed in the continuation of box C. Patent family members are iisted in annex.

° Special categories of cited documents : , . X »

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

*A" document defining the general state of the art which is not
considered to be of particular relevance

"E* earlier document but published on or after the international *X* document of particular relevance; the claimed invention
fiing date cannot be considered novel or cannot be considered 10

'L* document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
which is cited to establish the publication date of another *Y* document of particular relevance; the claimed invention

citation or other special reason (as specified) cannot be considered to involve an inventive step when the

Q document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilied
P document published prior to the international filing date but inthe art.
later than the priority date claimed *&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
22 March 2001 29/03/2001
Name and mailing address of the ISA Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswilk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016 Moens, R

Form PCT/1SA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

information on patent family members

Intei

»nal Application No

PCT/US 00/29503

Patent document Publication Patent family Publication

cited in search report date member(s) date

EP 0528273 A 24-02-1993 DE 69230204 D 02-12-1999
DE 69230204 T 10-02-2000
JP 2531907 B 04-09-1996
JP 6075897 A 18-03-1994
KR 9510944 B 26-09-1995
us 5539897 A 23-07-1996

US 5276662 A 04-01-1994 NONE

EP 0473314 A 04-03-1992 us 5155814 A 13-10-1992
CA 2046720 A,C 01-03-1992
CN 1059439 A,B 11-03-1992
DE 69123014 D 12-12-1996
JP 2014836 C 02-02-1996
JP 4243458 A 31-08-1992
JP 7048195 B 24-05-1995
KR 9504215 B 27-04-1995

Form PCT/ISA/210 (patent tamily annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

