

US 20090275043A1

(19) United States(12) Patent Application Publication

Grant

(10) Pub. No.: US 2009/0275043 A1 (43) Pub. Date: Nov. 5, 2009

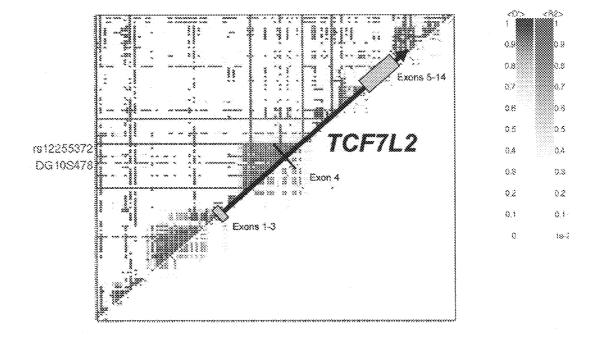
(54) GENETIC VARIANTS IN THE TCF7L2 GENE AS DIAGNOSTIC MARKERS FOR RISK OF TYPE 2 DIABETES MELLITUS

(75) Inventor: Struan F.A. Grant, Reykjavik (IS)

Correspondence Address: HAMILTON, BROOK, SMITH & REYNOLDS, P.C. 530 VIRGINIA ROAD, P.O. BOX 9133 CONCORD, MA 01742-9133 (US)

- (73) Assignee: **deCODE genetics ehf.**, Reykjavik (IS)
- (21) Appl. No.: 12/456,381
- (22) Filed: Jun. 15, 2009

Related U.S. Application Data


- (63) Continuation of application No. 11/454,296, filed on Jun. 16, 2006, now Pat. No. 7,585,630.
- (60) Provisional application No. 60/757,155, filed on Jan. 6, 2006, provisional application No. 60/692,174, filed on Jun. 20, 2005.

Publication Classification

- (51) Int. Cl.
- C12Q 1/68
 (2006.01)

 (52)
 U.S. Cl.
 435/6
- (52) **ABSTRACT** (57)

Polymorphisms in the gene TCF7L2 are shown by association analysis to be a susceptibility gene for type II diabetes. Methods of diagnosis of susceptibility to diabetes, of decreased susceptibility to diabetes and protection against diabetes, are described, as are methods of treatment for type II diabetes.

GENETIC VARIANTS IN THE TCF7L2 GENE AS DIAGNOSTIC MARKERS FOR RISK OF TYPE 2 DIABETES MELLITUS

RELATED APPLICATIONS

[0001] This application is a continuation of U.S. application Ser. No. 11/454,296, filed Jun. 16, 2006, which claims the benefit of U.S. Provisional Application No. 60/757,155, filed on Jan. 6, 2006 and U.S. Provisional Application No. 60/692,174, filed on Jun. 20, 2005. The entire teachings of the above applications are incorporated herein by reference.

BACKGROUND OF THE INVENTION

[0002] Diabetes mellitus, a metabolic disease wherein carbohydrate utilization is reduced and lipid and protein utilization is enhanced, is caused by an absolute or relative deficiency of insulin. In the more severe cases, diabetes is characterized by chronic hyperglycemia, glycosuria, water and electrolyte loss, ketoacidosis and coma. Long term complications include development of neuropathy, retinopathy, nephropathy, generalized degenerative changes in large and small blood vessels and increased susceptibility to infection. The most common form of diabetes is Type II, non-insulindependent diabetes that is characterized by hyperglycemia due to impaired insulin secretion and insulin resistance in target tissues. Both genetic and environmental factors contribute to the disease. For example, obesity plays a major role in the development of the disease. Type II diabetes is often a mild form of diabetes mellitus of gradual onset.

[0003] The health implications of Type II diabetes are enormous. In 1995, there were 135 million adults with diabetes worldwide. It is estimated that close to 300 million will have diabetes in the year 2025. (King H., et al., *Diabetes Care*, 21(9): 1414-1431 (1998)). The prevalence of Type II diabetes in the adult population in Iceland is 2.5% (Vilbergsson, S., et al., *Diabet. Med.*, 14(6): 491-498 (1997)), which comprises approximately 5,000 people over the age of 34 who have the disease. The high prevalence of the disease and increasing population affected shows an unmet medical need to define the genetic factors involved in Type II diabetes to more precisely define the associated risk factors. Also needed are therapeutic agents for prevention of Type II diabetes.

SUMMARY OF THE INVENTION

[0004] The present invention relates to methods of diagnosing an increased susceptibility to type II diabetes, as well as methods of diagnosing a decreased susceptibility to type II diabetes or diagnosing a protection against type II diabetes, by evaluating certain markers or haplotypes relating to the TCF7L2 gene (transcription factor 7-like 2 (T-cell specific, HMG-box), previously referred to as the TCF4 gene (T-cell transcription factor 4)). The methods comprise detecting a genetic marker associated with the exon 4 LD block of TCF7L2 gene.

[0005] In a first aspect, the invention relates to a method of diagnosing a susceptibility to type II diabetes in an individual, comprising analyzing a nucleic acid sample obtained from the individual for a marker or haplotype associated with the exon 4 LD block of TCF7L2, wherein the presence of the marker or haplotype is indicative of a susceptibility to type II diabetes. In one embodiment, the marker or haplotype com-

prises at least one marker selected from the markers listed in Table 6. In another embodiment, the marker or haplotype is a marker.

[0006] In one preferred embodiment, the marker or haplotype is indicative of increased susceptibility of type II diabetes. The increased susceptibility is in one embodiment characterized by a relative risk of at least 1.2, including a relative risk of at least 1.3 and a relative risk of at least 1.4. In one embodiment, the marker is selected from the group consisting of DG10S478, rs12255372, rs7895340, rs11196205, rs7901695, rs7903146, rs12243326, and rs4506565, and wherein the presence of a non-0 allele (e.g., -4, 4, 8, 12, 16, 20, or other non-0 allele) in DG10S478, a T allele in rs12255372; an A allele in rs7895340; a C allele in rs11196205; a C allele in rs7901695; a T allele in rs7903146; a C allele in rs12243326; or an T allele in rs4506565, is indicative of increased susceptibility to type II diabetes. In a preferred embodiment, the marker is selected from the group consisting of DG10S478 and rs7903146, and wherein the presence of a non-0 allele in DG10S478 or a T allele in rs7903146 is indicative of increased susceptibility to type II diabetes. In yet another preferred embodiment, the marker is rs7903146, and wherein the presence of a T allele in rs7903146 is indicative of increased susceptibility to type II diabetes.

[0007] In another preferred embodiment, the marker or haplotype is indicative of decreased susceptibility of type II diabetes. The decreased susceptibility is in one embodiment characterized by a relative risk of less than 0.8, including a relative risk of less than 0.7. In one embodiment, the marker is selected from the group consisting of DG10S478, rs12255372, rs7895340, rs11196205, rs7901695, rs7903146, rs12243326, and rs4506565, and wherein the presence of a 0 allele in DG10S478, a G allele in SNP rs12255372; a G allele in rs7895340; a G allele in rs11196205; a T allele in rs7901695; a C allele in rs7903146; a T allele in rs12243326; or an A allele in rs4506565 is indicative of a decreased susceptibility to type II diabetes. In a preferred embodiment, the marker is DG10S478, and wherein the presence of a 0 allele in DG10S478 is indicative of decreased susceptibility to type II diabetes. In another preferred embodiment, the marker is rs7903146, and wherein the presence of a C allele in rs7903146 is indicative of decreased susceptibility to type II diabetes.

[0008] In a second aspect, the present invention relates to a kit for assaying a sample from an individual to detect a susceptibility to type II diabetes, wherein the kit comprises one or more reagents for detecting one or more markers associated with the exon 4 LD block of TCF7L2. In one embodiment, the one or more reagents comprise at least one contiguous nucleotide sequence that is completely complementary to a region comprising at least one marker associated with the exon 4 LD block of TCF7L2. In one embodiment, the one or more reagents comprise of DG108478, rs12255372, rs7895340, rs11196205, rs7901695, rs7903146, rs12243326, and rs4506565. In a preferred embodiment, the one or more marker is DG108478 or rs7903146. In another preferred embodiment, the marker is the C allele in rs7903146.

[0009] In another aspect, the present invention relates to a method of assessing an individual for probability of response to a TCF7L2 therapeutic agent, comprising: detecting a marker associated with the exon 4 LD block of TCF7L2, wherein the presence of the marker is indicative of a prob-

ability of a positive response to a TCF7L2 therapeutic agent. In one embodiment, the marker is selected from the group consisting of DG10S478, rs12255372, rs7895340, rs11196205, rs7901695, rs7903146, rs12243326, and rs4506565. In another embodiment, the marker is marker DG10S478 or marker rs7903146, and wherein the presence of a non-0 allele in DG10S478 or a T allele in rs7903146 is indicative of a probability of a positive response to a TCF7L2 therapeutic agent.

[0010] Another aspect of the invention relates to the use of a TCF7L2 therapeutic agent for the manufacture of a medicament for the treatment of type II diabetes. In one embodiment, the TCF7L2 therapeutic agent is an agent that alters activity in the Wnt signaling pathway or in the cadherin pathway. In another embodiment, the TCF7L2 therapeutic agent is an agent selected from the group set forth in the Agent Table.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention. The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawings will be provided by the Office upon request and payment of the necessary fee. [0012] The FIGURE depicts the TCF7L2 region of interest with respect to linkage disequilibrium (LD) of SNPs in Hap-Map project Build 16. The 215.9 kb gene spans seven LD blocks as indicated by the black arrow schematic (based on NCBI RefSeq) which shows the direction of transcription; exons are indicated, with exon 4 highlighted. DG10S478 is located at 114.46 Mb on chromosome 10 (NCBI Build 34) in intron 3 of the TCF7L2 gene, within a 74.9 kb block that incorporates part of intron 3, the whole of exon 4 and part of intron 4 (herein referred to as the "exon 4 LD block of TCF7L2"). The SNP markers are plotted equidistantly rather than according to their physical positions. The FIGURE shows two measures of LD-i.e. D' (upper left part of FIG-URE) and r^2 (lower right part).

DETAILED DESCRIPTION OF THE INVENTION

[0013] A description of preferred embodiments of the invention follows.

Loci Associated with Type II Diabetes

[0014] Type II diabetes is characterized by hyperglycemia, which can occur through mechanisms such as impaired insulin secretion, insulin resistance in peripheral tissues and increased glucose output by the liver. Most type II diabetes patients suffer serious complications of chronic hyperglycemia including nephropathy, neuropathy, retinopathy and accelerated development of cardiovascular disease. The prevalence of type II diabetes worldwide is currently 6% but is projected to rise over the next decade(1). This increase in prevalence of type II diabetes is attributed to increasing age of the population and rise in obesity.

[0015] There is evidence for a genetic component to the risk of type II diabetes, including prevalence differences between various racial groups(2, 3), higher concordance rates among monozygotic than dizygotic twins(4, 5) and a sibling relative risk (λ_s) for type II diabetes in European populations of approximately 3.5(6).

[0016] Two approaches have thus far been used to search for genes associated with type II diabetes. Single nucleotide polymorphisms (SNPs) within candidate genes have been tested for association and have, in general, not been replicated or confer only a modest risk of type II diabetes—the most widely reported being a protective Pro12Ala polymorphism in the peroxisome proliferator activated receptor gamma gene (PPARG2)(7) and an at risk polymorphism in the potassium inwardly-rectifying channel, subfamily J, member 11 gene (KIR6.2)(8).

[0017] Genome-wide linkage scans in families with the common form of type II diabetes have yielded several loci, and the primary focus of international research consortia has been on loci on chromosomes 1, 12 and 20 observed in many populations(6). The genes in these loci have yet to be uncovered. However, in Mexican Americans, the calpain 10 (CAPN10) gene was isolated out of a locus on chromosome 2q; this represents the only gene for the common form of type II diabetes to date to be identified through positional cloning (9). The rare Mendelian forms of type II diabetes, namely maturity-onset diabetes of the young (MODY), have yielded six genes by positional cloning(6).

[0018] We previously reported genome-wide significant linkage to chromosome 5q for type II diabetes mellitus in the Icelandic population(10); in the same study, we also reported suggestive evidence of linkage to 10q and 12q. Linkage to the 10q region has also been observed in Mexican Americans (11).

Transcription Factor 7-Like 2 Gene (TCF7L2) Association with Type II Diabetes

[0019] The present invention relates to identification of a type II diabetes-associated LD block ("exon 4 LD block of TCF7L2") within the gene encoding T-cell transcription factor 4 (TCF4-official gene symbol TCF7L2). Several markers within the exon 4 LD block of TCF7L2, including microsatellite DG10S478 and SNP markers rs7903146 and rs12255372, have been found to be associated with type II diabetes. The original observation, first found in an Icelandic cohort, of the association of DG10S478 (P=1.3×10⁻⁹; Relative risk=1.45; Population attributable risk=22.7%), has subsequently been replicated in a Danish type II diabetes cohort and a United States Caucasian cohort. DG10S478 is located in intron 3 of the TCF7L2 gene on 10q25.2 and within a well defined LD block of 74.9 kb that encapsulates part of intron 3, the whole of exon 4 and part of intron 4. The TCF7L2 gene product is a high mobility group (HMG) box-containing transcription factor that plays a role in the Wnt signaling pathway, also known as the APC3/β-catenin/TCF pathway. TCF7L2 mediates the cell type-specific regulation of proglucagon gene expression (a key player in blood glucose homeostasis) through the Wnt pathway members β-catenin and glycogen synthase kinase-3beta(12). In addition, Wnt signaling maintains preadipocytes in an undifferentiated state through inhibition of the adipogenic transcription factors CCAAT/enhancer binding protein alpha (C/EBPalpha) and peroxisome proliferator-activated receptor gamma (PPARgamma)(13). When Wnt signaling in preadipocytes is prevented by overexpression of dominant-negative TCF7L2, these cells differentiate into adipocytes(13). In addition, it has been reported that the Wnt/β-catenin signaling pathway targets PPARgamma activity through physical interaction with β -catenin and TCF7L2 in colon cancer cells(14). The multifunctional β-catenin protein is also important for mediating cell adhesion through its binding of cadherins(15).

[0020] As a result of this discovery, methods are now available for diagnosis of a susceptibility to type II diabetes, as well as for diagnosis of a decreased susceptibility to type II diabetes and/or a protection against type II diabetes. In preferred embodiments of the invention, diagnostic assays are used to identify the presence of particular alleles, including a 0 allele in marker DG10S478 (associated with a decreased susceptibility to type II diabetes and is an allele that is protective against type II diabetes); a non-0 allele (e.g., -4, 4, 8, 12, 16 or 20, or other allele) in marker DG10S478 (associated with susceptibility to type II diabetes); a G allele in SNP rs12255372 (associated with a decreased susceptibility to type II diabetes and is an allele that is protective against type II diabetes): a T allele in SNP rs12255372 (associated with susceptibility to type II diabetes); a G allele in SNP rs7895340 (associated with a decreased susceptibility to type II diabetes and is an allele that is protective against type II diabetes); an A allele in SNP rs7895340 (associated with susceptibility to type II diabetes); a G allele in SNP rs11196205 (associated with a decreased susceptibility to type II diabetes and is an allele that is protective against type II diabetes); a C allele in SNP rs11196205 (associated with susceptibility to type II diabetes); a T allele in SNP rs7901695 (associated with a decreased susceptibility to type II diabetes and is an allele that is protective against type II diabetes); a C allele in SNP rs7901695 (associated with susceptibility to type II diabetes); a C allele in SNP rs7903146 (associated with a decreased susceptibility to type II diabetes and is an allele that is protective against type II diabetes); a T allele in SNP rs7903146 (associated with a susceptibility to type II diabetes); a C allele in SNP rs12243326 (associated with a susceptibility to type II diabetes); and an T allele in SNP rs4506565 (associated with a susceptibility to type II diabetes). In additional embodiments of the invention, other markers or SNPs, identified using the methods described herein, can be used for diagnosis of a susceptibility to type II diabetes, and also for diagnosis of a decreased susceptibility to type II diabetes or for identification of an allele that is protective against type II diabetes. The diagnostic assays presented below can be used to identify the presence or absence of these particular alleles.

Diagnostic Assays

[0021] Nucleic acids, probes, primers, and antibodies such as those described herein can be used in a variety of methods of diagnosis of a susceptibility to type II diabetes, as well as in kits (e.g., useful for diagnosis of a susceptibility to type II diabetes). Similarly, the nucleic acids, probes, primers, and antibodies described herein can be used in methods of diagnosis of a decreased susceptibility to type II diabetes, as well as in methods of diagnosis of a protection against type II diabetes, and also in kits). In one aspect, the kit comprises primers that can be used to amplify the markers of interest.

[0022] In one aspect of the invention, diagnosis of a susceptibility to type II diabetes is made by detecting a polymorphism in a TCF7L2 nucleic acid as described herein (e.g., the alleles in marker DG10S478 or in SNP rs12255372, rs7895340, rs11196205, rs7901695, rs7903146, rs12243326, rs4506565). The polymorphism can be a change in a TCF7L2 nucleic acid, such as the insertion or deletion of a single nucleotide, or of more than one nucleotide, resulting in a frame shift; the change of at least one nucleotide, resulting in a change in the encoded amino acid; the change of at least one nucleotide, resulting in the generation of a premature stop

codon; the deletion of several nucleotides, resulting in a deletion of one or more amino acids encoded by the nucleotides; the insertion of one or several nucleotides, such as by unequal recombination or gene conversion, resulting in an interruption of the coding sequence of the gene; duplication of all or a part of the gene; transposition of all or a part of the gene; or rearrangement of all or a part of the gene. More than one such change may be present in a single gene. Such sequence changes cause a difference in the polypeptide encoded by a TCF7L2 nucleic acid. For example, if the difference is a frame shift change, the frame shift can result in a change in the encoded amino acids, and/or can result in the generation of a premature stop codon, causing generation of a truncated polypeptide. Alternatively, a polymorphism associated with a disease or condition or a susceptibility to a disease or condition associated with a TCF7L2 nucleic acid can be a synonymous alteration in one or more nucleotides (i.e., an alteration that does not result in a change in the polypeptide encoded by a TCF7L2 nucleic acid). Such a polymorphism may alter splicing sites, affect the stability or transport of mRNA, or otherwise affect the transcription or translation of the gene. A TCF7L2 nucleic acid that has any of the changes or alterations described above is referred to herein as an "altered nucleic acid."

[0023] In a first method of diagnosing a susceptibility to type II diabetes, hybridization methods, such as Southern analysis, Northern analysis, or in situ hybridizations, can be used (see Current Protocols in Molecular Biology, Ausubel, F. et al., eds, John Wiley & Sons, including all supplements through 1999). For example, a biological sample (a "test sample") from a test subject (the "test individual") of genomic DNA, RNA, or cDNA, is obtained from an individual (RNA and cDNA can only be used for exonic markers), such as an individual suspected of having, being susceptible to or predisposed for, or carrying a defect for, type II diabetes. The individual can be an adult, child, or fetus. The test sample can be from any source which contains genomic DNA, such as a blood sample, sample of amniotic fluid, sample of cerebrospinal fluid, or tissue sample from skin, muscle, buccal or conjunctival mucosa, placenta, gastrointestinal tract or other organs. A test sample of DNA from fetal cells or tissue can be obtained by appropriate methods, such as by amniocentesis or chorionic villus sampling. The DNA, RNA, or cDNA sample is then examined to determine whether a polymorphism in a TCF7L2 nucleic acid is present, and/or to determine which splicing variant(s) encoded by the TCF7L2 is present. The presence of the polymorphism or splicing variant(s) can be indicated by hybridization of the gene in the genomic DNA, RNA, or cDNA to a nucleic acid probe. A "nucleic acid probe", as used herein, can be a DNA probe or an RNA probe; the nucleic acid probe can contain, for example, at least one polymorphism in a TCF7L2 nucleic acid and/or contain a nucleic acid encoding a particular splicing variant of a TCF7L2 nucleic acid. The probe can be any of the nucleic acid molecules described above (e.g., the gene or nucleic acid, a fragment, a vector comprising the gene or nucleic acid, a probe or primer, etc.).

[0024] To diagnose a susceptibility to type II diabetes, a hybridization sample can be formed by contacting the test sample containing a TCF7L2 nucleic acid with at least one nucleic acid probe. A preferred probe for detecting mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to mRNA or genomic DNA sequences described herein. The nucleic acid probe can be, for example, a full-

length nucleic acid molecule, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to appropriate mRNA or genomic DNA. Suitable probes for use in the diagnostic assays of the invention are described above (see e.g., probes and primers discussed under the heading, "Nucleic Acids of the Invention"). [0025] The hybridization sample is maintained under conditions that are sufficient to allow specific hybridization of the nucleic acid probe to a TCF7L2 nucleic acid. "Specific hybridization", as used herein, indicates exact hybridization (e.g., with no mismatches). Specific hybridization can be performed under high stringency conditions or moderate stringency conditions, for example, as described above. In a particularly preferred aspect, the hybridization conditions for specific hybridization are high stringency.

[0026] Specific hybridization, if present, is then detected using standard methods. If specific hybridization occurs between the nucleic acid probe and TCF7L2 nucleic acid in the test sample, then the TCF7L2 has the polymorphism, or is the splicing variant, that is present in the nucleic acid probe. More than one nucleic acid probe can also be used concurrently in this method. Specific hybridization of any one of the nucleic acid probes is indicative of a polymorphism in the TCF7L2 nucleic acid, or of the presence of a particular splicing variant encoding the TCF7L2 nucleic acid and can be diagnostic for a susceptibility to type II diabetes, or for a protective allele against type II diabetes).

[0027] In Northern analysis (see *Current Protocols in Molecular Biology*, Ausubel, F. et al., eds., John Wiley & Sons, supra) the hybridization methods described above are used to identify the presence of a polymorphism or a particular splicing variant, associated with a susceptibility to type II diabetes or associated with a decreased susceptibility to type II diabetes. For Northern analysis, a test sample of RNA is obtained from the individual by appropriate means. Specific hybridization of a nucleic acid probe, as described above, to RNA from the individual is indicative of a polymorphism in a TCF7L2 nucleic acid, or of the presence of a particular splicing variant encoded by a TCF7L2 nucleic acid and is therefore diagnostic for the susceptibility to type II diabetes or the decreased susceptibility to type II diabetes.

[0028] For representative examples of use of nucleic acid probes, see, for example, U.S. Pat. Nos. 5,288,611 and 4,851, 330.

[0029] Alternatively, a peptide nucleic acid (PNA) probe can be used instead of a nucleic acid probe in the hybridization methods described above. PNA is a DNA mimic having a peptide-like, inorganic backbone, such as N-(2-aminoethyl) glycine units, with an organic base (A, G, C, T or U) attached to the glycine nitrogen via a methylene carbonyl linker (see, for example, Nielsen, P. E. et al., *Bioconjugate Chemistry* 5, American Chemical Society, p. 1 (1994). The PNA probe can be designed to specifically hybridize to a TCF7L2 nucleic acid. Hybridization of the PNA probe to a TCF7L2 nucleic acid can be diagnostic for a susceptibility to type II diabetes or decreased susceptibility to type II diabetes (or indicative of a protective allele against type II diabetes).

[0030] In another method of the invention, alteration analysis by restriction digestion can be used to detect an alteration in the gene, if the alteration (mutation) or polymorphism in the gene results in the creation or elimination of a restriction

site. A test sample containing genomic DNA is obtained from the individual. Polymerase chain reaction (PCR) can be used to amplify a TCF7L2 nucleic acid (and, if necessary, the flanking sequences) in the test sample of genomic DNA from the test individual. RFLP analysis is conducted as described (see *Current Protocols in Molecular Biology*, supra). The digestion pattern of the relevant DNA fragment indicates the presence or absence of the alteration or polymorphism in the TCF7L2 nucleic acid, and therefore indicates the presence or absence a susceptibility to type II diabetes or a decreased susceptibility to type II diabetes (or indicative of a protective allele against type II diabetes).

[0031] Sequence analysis can also be used to detect specific polymorphisms in a TCF7L2 nucleic acid. A test sample of DNA or RNA is obtained from the test individual. PCR or other appropriate methods can be used to amplify the gene or nucleic acid, and/or its flanking sequences, if desired. The sequence of a TCF7L2 nucleic acid, or a fragment of the nucleic acid, or cDNA, or fragment of the cDNA, or mRNA, or fragment of the mRNA, is determined, using standard methods. The sequence of the nucleic acid, nucleic acid fragment, cDNA, cDNA fragment, mRNA, or mRNA fragment is compared with the known nucleic acid sequence of the gene or cDNA or mRNA, as appropriate. The presence of a polymorphism in the TCF7L2 indicates that the individual has a susceptibility to type II diabetes or a decreased susceptibility to type II diabetes (or indicative of a protective allele against type II diabetes).

[0032] Allele-specific oligonucleotides can also be used to detect the presence of a polymorphism in a TCF7L2 nucleic acid, through the use of dot-blot hybridization of amplified oligonucleotides with allele-specific oligonucleotide (ASO) probes (see, for example, Saiki, R. et al., Nature 324:163-166 (1986)). An "allele-specific oligonucleotide" (also referred to herein as an "allele-specific oligonucleotide probe") is an oligonucleotide of approximately 10-50 base pairs, preferably approximately 15-30 base pairs, that specifically hybridizes to a TCF7L2 nucleic acid, and that contains a polymorphism associated with a susceptibility to type II diabetes or a polymorphism associated with a decreased susceptibility to type II diabetes (or indicative of a protective allele against type II diabetes). An allele-specific oligonucleotide probe that is specific for particular polymorphisms in a TCF7L2 nucleic acid can be prepared, using standard methods (see Current Protocols in Molecular Biology, supra). To identify polymorphisms in the gene that are associated with type II diabetes, a test sample of DNA is obtained from the individual. PCR can be used to amplify all or a fragment of a TCF7L2 nucleic acid and its flanking sequences. The DNA containing the amplified TCF7L2 nucleic acid (or fragment of the gene or nucleic acid) is dot-blotted, using standard methods (see Current Protocols in Molecular Biology, supra), and the blot is contacted with the oligonucleotide probe. The presence of specific hybridization of the probe to the amplified TCF7L2 nucleic acid is then detected. Hybridization of an allele-specific oligonucleotide probe to DNA from the individual is indicative of a polymorphism in the TCF7L2 nucleic acid, and is therefore indicative of susceptibility to type II diabetes or is indicative of decreased susceptibility to type II diabetes (or indicative of a protective allele against type II diabetes).

[0033] The invention further provides allele-specific oligonucleotides that hybridize to the reference or variant allele of a gene or nucleic acid comprising a single nucleotide polymorphism or to the complement thereof. These oligonucleotides can be probes or primers.

[0034] An allele-specific primer hybridizes to a site on target DNA overlapping a polymorphism and only primes amplification of an allelic form to which the primer exhibits perfect complementarity. See Gibbs, Nucleic Acid Res. 17, 2427-2448 (1989). This primer is used in conjunction with a second primer, which hybridizes at a distal site. Amplification proceeds from the two primers, resulting in a detectable product, which indicates the particular allelic form is present. A control is usually performed with a second pair of primers, one of which shows a single base mismatch at the polymorphic site and the other of which exhibits perfect complementarity to a distal site. The single-base mismatch prevents amplification and no detectable product is formed. The method works best when the mismatch is included in the 3'-most position of the oligonucleotide aligned with the polymorphism because this position is most destabilizing to elongation from the primer (see, e.g., WO 93/22456).

[0035] With the addition of such analogs as locked nucleic acids (LNAs), the size of primers and probes can be reduced to as few as 8 bases. LNAs are a novel class of bicyclic DNA analogs in which the 2' and 4' positions in the furanose ring are joined via an O-methylene (oxy-LNA), S-methylene (thio-LNA), or amino methylene (amino-LNA) moiety. Common to all of these LNA variants is an affinity toward complementary nucleic acids, which is by far the highest reported for a DNA analog. For example, particular all oxy-LNA nonamers have been shown to have melting temperatures of 64EC and 74EC when in complex with complementary DNA or RNA. respectively, as opposed to 28EC for both DNA and RNA for the corresponding DNA nonamer. Substantial increases in T_m are also obtained when LNA monomers are used in combination with standard DNA or RNA monomers. For primers and probes, depending on where the LNA monomers are included (e.g., the 3' end, the 5' end, or in the middle), the T_m could be increased considerably.

[0036] In another aspect, arrays of oligonucleotide probes that are complementary to target nucleic acid sequence segments from an individual can be used to identify polymorphisms in a TCF7L2 nucleic acid. For example, in one aspect, an oligonucleotide array can be used. Oligonucleotide arrays typically comprise a plurality of different oligonucleotide probes that are coupled to a surface of a substrate in different known locations. These oligonucleotide arrays, also described as "Genechips™," have been generally described in the art, for example, U.S. Pat. No. 5,143,854 and PCT patent publication Nos. WO 90/15070 and 92/10092. These arrays can generally be produced using mechanical synthesis methods or light directed synthesis methods that incorporate a combination of photolithographic methods and solid phase oligonucleotide synthesis methods. See Fodor et al., Science 251:767-777 (1991), Pirrung et al., U.S. Pat. No. 5,143,854 (see also PCT Application No. WO 90/15070) and Fodor et al., PCT Publication No. WO 92/10092 and U.S. Pat. No. 5,424,186, the entire teachings are incorporated by reference herein. Techniques for the synthesis of these arrays using mechanical synthesis methods are described in, e.g., U.S. Pat. No. 5,384,261; the entire teachings are incorporated by reference herein. In another example, linear arrays can be utilized.

[0037] Once an oligonucleotide array is prepared, a nucleic acid of interest is hybridized with the array and scanned for polymorphisms. Hybridization and scanning are generally

carried out by methods described herein and also in, e.g., published PCT Application Nos. WO 92/10092 and WO 95/11995, and U.S. Pat. No. 5,424,186, the entire teachings are incorporated by reference herein. In brief, a target nucleic acid sequence that includes one or more previously identified polymorphic markers is amplified by well-known amplification techniques, e.g., PCR. Typically, this involves the use of primer sequences that are complementary to the two strands of the target sequence both upstream and downstream from the polymorphism. Asymmetric PCR techniques may also be used. Amplified target, generally incorporating a label, is then hybridized with the array under appropriate conditions. Upon completion of hybridization and washing of the array, the array is scanned to determine the position on the array to which the target sequence hybridizes. The hybridization data obtained from the scan is typically in the form of fluorescence intensities as a function of location on the array.

[0038] Although primarily described in terms of a single detection block, e.g., for detecting a single polymorphism, arrays can include multiple detection blocks, and thus be capable of analyzing multiple, specific polymorphisms. In alternative aspects, it will generally be understood that detection blocks may be grouped within a single array or in multiple, separate arrays so that varying, optimal conditions may be used during the hybridization of the target to the array. For example, it may often be desirable to provide for the detection of those polymorphisms that fall within G-C rich stretches of a genomic sequence, separately from those falling in A-T rich segments. This allows for the separate optimization of hybridization conditions for each situation. Additional uses of oligonucleotide arrays for polymorphism detection can be found, for example, in U.S. Pat. Nos. 5,858,659 and 5,837, 832, the entire teachings of which are incorporated by reference herein. Other methods of nucleic acid analysis can be used to detect polymorphisms in a type II diabetes gene or variants encoded by a type II diabetes gene. Representative methods include direct manual sequencing (Church and Gilbert, Proc. Natl. Acad. Sci. USA 81:1991-1995 (1988); Sanger, F. et al., Proc. Natl. Acad. Sci. USA 74:5463-5467 (1977); Beavis et al., U.S. Pat. No. 5,288,644); automated fluorescent sequencing; single-stranded conformation polymorphism assays (SSCP); clamped denaturing gel electrophoresis (CDGE); denaturing gradient gel electrophoresis (DGGE) (Sheffield, V. C. et al., Proc. Natl. Acad. Sci. USA 86:232-236 (1989)), mobility shift analysis (Orita, M. et al., Proc. Natl. Acad. Sci. USA 86:2766-2770 (1989)), restriction enzyme analysis (Flavell et al., Cell 15:25 (1978); Geever, et al., Proc. Natl. Acad. Sci. USA 78:5081 (1981)); heteroduplex analysis; chemical mismatch cleavage (CMC) (Cotton et al., Proc. Natl. Acad. Sci. USA 85:4397-4401 (1985)); RNase protection assays (Myers, R. M. et al., Science 230:1242 (1985)); use of polypeptides which recognize nucleotide mismatches, such as E. coli mutS protein; allele-specific PCR, for example.

[0039] In one aspect of the invention, diagnosis of a susceptibility to type II diabetes, or of a decreased susceptibility to type II diabetes (or indicative of a protective allele against type II diabetes), can also be made by expression analysis by quantitative PCR (kinetic thermal cycling). This technique, utilizing TaqMan® assays, can assess the presence of an alteration in the expression or composition of the polypeptide encoded by a TCF7L2 nucleic acid or splicing variants encoded by a TCF7L2 nucleic acid. TaqMan® probes can also be used to allow the identification of polymorphisms and

whether a patient is homozygous or heterozygous. Further, the expression of the variants can be quantified as physically or functionally different.

[0040] In another aspect of the invention, diagnosis of a susceptibility to type II diabetes or of a decreased susceptibility to type II diabetes (or indicative of a protective allele against type II diabetes), can be made by examining expression and/or composition of a TCF7L2 polypeptide, by a variety of methods, including enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence. A test sample from an individual is assessed for the presence of an alteration in the expression and/or an alteration in composition of the polypeptide encoded by a TCF7L2 nucleic acid, or for the presence of a particular variant encoded by a TCF7L2 nucleic acid. An alteration in expression of a polypeptide encoded by a TCF7L2 nucleic acid can be, for example, an alteration in the quantitative polypeptide expression (i.e., the amount of polypeptide produced); an alteration in the composition of a polypeptide encoded by a TCF7L2 nucleic acid is an alteration in the qualitative polypeptide expression (e.g., expression of an altered TCF7L2 polypeptide or of a different splicing variant). In a preferred aspect, diagnosis of a susceptibility to type II diabetes or of a decreased susceptibility to type II diabetes can be made by detecting a particular splicing variant encoded by that TCF7L2 nucleic acid, or a particular pattern of splicing variants.

[0041] Both such alterations (quantitative and qualitative) can also be present. The term "alteration" in the polypeptide expression or composition, as used herein, refers to an alteration in expression or composition in a test sample, as compared with the expression or composition of polypeptide by a TCF7L2 nucleic acid in a control sample. A control sample is a sample that corresponds to the test sample (e.g., is from the same type of cells), and is from an individual who is not affected by a susceptibility to type II diabetes. An alteration in the expression or composition of the polypeptide in the test sample, as compared with the control sample, is indicative of a susceptibility to type II diabetes. Similarly, the presence of one or more different splicing variants in the test sample, or the presence of significantly different amounts of different splicing variants in the test sample, as compared with the control sample, is indicative of a susceptibility to type II diabetes. Various means of examining expression or composition of the polypeptide encoded by a TCF7L2 nucleic acid can be used, including: spectroscopy, colorimetry, electrophoresis, isoelectric focusing, and immunoassays (e.g., David et al., U.S. Pat. No. 4,376,110) such as immunoblotting (see also Current Protocols in Molecular Biology, particularly Chapter 10). For example, in one aspect, an antibody capable of binding to the polypeptide (e.g., as described above), preferably an antibody with a detectable label, can be used. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or $F(ab')_2$ can be used. The term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently labeled secondary antibody and endlabeling a DNA probe with biotin such that it can be detected with fluorescently labeled streptavidin.

[0042] Western blotting analysis, using an antibody as described above that specifically binds to a polypeptide encoded by an altered TCF7L2 nucleic acid or an antibody that specifically binds to a polypeptide encoded by a nonaltered nucleic acid, or an antibody that specifically binds to a particular splicing variant encoded by a nucleic acid, can be used to identify the presence in a test sample of a particular splicing variant or of a polypeptide encoded by a polymorphic or altered TCF7L2 nucleic acid, or the absence in a test sample of a particular splicing variant or of a polypeptide encoded by a non-polymorphic or non-altered nucleic acid. The presence of a polypeptide encoded by a polymorphic or altered nucleic acid, or the absence of a polypeptide encoded by a non-polymorphic or non-altered nucleic acid, is diagnostic for a susceptibility to type II diabetes, as is the presence (or absence) of particular splicing variants encoded by the TCF7L2 nucleic acid.

[0043] In one aspect of this method, the level or amount of polypeptide encoded by a TCF7L2 nucleic acid in a test sample is compared with the level or amount of the polypeptide encoded by the TCF7L2 in a control sample. A level or amount of the polypeptide in the test sample that is higher or lower than the level or amount of the polypeptide in the control sample, such that the difference is statistically significant, is indicative of an alteration in the expression of the polypeptide encoded by the TCF7L2 nucleic acid, and is diagnostic for a susceptibility to type II diabetes. Alternatively, the composition of the polypeptide encoded by a TCF7L2 nucleic acid in a test sample is compared with the composition of the polypeptide encoded by the TCF7L2 nucleic acid in a control sample (e.g., the presence of different splicing variants). A difference in the composition of the polypeptide in the test sample, as compared with the composition of the polypeptide in the control sample, is diagnostic for a susceptibility to type II diabetes. In another aspect, both the level or amount and the composition of the polypeptide can be assessed in the test sample and in the control sample. A difference in the amount or level of the polypeptide in the test sample, compared to the control sample; a difference in composition in the test sample, compared to the control sample; or both a difference in the amount or level, and a difference in the composition, is indicative of a susceptibility to type II diabetes.

[0044] The same methods can conversely be used to identify the presence of a difference when compared to a control (disease) sample. A difference from the control is indicative of a decreased susceptibility to diabetes, and/or is indicative of a protective allele against type II diabetes.

Assessment for Markers and Haplotypes

[0045] Populations of individuals exhibiting genetic diversity do not have identical genomes. Rather, the genome exhibits sequence variability between individuals at many locations in the genome; in other words, there are many polymorphic sites in a population. In some instances, reference is made to different alleles at a polymorphic site without choosing a reference allele. Alternatively, a reference sequence can be referred to for a particular polymorphic site. The reference allele is sometimes referred to as the "wild-type" allele and it usually is chosen as either the first sequenced allele or as the allele from a "non-affected" individual (e.g., an individual that does not display a disease or abnormal phenotype). Alleles that differ from the reference are referred to as "variant" alleles.

[0046] A "marker", as described herein, refers to a genomic sequence characteristic of a particular variant allele (i.e. polymorphic site). The marker can comprise any allele of any variant type found in the genome, including SNPs, microsatellites, insertions, deletions, duplications and translocations.

[0047] SNP nomenclature as reported herein refers to the official Reference SNP (rs) ID identification tag as assigned to each unique SNP by the National Center for Biotechnological Information (NCBI).

[0048] A "haplotype," as described herein, refers to a segment of a genomic DNA strand that is characterized by a specific combination of genetic markers ("alleles") arranged along the segment. In a certain embodiment, the haplotype can comprise one or more alleles, two or more alleles, three or more alleles, four or more alleles, or five or more alleles. The genetic markers are particular "alleles" at "polymorphic sites" associated with the exon 4 LD block of TCF7L2. As used herein, "exon 4 LD block of TCF7L2" refers to the LD block on Chr10q whithin which association of variants to type II diabetes is observed. NCBI Build 34 position of this LD block is from 114,413,084-114,488,013 bp. The term "susceptibility", as described herein, encompasses both increased susceptibility and decreased susceptibility. Thus, particular markers and/or haplotypes of the invention may be characteristic of increased susceptibility of type II diabetes, as characterized by a relative risk of greater than one. Markers and/or haplotypes that confer increased susceptibility of type II diabetes are furthermore considered to be "at-risk", as they confer an increased risk of disease. Alternatively, the markers and/or haplotypes of the invention are characteristic of decreased susceptibility of type II diabetes, as characterized by a relative risk of less than one.

[0049] A nucleotide position at which more than one sequence is possible in a population (either a natural population or a synthetic population, e.g., a library of synthetic molecules) is referred to herein as a "polymorphic site". Where a polymorphic site is a single nucleotide in length, the site is referred to as a single nucleotide polymorphism ("SNP"). For example, if at a particular chromosomal location, one member of a population has an adenine and another member of the population has a thymine at the same position, then this position is a polymorphic site, and, more specifically, the polymorphic site is a SNP. Alleles for SNP markers as referred to herein refer to the bases A, C, G or T as they occur at the polymorphic site in the SNP assay employed. The person skilled in the art will realise that by assaying or reading the opposite strand, the complementary allele can in each case be measured. Thus, for a polymorphic site containing an A/G polymorphism, the assay employed may either measure the percentage or ratio of the two bases possible, i.e. A and G. Alternatively, by designing an assay that determines the opposite strand on the DNA template, the percentage or ratio of the complementary bases T/C can be measured. Quantitatively (for example, in terms of relative risk), identical results would be obtained from measurement of either DNA strand (+ strand or - strand). Polymorphic sites can allow for differences in sequences based on substitutions, insertions or deletions. For example, a polymorphic microsatellite has multiple small repeats of bases (such as CA repeats) at a particular site in which the number of repeat lengths varies in the general population. Each version of the sequence with respect to the polymorphic site is referred to herein as an "allele" of the polymorphic site. Thus, in the previous example, the SNP allows for both an adenine allele and a thymine allele. SNPs and microsatellite markers located within the exon 4 LD block of TCF7L2 found to be associated with type II diabetes are described in Tables 2-7.

[0050] Typically, a reference sequence is referred to for a particular sequence. Alleles that differ from the reference are referred to as "variant" alleles. For example, the reference genomic DNA sequence between positions 114413084 and 114488013 of NCBI Build 34 (equals 74929 bp, or 74.9 kb), which refers to the location within Chromosome 10, is described herein as SEQ ID NO: 1. A variant sequence, as used herein, refers to a sequence that differs from SEQ ID NO: 1 but is otherwise substantially similar. The genetic markers that make up the haplotypes associated with the exon 4 LD block of TCF7L2 are variants. Additional variants can include changes that affect a polypeptide, e.g., a polypeptide encoded by the TCF7L2 gene. These sequence differences, when compared to a reference nucleotide sequence, can include the insertion or deletion of a single nucleotide, or of more than one nucleotide. Such sequence differences may result in a frame shift; the change of at least one nucleotide, may result in a change in the encoded amino acid; the change of at least one nucleotide, may result in the generation of a premature stop codon; the deletion of several nucleotides, may result in a deletion of one or more amino acids encoded by the nucleotides; the insertion of one or several nucleotides, such as by unequal recombination or gene conversion, may result in an interruption of the coding sequence of a reading frame; duplication of all or a part of a sequence; transposition; or a rearrangement of a nucleotide sequence, as described in detail herein. Such sequence changes alter the polypeptide encoded by the nucleic acid. For example, if the change in the nucleic acid sequence causes a frame shift, the frame shift can result in a change in the encoded amino acids, and/or can result in the generation of a premature stop codon, causing generation of a truncated polypeptide. Alternatively, a polymorphism associated with type II diabetes or a susceptibility to type II diabetes can be a synonymous change in one or more nucleotides (i.e., a change that does not result in a change in the amino acid sequence). Such a polymorphism can, for example, alter splice sites, affect the stability or transport of mRNA, or otherwise affect the transcription or translation of an encoded polypeptide. It can also alter DNA to increase the possibility that structural changes, such as amplifications or deletions, occur at the somatic level in tumors. The polypeptide encoded by the reference nucleotide sequence is the "reference" polypeptide with a particular reference amino acid sequence, and polypeptides encoded by variant alleles are referred to as "variant" polypeptides with variant amino acid sequences.

[0051] A polymorphic microsatellite has multiple small repeats of bases that are 2-8 nucleotides in length (such as CA repeats) at a particular site, in which the number of repeat lengths varies in the general population. An indel is a common form of polymorphism comprising a small insertion or deletion that is typically only a few nucleotides long.

[0052] The haplotypes described herein are a combination of various genetic markers, e.g., SNPs and microsatellites, having particular alleles at polymorphic sites. The haplotypes can comprise a combination of various genetic markers, therefore, detecting haplotypes can be accomplished by methods known in the art for detecting sequences at polymorphic sites. For example, standard techniques for genotyping for the presence of SNPs and/or microsatellite markers can be used, such as fluorescence-based techniques (Chen, X. et al.,

Genome Res. 9(5): 492-98 (1999)), PCR, LCR, Nested PCR and other techniques for nucleic acid amplification. These markers and SNPs can be identified in at-risk haplotypes. Certain methods of identifying relevant markers and SNPs include the use of linkage disequilibrium (LD) and/or LOD scores.

[0053] In certain methods described herein, an individual who is at-risk for type II diabetes is an individual in whom an at-risk marker or haplotype is identified. In one aspect, the at-risk marker or haplotype is one that confers a significant increased risk (or susceptility) of type II diabetes. In one embodiment, significance associated with a marker or haplotype is measured by a relative risk. In a further embodiment, the significance is measured by a percentage. In one embodiment, a significant increased risk is measured as a relative risk of at least about 1.2, including but not limited to: 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8 and 1.9. In a further embodiment, a relative risk of at least 1.2 is significant. In a further embodiment, a relative risk of at least about 1.5 is significant. In a further embodiment, a significant increase in risk is at least about 1.7 is significant. In a further embodiment, a significant increase in risk is at least about 20%, including but not limited to about 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% and 98%. In a further embodiment, a significant increase in risk is at least about 50%.

[0054] In other embodiments of the invention, the marker or haplotype confers decreased risk (decreased susceptibility) of type II diabetes. In one embodiment, significant decreased risk is measured as a relative risk at less than 0.9, including but not limited to 0.9, 0.8, 0.7, 0.6, 0.5, and 0.4. In a further embodiment, significant relative risk is less than 0.7. In another embodiment, the decreased in risk (or susceptibility) is at least about 20%, including but not limited to about 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% and 98%. In a further embodiment, a significant decrease in risk is at least about 30%.

[0055] Thus, the term "susceptibility to type II diabetes" indicates either an increased risk or susceptibility or a decreased risk or susceptibility of type II diabetes, by an amount that is significant, when a certain allele, marker, SNP or haplotype is present; significance is measured as indicated above. The terms "decreased risk", "decreased susceptibility" and "protection against," as used herein, indicate that the relative risk is decreased accordingly when a certain other allele, marker, SNP, and/or a certain other haplotype, is present. It is understood however, that identifying whether an increased or decreased risk is medically significant may also depend on a variety of factors, including the specific disease, the marker or haplotype, and often, environmental factors.

[0056] An at-risk marker or haplotype in, or comprising portions of, the TCF7L2 gene, is one where the marker or haplotype is more frequently present in an individual at risk for type II diabetes (affected), compared to the frequency of its presence in a healthy individual (control), and wherein the presence of the marker or haplotype is indicative of susceptibility to type II diabetes. As an example of a simple test for correlation would be a Fisher-exact test on a two by two table. Given a cohort of chromosomes the two by two table is constructed out of the number of chromosomes that include both of the markers or haplotypes, one of the markers or haplotypes.

[0057] In certain aspects of the invention, at-risk marker or haplotype is an at-risk marker or haplotype within or near

TCF7L2 that significantly correlates with type II diabetes. In other aspects, an at-risk marker or haplotype comprises an at-risk marker or haplotype within or near TCF7L2 that significantly correlates with susceptibility to type II diabetes. In particular embodiments of the invention, the marker or haplotype is associated with the exon 4 LD block of TCF7L2, as described herein.

[0058] Standard techniques for genotyping for the presence of SNPs and/or microsatellite markers can be used, such as fluorescent based techniques (Chen, et al., *Genome Res.* 9, 492 (1999)), PCR, LCR, Nested PCR and other techniques for nucleic acid amplification.

[0059] In a preferred aspect, the method comprises assessing in an individual the presence or frequency of SNPs and/or microsatellites in, comprising portions of, the TCF7L2 gene, wherein an excess or higher frequency of the SNPs and/or microsatellites compared to a healthy control individual is indicative that the individual is susceptible to type II diabetes. Such SNPs and markers can form haplotypes that can be used as screening tools. These markers and SNPs can be identified in at-risk haploptypes. For example, an at-risk haplotype can include microsatellite markers and/or SNPs such as marker DG10S478 and/or SNP rs12255372, rs7895340, rs7901695, rs7903146, rs12243326 or rs11196205, rs4506565. The presence of an at-risk haplotype is indicative of increased susceptibility to type II diabetes, and therefore is indicative of an individual who falls within a target population for the treatment methods described herein.

Identification of Susceptibility Variants

[0060] The frequencies of haplotypes in the patient and the control groups can be estimated using an expectation-maximization algorithm (Dempster A. et al., J. R. Stat. Soc. B, 39:1-38 (1977)). An implementation of this algorithm that can handle missing genotypes and uncertainty with the phase can be used. Under the null hypothesis, the patients and the controls are assumed to have identical frequencies. Using a likelihood approach, an alternative hypothesis is tested, where a candidate at-risk-haplotype, which can include the markers described herein, is allowed to have a higher frequencies of other haplotypes are assumed to be the same in both groups. Likelihoods are maximized separately under both hypotheses and a corresponding 1-df likelihood ratio statistic is used to evaluate the statistical significance.

[0061] To look for at-risk and protective markers and haplotypes within a linkage region, for example, association of all possible combinations of genotyped markers is studied, provided those markers span a practical region. The combined patient and control groups can be randomly divided into two sets, equal in size to the original group of patients and controls. The marker and haplotype analysis is then repeated and the most significant p-value registered is determined. This randomization scheme can be repeated, for example, over 100 times to construct an empirical distribution of p-values. In a preferred embodiment, a p-value of <0.05 is indicative of an significant marker and/or haplotype association.

[0062] A detailed discussion of haplotype analysis follows.

Haplotype Analysis

[0063] One general approach to haplotype analysis involves using likelihood-based inference applied to NEsted MOdels (Gretarsdottir S., et al., *Nat. Genet.* 35:131-38

(2003)). The method is implemented in the program NEMO, which allows for many polymorphic markers, \$NPs and microsatellites. The method and software are specifically designed for case-control studies where the purpose is to identify haplotype groups that confer different risks. It is also a tool for studying LD structures. In NEMO, maximum likelihood estimates, likelihood ratios and p-values are calculated directly, with the aid of the EM algorithm, for the observed data treating it as a missing-data problem.

Measuring Information

[0064] Even though likelihood ratio tests based on likelihoods computed directly for the observed data, which have captured the information loss due to uncertainty in phase and missing genotypes, can be relied on to give valid p-values, it would still be of interest to know how much information had been lost due to the information being incomplete. The information measure for haplotype analysis is described in Nicolae and Kong (Technical Report 537, Department of Statistics, University of Statistics, University of Statistics, University of Chicago; *Biometrics*, 60(2):368-75 (2004)) as a natural extension of information measures defined for linkage analysis, and is implemented in NEMO.

Statistical Analysis

[0065] For single marker association to the disease, the Fisher exact test can be used to calculate two-sided p-values for each individual allele. All p-values are presented unadjusted for multiple comparisons unless specifically indicated. The presented frequencies (for microsatellites, SNPs and haplotypes) are allelic frequencies as opposed to carrier frequencies. To minimize any bias due the relatedness of the patients who were recruited as families for the linkage analysis, first and second-degree relatives can be eliminated from the patient list. Furthermore, the test can be repeated for association correcting for any remaining relatedness among the patients, by extending a variance adjustment procedure described in Risch, N. & Teng, J. (Genome Res., 8:1273-1288 (1998)), DNA pooling (ibid) for sibships so that it can be applied to general familial relationships, and present both adjusted and unadjusted p-values for comparison. The differences are in general very small as expected. To assess the significance of single-marker association corrected for multiple testing we can carry out a randomization test using the same genotype data. Cohorts of patients and controls can be randomized and the association analysis redone multiple times (e.g., up to 500,000 times) and the p-value is the fraction of replications that produced a p-value for some marker allele that is lower than or equal to the p-value we observed using the original patient and control cohorts.

[0066] For both single-marker and haplotype analyses, relative risk (RR) and the population attributable risk (PAR) can be calculated assuming a multiplicative model (haplotype relative risk model) (Terwilliger, J. D. & Ott, J., *Hum. Hered.* 42:337-46 (1992) and Falk, C. T. & Rubinstein, P, *Ann. Hum. Genet.* 51 (Pt 3):227-33 (1987)), i.e., that the risks of the two alleles/haplotypes a person carries multiply. For example, if RR is the risk of A relative to a, then the risk of a person homozygote AA will be RR times that of a heterozygote Aa and RR² times that of a homozygote aa. The multiplicative model has a nice property that simplifies analysis and computations-haplotypes are independent, i.e., in Hardy-Weinberg equilibrium, within the affected population as well as

within the control population. As a consequence, haplotype counts of the affecteds and controls each have multinomial distributions, but with different haplotype frequencies under the alternative hypothesis. Specifically, for two haplotypes, h_i and h_j , risk(h_i)/risk(h_j)=(f_i/p_i)/(f_j/p_j), where f and p denote, respectively, frequencies in the affected population and in the control population. While there is some power loss if the true model is not multiplicative, the loss tends to be mild except for extreme cases. Most importantly, p-values are always valid since they are computed with respect to null hypothesis.

Linkage Disequilibrium Using NEMO

[0067] LD between pairs of markers can be calculated using the standard definition of D' and R^2 (Lewontin, R., *Genetics* 49:49-67 (1964); Hill, W. G. & Robertson, A. *Theor. Appl. Genet.* 22:226-231 (1968)). Using NEMO, frequencies of the two marker allele combinations are estimated by maximum likelihood and deviation from linkage equilibrium is evaluated by a likelihood ratio test. The definitions of D' and R^2 are extended to include microsatellites by averaging over the values for all possible allele combination of the two markers weighted by the marginal allele probabilities. When plotting all marker combination to elucidate the LD structure in a particular region, we plot D' in the upper left corner and the p-value in the lower right corner. In the LD plots the markers can be plotted equidistant rather than according to their physical location, if desired.

Statistical Methods for Linkage Analysis

[0068] Multipoint, affected-only allele-sharing methods can be used in the analyses to assess evidence for linkage. Results, both the LOD-score and the non-parametric linkage (NPL) score, can be obtained using the program Allegro (Gudbjartsson et al., Nat. Genet. 25:12-3 (2000)). Our baseline linkage analysis uses the Spairs scoring function (Whittemore, A. S., Halpern, J. Biometrics 50:118-27 (1994); Kruglyak L. et al., Am. J. Hum. Genet. 58:1347-63 (1996)), the exponential allele-sharing model (Kong, A. and Cox, N.J., Am. J. Hum. Genet. 61:1179-88 (1997)) and a family weighting scheme that is halfway, on the log-scale, between weighting each affected pair equally and weighting each family equally. The information measure that we use is part of the Allegro program output and the information value equals zero if the marker genotypes are completely uninformative and equals one if the genotypes determine the exact amount of allele sharing by decent among the affected relatives (Gretarsdottir et al., Am. J. Hum. Genet., 70:593-603 (2002)). The P-values were computed two different ways and the less significant result is reported here. The first P-value can be computed on the basis of large sample theory; the distribution of $Z_{tr} = \Box(2 - [\log_{c}(10)LOD])$ approximates a standard normal variable under the null hypothesis of no linkage (Kong, A. and Cox, N.J., Am. J. Hum. Genet. 61:1179-88 (1997)). The second P-value can be calculated by comparing the observed LOD-score with its complete data sampling distribution under the null hypothesis (e.g., Gudbjartsson et al., Nat. Genet. 25:12-3 (2000)). When the data consist of more than a few families, these two P-values tend to be very similar.

Haplotypes and "Haplotype Block" Definition of a Susceptibility Locus

[0069] In certain embodiments, marker and haplotype analysis involves defining a candidate susceptibility locus

based on "haplotype blocks" (also called "LD blocks"). It has been reported that portions of the human genome can be broken into series of discrete haplotype blocks containing a few common haplotypes; for these blocks, linkage disequilibrium data provided little evidence indicating recombination (see, e.g., Wall., J. D. and Pritchard, J. K., *Nature Reviews Genetics* 4:587-597 (2003); Daly, M. et al., *Nature Genet.* 29:229-232 (2001); Gabriel, S. B. et al., *Science* 296:2225-2229 (2002); Patil, N. et al., *Science* 294:1719-1723 (2001); Dawson, E. et al., *Nature* 418:544-548 (2002); Phillips, M. S. et al., *Nature Genet.* 33:382-387 (2003)).

[0070] There are two main methods for defining these haplotype blocks: blocks can be defined as regions of DNA that have limited haplotype diversity (see, e.g., Daly, M. et al., *Nature Genet.* 29:229-232 (2001); Patil, N. et al., *Science* 294:1719-1723 (2001); Dawson. E. et al., *Nature* 418:544-548 (2002); Zhang, K. et al., *Proc. Natl. Acad. Sci. USA* 99:7335-7339 (2002)), or as regions between transition zones having extensive historical recombination, identified using linkage disequilibrium (see, e.g., Gabriel, S. B. et al., *Science* 296:2225-2229 (2002); Phillips, M. S. et al., *Nature Genet.* 33:382-387 (2003); Wang, N. et al., *Am. J. Hum. Genet.* 71:1227-1234 (2002); Stumpf, M. P., and Goldstein, D. B., *Curr. Biol.* 13:1-8 (2003)). As used herein, the terms "haplotype block" or "LD block" includes blocks defined by either characteristic.

[0071] Representative methods for identification of haplotype blocks are set forth, for example, in U.S. Published Patent Application Nos. 20030099964, 20030170665, 20040023237 and 20040146870. Haplotype blocks can be used readily to map associations between phenotype and haplotype status. The main haplotypes can be identified in each haplotype block, and then a set of "tagging" SNPs or markers (the smallest set of SNPs or markers needed to distinguish among the haplotypes) can then be identified. These tagging SNPs or markers can then be used in assessment of samples from groups of individuals, in order to identify association between phenotype and haplotype. If desired, neighboring haplotype blocks can be assessed concurrently, as there may also exist linkage disequilibrium among the haplotype blocks.

Haplotypes and Diagnostics

[0072] As described herein, certain markers and haplotypes comprising such markers are found to be useful for determination of susceptibility to type II diabetes-i.e., they are found to be useful for diagnosing a susceptibility to type II diabetes. Particular markers and haplotypes are found more frequently in individuals with type II diabetes than in individuals without type II diabetes. Therefore, these markers and haplotypes have predictive value for detecting type II diabetes, or a susceptibility to type II diabetes, in an individual. Haplotype blocks (i.e. the exon 4 LD block of TCF7L2) comprising certain tagging markers, can be found more frequently in individuals with type II diabetes than in individuals without type II diabetes. Therefore, these "at-risk" tagging markers within the haplotype block also have predictive value for detecting type II diabetes, or a susceptibility to type II diabetes, in an individual. "At-risk" tagging markers within the haplotype or LD blocks can also include other markers that distinguish among the haplotypes, as these similarly have predictive value for detecting type II diabetes or a susceptibility to type II diabetes. As a consequence of the haplotype block structure of the human genome, a large number of markers or other variants and/or haplotypes comprising such markers or variants in association with the haplotype block (LD block) may be found to be associated with a certain trait and/or phenotype. Thus, it is possible that markers and/or haplotypes residing within the exon 4 LD block of TCF7L2 as defined herein or in strong LD (characterized by r² greater than 0.2) with the exon 4 LD block of TCF7L2 are associated with type II diabetes (i.e. they confer increased or decreased susceptibility of type II diabetes). This includes markers that are described herein (Table 6), but may also include other markers that are in strong LD (characterized by r² greater than 0.2) with one or more of the markers listed in Table 6. The identification of such additional variants can be achieved by methods well known to those skilled in the art, for example by DNA sequencing of the LD block A genomic region in particular group of individuals, and the present invention also encompasses such additional variants.

[0073] As described herein, certain markers within the exon 4 LD block of TCF7L2 are found in decreased frequency in individuals with type II diabetes, and haplotypes comprising two or more of those markers listed in Tables 13, 20 and 21 are also found to be present at decreased frequency in individuals with type II diabetes. These markers and haplotypes are thus protective for type II diabetes, i.e. they confer a decreased risk of individuals carrying these markers and/or haplotypes developing type II diabetes.

[0074] The haplotypes and markers described herein are, in some cases, a combination of various genetic markers, e.g., SNPs and microsatellites. Therefore, detecting haplotypes can be accomplished by methods known in the art and/or described herein for detecting sequences at polymorphic sites. Furthermore, correlation between certain haplotypes or sets of markers and disease phenotype can be verified using standard techniques. A representative example of a simple test for correlation would be a Fisher-exact test on a two by two table.

[0075] In specific embodiments, a marker or haplotype associated with the exon 4 LD block of TCF7L2 is one in which the marker or haplotype is more frequently present in an individual at risk for type II diabetes (affected), compared to the frequency of its presence in a healthy individual (control), wherein the presence of the marker or haplotype is indicative of type II diabetes or a susceptibility to type II diabetes. In other embodiments, at-risk tagging markers in linkage disequilibrium with one or more markers associated with the exon 4 LD block of TCF7L2, are tagging markers that are more frequently present in an individual at risk for type II diabetes (affected), compared to the frequency of their presence in a healthy individual (control), wherein the presence of the tagging markers is indicative of increased susceptibility to type II diabetes. In a further embodiment, at-risk markers in linkage disequilibrium with one or more markers associated with the exon 4 LD block of TCF7L2, are markers that are more frequently present in an individual at risk for type II diabetes, compared to the frequency of their presence in a healthy individual (control), wherein the presence of the markers is indicative of susceptibility to type II diabetes.

[0076] In certain methods described herein, an individual who is at risk for type II diabetes is an individual in whom an at-risk marker or haplotype is identified. In one embodiment, the strength of the association of a marker or haplotype is measured by relative risk (RR). RR is the ratio of the incidence of the condition among subjects who carry one copy of the marker or haplotype to the incidence of the condition

among subjects who do not carry the marker or haplotype. This ratio is equivalent to the ratio of the incidence of the condition among subjects who carry two copies of the marker or haplotype to the incidence of the condition among subjects who carry one copy of the marker or haplotype. In one embodiment, the marker or haplotype has a relative risk of at least 1.2. In other embodiments, the marker or haplotype has a relative risk of at least 1.3, at least 1.4, at least 1.5, at least 2.0, at least 2.5, at least 3.0, at least 3.5, at least 4.0, or at least 5.0.

[0077] In other methods of the invention, an individual who has a decreased risk (or deceased susceptibility) of type II diabetes is an individual in whom a protective marker or haplotype is identified. In such cases, the relative risk (RR) is less than unity. In one embodiment, the marker or haplotype has a relative risk of less than 0.9. In another embodiments, the marker or haplotype has a relative risk of less than 0.8, less than 0.7, less than 0.6, less than 0.5 or less than 0.4.

Utility of Genetic Testing

[0078] The knowledge about a genetic variant that confers a risk of developing type II diabetes offers the opportunity to apply a genetic-test to distinguish between individuals with increased risk of developing the disease (i.e. carriers of the at-risk variant) and those with decreased risk of developing the disease (i.e. carriers of the protective variant). The core values of genetic testing, for individuals belonging to both of the above mentioned groups, are the possibilities of being able to diagnose the disease at an early stage and provide information to the clinician about prognosis/aggressiveness of the disease in order to be able to apply the most appropriate treatment. For example, the application of a genetic test for type II diabetes can provide an opportunity for the detection of the disease at an earlier stage which may lead to the application of therapeutic measures at an earlier stage, and thus can minimize the deleterious effects of the symptoms and serious health consequences conferred by type II diabetes.

Methods of Therapy

[0079] In another embodiment of the invention, methods can be employed for the treatment of type II diabetes. The term "treatment" as used herein, refers not only to ameliorating symptoms associated with type II diabetes, but also preventing or delaying the onset of type II diabetes; lessening the severity or frequency of symptoms of type II diabetes; and/or also lessening the need for concomitant therapy with other drugs that ameliorate symptoms associated with type II diabetes. In one aspect, the individual to be treated is an individual who is susceptible (at an increased risk) for type II diabetes (e.g., an individual having the presence of an allele other than a 0 allele in marker DG10S478; the presence of a T allele in SNP rs12255372; the presence of an A allele in SNP rs7895340; the presence of a C allele in SNP rs11196205; the presence of a C allele in SNP rs7901695; the presence of a T allele in SNP rs7903146; the presence of a C allele in SNP rs12243326; or the presence of an T allele in SNP rs4506565.

[0080] In additional embodiments of the invention, methods can be employed for the treatment of other diseases or conditions associated with TCF7L2. A TCF7L2 therapeutic agent can be used both in methods of treatment of type II diabetes, as well as in methods of treatment of other diseases or conditions associated with TCF7L2. **[0081]** The methods of treatment (prophylactic and/or therapeutic) utilize a TCF7L2 therapeutic agent. A "TCF7L2 therapeutic agent" is an agent that alters (e.g., enhances or inhibits) polypeptide activity and/or nucleic acid expression of TCF7L2, either directly or indirectly (e.g., through altering activity or nucleic acid expression of a protein that interacts with TCF7L2, such as a protein in the Wnt signaling pathway or in the cadherin pathway (e.g., beta-catenin)). In certain embodiments, the TCF7L2 therapeutic agent alters activity and/or nucleic acid expression of TCF7L2.

[0082] TCF7L2 therapeutic agents can alter TCF7L2 polypeptide activity or nucleic acid expression by a variety of means, such as, for example, by providing additional TCF7L2 polypeptide or by upregulating the transcription or translation of the TCF7L2 nucleic acid; by altering posttranslational processing of the TCF7L2 polypeptide; by altering transcription of TCF7L2 splicing variants; or by interfering with TCF7L2 polypeptide activity (e.g., by binding to a TCF7L2 polypeptide), or by binding to another polypeptide that interacts with TCF7L2, by altering (e.g., downregulating) the expression, transcription or translation of a TCF7L2 nucleic acid, or by altering (e.g., agonizing or antagonizing) activity.

[0083] Representative TCF7L2 therapeutic agents include the following: nucleic acids or fragments or derivatives thereof described herein, particularly nucleotides encoding the polypeptides described herein and vectors comprising such nucleic acids (e.g., a gene, cDNA, and/or mRNA, such as a nucleic acid encoding a TCF7L2 polypeptide or active fragment or derivative thereof, or an oligonucleotide; or a complement thereof, or fragments or derivatives thereof, and/ or other splicing variants encoded by a Type II diabetes nucleic acid, or fragments or derivatives thereof); polypeptides described herein and/or splicing variants encoded by the TCF7L2 nucleic acid or fragments or derivatives thereof; other polypeptides (e.g., TCF7L2 receptors); TCF7L2 binding agents; or agents that affect (e.g., increase or decrease) activity, antibodies, such as an antibody to an altered TCF7L2 polypeptide, or an antibody to a non-altered TCF7L2 polypeptide, or an antibody to a particular splicing variant encoded by a TCF7L2 nucleic acid as described above; peptidomimetics; fusion proteins or prodrugs thereof; ribozymes; other small molecules; and other agents that alter (e.g., enhance or inhibit) expression of a TCF7L2 nucleic acid, or that regulate transcription of TCF7L2 splicing variants (e.g., agents that affect which splicing variants are expressed, or that affect the amount of each splicing variant that is expressed). Additional representative TCF7L2 therapeutic agents include compounds that influence insulin signaling and/or glucagons, GLP-1 or GIP signaling. More than one TCF7L2 therapeutic agent can be used concurrently, if desired.

[0084] In preferred embodiments, the TCF7L2 therapeutic agent is an agent that interferes with the activity of TCF7L2, such as, for example, an agent that interferes with TCF7L2 binding or interaction of TCF7L2 with beta-catenin (see, e.g., Fasolini, et al., *J. Biol. Chem.* 278(23):21092-06 (2003)) or with other proteins. Other TCF7L2 therapeutic agents include agents that affect the Wnt signaling pathway or agents that affect the cadherin pathway. Representative agents include agents such as those used for cancer therapy, including, for example, proteins such as the DKK proteins; the beta-catenin binding domain of APC, or Axin; factors such as IDAX, AXAM and ICAT; antisense oligonucleotides or RNA inter-

ference (RNAi), such as with the use of Vitravene; oncolytic viral vectors; and other compounds (see, e.g., Luu et al., Current Cancer Drug Targets 4:6530671 (2004)); small molecule antagonists, including, for example, ZTM00990, PKF118-310, PKF118-744, PKF115-584, PKF222-815, CGPO49090, NPDDG39.024, and NPDDG1.024 as described by Lepourcelet et al. (see, e.g., Lepourcelet et al., Cancer Call 5:91-102 (2004)); compounds described in U.S. Pat. No. 6,762,185; compounds described in US Patent applications 20040005313, 20040072831, 20040247593, or 20050059628. Other representative TCF7L2 therapeutic

agents include gsk3 inhibitors, including, for example, those described in U.S. Pat. Nos. 6,057,117; 6,153,618; 6,417,185; 6,465,231; 6,489,344; 6,512,102; 6,608,063; 6,716,624; 6,800,632; and published US Patent applications 20030008866; 20030077798; 20030130289; 20030207883; 2000092535; and 200500851. The entire teachings of all of the references, patents and patent applications recited in the Specification are incorporated herein in their entirety.

[0085] Additional representative TCF7L2 therapeutic agents are shown in the Agent Table, below.

		Agent table		
Compound name(s)	Compound name (generated using Autonom, ISIS Draw version 2.5 from MDL Information Systems)	Company	Compound Reference	Indications
AR-0133418 (SN-4521)	1-(4-Methoxy-benzyl)-3- (5-nitro-thiazol-2-yl)- urea	AstraZeneca		AD
AR-025028 CT-98023	NSD NSD N-[4-(2,4-Dichloro- phenyl)-5-(1H-imidazol- 2-yl)-pyrimidin-2-yl]- N'-(5-nitro-pyridin-2- yl)-ethane-1,2-diamine	AstraZeneca Chiron Corp		non-insulin dependent diabetes
CT-20026	NSD	Chiron Corp	Wagman et al., Curr Pharm. Des 2004: 10(10) 1105-37	non-insulin dependent diabetes
CT-21022	NSD	Chiron Corp	1105 57	non-insulin dependent diabetes
CT-20014	NSD	Chiron Corp		non-insulin dependent diabetes
CT-21018	NSD	Chiron Corp		non-insulin dependent diabetes
CHIR-98025	NSD	Chiron Corp		non-insulin dependent diabetes
CHIR-99021	NSD	Chiron Corp	Wagman et al., Curr Pharm. Des 2004: 10(10) 1105-37	non-insulin dependent diabetes
CG-100179	NGD	CrystalGenomics and Yuyu	WO- 2004065370	diabetes mellitus (Korea)
CG-100179	NSD 4-[2-(4-Dimethylamino)- 3-nitro-phenylamino)- pyrimidin-4-yl]-3,5- dimethyl-1H-pyrrole-2- carbonitrile	Cyclacel Ltd.		non-insulin dependent diabetes, among others.
NP-01139, NP-031112, NP-03112, NP-00361	4-Benzyl-2-methyl- [1,2,4]thiadiazolidine- 3,5-dione	Neuropharma SA		CNS disorders, AD
	3-[9-Fluoro-2- (piperidine-1- carbonyl)-1,2,3,4- tetrahydro- [1,4]diazepino[6,7,1- hi]indol-7-yl]-4- imidazo[1,2-a]pyridin- 3-yl-pyrrole-2,5-dione	Eli Lilly & Co		non-insulin dependent diabetes

	A	Agent table		
Compound name(s)	Compound name (generated using Autonom, ISIS Draw version 2.5 from MDL Information Systems)	Company	Compound Reference	Indications
GW-784752x, GW-784775, SB-216763, SB-415286	Cyclopentanecarboxylic acid (6-pyridin-3-yl- furo[2,3-d]pyrimidin-4- yl)-amide	GSK	WO-03024447 (compound referenced: 4-[2-(2- bromophenyl)- 4-(4- fluorophenyl)- 1H- imidazol-5- yl]pyridine	non-insulin dependent diabetes, neurodegenerative disease
NNC-57-0511, NNC-57-0545, NNC-57-0588	1-(4-Amino-furazan-3- yl)-5-piperidin-1- ylmethyl-1H- [1,2,3]triazole-4- carboxylic acid [1- pyridin-4-yl-meth-(E)- ylidene]-hydrazide	Novo Nordisk	yıjpyndine	non-insulin dependent diabetes,
CP-70949	NSD	Pfizer		Hypoglycemic agent
VX-608	NSD			agent Cerebrovascular ischemia, non-insulin dependent diabetes
	NSD	Kinetek		Nuclear factor kappa B modulator, Anti- inflammatory, Cell cycle inhibitor, Glycogen synthase kinase-3 beta inhibitor
KP-403 class BYETTA (exenatide)	Exenatide: C ₁₈₄ H ₂₈₂ N ₅₀ O ₆₀ S - Amino acid sequence: H-His-Gly-Glu- Gly-Thr-Phe-Thr-Ser- Asp-Leu-Ser-Lys-Gln- Met-Glu-Glu-Glu-Ala- Val-Arg-Leu-Phe-Ile- Glu-Trp-Leu-Lys-Asn- Gly-Gly-Pro-Ser-Ser- Gly-Ala-Pro-Pro-Pro- Sar, NH	Amylin/Eli Lilly & Co		non-insulin dependent diabetes
Vildagliptin (LAF237)	Ser-NH ₂ NSD	Novartis		non-insulin dependent diabetes - DPP-4 inhibitor

NSD = No Structure disclosed (in Iddb3)

[0086] The TCF7L2 therapeutic agent(s) are administered in a therapeutically effective amount (i.e., an amount that is sufficient for "treatment," as described above). The amount which will be therapeutically effective in the treatment of a particular individual's disorder or condition will depend on the symptoms and severity of the disease, and can be determined by standard clinical techniques. In addition, in vitro or in vivo assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of a practitioner and each patient's circumstances. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.

[0087] In one embodiment, a nucleic acid (e.g., a nucleic acid encoding a TCF7L2 polypeptide); or another nucleic acid that encodes a TCF7L2 polypeptide or a splicing variant, derivative or fragment thereof can be used, either alone or in a pharmaceutical composition as described above. For example, a TCF7L2 gene or nucleic acid or a cDNA encoding a TCF7L2 polypeptide, either by itself or included within a

vector, can be introduced into cells (either in vitro or in vivo) such that the cells produce native TCF7L2 polypeptide. If necessary, cells that have been transformed with the gene or cDNA or a vector comprising the gene, nucleic acid or cDNA can be introduced (or re-introduced) into an individual affected with the disease. Thus, cells which, in nature, lack native TCF7L2 expression and activity, or have altered TCF7L2 expression and activity, or have expression of a disease-associated TCF7L2 splicing variant, can be engineered to express the TCF7L2 polypeptide or an active fragment of the TCF7L2 polypeptide (or a different variant of the TCF7L2 polypeptide). In certain embodiments, nucleic acids encoding a TCF7L2 polypeptide, or an active fragment or derivative thereof, can be introduced into an expression vector, such as a viral vector, and the vector can be introduced into appropriate cells in an animal. Other gene transfer systems, including viral and nonviral transfer systems, can be used. Alternatively, nonviral gene transfer methods, such as calcium phosphate coprecipitation, mechanical techniques (e.g., microinjection); membrane fusion-mediated transfer via liposomes; or direct DNA uptake, can also be used.

[0088] Alternatively, in another embodiment of the invention, a nucleic acid of the invention; a nucleic acid complementary to a nucleic acid of the invention; or a portion of such a nucleic acid (e.g., an oligonucleotide as described below), can be used in "antisense" therapy, in which a nucleic acid (e.g., an oligonucleotide) which specifically hybridizes to the mRNA and/or genomic DNA of a Type II diabetes gene is administered or generated in situ. The antisense nucleic acid that specifically hybridizes to the mRNA and/or DNA inhibits expression of the TCF7L2 polypeptide, e.g., by inhibiting translation and/or transcription. Binding of the antisense nucleic acid can be by conventional base pair complementarity, or, for example, in the case of binding to DNA duplexes, through specific interaction in the major groove of the double helix.

[0089] An antisense construct of the present invention can be delivered, for example, as an expression plasmid as described above. When the plasmid is transcribed in the cell, it produces RNA that is complementary to a portion of the mRNA and/or DNA which encodes the TCF7L2 polypeptide. Alternatively, the antisense construct can be an oligonucleotide probe that is generated ex vivo and introduced into cells; it then inhibits expression by hybridizing with the mRNA and/or genomic DNA of the polypeptide. In one embodiment, the oligonucleotide probes are modified oligonucleotides, which are resistant to endogenous nucleases, e.g., exonucleases and/or endonucleases, thereby rendering them stable in vivo. Exemplary nucleic acid molecules for use as antisense oligonucleotides are phosphoramidate, phosphothioate and methylphosphonate analogs of DNA (see also U.S. Pat. Nos. 5,176,996; 5,264,564; and 5,256,775). Additionally, general approaches to constructing oligomers useful in antisense therapy are also described, for example, by Van der Krol et al., (BioTechniques 6:958-976 (1988)); and Stein et al., (Cancer Res. 48:2659-2668 (1988)). With respect to antisense DNA, oligodeoxyribonucleotides derived from the translation initiation site are preferred.

[0090] To perform antisense therapy, oligonucleotides (mRNA, cDNA or DNA) are designed that are complementary to mRNA encoding the TCF7L2 gene. The antisense oligonucleotides bind to TCF7L2 mRNA transcripts and prevent translation. Absolute complementarity, although preferred, is not required. A sequence "complementary" to a

portion of an RNA, as referred to herein, indicates that a sequence has sufficient complementarity to be able to hybridize with the RNA, forming a stable duplex; in the case of double-stranded antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex formation may be assayed. The ability to hybridize will depend on both the degree of complementarity and the length of the antisense nucleic acid, as described in detail above. Generally, the longer the hybridizing nucleic acid, the more base mismatches with an RNA it may contain and still form a stable duplex (or triplex, as the case may be). One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures.

[0091] The oligonucleotides used in antisense therapy can be DNA, RNA, or chimeric mixtures or derivatives or modified versions thereof, single-stranded or double-stranded. The oligonucleotides can be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability of the molecule, hybridization, etc. The oligonucleotides can include other appended groups such as peptides (e.g. for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., Proc. Natl. Acad. Sci. USA 86:6553-6556 (1989); Lemaitre et al., Proc. Natl. Acad. Sci. USA 84:648-652 (1987); PCT International Publication NO: WO 88/09810) or the blood-brain barrier (see, e.g., PCT International Publication NO: WO 89/10134), or hybridization-triggered cleavage agents (see, e.g., Krol et al., BioTechniques 6:958-976 (1988)) or intercalating agents. (See, e.g., Zon, Pharm. Res. 5:539-549 (1988)). To this end, the oligonucleotide may be conjugated to another molecule (e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridizationtriggered cleavage agent).

[0092] The antisense molecules are delivered to cells that express TCF7L2 in vivo. A number of methods can be used for delivering antisense DNA or RNA to cells; e.g., antisense molecules can be injected directly into the tissue site, or modified antisense molecules, designed to target the desired cells (e.g., antisense linked to peptides or antibodies that specifically bind receptors or antigens expressed on the target cell surface) can be administered systematically. Alternatively, in a preferred embodiment, a recombinant DNA construct is utilized in which the antisense oligonucleotide is placed under the control of a strong promoter (e.g., pol III or pol II). The use of such a construct to transfect target cells in the patient results in the transcription of sufficient amounts of single stranded RNAs that will form complementary base pairs with the endogenous TCF7L2 transcripts and thereby prevent translation of the TCF7L2 mRNA. For example, a vector can be introduced in vivo such that it is taken up by a cell and directs the transcription of an antisense RNA. Such a vector can remain episomal or become chromosomally integrated, as long as it can be transcribed to produce the desired antisense RNA. Such vectors can be constructed by recombinant DNA technology methods standard in the art and described above. For example, a plasmid, cosmid, YAC or viral vector can be used to prepare the recombinant DNA construct that can be introduced directly into the tissue site. Alternatively, viral vectors can be used which selectively infect the desired tissue, in which case administration may be accomplished by another route (e.g., systemically).

[0093] Endogenous TCF7L2 polypeptide expression can also be reduced by inactivating or "knocking out" the gene, nucleic acid or its promoter using targeted homologous

recombination (e.g., see Smithies et al., Nature 317:230-234 (1985); Thomas & Capecchi, Cell 51:503-512 (1987); Thompson et al., Cell 5:313-321 (1989)). For example, an altered, non-functional gene or nucleic acid (or a completely unrelated DNA sequence) flanked by DNA homologous to the endogenous gene or nucleic acid (either the coding regions or regulatory regions of the nucleic acid) can be used, with or without a selectable marker and/or a negative selectable marker, to transfect cells that express the gene or nucleic acid in vivo. Insertion of the DNA construct, via targeted homologous recombination, results in inactivation of the gene or nucleic acid. The recombinant DNA constructs can be directly administered or targeted to the required site in vivo using appropriate vectors, as described above. Alternatively, expression of non-altered genes or nucleic acids can be increased using a similar method: targeted homologous recombination can be used to insert a DNA construct comprising a non-altered functional gene or nucleic acid in place of an altered TCF7L2 in the cell, as described above. In another embodiment, targeted homologous recombination can be used to insert a DNA construct comprising a nucleic acid that encodes a Type II diabetes polypeptide variant that differs from that present in the cell.

[0094] Alternatively, endogenous TCF7L2 nucleic acid expression can be reduced by targeting deoxyribonucleotide sequences complementary to the regulatory region of a TCF7L2 nucleic acid (i.e., the TCF7L2 promoter and/or enhancers) to form triple helical structures that prevent transcription of the TCF7L2 nucleic acid in target cells in the body. (See generally, Helene, C., Anticancer Drug Des., 6(6): 569-84 (1991); Helene, C. et al., Ann. N.Y. Acad. Sci. 660:27-36 (1992); and Maher, L. J., Bioassays 14(12):807-15 (1992)). Likewise, the antisense constructs described herein, by antagonizing the normal biological activity of one of the TCF7L2 proteins, can be used in the manipulation of tissue, e.g., tissue differentiation, both in vivo and for ex vivo tissue cultures. Furthermore, the anti-sense techniques (e.g., microinjection of antisense molecules, or transfection with plasmids whose transcripts are anti-sense with regard to a Type II diabetes gene mRNA or gene sequence) can be used to investigate the role of TCF7L2 or the interaction of TCF7L2 and its binding agents in developmental events, as well as the normal cellular function of TCF7L2 or of the interaction of TCF7L2 and its binding agents in adult tissue. Such techniques can be utilized in cell culture, but can also be used in the creation of transgenic animals.

[0095] In yet another embodiment of the invention, other TCF7L2 therapeutic agents as described herein can also be used in the treatment of Type II diabetes gene. The therapeutic agents can be delivered in a composition, as described above, or by themselves. They can be administered systemically, or can be targeted to a particular tissue. The therapeutic agents can be produced by a variety of means, including chemical synthesis; recombinant production; in vivo production (e.g., a transgenic animal, such as U.S. Pat. No. 4,873,316 to Meade et al.), for example, and can be isolated using standard means such as those described herein.

[0096] A combination of any of the above methods of treatment (e.g., administration of non-altered polypeptide in conjunction with antisense therapy targeting altered mRNA of TCF7L2; administration of a first splicing variant encoded by a TCF7L2 nucleic acid in conjunction with antisense therapy targeting a second splicing encoded by a TCF7L2 nucleic acid) can also be used.

Methods of Assessing Probability of Response to TCF7L2 Therapeutic Agents

[0097] The present invention additionally pertains to methods of assessing an individual's probability of response to a TCF7L2 therapeutic agent. In the methods, markers or haplotypes relating to the TCF7L2 gene are assessed, as described above in relation to assessing an individual for susceptibility to type II diabetes. The presence of an allele, marker, SNP or haplotype associated with susceptibility (increased risk) for type II diabetes (e.g., an allele other than a 0 allele in marker DG10S478; a T allele in SNP rs12255372; an A allele in SNP rs7895340; a C allele in SNP rs11196205; a C allele in SNP rs7901695; a T allele in SNP rs7903146; a C allele in SNP rs12243326; an T allele in SNP rs4506565; a marker associated with the exon 4 LD block of TCF7L2, such as an at-risk haplotype associated with the exon 4 LD block of TCF7L2); is indicative of a probability of a positive response to a TCF7L2 therapeutic agent.

[0098] "Probability of a positive response" indicates that the individual is more likely to have a positive response to a TCF7L2 therapeutic agent than an individual not having an allele, marker, SNP or haplotype associated with susceptibility (increased risk) for type II diabetes as described herein. A "positive response" to a TCF7L2 therapeutic agent is a physiological response that indicates treatment of type II diabetes. As described above, "treatment" refers not only to ameliorating symptoms associated with type II diabetes; lessening the severity or frequency of symptoms of type II diabetes; and/or also lessening the need for concomitant therapy with other drugs that ameliorate symptoms associated with type II diabetes.

Pharmaceutical Compositions

[0099] The present invention also pertains to pharmaceutical compositions comprising agents that alter TCF7L2 activity or which otherwise affect the Wnt signaling pathway or the cadherin pathway, or which can be used as TCF7L2 therapeutic agents. The pharmaceutical compositions can be formulated with a physiologically acceptable carrier or excipient to prepare a pharmaceutical composition. The carrier and composition can be sterile. The formulation should suit the mode of administration.

[0100] Suitable pharmaceutically acceptable carriers include but are not limited to water, salt solutions (e.g., NaCl), saline, buffered saline, alcohols, glycerol, ethanol, gum arabic, vegetable oils, benzyl alcohols, polyethylene glycols, gelatin, carbohydrates such as lactose, amylose or starch, dextrose, magnesium stearate, talc, silicic acid, viscous paraffin, perfume oil, fatty acid esters, hydroxymethylcellulose, polyvinyl pyrolidone, etc., as well as combinations thereof. The pharmaceutical preparations can, if desired, be mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, enulsifiers, salts for influencing osmotic pressure, buffers, coloring, flavoring and/or aromatic substances and the like which do not deleteriously react with the active agents.

[0101] The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering

agents. The composition can be a liquid solution, suspension, emulsion, tablet, pill, capsule, sustained release formulation, or powder. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, polyvinyl pyrollidone, sodium saccharine, cellulose, magnesium carbonate, etc.

[0102] Methods of introduction of these compositions include, but are not limited to, intradermal, intramuscular, intraperitoneal, intraocular, intravenous, subcutaneous, topical, oral and intranasal. Other suitable methods of introduction can also include gene therapy (as described below), rechargeable or biodegradable devices, particle acceleration devises ("gene guns") and slow release polymeric devices. The pharmaceutical compositions of this invention can also be administered as part of a combinatorial therapy with other agents.

[0103] The composition can be formulated in accordance with the routine procedures as a pharmaceutical composition adapted for administration to human beings. For example, compositions for intravenous administration typically are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anesthetic to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water, saline or dextrose/water. Where the composition is administered by injection, an ampule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.

[0104] For topical application, nonsprayable forms, viscous to semi-solid or solid forms comprising a carrier compatible with topical application and having a dynamic viscosity preferably greater than water, can be employed. Suitable formulations include but are not limited to solutions, suspensions, emulsions, creams, ointments, powders, enemas, lotions, sols, liniments, salves, aerosols, etc., which are, if desired, sterilized or mixed with auxiliary agents, e.g., preservatives, stabilizers, wetting agents, buffers or salts for influencing osmotic pressure, etc. The agent may be incorporated into a cosmetic formulation. For topical application, also suitable are sprayable aerosol preparations wherein the active ingredient, preferably in combination with a solid or liquid inert carrier material, is packaged in a squeeze bottle or in admixture with a pressurized volatile, normally gaseous propellant, e.g., pressurized air.

[0105] Agents described herein can be formulated as neutral or salt forms. Pharmaceutically acceptable salts include those formed with free amino groups such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with free carboxyl groups such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.

[0106] The agents are administered in a therapeutically effective amount. The amount of agents which will be therapeutically effective depends in part on the nature of the disorder and/or extent of symptoms, and can be determined by

standard clinical techniques. In addition, in vitro or in vivo assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the symptoms, and should be decided according to the judgment of a practitioner and each patient's circumstances. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.

[0107] The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use of sale for human administration. The pack or kit can be labeled with information regarding mode of administration, sequence of drug administration (e.g., separately, sequentially or concurrently), or the like. The pack or kit may also include means for reminding the patient to take the therapy. The pack or kit can be a single unit dosage of the combination therapy or it can be a plurality of unit dosages. In particular, the agents can be separated, mixed together in any combination, present in a single vial or tablet. Agents assembled in a blister pack or other dispensing means is preferred. For the purpose of this invention, unit dosage is intended to mean a dosage that is dependent on the individual pharmacodynamics of each agent and administered in FDA approved dosages in standard time courses.

Screening Assays and Agents Identified Thereby

[0108] The invention also provides methods for identifying agents (e.g., fusion proteins, polypeptides, peptidomimetics, prodrugs, receptors, binding agents, antibodies, small molecules or other drugs, or ribozymes) which alter (e.g., increase or decrease) the activity of the TCF7L2, which otherwise interact with TCF7L2 or with another member of the Wnt signaling pathway or the cadherin pathway (e.g., betacatenin). For example, in certain embodiments, such agents can be agents which bind to TCF7L2; which have a stimulatory or inhibitory effect on, for example, activity of TCF7L2; or which change (e.g., enhance or inhibit) the ability of TCF7L2 to interact with other members of the Wnt signaling pathway or with members of the cadherin pathway, or which alter posttranslational processing of TCF7L2. In other embodiments, such agents can be agents which alter activity or function of the Wnt signaling pathway or the cadherin pathway.

[0109] In one embodiment, the invention provides assays for screening candidate or test agents that bind to or modulate the activity of TCF7L2 protein (or biologically active portion (s) thereof), as well as agents identifiable by the assays. Test agents can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the 'one-bead one-compound' library method; and synthetic library methods using affinity chromatography selection. The biological library approach is limited to polypeptide libraries, while the other four approaches are applicable to polypeptide, non-peptide oligomer or small molecule libraries of compounds (Lam, K. S., Anticancer Drug Des. 12:145 (1997)).

[0110] In one embodiment, to identify agents which alter the activity of TCF7L2, a cell, cell lysate, or solution containing or expressing TCF7L2, or a fragment or derivative thereof, can be contacted with an agent to be tested; alternatively, the protein can be contacted directly with the agent to be tested. The level (amount) of TCF7L2 activity is assessed (e.g., the level (amount) of TCF7L2 activity is measured, either directly or indirectly), and is compared with the level of activity in a control (i.e., the level of activity of the TCF7L2 protein or active fragment or derivative thereof in the absence of the agent to be tested). If the level of the activity in the presence of the agent differs, by an amount that is statistically significant, from the level of the activity in the absence of the agent, then the agent is an agent that alters the activity of TCF7L2. An increase in the level of activity relative to a control, indicates that the agent is an agent that enhances (is an agonist of) activity. Similarly, a decrease in the level of activity relative to a control, indicates that the agent is an agent that inhibits (is an antagonist of) activity. In another embodiment, the level of activity of TCF7L2 or a derivative or fragment thereof in the presence of the agent to be tested, is compared with a control level that has previously been established. A level of the activity in the presence of the agent that differs from the control level by an amount that is statistically significant indicates that the agent alters TCF7L2 activity.

[0111] The present invention also relates to an assay for identifying agents which alter the expression of the TCF7L2 gene (e.g., antisense nucleic acids, fusion proteins, polypeptides, peptidomimetics, prodrugs, receptors, binding agents, antibodies, small molecules or other drugs, or ribozymes) which alter (e.g., increase or decrease) expression (e.g., transcription or translation) of the gene or which otherwise interact with TCF7L2, as well as agents identifiable by the assays. For example, a solution containing a nucleic acid encoding a TCF7L2 can be contacted with an agent to be tested. The solution can comprise, for example, cells containing the nucleic acid or cell lysate containing the nucleic acid; alternatively, the solution can be another solution that comprises elements necessary for transcription/translation of the nucleic acid. Cells not suspended in solution can also be employed, if desired. The level and/or pattern of TCF7L2 expression (e.g., the level and/or pattern of mRNA or of protein expressed, such as the level and/or pattern of different splicing variants) is assessed, and is compared with the level and/or pattern of expression in a control (i.e., the level and/or pattern of the TCF7L2 expression in the absence of the agent to be tested). If the level and/or pattern in the presence of the agent differs, by an amount or in a manner that is statistically significant, from the level and/or pattern in the absence of the agent, then the agent is an agent that alters the expression of a Type II diabetes gene. Enhancement of TCF7L2 expression indicates that the agent is an agonist of TCF7L2 activity. Similarly, inhibition of TCF7L2 expression indicates that the agent is an antagonist of TCF7L2 activity. In another embodiment, the level and/or pattern of TCF7L2 polypeptide(s) (e.g., different splicing variants) in the presence of the agent to be tested, is compared with a control level and/or pattern that have previously been established. A level and/or pattern in the presence of the agent that differs from the control level and/or pattern by an amount or in a manner that is statistically significant indicates that the agent alters TCF7L2 expression.

[0112] In another embodiment of the invention, agents which alter the expression of TCF7L2 or which otherwise interact with TCF7L2 or with another member of the Wnt

signaling pathway or the cadherin pathway, can be identified using a cell, cell lysate, or solution containing a nucleic acid encoding the promoter region of the TCF7L2 gene or nucleic acid operably linked to a reporter gene. After contact with an agent to be tested, the level of expression of the reporter gene (e.g., the level of mRNA or of protein expressed) is assessed, and is compared with the level of expression in a control (i.e., the level of the expression of the reporter gene in the absence of the agent to be tested). If the level in the presence of the agent differs, by an amount or in a manner that is statistically significant, from the level in the absence of the agent, then the agent is an agent that alters the expression of TCF7L2, as indicated by its ability to alter expression of a gene that is operably linked to the TCF7L2 gene promoter. Enhancement of the expression of the reporter indicates that the agent is an agonist of TCF7L2 activity. Similarly, inhibition of the expression of the reporter indicates that the agent is an antagonist of TCF7L2 activity. In another embodiment, the level of expression of the reporter in the presence of the agent to be tested is compared with a control level that has previously been established. A level in the presence of the agent that differs from the control level by an amount or in a manner that is statistically significant indicates that the agent alters expression.

[0113] Agents which alter the amounts of different splicing variants encoded by TCF7L2 (e.g., an agent which enhances activity of a first splicing variant, and which inhibits activity of a second splicing variant), as well as agents which are agonists of activity of a first splicing variant and antagonists of activity of a second splicing variant, can easily be identified using these methods described above.

[0114] In other embodiments of the invention, assays can be used to assess the impact of a test agent on the activity of a polypeptide in relation to a TCF7L2 binding agent. For example, a cell that expresses a compound that interacts with a TCF7L2 polypeptide (herein referred to as a "TCF7L2 binding agent", which can be a polypeptide or other molecule that interacts directly or indirectly with a TCF7L2 polypeptide, such as a member of the Wnt signaling pathway or a member of the cadherin pathway) is contacted with TCF7L2 in the presence of a test agent, and the ability of the test agent to alter the interaction between the TCF7L2 and the TCF7L2 binding agent is determined. Alternatively, a cell lysate or a solution containing the TCF7L2 binding agent, can be used. An agent that binds to the TCF7L2 or the TCF7L2 binding agent can alter the interaction by interfering with, or enhancing the ability of the TCF7L2 to bind to, associate with, or otherwise interact with the TCF7L2 binding agent. Determining the ability of the test agent to bind to TCF7L2 or a TCF7L2 binding agent can be accomplished, for example, by coupling the test agent with a radioisotope or enzymatic label such that binding of the test agent to the polypeptide can be determined by detecting the labeled with ¹²⁵I, ³⁵S, ¹⁴C or ³H, either directly or indirectly, and the radioisotope detected by direct counting of radioemission or by scintillation counting. Alternatively, test agents can be enzymatically labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product. It is also within the scope of this invention to determine the ability of a test agent to interact with the polypeptide without the labeling of any of the interactants. For example, a microphysiometer can be used to detect the interaction of a test agent with TCF7L2 or a TCF7L2 binding agent without the

labeling of either the test agent, TCF7L2, or the TCF7L2 binding agent. McConnell, H. M. et al., *Science* 257:1906-1912 (1992). As used herein, a "microphysiometer" (e.g., CytosensorTM) is an analytical instrument that measures the rate at which a cell acidifies its environment using a light-addressable potentiometric sensor (LAPS). Changes in this acidification rate can be used as an indicator of the interaction between ligand and polypeptide.

[0115] Thus, these receptors can be used to screen for compounds that are agonists or antagonists, for use in treating or studying a susceptibility to type II diabetes. Drugs could be designed to regulate TCF7L2 activation that in turn can be used to regulate signaling pathways and transcription events of genes downstream.

[0116] In another embodiment of the invention, assays can be used to identify polypeptides that interact with TCF7L2. For example, a yeast two-hybrid system such as that described by Fields and Song (Fields, S, and Song, O., Nature 340:245-246 (1989)) can be used to identify polypeptides that interact with TCF7L2. In such a yeast two-hybrid system, vectors are constructed based on the flexibility of a transcription factor that has two functional domains (a DNA binding domain and a transcription activation domain). If the two domains are separated but fused to two different proteins that interact with one another, transcriptional activation can be achieved, and transcription of specific markers (e.g., nutritional markers such as His and Ade, or color markers such as lacZ) can be used to identify the presence of interaction and transcriptional activation. For example, in the methods of the invention, a first vector is used which includes a nucleic acid encoding a DNA binding domain and also TCF7L2, splicing variant, or fragment or derivative thereof, and a second vector is used which includes a nucleic acid encoding a transcription activation domain and also a nucleic acid encoding a polypeptide which potentially may interact with TCF7L2 or a splicing variant, or fragment or derivative thereof. Incubation of yeast containing the first vector and the second vector under appropriate conditions (e.g., mating conditions such as used in the Matchmaker[™] system from Clontech (Palo Alto, Calif., USA)) allows identification of colonies that express the markers of interest. These colonies can be examined to identify the polypeptide(s) that interact with TCF7L2 or fragment or derivative thereof. Such polypeptides can be used as agents that alter the activity of expression of TCF7L2, as described in relation to methods of treatment.

[0117] In more than one embodiment of the above assay methods of the present invention, it may be desirable to immobilize either the TCF7L2 gene, the TCF7L2 protein, the TCF7L2 binding agent (e.g., another member of the Wnt signaling pathway or member of the cadherin pathway), or other components of the assay on a solid support, in order to facilitate separation of complexed from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay. Binding of a test agent to the protein, or interaction of the protein with a binding agent in the presence and absence of a test agent, can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtitre plates, test tubes, and micro-centrifuge tubes. In one embodiment, a fusion protein (e.g., a glutathione-S-transferase fusion protein) can be provided which adds a domain that allows TCF7L2, TCF7L2 protein, or a TCF7L2 binding agent to be bound to a matrix or other solid support.

[0118] In another embodiment, modulators of expression of nucleic acid molecules of the invention are identified in a method wherein a cell, cell lysate, or solution containing TCF7L2 is contacted with a test agent and the expression of appropriate mRNA or polypeptide (e.g., splicing variant(s)) in the cell, cell lysate, or solution, is determined. The level of expression of appropriate mRNA or polypeptide(s) in the presence of the test agent is compared to the level of expression of mRNA or polypeptide(s) in the absence of the test agent. The test agent can then be identified as a modulator of expression based on this comparison. For example, when expression of mRNA or polypeptide is greater (statistically significantly greater) in the presence of the test agent than in its absence, the test agent is identified as a stimulator or enhancer of the mRNA or polypeptide expression. Alternatively, when expression of the mRNA or polypeptide is less (statistically significantly less) in the presence of the test agent than in its absence, the test agent is identified as an inhibitor of the mRNA or polypeptide expression. The level of mRNA or polypeptide expression in the cells can be determined by methods described herein for detecting mRNA or polypeptide.

[0119] This invention further pertains to novel agents identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein in the methods of treatment described herein. For example, an agent identified as described herein can be used to alter activity of a protein encoded by a TCF7L2 gene, or to alter expression of TCF7L2 by contacting the protein or the nucleic acid (or contacting a cell comprising the polypeptide or the nucleic acid) with the agent identified as described herein.

Nucleic Acids of the Invention

TCF7L2 Nucleic Acids, Portions and Variants

[0120] The present invention also pertains to isolated nucleic acid molecules comprising human TCF7L2. The TCF7L2 nucleic acid molecules of the present invention can be RNA, for example, mRNA, or DNA, such as cDNA and genomic DNA. DNA molecules can be double-stranded or single-stranded; single stranded RNA or DNA can be the coding, or sense, strand or the non-coding, or antisense strand. The nucleic acid molecule can include all or a portion of the coding sequences of the gene and can further comprise additional non-coding sequences such as introns and non-coding 3' and 5' sequences (including regulatory sequences, for example).

[0121] Additionally, nucleic acid molecules of the invention can be fused to a marker sequence, for example, a sequence that encodes a polypeptide to assist in isolation or purification of the polypeptide. Such sequences include, but are not limited to, those that encode a glutathione-S-transferase (GST) fusion protein and those that encode a hemag-glutinin A (HA) polypeptide marker from influenza.

[0122] An "isolated" nucleic acid molecule, as used herein, is one that is separated from nucleic acids that normally flank the gene or nucleotide sequence (as in genomic sequences) and/or has been completely or partially purified from other transcribed sequences (e.g., as in an RNA library). For example, an isolated nucleic acid of the invention may be substantially isolated with respect to the complex cellular milieu in which it naturally occurs, or culture medium when produced by recombinant techniques, or chemical precursors

or other chemicals when chemically synthesized. In some instances, the isolated material will form part of a composition (for example, a crude extract containing other substances), buffer system or reagent mix. In other circumstances, the material may be purified to essential homogeneity, for example as determined by PAGE or column chromatography such as HPLC. Preferably, an isolated nucleic acid molecule comprises at least about 50, 80 or 90% (on a molar basis) of all macromolecular species present. With regard to genomic DNA, the term "isolated" also can refer to nucleic acid molecules that are separated from the chromosome with which the genomic DNA is naturally associated. For example, the isolated nucleic acid molecule can contain less than about 5 kb but not limited to 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotides which flank the nucleic acid molecule in the genomic DNA of the cell from which the nucleic acid molecule is derived.

[0123] The nucleic acid molecule can be fused to other coding or regulatory sequences and still be considered isolated. Thus, recombinant DNA contained in a vector is included in the definition of "isolated" as used herein. Also, isolated nucleic acid molecules include recombinant DNA molecules in heterologous host cells, as well as partially or substantially purified DNA molecules in solution. "Isolated" nucleic acid molecules also encompass in vivo and in vitro RNA transcripts of the DNA molecules of the present invention. An isolated nucleic acid molecule can include a nucleic acid molecule or nucleic acid sequence that is synthesized chemically or by recombinant means. Therefore, recombinant DNA contained in a vector is included in the definition of "isolated" as used herein. Also, isolated nucleic acid molecules include recombinant DNA molecules in heterologous organisms, as well as partially or substantially purified DNA molecules in solution. In vivo and in vitro RNA transcripts of the DNA molecules of the present invention are also encompassed by "isolated" nucleic acid sequences. Such isolated nucleic acid molecules are useful in the manufacture of the encoded polypeptide, as probes for isolating homologous sequences (e.g., from other mammalian species), for gene mapping (e.g., by in situ hybridization with chromosomes), or for detecting expression of the gene in tissue (e.g., human tissue), such as by Northern or Southern blot analysis.

[0124] The present invention also pertains to nucleic acid molecules which are not necessarily found in nature but which encode a TCF7L2 polypeptide, or another splicing variant of a TCF7L2 polypeptide or polymorphic variant thereof. Thus, for example, the invention pertains to DNA molecules comprising a sequence that is different from the naturally occurring nucleotide sequence but which, due to the degeneracy of the genetic code, encode a TCF7L2 polypeptide of the present invention.

[0125] The invention also encompasses nucleic acid molecules encoding portions (fragments), or encoding variant polypeptides such as analogues or derivatives of a TCF7L2 polypeptide. Such variants can be naturally occurring, such as in the case of allelic variation or single nucleotide polymorphisms, or non-naturally-occurring, such as those induced by various mutagens and mutagenic processes. Intended variations include, but are not limited to, addition, deletion and substitution of one or more nucleotides that can result in conservative or non-conservative amino acid changes, including additions and deletions. Preferably the nucleotide (and/or resultant amino acid) changes are silent or conserved; that is, they do not alter the characteristics or activity of a

TCF7L2 polypeptide. In one aspect, the nucleic acid sequences are fragments that comprise one or more polymorphic microsatellite markers. In another aspect, the nucleotide sequences are fragments that comprise one or more single nucleotide polymorphisms in a TCF7L2 gene.

[0126] Other alterations of the nucleic acid molecules of the invention can include, for example, labeling, methylation, internucleotide modifications such as uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphorothioates, carbamates), charged linkages (e.g., phosphorothioates, phosphorodithioates), pendent moieties (e.g., polypeptides), intercalators (e.g., acridine, psoralen), chelators, alkylators, and modified linkages (e.g., alpha anomeric nucleic acids). Also included are synthetic molecules that mimic nucleic acid molecules in the ability to bind to a designated sequence via hydrogen bonding and other chemical interactions. Such molecules include, for example, those in which peptide linkages substitute for phosphate linkages in the backbone of the molecule.

[0127] The invention also pertains to nucleic acid molecules that hybridize under high stringency hybridization conditions, such as for selective hybridization, to a nucleotide sequence described herein (e.g., nucleic acid molecules which specifically hybridize to a nucleotide sequence encoding polypeptides described herein, and, optionally, have an activity of the polypeptide). In one aspect, the invention includes variants described herein that hybridize under high stringency hybridization conditions (e.g., for selective hybridization) to a nucleotide sequence encoding an amino acid sequence or a polymorphic variant thereof. In another aspect, the variant that hybridizes under high stringency hybridizations has an activity of a TCF7L2 polypeptide.

[0128] Such nucleic acid molecules can be detected and/or isolated by specific hybridization (e.g., under high stringency conditions). "Specific hybridization," as used herein, refers to the ability of a first nucleic acid to hybridize to a second nucleic acid in a manner such that the first nucleic acid does not hybridize to any nucleic acid other than to the second nucleic acid (e.g., when the first nucleic acid has a higher similarity to the second nucleic acid than to any other nucleic acid in a sample wherein the hybridization is to be performed). "Stringency conditions" for hybridization is a term of art which refers to the incubation and wash conditions, e.g., conditions of temperature and buffer concentration, which permit hybridization of a particular nucleic acid to a second nucleic acid; the first nucleic acid may be perfectly (i.e., 100%) complementary to the second, or the first and second may share some degree of complementarity which is less than perfect (e.g., 70%, 75%, 85%, 90%, 95%). For example, certain high stringency conditions can be used which distinguish perfectly complementary nucleic acids from those of less complementarity. "High stringency conditions", "moderate stringency conditions" and "low stringency conditions", as well as methods for nucleic acid hybridizations are explained on pages 2.10.1-2.10.16 and pages 6.3.1-6.3.6 in Current Protocols in Molecular Biology (Ausubel, F. et al., "Current Protocols in Molecular Biology", John Wiley & Sons, (1998)), and in Kraus, M. and Aaronson, S., Methods Enzymol., 200:546-556 (1991),

[0129] The percent homology or identity of two nucleotide or amino acid sequences can be determined by aligning the sequences for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first sequence for optimal alignment). The nucleotides or amino acids at corresponding

positions are then compared, and the percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % identity=# of identical positions/total # of positions×100). When a position in one sequence is occupied by the same nucleotide or amino acid residue as the corresponding position in the other sequence, then the molecules are homologous at that position. As used herein, nucleic acid or amino acid "homology" is equivalent to nucleic acid or amino acid "identity". In certain aspects, the length of a sequence aligned for comparison purposes is at least 30%, for example, at least 40%, in certain aspects at least 60%, and in other aspects at least 70%, 80%, 90% or 95% of the length of the reference sequence. The actual comparison of the two sequences can be accomplished by well-known methods, for example, using a mathematical algorithm. A preferred, non-limiting example of such a mathematical algorithm is described in Karlin et al., Proc. Natl. Acad. Sci. USA 90:5873-5877 (1993). Such an algorithm is incorporated into the NBLAST and XBLAST programs (version 2.0) as described in Altschul et al., Nucleic Acids Res. 25:389-3402 (1997). When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., NBLAST) can be used. In one aspect, parameters for sequence comparison can be set at score=100, wordlength=12, or can be varied (e.g., W=5 or W=20).

[0130] Another preferred non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, CABIOS 4(1): 11-17 (1988). Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package (Accelrys, Cambridge, UK). When utilizing the ALIGN program for comparing amino acid sequences, a PAM 120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. Additional algorithms for sequence analysis are known in the art and include ADVANCE and ADAM as described in Torellis and Robotti, *Comput. Appl. Biosci.* 10:3-5 (1994); and FASTA described in Pearson and Lipman, *Proc. Natl. Acad. Sci. USA* 85:2444-8 (1988).

[0131] In another aspect, the percent identity between two amino acid sequences can be accomplished using the GAP program in the GCG software package using either a BLO-SUM63 matrix or a PAM250 matrix, and a gap weight of 12, 10, 8, 6, or 4 and a length weight of 2, 3, or 4. In yet another aspect, the percent identity between two nucleic acid sequences can be accomplished using the GAP program in the GCG software package using a gap weight of 50 and a length weight of 3.

[0132] The present invention also provides isolated nucleic acid molecules that contain a fragment or portion that hybridizes under highly stringent conditions to a nucleotide sequence of TCF7L2, or the complement of such a sequence, and also provides isolated nucleic acid molecules that contain a fragment or portion that hybridizes under highly stringent conditions to a nucleotide sequence encoding an amino acid sequence or polymorphic variant thereof. The nucleic acid fragments of the invention are at least about 15, preferably at least about 18, 20, 23 or 25 nucleotides, and can be 30, 40, 50, 100, 200 or more nucleotides in length. Longer fragments, for example, 30 or more nucleotides in length, which encode antigenic polypeptides described herein, are particularly useful, such as for the generation of antibodies as described below.

Probes and Primers

[0133] In a related aspect, the nucleic acid fragments of the invention are used as probes or primers in assays such as those

described herein. "Probes" or "primers" are oligonucleotides that hybridize in a base-specific manner to a complementary strand of nucleic acid molecules. Such probes and primers include polypeptide nucleic acids, as described in Nielsen et al., *Science* 254:1497-1500 (1991).

[0134] A probe or primer comprises a region of nucleotide sequence that hybridizes to at least about 15, for example about 20-25, and in certain aspects about 40, 50 or 75, consecutive nucleotides of a nucleic acid molecule comprising a contiguous nucleotide sequence of TCF7L2 or polymorphic variant thereof. In other aspects, a probe or primer comprises 100 or fewer nucleotides, in certain aspects from 6 to 50 nucleotides, for example from 12 to 30 nucleotides. In other aspects, the probe or primer is at least 70% identical to the contiguous nucleotide sequence or to the complement of the contiguous nucleotide sequence, for example at least 80% identical, in certain aspects at least 90% identical, and in other aspects at least 95% identical, or even capable of selectively hybridizing to the contiguous nucleotide sequence or to the complement of the contiguous nucleotide sequence. Often, the probe or primer further comprises a label, e.g., radioisotope, fluorescent compound, enzyme, or enzyme co-factor.

[0135] The nucleic acid molecules of the invention such as those described above can be identified and isolated using standard molecular biology techniques and the sequence information provided herein. For example, nucleic acid molecules can be amplified and isolated by the polymerase chain reaction using synthetic oligonucleotide primers designed based on the sequence of TCF7L2 or the complement of such a sequence, or designed based on nucleotides based on sequences encoding one or more of the amino acid sequences provided herein. See generally PCR Technology: Principles and Applications for DNA Amplification (ed. H. A. Erlich, Freeman Press, NY, N.Y., 1992); PCR Protocols: A Guide to Methods and Applications (Eds. Innis et al., Academic Press, San Diego, Calif., 1990); Mattila et al., Nucl. Acids Res. 19: 4967 (1991); Eckert et al., PCR Methods and Applications 1:17 (1991); PCR (eds. McPherson et al., IRL Press, Oxford); and U.S. Pat. No. 4,683,202. The nucleic acid molecules can be amplified using cDNA, mRNA or genomic DNA as a template, cloned into an appropriate vector and characterized by DNA sequence analysis.

[0136] Other suitable amplification methods include the ligase chain reaction (LCR) (see Wu and Wallace, Genomics 4:560 (1989), Landegren et al., *Science* 241:1077 (1988), transcription amplification (Kwoh et al., *Proc. Natl. Acad. Sci. USA* 86:1173 (1989)), and self-sustained sequence replication (Guatelli et al., *Proc. Nat. Acad. Sci. USA* 87:1874 (1990)) and nucleic acid based sequence amplification (NASBA). The latter two amplification methods involve isothermal reactions based on isothermal transcription, which produce both single stranded RNA (ssRNA) and double stranded DNA (dsDNA) as the amplification products in a ratio of about 30 or 100 to 1, respectively.

[0137] The amplified DNA can be labeled, for example, radiolabeled, and used as a probe for screening a cDNA library derived from human cells, mRNA in zap express, ZIPLOX or other suitable vector. Corresponding clones can be isolated, DNA can obtained following in vivo excision, and the cloned insert can be sequenced in either or both orientations by art recognized methods to identify the correct reading frame encoding a polypeptide of the appropriate molecular weight. For example, the direct analysis of the nucleotide sequence of nucleic acid molecules of the present invention

can be accomplished using well-known methods that are commercially available. See, for example, Sambrook et al., *Molecular Cloning, A Laboratory Manual* (2nd Ed., CSHP, New York 1989); Zyskind et al., *Recombinant DNA Laboratory Manual*, (Acad. Press, 1988)). Additionally, fluorescence methods are also available for analyzing nucleic acids (Chen et al., *Genome Res.* 9, 492 (1999)) and polypeptides. Using these or similar methods, the polypeptide and the DNA encoding the polypeptide can be isolated, sequenced and further characterized.

[0138] Antisense nucleic acid molecules of the invention can be designed using the nucleotide sequence of TCF7L2 and/or the complement or a portion, and constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid molecule (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Alternatively, the antisense nucleic acid molecule can be produced biologically using an expression vector into which a nucleic acid molecule has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid molecule will be of an antisense orientation to a target nucleic acid of interest).

[0139] The nucleic acid sequences can also be used to compare with endogenous DNA sequences in patients to identify one or more of the disorders described above, and as probes, such as to hybridize and discover related DNA sequences or to subtract out known sequences from a sample. The nucleic acid sequences can further be used to derive primers for genetic fingerprinting, to raise anti-polypeptide antibodies using DNA immunization techniques, and as an antigen to raise anti-DNA antibodies or elicit immune responses. Portions or fragments of the nucleotide sequences identified herein (and the corresponding complete gene sequences) can be used in numerous ways, such as polynucleotide reagents. For example, these sequences can be used to: (i) map their respective genes on a chromosome; and, thus, locate gene regions associated with genetic disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample. Additionally, the nucleotide sequences of the invention can be used to identify and express recombinant polypeptides for analysis, characterization or therapeutic use, or as markers for tissues in which the corresponding polypeptide is expressed, either constitutively, during tissue differentiation, or in diseased states. The nucleic acid sequences can additionally be used as reagents in the screening and/or diagnostic assays described herein, and can also be included as components of kits (e.g., reagent kits) for use in the screening and/or diagnostic assays described herein.

[0140] Kits (e.g., reagent kits) useful in the methods of diagnosis comprise components useful in any of the methods described herein, including for example, hybridization probes or primers as described herein (e.g., labeled probes or primers), reagents for detection of labeled molecules, restriction enzymes (e.g., for RFLP analysis), allele-specific oligonucleotides, antibodies which bind to altered or to non-altered (native) TCF7L2 polypeptide, means for amplification of nucleic acids comprising a TCF7L2 nucleic acid or for a

portion of TCF7L2, or means for analyzing the nucleic acid sequence of a TCF7L2 nucleic acid or for analyzing the amino acid sequence of a TCF7L2 polypeptide as described herein, etc. In one aspect, the kit for diagnosing a susceptibility to type II diabetes can comprise primers for nucleic acid amplification of a region in the TCF7L2 nucleic acid comprising the marker DG10S478, the SNP rs12255372, rs895340, rs11196205, rs7901695, rs7903146, rs12243326 and/or rs4506565, or an at-risk haplotype that is more frequently present in an individual having type II diabetes or who is susceptible to type II diabetes. The primers can be designed using portions of the nucleic acids flanking SNPs that are indicative of type II diabetes.

Vectors and Host Cells

[0141] Another aspect of the invention pertains to nucleic acid constructs containing a nucleic acid molecules described herein and the complements thereof (or a portion thereof). The constructs comprise a vector (e.g., an expression vector) into which a sequence of the invention has been inserted in a sense or antisense orientation. As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Expression vectors are capable of directing the expression of genes to which they are operably linked. In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adenoassociated viruses) that serve equivalent functions.

[0142] In certain aspects, recombinant expression vectors of the invention comprise a nucleic acid molecule of the invention in a form suitable for expression of the nucleic acid molecule in a host cell. This means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operably linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably linked" or "operatively linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, "Gene Expression Technology", Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will

be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed and the level of expression of polypeptide desired. The expression vectors of the invention can be introduced into host cells to thereby produce polypeptides, including fusion polypeptides, encoded by nucleic acid molecules as described herein.

[0143] The recombinant expression vectors of the invention can be designed for expression of a polypeptide of the invention in prokaryotic or eukaryotic cells, e.g., bacterial cells such as *E. coli*, insect cells (using baculovirus expression vectors), yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, supra. Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.

[0144] Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

[0145] A host cell can be any prokaryotic or eukaryotic cell. For example, a nucleic acid molecule of the invention can be expressed in bacterial cells (e.g., *E. coli*), insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.

[0146] Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of artrecognized techniques for introducing a foreign nucleic acid molecule (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al., (supra), and other laboratory manuals.

[0147] For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., for resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred selectable markers include those that confer resistance to drugs, such as G418, hygromycin and methotrexate. Nucleic acid molecules encoding a selectable marker can be introduced into a host cell on the same vector as the nucleic acid molecule of the invention or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid molecule can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).

[0148] A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture can be used to produce (i.e., express) a polypeptide of the invention. Accordingly, the invention further provides methods for producing a polypeptide using the host cells of the invention. In one aspect, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding a polypeptide of the invention has been introduced) in a suitable medium such that the polypeptide is produced. In another aspect, the method further comprises isolating the polypeptide from the medium or the host cell.

Antibodies of the Invention

[0149] Polyclonal antibodies and/or monoclonal antibodies that specifically bind one form of the gene product but not to the other form of the gene product are also provided. Antibodies are also provided which bind a portion of either the variant or the reference gene product that contains the polymorphic site or sites. The term "antibody" as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain antigen-binding sites that specifically bind an antigen. A molecule that specifically binds to a polypeptide of the invention is a molecule that binds to that polypeptide or a fragment thereof, but does not substantially bind other molecules in a sample, e.g., a biological sample, which naturally contains the polypeptide. Examples of immunologically active portions of immunoglobulin molecules include F(ab) and $F(ab')_2$ fragments which can be generated by treating the antibody with an enzyme such as pepsin. The invention provides polyclonal and monoclonal antibodies that bind to a polypeptide of the invention. The term "monoclonal antibody" or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only one species of an antigen binding site capable of immunoreacting with a particular epitope of a polypeptide of the invention. A monoclonal antibody composition thus typically displays a single binding affinity for a particular polypeptide of the invention with which it immunoreacts.

[0150] Polyclonal antibodies can be prepared as described above by immunizing a suitable subject with a desired immunogen, e.g., polypeptide of the invention or a fragment thereof. The antibody titer in the immunized subject can be monitored over time by standard techniques, such as with an enzyme linked immunosorbent assay (ELISA) using immobilized polypeptide. If desired, the antibody molecules directed against the polypeptide can be isolated from the mammal (e.g., from the blood) and further purified by wellknown techniques, such as protein A chromatography to obtain the IgG fraction. At an appropriate time after immunization, e.g., when the antibody titers are highest, antibodyproducing cells can be obtained from the subject and used to prepare monoclonal antibodies by standard techniques, such as the hybridoma technique originally described by Kohler and Milstein, Nature 256:495-497 (1975), the human B cell hybridoma technique (Kozbor et al., Immunol. Today 4: 72 (1983)), the EBV-hybridoma technique (Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, 1985, Inc., pp. 77-96) or trioma techniques. The technology for producing hybridomas is well known (see generally Current Protocols in Immunology (1994) Coligan et al., (eds.) John Wiley & Sons, Inc., New York, N.Y.). Briefly, an immortal cell line (typically a myeloma) is fused to lymphocytes (typically splenocytes) from a mammal immunized with an immunogen as described above, and the culture supernatants of the resulting hybridoma cells are screened to identify a hybridoma producing a monoclonal antibody that binds a polypeptide of the invention.

[0151] Any of the many well known protocols used for fusing lymphocytes and immortalized cell lines can be applied for the purpose of generating a monoclonal antibody to a polypeptide of the invention (see, e.g., *Current Protocols in Immunology*, supra; Galfre et al., *Nature* 266:55052 (1977); R. H. Kenneth, in *Monoclonal Antibodies: A New Dimension In Biological Analyses*, Plenum Publishing Corp., New York, N.Y. (1980); and Lerner, Yale J. Biol. Med. 54:387-402 (1981)). Moreover, the ordinarily skilled worker will appreciate that there are many variations of such methods that also would be useful.

[0152] Alternative to preparing monoclonal antibody-secreting hybridomas, a monoclonal antibody to a polypeptide of the invention can be identified and isolated by screening a recombinant combinatorial immunoglobulin library (e.g., an antibody phage display library) with the polypeptide to thereby isolate immunoglobulin library members that bind the polypeptide. Kits for generating and screening phage display libraries are commercially available (e.g., the Pharmacia Recombinant Phage Antibody System, Catalog No. 27-9400-01; and the Stratagene SurfZAP[™] Phage Display Kit, Catalog No. 240612). Additionally, examples of methods and reagents particularly amenable for use in generating and screening antibody display library can be found in, for example, U.S. Pat. No. 5,223,409; PCT Publication No. WO 92/18619; PCT Publication No. WO 91/17271; PCT Publication No. WO 92/20791; PCT Publication No. WO 92/15679; PCT Publication No. WO 93/01288; PCT Publication No. WO 92/01047; PCT Publication No. WO 92/09690; PCT Publication No. WO 90/02809; Fuchs et al., Bio/Technology 9: 1370-1372 (1991); Hay et al., Hum. Antibod Hybridomas 3:81-85 (1992); Huse et al., Science 246: 1275-1281 (1989); and Griffiths et al., EMBO J. 12:725-734 (1993).

[0153] Additionally, recombinant antibodies, such as chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, which can be made using standard recombinant DNA techniques, are within the scope of the invention. Such chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art.

[0154] In general, antibodies of the invention (e.g., a monoclonal antibody) can be used to isolate a polypeptide of the invention by standard techniques, such as affinity chromatography or immunoprecipitation. A polypeptide-specific antibody can facilitate the purification of natural polypeptide from cells and of recombinantly produced polypeptide expressed in host cells. Moreover, an antibody specific for a polypeptide of the invention can be used to detect the polypeptide (e.g., in a cellular lysate, cell supernatant, or tissue sample) in order to evaluate the abundance and pattern of expression of the polypeptide. Antibodies can be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. The antibody can be coupled to a detectable substance to facilitate its detection. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include ¹²⁵I, ¹³¹I, ³⁵S or ³H.

[0155] The present invention is now illustrated by the following Exemplification, which is not intended to be limiting in any way.

Exemplification

[0156] Described herein is the identification of transcription factor 7-like 2 (TCF7L2-formerly TCF4) as a gene conferring risk of type II diabetes through single-point association analysis using a dense set of microsatellite markers within the 10q locus.

Methods

Icelandic Cohort

[0157] The Data Protection Authority of Iceland and the National Bioethics Committee of Iceland approved the study. All participants in the study gave informed consent. All personal identifiers associated with blood samples, medical information, and genealogy were first encrypted by the Data Protection Authority, using a third-party encryption system (18).

[0158] For this study, 2400 type II diabetes patients were identified who were diagnosed either through a long-term epidemiologic study done at the Icelandic Heart Association over the past 30 years or at one of two major hospitals in Reykjavik over the past 12 years. Two-thirds of these patients were alive, representing about half of the population of known type II diabetes patients in Iceland today. The majority of these patients were contacted for this study, and the cooperation rate exceeded 80%. All participants in the study visited the Icelandic Heart Association where they answered a questionnaire, had blood drawn and a fasting plasma glucose measurements taken. Questions about medication and age at diagnosis were included. The type II diabetes patients in this study were diagnosed as described in our previously published linkage study(10). In brief, the diagnosis of type II diabetes was confirmed by study physicians through previous medical records, medication history, and/or new laboratory measurements. For previously diagnosed type II diabetes patients, reporting of the use of oral glucose-lowering agent confirmed type II diabetes. Individuals who were currently treated with insulin were classified as having type II diabetes if they were also using or had previously used oral glucoselowering agents. In this cohort the majority of patients on medication take oral glucose-lowering agents and only a small portion (9%) require insulin. For hitherto undiagnosed individuals, the diagnosis of type II diabetes and impaired fasting glucose (IFG) was based on the criteria set by the American Diabetes Association (Expert Committee on the Diagnosis and Classification of Diabetes Mellitus 1997). The average age of the type II diabetes patients in this study was 69.7 years.

Replication Cohorts

[0159] The Danish study group was selected from the PERF (Prospective Epidemiological Risk Factors) study in Denmark(19). 228 females had been diagnosed previously

with type II diabetes and/or measured >=7 mM glucose. As controls, 539 unaffected (with respect to type II diabetes) females were randomly drawn from the same study cohort. [0160] The PENN CATH study in the US is a cross sectional study of the association of biochemical and genetic factors with coronary atherosclerosis in a consecutive cohort of patients undergoing cardiac catheterization at the University of Pennsylvania Medical Center between July 1998 and March 2003. Type II diabetes was defined as history of fasting blood glucose≧126 mg/dl, 2-hour post-prandial glucose≥200 mg/dl, use of oral hypoglycemic agents, or insulin and oral hypoglycemic in a subject greater than age 40. The University of Pennsylvania Institutional Review Board approved the study protocol and all subjects gave written informed consent. Ethnicity was determined through selfreport. 361 Caucasian type II diabetes cases were derived from this cohort. 530 unaffected (with respect to type II diabetes and myocardial infarction) Caucasian controls were randomly drawn from the same study.

[0161] The DNA used for genotyping was the product of whole-genome amplification, by use of the GenomiPhi Amplification kit (Amersham), of DNA isolated from the peripheral blood of the Danish and US type II diabetes patients and controls.

Genotyping

[0162] New sequence repeats (i.e. dinucleotide, trinucleotide, and tetronucleotide repeats)-were identified using the Tandem repeats finder software(20) and tested for polymorphicity in 94 controls. The size in basepairs of the lower allele of the CEPH sample 1347-02 (CEPH genomics repository) was subtracted from the size of the microsatellite amplicon and used as a reference. SNP genotyping was carried using direct DNA sequencing (Applied BioSystems) or the Centaurus platform (Nanogen).

Statistical Methods for Association Analysis

[0163] For single marker association to type II diabetes, we used a likelihood ratio test to calculate a two-sided p-value for each allele. We present allelic frequencies rather than carrier frequencies for the microsatellites employed.

[0164] We calculated relative risk (RR) and population attributable risk (PAR) assuming a multiplicative model(16, 17). For the CEPH Caucasian HapMap data, we calculated LD between pairs of SNPs using the standard definition of D' (21) and R^2 (22). When plotting all SNP combinations to elucidate the LD structure in a particular region, we plotted D' in the upper left corner and p-values in the lower right corner. In the LD plot we present, the markers are plotted equidistantly rather than according to their physical positions.

Results

Locus-Wide Association Study

[0165] We previously reported genome-wide significant linkage to chromosome 5q for type II diabetes mellitus in the Icelandic population(10); in the same study, we also reported suggestive evidence of linkage to 10q and 12q. To follow up the 10q locus, we used an association approach employing a high density of genotyped microsatellite markers across a 10.5 Mb region (NCBI Build 34: Chr10:114.2-124.7 Mb) corresponding to this locus. We identified and typed 228 microsatellite markers—i.e. to an average density of one

marker every 46 kb (Table 1). All the markers were typed in 1185 Icelandic type II diabetes patients and 931 unrelated population controls.

TABLE 1

		icrosatellites on chromosome uman genome assembly.
Alias	START: Build 34 Chr10 location	END: Build 34 Chr10 location
D10S1269	114186051	114186276
DG10S475	114389853	114390116
D10S168	114410102	114410266
DG10S478	114460845	114461228
DG10S479 DG10S480	114475488 114507574	114475632 114507829
DG10S481	114542657	114542924
DG10S1624	114545990	114546237
DG10S1625	114568323	114568715
DG10S488	114713594	114714008
DG10S1630	114770344	114770609
DG10S1631	114778307	114778598
DG10S492 DG10S494	114811884 114852114	114812269 114852280
DG105494 DG10S495	114879344	114852280
DG10S496	114919414	114919678
DG10S498	114964123	114964270
DG10S500	115024471	115024854
DG10S501	115045332	115045710
DG10S508	115241356 115267106	115241602
DG10S1634 DG10S512	115357290	115267460 115357439
DG10S512 DG10S514	115400157	115400338
DG10S17	115463773	115464048
DG10S1635	115519619	115519900
DG10S520	115536945	115537130
D10S554	115695920	115696071
D10S1237 DG10S535	115784580 115858565	115784977 115858720
D10S1158	115937134	115937433
DG10S1636	115966165	115966382
DG10S540	115983225	115983471
DG10S1637	116025219	116025491
DG10S542	116054130	116054255
DG10S1638 D10S1776	116062921 116140681	116063264 116140897
DG10S546	116141340	116140897
DG10S547	116173634	116173887
DG10S1639	116184720	116184898
DG10S548	116202775	116203174
DG10S550	116288175	116288560
D10S562	116304948	116305132
DG10S1640 DG10S1641	116344030 116638155	116344279 116638540
DG10S1641 DG10S566	116866173	116866431
D10S468	116869582	116869674
DG10S567	116904174	116904433
D10S1731	117001692	117001870
DG10S573	117070087	117070192
DG10S576 DG10S578	117153566 117196538	117153823 117196813
DG105576 DG10S1644	117206992	117207391
DG10S579	117226056	117226234
DG10S580	117240674	117240858
DG10S584	117336471	117336821
DG10S585	117364742 117385650	117364845 117385816
DG10S586 DG10S589	117481892	117385816 117482165
DG10S590	117508690	117508966
DG10S591	117520912	117521057
DG10S593	117567541	117567800
D10S1748	117589638	117589885
DG10S596	117629981	117630119
DG10S597 DG10S523	117654759 117691905	117654928 117692329
DG10S525 DG10S598	117691905	117692156
-		

TABLE 1-continued

TABLE 1-continued

Alias Chr101 D10S1773 11770 DG10S599 1177 DG10S599 1177 DG10S524 1177 DG10S525 1177 DG10S525 1177 DG10S525 1177 DG10S525 1177 DG10S1250 1178 DG10S1293 1179 DG10S604 1180 DG10S612 11800 DG10S612 11800 DG10S613 1181 DG10S614 1181 DG10S6157 1182 D10S1657 1182 D10S1657 1183 D10S1657 1183 D10S1657 1183 D10S1657 1183 D10S1657 1183 D10S1657 1183 DG10S1203 1184 DG10S1203 1184 DG10S1203 1184 DG10S624 1185 DG10S625 1183 DG10S639 1187 DG10S	RT: Build 34			Location of the 228 genotyped microsatellites on chromosome 10 in NCBI Build 34 of the human genome assembly.		
DG108599 1177. DG108524 1177. DG108524 1177. DG108525 1177. DG108525 1177. DG108525 1177. DG108525 1177. DG108525 1179. DG1081293 1179. DG10851293 1179. DG10851293 1180. DG1085125 1180. DG1085125 1180. DG108512 1180. DG108513 1181. DG108513 1182. D108564 1183. D1085657 1182. D1085657 1182. D1085657 1182. DG10851295 1183. DG108527 1183. DG108527 1185. DG108528 1185. DG108529 1187. DG108521 1187. DG108562 1185. DG108563 1187. DG108564 1187. DG108565 1187. </th <th>10 location</th> <th>END: Build 34 Chr10 location</th> <th>Alias</th> <th>START: Build 34 Chr10 location</th> <th>END: Build 34 Chr10 locat</th>	10 location	END: Build 34 Chr10 location	Alias	START: Build 34 Chr10 location	END: Build 34 Chr10 locat	
DG108524 1177 DG108525 1177 DG108600 1177 DG108525 1177 DG108525 1177 DG108504 1178 DG108504 1178 DG108504 1178 DG108504 1180 DG108509 1180 DG108512 11800 DG108514 11812 D1081683 11822 D1081684 11833 D1081657 11823 DG1081650 11833 DG1081203 11844 DG1081203 11844 DG1081650 11855 DG108627 1185 DG108628 11857 DG1081681 11857	7708786	117708989	DG10S1701	119473676	119473914	
DG108600 11774 DG108525 11774 DG108525 11780 DG1081250 11780 DG1081250 11780 DG1081293 11792 DG1081293 11792 DG1081293 11802 DG1081293 11802 DG108610 11800 DG108612 11802 DG108613 11812 DG108614 11812 DG108613 11822 D1081683 11822 D1081683 11822 D1081683 11823 D108167 11833 DG108164 11833 DG1081649 11833 DG1081649 11833 DG1081649 11833 DG1081650 11853 DG1081651 11853 DG1081650 11853 DG1081651 11853 DG108643 11854 DG1081651 11874 DG108644 11884 DG1081651 11874	7713714	117714115	D10S1236	119473739	119473870	
DG108525 11774 DG108525 11784 DG1081250 11784 DG1081250 11784 DG10851293 11794 DG1081144 11792 DG1085129 11804 DG108610 11804 DG108612 11804 DG108612 11804 DG108613 11812 DG108614 11812 D108563 11822 D108564 11832 D108565 11822 D108565 11822 D108565 11822 DG10861649 11833 DG108565 11832 DG108564 11835 DG108565 11835 DG108565 11855 DG108664 11857 DG108653 11857 DG108644 11883 DG1081651 11877 DG1081652 11886 DG1081651 11877 DG1081651 11877 DG1081651 11877 </td <td>7713997</td> <td>117714115</td> <td>DG10S669</td> <td>119485378</td> <td>119485552</td>	7713997	117714115	DG10S669	119485378	119485552	
DG10S1250 11780 DG10S1250 11780 DG10S604 11781 DG10S1293 11792 DG10S609 11800 DG10S609 11800 DG10S610 11800 DG10S612 11800 DG10S613 11812 DG10S614 11812 DG10S6152 11800 DG10S614 11812 DG10S6154 11812 D10S1657 11822 D10S1657 11823 D10S1657 11833 DG10S614 11833 DG10S1295 11833 DG10S1649 11833 DG10S1649 11833 DG10S1641 11855 DG10S1651 11857 DG10S1681 11855 DG10S643 11857 DG10S644 11877 DG10S1651 11877 DG10S1651 11877 DG10S644 11887 DG10S1651 11877 DG10S1651 11877	7742602	117743019	DG10S670	119505799	119505905	
DG108604 1178 DG10811293 11793 DG1081144 11793 DG1081144 11793 DG108609 11800 DG108610 11800 DG108612 11803 DG108613 11813 DG108614 11813 DG108613 11823 DG108614 11813 DI08545 11823 D108545 11823 D108545 11823 D1081683 11823 DG108167 11833 DG1081657 11823 DG1081295 11833 DG1081295 11833 DG1081203 11844 DG108627 11853 DG108628 11855 DG108628 11853 DG108628 11853 DG108629 11874 DG108634 11853 DG1086451 11874 DG108641 11875 DG1081655 11890 DG1081655 11890 <td>7742701</td> <td>117742986</td> <td>D10S190</td> <td>119510348</td> <td>119510554</td>	7742701	117742986	D10S190	119510348	119510554	
DG10S1293 11792 DG10S1293 11792 DG10S1144 11792 DG10S609 11800 DG10S610 11802 DG10S612 11802 DG10S612 11802 DG10S612 11802 DG10S612 11802 DG10S613 11812 DG10S614 11813 D10S545 11822 D10S1683 11822 D10S1685 11822 DG10S1649 11833 DG10S1657 11833 DG10S1295 11833 DG10S624 11844 DG10S624 11844 DG10S624 11845 DG10S625 11855 DG10S6264 11855 DG10S628 11855 DG10S628 11857 DG10S629 11877 DG10S624 11879 DG10S639 11877 DG10S641 11879 DG10S644 11883 DG10S645 11892 <td>7861226</td> <td>117861405</td> <td>DG10S1702</td> <td>119510362</td> <td>119510479</td>	7861226	117861405	DG10S1702	119510362	119510479	
DG10S1293 11792 DG10S1144 11792 DG10S1144 11792 DG10S609 11800 DG10S610 11800 DG10S612 11800 DG10S612 11800 DG10S613 11812 DG10S614 11812 D10S544 11812 D10S545 11822 D10S1657 11832 D10S1657 11832 D10S1657 11833 D10S1657 11833 D10S1657 11833 DG10S624 11844 DG10S627 11853 DG10S6264 11844 DG10S627 11855 DG10S628 11855 DG10S628 11855 DG10S640 11877 DG10S640 11877 DG10S641 11883 DG10S643 11879 DG10S644 11883 DG10S6455 11890 DG10S1656 11877 DG10S1655 11900	7867801	117868010	DG10S1153	119526060	119526329	
DG1081144 1179: DG108610 1180: DG108610 1180: DG108612 1180: DG108612 1180: DG108613 1181: DG108613 1181: DG108614 1181: D108544 1181: D108545 1182: D1085645 1182: D1085645 1182: D1085645 1182: D1085645 1182: D1085645 1182: D1085647 1183: DG108624 1184: DG108627 1185: DG108627 1185: DG108628 1185: DG108640 1187: DG108641 1187: DG108640 1187: DG108641 1187: DG108641 1187: DG108642 1188: DG108643 1189: DG108644 1188: DG1081655 1190: DG1081654 1189:	7932494	117932721	DG10S673	119606691	119606963	
DG105609 1180 DG105610 1180 DG105612 11800 DG105612 11800 DG105613 11812 DG105613 11812 DG105614 11812 DI05544 11812 D105545 11822 D1051657 11832 D1051649 11833 DG105624 11844 DG105625 11832 DG1051649 11833 DG1051649 11833 DG1051649 11834 DG1051649 11837 DG1051650 11852 DG1051650 11852 DG1051650 11852 DG105628 11857 DG105640 11877 DG105640 11877 DG105640 11877 DG105641 11879 DG105644 11889 DG1051651 11890 DG1051652 11884 DG1051654 11892 DG1051655 11900 <td>7950298</td> <td>117950606</td> <td>DG10S1305</td> <td>119615268</td> <td>119615484</td>	7950298	117950606	DG10S1305	119615268	119615484	
DG108610 11804 DG108612 11807 DG108612 11807 DG108612 11807 DG108613 11817 DG108614 11817 DG108613 11817 DG108614 11817 DG108614 11817 DG108614 11817 DG108545 11822 D108545 11822 DG1081649 11833 DG1081649 11833 DG1081649 11833 DG1081649 11837 DG1081649 11837 DG1081641 11857 DG1081650 11857 DG1081651 11857 DG1081651 11857 DG108663 11857 DG1086641 11877 DG1081686 11877 DG1081681 11887 DG1081651 11877 DG1081651 11877 DG1081651 11877 DG1081651 11887 DG1081651 11887 <td>8014503</td> <td>118014752</td> <td>DG108675</td> <td>119659153</td> <td>119659532</td>	8014503	118014752	DG108675	119659153	119659532	
DG10S1252 11805 DG10S612 11805 DG10S613 11815 DG10S614 11815 DG10S614 11815 DG10S614 11815 DI0S544 11825 D10S545 11825 D10S545 11825 DG10S1649 11836 DG10S1295 11837 DG10S1295 11837 DG10S1203 11844 DG10S1203 11844 DG10S1651 11857 DG10S1661 11857 DG10S1651 11857 DG10S628 11857 DG10S639 11877 DG10S640 11877 DG10S651 11877 DG10S1686 11877 DG10S1651 11877 DG10S1651 11877 DG10S1651 11877 DG10S1651 11877 DG10S1651 11877 DG10S1651 11879 DG10S1651 11890 DG10S1652 11886	8041410	118041787	DG10S1661	119663175	119663453	
DG108612 11809 DG108613 11817 DG108614 11817 D1085644 11817 D1085644 11817 D1085645 11827 D1085657 11827 D1085657 11837 D10851657 11837 DG1081649 11837 DG1081295 11837 DG1081295 11837 DG1081295 11837 DG1081203 11844 DG108624 11857 DG1081650 11857 DG1081651 11857 DG108628 11857 DG108628 11857 DG108640 11877 DG108643 11877 DG108644 11877 DG1081655 11887 DG1081651 11877 DG1081651 11877 DG1081651 11879 DG1081651 11890 DG1081651 11890 DG1081652 11888 DG1081654 11892 <td></td> <td>118086081</td> <td>DG1081662</td> <td>119700563</td> <td>119700948</td>		118086081	DG1081662	119700563	119700948	
DG108613 1181: DG108614 1181: DG108544 1181: D1085643 1182: D1085657 1182: D1085657 1183: D1085657 1183: D1085657 1183: D1085657 1183: D1085657 1183: DG108564 1183: DG10851295 1183: DG10851295 1183: DG1085624 1184: DG108624 1184: DG108627 1185: DG108628 1185: DG108628 1185: DG108640 1187: DG108640 1187: DG108640 1187: DG108641 1187: DG108641 1187: DG108641 1187: DG108641 1187: DG1086451 1189: DG1081655 1190: DG1081654 1189: DG1081655 1190: DG1081654 1189:						
DG108614 1181: D108544 1181: D108548 1182: D1085683 1182: D1085685 1182: D1085657 1182: D108545 1182: D108545 1182: D108545 1182: D108545 1183: DG1081649 1183: DG1081649 1183: DG10851295 1183: DG108624 1184: DG108627 1185: DG108627 1185: DG108628 1185: DG108640 1187: DG108640 1187: DG108640 1187: DG108641 1187: DG108641 1187: DG108641 1188: DG1081655 1189: DG1081654 1189: DG1081655 1190: DG1081654 1189: DG1081655 1190: DG1081655 1190: DG1081655 1190:		118093247	DG10S1306	119703996	119704204	
D108544 11816 D1081683 1182 D1081683 1182 D1081687 1183 D0108545 11833 D0108167 11833 D01081295 11833 DG1081295 11833 DG1081203 11844 DG1081650 11855 DG1081650 11855 DG1081650 11855 DG1081663 11857 DG108643 11857 DG108644 11877 DG108640 11877 DG1081651 11877 DG108640 11877 DG108640 11877 DG108640 11877 DG108641 11879 DG108651 11890 DG108644 11889 DG1081652 11884 DG1081654 11897 DG1081655 11900 DG1081654 11897 DG1081655 11900 DG1081654 11897 DG1081655 11900	8126058	118126312	DG10S1663	119783538	119783739	
D1051683 1182 D1051657 1182 D105545 1182 DG1051657 1183 DG1051649 1183 DG1051295 1183 DG1051295 1183 DG1051203 11844 DG105624 11844 DG105625 11855 DG1051650 11855 DG105664 11855 DG105634 11857 DG105640 11877 DG105640 11877 DG105640 11877 DG105651 11887 DG1051651 11877 DG1051651 11877 DG1051651 11877 DG1051651 11877 DG1051651 11877 DG1051651 11883 DG1051651 11879 DG1051652 11888 DG1051654 11889 DG1051655 11900 DG1051655 11900 DG1051655 11900 DG1051655 11900	8150018	118150178	DG10S1704	119783569	119783694	
D1081657 11823 D108545 11823 DG108545 11833 D108187 11833 DG1081295 11833 DG1081295 11833 DG1081295 11833 DG1081203 11844 DG1081203 11844 DG1081203 11844 DG108627 11855 DG108628 11855 DG108628 11855 DG108628 11857 DG108628 11857 DG108640 1187 DG108643 11877 DG108644 11887 DG1081655 11887 DG1081651 11877 DG1081651 11877 DG1081651 11879 DG1081655 11880 DG1081651 11879 DG1081652 11880 DG1081654 11899 DG1081655 11900 DG1081655 11900 DG1081655 11900 DG1081655 11900	8164684	118164979	DG10S631	119788517	119788678	
D108545 11822 DG1081649 11833 DG108167 11833 DG108187 11833 DG1081295 11833 DG1081203 11844 DG108627 11855 DG1081680 11855 DG108628 11855 DG108629 11877 DG108640 11877 DG1081686 11877 DG1081686 11887 DG1081651 11879 DG1081651 11879 DG1081651 11883 DG1081652 11886 DG1081654 11883 DG1081655 11900 DG1081654 11897 DG1081655 11900 DG1081654 11897 DG1081655 11900 DG1081655 119	8211053	118211180	D10S1148	119803465	119803663	
DG1051649 11830 D105187 11833 DG1051295 11837 DG105624 11844 DG105624 11844 DG105627 11857 DG105627 11857 DG105628 11857 DG105639 11877 DG105639 11877 DG105640 11877 DG105640 11877 DG105640 11877 DG105640 11877 DG105641 11887 DG105641 11879 DG105641 11879 DG105644 11889 DG1051655 11889 DG1051654 11899 DG1051655 11900 DG1051655 11900 DG1051655 11900 DG1051691 11900 DG1051693 11910 DG1051693 11911 DG1051693 11912 DG1051694 11917 DG1051695 11922 DG1051695 11922	8287426	118287695	D10S1150	119803465	119803662	
D105187 1183 DG1051295 1183' DG105624 1184' DG105627 1185' DG105627 1185' DG105627 1185' DG105627 1185' DG105628 1185' DG105639 1187' DG105640 1187' DG105640 1187' DG105640 1187' DG105641 1187' DG105641 1187' DG105641 1187' DG105641 1187' DG105641 1187' DG105644 1188' DG1051655 1188' DG1051654 1189' DG1051655 1190' DG1051655 1190' DG1051655 1190' DG1051655 1190' DG1051655 1190' DG1051655 1190' DG1051693 1191' DG1051693 1191' DG1051693 1191' DG1051695 1192'	8299618	118299851	D10S503	119803476	119803653	
DG10S1295 1183' DG10S1295 1184' DG10S624 1184' DG10S1203 1184' DG10S1203 1184' DG10S1650 1185' DG10S1650 1185' DG10S1661 1185' DG10S628 1185' DG10S634 1185' DG10S640 1187' DG10S1686 1187' DG10S1686 1187' DG10S1686 1187' DG10S1651 1187' DG10S1651 1187' DG10S1651 1187' DG10S1651 1188' DG10S1651 1188' DG10S1652 1188' DG10S1654 1189' DG10S1655 1190' DG10S1654 1189' DG10S1655 1190' DG10S1655 1190' DG10S1655 1190' DG10S1655 1190' DG10S1655 1190' DG10S1655 1190' DG10S1693 <td< td=""><td>8306954</td><td>118307121</td><td>DG10S632</td><td>119811193</td><td>119811621</td></td<>	8306954	118307121	DG10S632	119811193	119811621	
DG108624 11844 DG108627 11853 DG1081203 11844 DG1081203 11853 DG1081650 11855 DG1081681 11855 DG108628 11855 DG108634 11857 DG108639 1187 DG108640 1187 DG1081686 1187 DG1081686 1187 DG1081686 1187 DG1081686 1187 DG1081651 1187 DG1081651 1187 DG1081651 1187 DG1081651 1187 DG1081652 11886 DG1081654 11899 DG1081655 11900 DG1081654 11899 DG1081655 11900 DG1081655 11900 DG1081655 11900 DG1081655 11900 DG1081655 11901 DG1081693 11910 DG1081693 11910 DG1081694 11917	8317655	118317730	DG10S681	119811347	119811621	
DG108624 11844 DG108627 11853 DG1081203 11844 DG1081203 11853 DG1081650 11855 DG1081681 11855 DG108628 11855 DG108634 11857 DG108639 1187 DG108640 1187 DG1081686 1187 DG1081686 1187 DG1081686 1187 DG1081686 1187 DG1081651 1187 DG1081651 1187 DG1081651 1187 DG1081651 1187 DG1081652 11886 DG1081654 11899 DG1081655 11900 DG1081654 11899 DG1081655 11900 DG1081655 11900 DG1081655 11900 DG1081655 11900 DG1081655 11901 DG1081693 11910 DG1081693 11910 DG1081694 11917	8375973	118376205	DG10S633	119833701	119833987	
DG10S1203 1184 DG10S1203 1185 DG10S1650 11855 DG10S1650 11855 DG10S1681 11855 DG10S628 11855 DG10S634 11857 DG10S634 11857 DG10S634 11877 DG10S640 11877 DG10S641 11877 DG10S1686 11877 DG10S1686 11877 DG10S1651 11877 DG10S1655 11883 DG10S1655 11883 DG10S1654 11889 DG10S1655 11900 DG10S1654 11899 DG10S1655 11900 DG10S1655 11900 DG10S1655 11900 DG10S1655 11900 DG10S1655 11900 DG10S1651 11900 DG10S1655 11900 DG10S1655 11901 DG10S1655 11901 DG10S1656 11917 DG10S1693 119	8401694	118402073	D10S2473	119833724	119833869	
DG108627 1185 DG1081650 11855 DG1081681 11855 DG1081681 11855 DG108628 11855 DG108639 11857 DG108639 1187 DG108640 11874 DG108641 11874 DG1085640 11874 DG1085641 11874 DG1085651 11874 DG1085651 11884 DG1085651 11889 DG10851654 11899 DG10851655 11900 DG10851655 11900 DG10851655 11900 DG10851655 11900 DG10851655 11900 DG10851693 11910 DG10851693 11910 DG10851693 11911 DG10851695 11920 DG1081695 11921 DG1081695 11922 DG1081695 11922 DG1081695 11922 DG1081695 11922 DG1081695	8440472	118440835		119838539		
DG10S1650 11855 DG10S1681 11855 DG10S628 11855 DG10S634 11855 DG10S639 11877 DG10S640 11877 DG10S640 11877 DG10S641 11877 DG10S641 11877 DG10S641 11877 DG10S1686 11877 DG10S644 11887 DG10S1255 11886 DG10S1651 11879 DG10S1652 11886 DG10S1654 11897 DG10S1655 11900 DG10S1654 11897 DG10S1655 11900 DG10S1655 11900 DG10S1655 11900 DG10S1691 11900 DG10S1693 11910 DG10S1693 11911 DG10S1693 11912 DG10S1695 11922 DG10S1695 11922 DG10S1695 11922 DG10S1695 11922 DG10S1695 1192		118515072	DG10S682		119838806	
DG10S1681 11855 DG10S628 11857 DG10S634 11857 DG10S634 11857 DG10S640 11877 DG10S640 11877 DG10S1686 11877 DG10S1686 11877 DG10S1686 11877 DG10S1651 11877 DG10S644 11887 DG10S1655 11886 DG10S1652 11888 DG10S1654 11897 DG10S1655 11900 DG10S1654 11897 DG10S1655 11900 DG10S1655 11901 DG10S1693 11917 DG10S1693 11917 DG10S1695 11922 DG10S1695 1		118521210	DG10S683	119853558	119853862	
DG108628 1185: DG108634 1185: DG108639 1187: DG108639 1187: DG108640 1187: DG108640 1187: DG108641 1187: DG1081686 1187: DG1081681 1187: DG1081651 1187: DG1081651 1187: DG1081651 1187: DG1081651 1187: DG1081652 1188: DG1081654 1189: DG1081654 1189: DG1081655 1190: DG1081656 1190: DG1081655 1190: DG1081655 1190: DG1081655 1190: DG1081651 1190: DG1081655 1190: DG1081651 1190: DG1081653 1191: DG1081693 1191: DG1081693 1191: DG1081694 1191: DG1081695 1192: DG1081695 11			DG10S684	119880412	119880572	
DG105634 11850 DG105639 1187 DG105640 1187 DG105640 1187 DG105640 1187 DG1051686 1187 DG1051686 1187 DG1051686 1187 DG1051651 1187 DG1051651 1187 DG1051651 1187 DG1051651 1187 DG1051651 1188 DG1051652 1188 DG1051654 11899 DG1051654 11899 DG1051688 11899 DG1051690 11900 DG1051655 11900 DG1051655 11900 DG1051655 11900 DG1051655 11900 DG1051693 11910 DG1051693 11910 DG1051693 11910 DG1051694 11917 DG1051695 11920 DG1051695 11920 DG1051695 11920 DG105657 11920		118523333	DG10S685	119909682	119910062	
DG108639 1187. DG108640 1187. DG108221 1187. DG1081686 1187. DG1081686 1187. DG1081686 1187. DG1081681 1187. DG1081651 1187. DG1081651 1187. DG1081651 1187. DG1081651 1187. DG1081651 1188. DG1081652 1188. DG1081654 1189. DG1081655 11900. DG1081690 11900. DG1081691 11900. DG1081655 11900. DG1081693 11910. DG1081693 11910. DG1081693 11910. DG1081693 11910. DG1081694 11917. DG1081695 11922. DG1081695 11922. DG1081695 11922. DG108657 11922. DG108658 11922. DG108658 11922. DG108656	8553693	118553836	DG10S686	119923527	119923790	
DG108640 1187- D108221 1187- DG1081686 1187- DG1081686 1187- DG1081686 1187- DG1081651 1187- DG1081651 1187- DG1081651 1187- DG1081651 1187- DG1081651 1188- DG1081652 1188- DG1081654 1189- DG1081654 1189- DG1081654 1189- DG1081655 11900 DG1081690 11900 DG1081695 11900 DG1081695 11900 DG1081655 11900 DG1081693 11910 DG1081693 11910 DG1081693 11911 DG1081695 11920 DG1081695 11921 DG1081695 11922 DG1081695 11922 DG108657 11922 DG108658 11922 DG108658 11924 DG108658 11	8566844	118567191	DG10S687	119954835	119955083	
D108221 11870 DG1081686 11870 DG1081686 11870 DG1081656 11870 DG1081651 11870 DG1081651 11870 DG1081655 11880 DG1081652 11886 DG1081654 11897 DG1081654 11897 DG1081654 11897 DG1081655 11900 DG1081655 11900 DG1081655 11900 DG1081655 11900 DG1081691 11900 DG1081693 11910 DG1081693 11910 DG1081693 11911 DG1081693 11912 DG1081695 11922 DG1081695 11922 DG1081695 11922 DG1081695 11922 DG1081695 11922 DG1081695 11922 DG108657 11924 DG108658 11925 DG1081696 11924	8712208	118712596	DG10S1212	119972358	119972707	
DG10S1686 11876 DG10S641 11877 DG10S651 11877 DG10S1651 11877 DG10S1651 11877 DG10S1255 11888 DG10S644 11887 DG10S1652 11888 DG10S1654 11897 DG10S1654 11897 DG10S1654 11897 DG10S1654 11897 DG10S1655 11900 D10S1425 11900 DG10S1655 11900 DG10S1655 11900 DG10S1655 11900 DG10S1655 11900 DG10S1655 11900 DG10S1655 11900 DG10S1693 11910 DG10S1693 11910 DG10S1693 11912 DG10S1694 11917 DG10S1695 11922 DG10S1695 11922 DG10S657 11922 DG10S658 11922 DG10S1696 11924	8743450	118743821	DG1081261	119995566	119995727	
DG108641 1187; DG1081651 1187; DG1081255 1188; DG1081255 1188; DG1081255 1188; DG1081652 1188; DG1081652 1188; DG1081654 1189; DG1081654 1189; DG1081688 1189; DG1081680 1190; DG1081690 1190; DG1081655 1190; DG1081655 1190; DG1081655 1190; DG1081655 1190; DG1081655 1190; DG1081655 1190; DG1081693 1191; DG1081693 1191; DG1081693 1191; DG1081694 1191; DG1081695 1192; DG1086567 1192; DG108657 1192; DG108658 1192; DG108658 1192; DG108658 1192; DG108658 1192; DG108658 11	8766458	118766560				
DG10S1651 1187; DG10S1255 1188; DG10S644 1188; DG10S1655 1188; DG10S1654 1189; DG10S1654 1189; DG10S1654 1189; DG10S1688 1189; DG10S1689 1189; DG10S1690 11900; DG10S1655 1190; DG10S1691 1190; DG10S1693 1191; DG10S1693 1191; DG10S1693 1191; DG10S1695 1192; DG10S1695 1192; DG10S1695 1192; DG10S1695 1192; DG10S657 1192; DG10S1696 1192; DG10S1696 1192;	8766464	118766561	DG10S1350	120004924	120005036	
DG10S1255 1188: DG10S1255 1188: DG10S644 1188: DG10S1652 1188: DG10S1654 1189: DG10S1654 1189: DG10S1688 1189: DG10S1689 1189: DG10S1680 11900 DG10S1655 11900 DG10S1655 11900 DG10S1655 11900 DG10S1693 11910 DG10S1693 11910 DG10S1693 11910 DG10S1693 11910 DG10S1693 11910 DG10S1693 11910 DG10S1693 11911 DG10S1695 11921 DG10S1695 11922 DG10S1695 11922 DG10S657 11922 DG10S1696 11924	8788135	118788401	DG10S1	120030830	120031131	
DG105644 1188: DG1051652 1188: DG1051654 1189: DG1051654 1189: DG1051688 1189: DG1051689 1189: DG1051690 11900: DG1051655 11900: DG1051655 11900: DG1051691 11900: DG1051693 11910: DG1051693 11910: DG1051693 11911: DG1051694 11912: DG1051695 11920: DG1051695 11920: DG1051695 11922: DG1051695 11922: DG1051695 11922: DG105656 11922: DG105658 11922: DG105658 11924:	8794961	118795267	DG10S693	120100794	120101005	
DG105644 1188: DG1051652 1188: DG1051654 1189: DG1051654 1189: DG1051688 1189: DG1051689 1189: DG1051690 11900: DG1051655 11900: DG1051655 11900: DG1051691 11900: DG1051693 11910: DG1051693 11910: DG1051693 11911: DG1051694 11912: DG1051695 11920: DG1051695 11920: DG1051695 11922: DG1051695 11922: DG1051695 11922: DG105656 11922: DG105658 11922: DG1051696 11924:	8834290	118834438	DG10S1263	120132349	120132528	
DG1051652 11886 DG1051654 11897 DG1051688 11897 DG1051689 11897 DG1051690 11900 DG1051691 11900 DG1051655 11900 DG1051691 11900 DG1051695 11900 DG1051691 11900 DG1051693 11910 DG1051207 11909 DG1051693 11917 DG1051694 11917 DG1051695 11920 DG1051695 11922 DG1051695 11922 DG1051695 11922 DG105656 11922 DG105658 11922 DG105658 11922 DG1051696 11924	8857362	118857745	D10S542	120417003	120417230	
DG10S1654 1189; DG10S1688 1189; DG10S1689 1189; DG10S1689 1189; DG10S1690 1190; DG10S1650 1190; DG10S1655 1190; DG10S1655 1190; DG10S1655 1190; DG10S1655 1190; DG10S1691 1190; DG10S1693 1191; DG10S1693 1191; DG10S1695 1192; DG10S1694 1191; DG10S1695 1192; DG10S1695 1192; DG10S1695 1192; DG10S657 1192; DG10S658 1192; DG10S658 1192; DG10S1696 1192;	8862172	118862311	DG10S1664	120444685	120444808	
DG10S1688 1189' DG10S1689 1189' DG10S1690 1190' D10S1425 1190' DG10S1655 1190' DG10S1655 1190' DG10S1655 1190' DG10S1651 1190' DG10S1655 1190' DG10S1691 1190' DG10S1693 1191' DG10S1693 1191' DG10S1694 1191' DG10S1695 1192' DG10S1695 1192' DG10S1695 1192' DG10S1695 1192' DG10S657 1192' DG10S658 1192' DG10S658 1192' DG10S658 1192'	8954536	118954869	DG10S1163	120506796	120507066	
DG10S1689 1189 DG10S1690 11900 DG10S1690 11900 DG10S651 11900 DG10S1655 11900 DG10S1655 11900 DG10S1655 11900 DG10S1691 11900 DG10S1693 11910 DG10S1693 11910 DG10S1693 11911 DG10S1694 11917 DG10S1656 11917 DG10S1695 11920 DG10S1695 11920 DG10S1695 11920 DG10S657 11920 DG10S658 11922 DG10S658 11922 DG10S1696 11924						
DG10S1690 11900 D10S1425 11900 DG10S651 11900 DG10S1655 11900 DG10S1655 11900 DG10S1691 11900 DG10S1207 11909 DG10S1203 11910 DG10S1693 11911 DG10S1695 11921 DG10S1656 11911 DG10S1657 11922 DG10S1655 11922 DG10S656 11922 DG10S657 11922 DG10S1696 11924		118972717	DG10S703	120538236	120538484	
D10S1425 11900 DG10S651 11900 DG10S1655 11900 DG10S1655 11900 DG10S1691 11900 DG10S1693 11910 DG10S1693 11910 DG10S1693 11910 DG10S1693 11911 DG10S1656 11912 DG10S1695 11922 DG10S1695 11922 DG10S658 11922 DG10S658 11922 DG10S658 11922 DG10S1696 11924	8987319	118987480	DG10S704	120570334	120570593	
DG108651 11903 DG1081655 11904 DG1081655 11904 DG1081691 11907 DG1081693 11916 DG1081693 11917 DG1081656 11917 DG1081656 11917 DG1081694 11917 DG1081695 11920 DG1081695 11922 DG108657 11922 DG1081696 11922 DG1081696 11924	9004704	119004986	DG10S706	120642052	120642312	
DG10S1655 11904 DG10S1691 11907 DG10S1207 11909 DG10S1693 11917 DG10S1693 11917 DG10S1694 11917 DG10S1695 11917 DG10S1696 11917 DG10S1695 11927 DG10S1695 11922 DG10S657 11922 DG10S658 11922 DG10S1696 11924	9004742	119004920	DG10S708	120699520	120699811	
DG1081655 11904 DG1081691 11907 DG1081207 11909 DG1081207 11909 DG1081693 11917 DG1081258 11917 DG1081694 11917 DG1081695 11927 DG1081695 11922 DG108657 11922 DG108658 11922 DG1081696 11924	9030166	119030595	DG10S709	120723780	120724158	
DG10S1691 1190' DG10S1207 1190' DG10S1203 1191' DG10S1258 1191' DG10S1693 1191' DG10S1694 1191' DG10S1695 1192' DG10S1695 1192' DG10S656 1192' DG10S657 1192' DG10S658 1192' DG10S658 1192'	9044005	119044188	D10S1701	120849161	120849428	
DG10S1207 11909 D10S1693 11910 DG10S1258 11917 DG10S656 11917 DG10S1693 11917 DG10S1695 11927 DG10S1695 11920 DG10S1695 11920 DG10S658 11922 DG10S658 11922 DG10S658 11924	9078576	119078943	DG10S716	120893782	120894153	
D1081693 11910 DG1081258 11911 DG108656 11917 DG1081694 11917 DG1081695 11920 DG1081695 11920 DG108657 11920 DG108658 11920 DG108658 11920 DG108658 11920 DG108658 11920	9094382	119078943	DG103716 DG10S1669	120969521	120894155	
DG10S1258 1191: DG10S656 1191' DG10S1694 1191' DG10S1695 1192' DG10S657 1192' DG10S658 1192' DG10S658 1192'						
DG108656 1191' DG1081694 1191' DG1081695 11920 DG108657 11920 DG108658 11922 DG108658 11922 DG1081696 11922	9109493	119109731	DG10S720	121016792	121017048	
DG10S1694 1191 DG10S1695 11920 DG10S657 11920 DG10S658 11922 DG10S658 11922	9131611	119131788	D10S1792	121042408	121042574	
DG1081695 11920 DG108657 11920 DG108658 11922 DG1081696 11924	9177278	119177672	DG10S722	121070320	121070693	
DG108657 11920 DG108658 11922 DG1081696 11924	9177430	119177614	DG10S1181	121101362	121101685	
DG108657 11920 DG108658 11922 DG1081696 11924	9204432	119204655	DG10S724	121117025	121117286	
DG10S658 11922 DG10S1696 11924	9204769	119205174	DG10S1670	121162511	121162898	
DG10S1696 11924	9223917	119224102	DG108726	121217327	121217580	
	9243071	119243408	DG10S1167	121247552	121247838	
DG1051057 11923						
D G10G1 (50	9282299	119282586	DG10S729	121283257	121283429	
	9290241	119290632	DG10S730	121318865	121319131	
	9305067	119305226	DG10S731	121342622	121342893	
DG10S662 1193	9317406	119317660	DG10S1278	121384227	121384464	
DG108663 11933	9330718	119331131	DG10S734	121425229	121425633	
	9364904	119365188	DG10S735	121446549	121446695	
	9396863	119397144	DG105755 DG10S1185	121466936	121467248	
	9412611 9448478	119412992 119448736	DG10S1129 DG10S1085	121472295 121494260	121472600 121494657	

TABLE 1-continued

Location of the 228 genotyped microsatellites on chromosome 10 in NCBI Build 34 of the human genome assembly.				
Alias	START: Build 34 Chr10 location	END: Build 34 Chr10 location		
DG10S1327	121526700	121526830		
DG10S1271	121559895	121560066		
DG10S741	121638254	121638391		
DG10S1087	121647884	121648273		
DG10S1359	121713760	121713892		
DG10S1120	121726128	121726519		
DG10S1671	121750886	121750993		
DG10S1673	121823695	121823925		
DG10S749	121841816	121841997		
DG10S1134	121901381	121901668		
DG10S1674	121931406	121931809		
DG10S755	121976143	121976435		
D10S1757	121989325	121989539		
D10S209	121995173	121995376		
DG10S757	122029990	122030248		
DG10S1283	122045222	122045429		
DG10S1191	122071761	122072115		
DG10S761	122141102	122141322		
DG10S1678	122146312	122146535		
DG10S762	122167889	122168135		
DG10S763	122185793	122185925		
DG10S1284	122207287	122207508		
DG10S1137	122220809	122221073		
DG10S766	122257534	122257929		
DG10S767	122283871	122284250		
DG10S1361	122318975	122319081		
DG10S1680	122390160	122390294		
D10S1230	122407279	122407403		
DG10S772	122421708	122421845		
DG10S775	122463781	122463941		
DG10S777	122524358	122524547		
DG10S779	122580228	122580603		
DG10S784	122719087	122719236		
D10S1483	122948181	122948324		
D10S587	124728937	124729112		

[0166] Single marker association analysis with the microsatellite markers identified association with DG10S478 (Table 2 and the FIGURE).

TABLE 2

DG10S478 Association to Type II Diabetes in Iceland					
Allele	Affected freq (n = 1185)	Control freq (n = 931)	RR [95% CI]	Two sided P	
0	0.636	0.724	0.67	2.1×10^{-9}	
4	0.005	0.002	2.36	0.12	
8	0.093	0.078	1.21	0.090	
12	0.242	0.178	1.48	4.6×10^{-7}	
16	0.022	0.015	1.53	0.076	
20	0.001	0.003	0.39	0.17	
Х	0.364	0.276	1.50 [1.31, 1.71]	2.1×10^{-9}	

[0167] Six alleles are observed with this tetra-nucleotide repeat, with alleles 0, 8 and 12 accounting for 98% of chromosomes in the population controls. Allele 0 showed a protective association (Relative Risk (RR)=0.67; P= 2.1×10^{-9}) relative to the other alleles combined. This P-value is two-sided and takes into account that some of the patients are related to each other. DG10S478 is located in intron 3 of the transcription factor 7-like 2 (TCF7L2—formerly TCF4) gene on 10q25.2. This marker is within a well defined LD block of 74.9 kb (based on the CEPH Caucasian HapMap Phase II) that encapsulates part of intron 3, the whole of exon 4 and part of intron 4 (the FIGURE).

[0168] When DG10S478 was genotyped in the CEPH Caucasian HapMap families, it became clear that allele G of SNP rs12255372, is observed to be nearly perfectly correlated with allele 0 of DG10S478 (r^2 =0.95, P=5.53×10⁻³⁸), and allele T of rs12255372 is correlated with other alleles of DG10S478. Moreover, the risk conferred by alleles 8 and 12 of DG10S478 do not differ (P=0.3). Hence it is natural to collapse all the non-0 alleles of DG10S478 into a composite allele which will be referred to as allele X. Allele X has frequency of 27.6% and 36.4% in controls and patients respectively. Assuming a multiplicative model (16, 17), compared to the risk for non-carriers, allele X has an estimated RR of 1.50 per copy carried.

Replication of the DG10S478 Association to Type II Diabetes

[0169] To verify the association of DG 10S478 to type II diabetes, the microsatellite was genotyped in a Danish type II diabetes cohort of 228 cases and 539 controls. The Danish cohort was selected from the PERF (Prospective Epidemiological Risk Factors) study in Denmark (19). This female type II diabetes cohort had been diagnosed previously with type II diabetes. The association observed in Iceland was replicated (Table 3).

TABLE 3

1	DG10S478 Association to Type II Diabetes in Denmark					
Allele	Affected freq (n = 228)	Control freq (n = 539)	RR [95% CI]	Two sided P		
0	0.669	0.740	0.71	0.0048		
4	0.002	0.004	0.59	0.62		
8	0.070	0.048	1.49	0.091		
12	0.239	0.190	1.34	0.032		
16	0.020	0.018	1.12	0.78		
X	0.331	0.260	1.41 [1.11, 1.79]	0.0048		

[0170] The composite at-risk allele X has a frequency of 26.0% in controls and 33.1% in type II diabetes cases, giving an estimated RR of 1.41 (P=0.0048).

[0171] Subsequently, the microsatellite was genotyped in a US Caucasian type II diabetes cohort of 361 cases and 530 controls from the PENN CATH study. This study is a cross sectional study of the association of biochemical and genetic factors with coronary atherosclerosis in a consecutive cohort of patients undergoing cardiac catheterization at the University of Pennsylvania Medical Center. Type II diabetes was defined as a history of fasting blood glucose \geq 126 mg/dl, 2-hour post-prandial glucose \geq 200 mg/dl, use of oral hypoglycemic agents, or insulin and oral hypoglycemic in a subject greater than age 40. The association observed in Iceland was also replicated in this population (Table 4).

TABLE 4

DG10S478 Association to Type II Diabetes in the United States					
Allele	Affected freq (n = 361)	Control freq $(n = 530)$	RR [95% CI]	Two sided P	
-4	0.001	0.000	_		
0	0.615	0.747	0.54	3.3×10^{-9}	
4	0.003	0.004	0.73	0.72	
8	0.085	0.049	1.79	0.0029	

_DG1	DG10S478 Association to Type II Diabetes in the United States						
Allele	Affected freq (n = 361)	Control freq $(n = 530)$	RR [95% CI]	Two sided P			
12 16 X	0.256 0.040 0.385	0.180 0.020 0.253	1.57 2.07 1.85 [1.51, 2.27]	1.2×10^{-4} 0.012 3.3×10^{-9}			

TABLE 4-continued

[0172] The composite at-risk allele X has a frequency of 25.3% in controls and 38.5% in type II diabetes cases, giving an estimated RR of $1.85 (P=3.3\times10^{-9})$. Combining the results from all 3 cohorts using a Mantel-Haneszel model (NOTE 3) yields an overall two-sided P of 4.7×10^{-18} .

[0173] The association of the composite at-risk allele to type II diabetes in three populations constitutes strong evidence that variants of the TCF7L2 gene contribute to the risk of type II diabetes.

[0174] After establishing beyond doubt the association of the allele X to type II diabetes, we investigated the mode of inheritance more closely. The dominant model and recessive model can be rejected as the heterozygous carriers clearly have increased risk relative to the non-carriers ($P<1\times10^{-6}$) and reduced risk compared to the homozygous carriers (P<0. 0001). The multiplicative model provides a better fit, but there is evidence that the risk of the homozygous carriers relative to the heterozygous carriers relative to the heterozygous carriers relative to the heterozygous carriers relative to the non-carriers. Table 5 provides model-free estimates of the relative risks of the heterozygous carriers and homozygous carriers compared to the non-carriers.

TABLE 5

	Model-free estimates of the relative risks				
	Genotype Relative Risk				
Cohort	00	0X [95% CI]	XX [95% CI]	PAR	
Iceland Denmark USA Combined	1 1 1 1	1.41 [1.17, 1.70] 1.37 [0.98, 1.90] 1.64 [1.23, 2.19] 1.45 [1.26, 1.67]	2.27 [1.70, 3.04] 1.92 [1.13, 3.26] 3.29 [2.13, 5.07] 2.41 [1.94, 3.00]	0.21 0.17 0.28 0.21	

[0175] The three cohorts have similar population frequency for the at-risk allele, but the RR estimates vary; with the strongest effect seen in the US cohort and the weakest in the Danish cohort. While there is no reason for the RR to be identical in the cohorts, it is noted that the differences in the estimated relative risks do not quite reach statistical significance (P>0.05). Combining the results from the cohorts assuming common relative risks, the heterozygous carriers and homozygous carriers are estimated to have relative risks of 1.45 and 2.41 respectively compared to the non-carriers (Table 5). Assuming a population frequency of 26% for the at-risk allele, heterozygous and homozygous carriers make up 38% and 7% of the population respectively. Hence, this variant has enough predictive value to be of clinical use. The corresponding population attributed risk is 21%, which is substantial from a public health point of view.

[0176] It should also be noted that allele X is in excess in impaired fasting glucose (IFG) individuals (fasting serum glucose between 6.1 and 6.9 mM). The composite at-risk

allele X has a frequency of 27.7% in 1393 controls and 37.1% in 278 IFG cases, giving an estimated RR of 1.54 (P= 1.36×10^{-5}). Association of SNP markers within exon 4 LD block of TCF7L2 with type 2 diabetes.

[0177] In Table 6 we list microsatellite and SNP markers residing within the exon 4 LD block of TCF7L2. The table contains publically available SNPs, as well as SNPs discovered by sequencing the entire LD block region. The table furthermore provides polymorphic microsatellite markers residing within the block.

TABLE 6

Polymorphic markers residing within the exon 4 LD block of TCF7L2 (between markers rs4074720 and rs7087006, positions in Build 34 co-ordinates: rs4074720 (B34: 114413084) - rs7087006 (B34: 114488013) = 74929 bp. Sequence identification references
are indicated as appropriate, referring in each instance to the
SEQ ID number for the amplimer containing the polymorphism,
and forward and reverse primers, as disclosed in the
Sequence listing.

A. Public SNPs (including all HapMap ethnicities)

	A. Public SNPs (includii	ig all HapMap eth	nicities)
	Chromosome 10		
Public Alias	B34 location	Base Change	Sequence ID NO:
r done 7 mas	D5 T location	Base Change	Sequence IB NO.
rs4074720	114413084	A/G	
rs4074719	114413145	C/T	
rs4074718	114413204	C/T	
rs11196181	114413605	A/G	
rs11196182	114414744	C/T	
rs4603236	114414765	G/T	
rs7922298	114414856	C/T	
rs17747324	114417090	C/T	
rs7901695	114418675	C/T	17-19
rs11196185	114420079	C/T	
rs4132115	114420083	A/C	
rs4506565	114420628	A/T	14-16
rs7068741	114420845	C/T	
rs7069007	114420872	C/G	
rs7903146	114422936	C/T	11-13
rs11196187	114424032	A/G	
rs7092484	114425520	A/G	
rs10885402	114426284	A/C	
rs12098651	114426306	A/G	
rs6585198	114426824	A/G	
rs7910244	114427209	C/G	
rs12266632	114429546	C/G	
rs6585199	114429758	A/G	
rs7896811	114431304	C/T	
rs6585200	114433196	A/G	
rs6585201	114433370	A/G	
rs4319449	114433993	G/T	
rs12220336	114434854	A/G	
rs7896091	114436550	A/G	
rs12354626	114437016	A/G	
rs7075199	114437307	C/G	
rs7904519	114438514	A/G	
rs13376896	114441336	A/C	
rs10885405	114442257	C/T	
rs10885406	114442311	A/G	
rs11196192	114446874	G/T	
rs6585202	114447390	C/T	
rs7924080	114451599	C/T	
rs7907610	114451677	A/G	
rs12262948	114452313	C/G	0.40
rs12243326	114453402	C/T	8-10
rs12265110	114453606	C/T	
rs7077039	114453664	C/T	
rs11196198	114456472	A/G	
rs12775336	114459590	G/T	
rs7904948	114459672	A/T	
rs7100927 rs11196199	114460635 114460704	A/G A/G	
rs17685538	114462058	C/G	

TABLE 6-continued

Polymorphic markers residing within the exon 4 LD block of TCF7L2 (between markers rs4074720 and rs7087006, positions in Build 34 co-ordinates: rs4074720 (B34: 114413084) - rs7087006
(B34: 114488013) = 74929 bp. Sequence identification references are indicated as appropriate, referring in each instance to the SEQ ID number for the amplimer containing the polymorphism, and forward and reverse primers, as disclosed in the

Secure

ce listing

	Sequence	e nsung.	
rs11592706	114463573	C/T	
rs7081912	114463678	A/G	
rs7895340	114466112	A/G	23-25
rs11196200	114466525	C/G	
rs11196201	114467894	A/T	
rs11196202	114470254	A/G	
rs11196203	114470447	A/C	
rs11196204	114470518	A/G	
rs11196205	114471634	C/G	20-22
rs10885409	114472659	C/T	
rs12255372	114473489	G/T	5-7
rs12265291	114474827	C/T	
rs7904443	114475774	A/G	
rs11196208	114475903	C/T	
rs7077247	114476658	C/T	
rs11196209	114477314	A/G	
rs4077527	114477628	A/G	
rs12718338	114477634	C/T	
rs11196210	114478558	C/T	
rs7907632	114481823	A/G	
rs7071302	114482114	G/T	
rs12245680	114484778	C/T	
rs11196213	114486141	C/T	
rs4918789	114486394	G/T	
rs7085785	114487050	C/T	
rs7085989	114487326	A/G	
rs7087006	114488013	A/G	

B. Novel SNPs discovered and subsequently validated in the exon 4 LD block of TCF7L2 (amplimers below):

deCODE Alias	Chromosome 10 B34 location	Base Change	Sequence ID NO:
SG10S405	114418658	C/T	26-28
SG10S428	114421901	A/C	29-31
SG10S422	114457824	A/G	32-34
SG10S427	114463480	A/T	35-37
SG10S408	114466074	A/T	38-40
SG10S409	114471574	A/C	41-43
SG10S406	114471618	C/G	42-44
SG10S407	114473534	C/G	45-47

C. Polymorphic microsatellites within the exon 4 LD block of
TCF7L2 (amplimers below):

Microsatellite	C10 B34 Start	C10 B34 End	Sequence ID NO:
DG10S2164	114460344	114460627	48-50
DG10S478	114460845	114461228	2-4
DG10S479	114475487	114475632	51-53

TABLE	7
-------	---

Amplimers	and	prime	ers	s fo	or sele	ecte	ed markers
within	the	exon	4	$^{\rm LD}$	block	of	TCF7L2

>DG10S478

TABLE 7-continued

Amplimers and primers for selected markers within the exon 4 LD block of TCF7L2

Primers:

F: TTCAGGCCATTGGTGTTGTA (SEQ ID NO: 3) R: AAAGTTCCCACCATCCCACT (SEQ ID NO: 4)

>rs12255372

ACCATATTCTGATAATTACTCAGGCCTCTGCCTCATCTCCGCTGCCCCC CGCCCCTGACTCTTCTGAGTGCCAGATTCAGCCTCCATTTGAATGCC AAATAGACAGGAAATTAGCATGCCCAGAATCCACGTCTTTAGTGCACTCT CTGCCCAGCTCCAAACCTGTTACTGCTTGTGTTCAACATCTCAGTAAAGC TCAACAACATCGACCCATT (SEQ ID NO: 5)

Primers:

F: TTGTCCCTTGAGGTGTACTGG (SEQ ID NO: 6) R: AATGGGTCGATGTTGTITGAG (SEQ ID NO: 7)

>rs12243326

GCTGTGAAATCCCCTGTGTAGTGGGAAGAAGAAATAGCAAATCTTAGCTG CCTTGGACCTGATATAATTATTTGTCTTCATTTACATGGTT

Primers:

F: GCTGTGAAATCCCCTGTGTAG (SEQ ID NO: 9)

R: GGAATGGAGAGAGAGACAGAGTCA (SEQ ID NO: 10)

>rs7903146

AAGGGAGAAAGCAGGATTGAGCAGGGGGAGCCGTCAGATGGTAATGCAGA TGTGATGAGATCTCTGCCGGACCAAAGAGAAGATTCCTTTTTAAATGGTG ACAAATTCATGGGCTTTCTCTGCCTCAAAACCTAGCACAGCTGTTATTTA CTGAACAATTAGAGAGCTAAGCACTTTTTAGATA

TATATAATTTAATTGCCGTATGAGGCACCCTTAGTTTTCAGACGAGAAAC CACAGTTACAGGGAAGGCAAGTAACTTAGTCAATGTCAGATAACTAGGAA AAGGTTAGAGGGGCCCTGGACAAGGCCTGTGTGGACTGAGAAGCTTGGGC ACTTCACTGCTACATTTCATCTCTTCGCT (SEQ ID NO: 11)

Primers:

F: AAGGGAGAAAGCAGGATTGA (SEQ ID NO: 12) R: AGCGAAGAGATGAAATGTAGCA (SEQ ID NO: 13)

>rs4506565

CTGATGAGGGTAGGGAGCATCTGTCTGCAGCTTCATCTTCATTGTCTAGG GGCTCCAGAAATATCTGTGAGTAAATAAGTTATTTAATCTTTGCCTCAAA

TABLE 7-continued

Amplimers and primers for selected markers within the exon 4 LD block of TCF7L2

TTTCCAGTGACTGTAGGGATATAGCTGTGAGCCTCTAGGAGCTGAGATTT TTTAAATTTCCCACTTAAACATTTATTTAAAAATTTTGTGCTCAGCATGG ACTAAGGACTTTACATTAACTCATTTACAGCTGATGATGAGGAGGGCGAG GGGCATTCATTTACAGAGGATCCCATTTACAGGTGAGGAAGGGCGAGC TAGGGGTGCAGCCTAGGTTAGTATTCTAGAGCTCATCAGGCTGTGTTGTC CCCAGTGAAAGAATAAGCAAAGAAGTGAATGTTGTGCATTGAGAAAAATG ACTCTCGGAGGAGGATGAGCGTCTCGGATATGGCGACCGAAGTGAT

TGGGGCCCTTGTCAAGGGTCTCTATTATGGCATCAAGAAAAGATGCTGCT TTCGGTGATGCCCGAGGAGAGCCTCAATATTTTACATGGGAAACCTAAAA AAGGGCCATGTTGTGGTCTCTGCACCTAAGA (SEQ ID NO: 14)

Primers:

F: CTGATGAGGGTAGGGAGCA (SEQ ID NO: 15) R: TCTTAGGTGCAGAGACCACAAC (SEQ ID NO: 16)

>rs7901695

TATTTAGAAACCATAAAATCCACCTATTTGAGGTGTACAATTGAGTGATT TTCTGTATAGTCACAGATCTGTGCAGTCATCCACACCCTCTAACTCCAGG ACATTTTCCTCACCCCCGAGGAGAAACCTCCCTTACCCATTAGCAGTCAC TCCTCATTTCCTCCCCCCAGCCCCTGGCAATCACTGTGGATTTGCCTG TTCTTGACATTTCATATAAATGGTATCATAAAATCTA

Υ

GGGCTTTTGTGTCTGTCTGCTTTCACTTAGCATACGGTTCTCAAGGTTCA TCCAGTATTGTAGCATCTATCAGTATGTCATTCCTTTTTATGGCCAAATA ATATTTTATTGTATGGATAGACATTTTGTTTATTCATTTATCTGTTTTTG GTTATTATGAGTAACACTACTATGGAACATTTTGCACAAATTTTTGTATTG ACATGTTTCATTTCCTCGGGTATAGTCCTATGAGTGGAATTGCTGG (SEQ ID NO: 17)

Primers:

F: TATTTAGAAACCATAAAATCCACCTAT (SEQ ID NO: 18) R: CCAGCAATTCCACTCATAGGAC (SEO ID NO: 19)

>rs11196205

TTGTCTCCTTTTGTTTCTGCTACTGTGAATGATCCTGTGATGATCATCTT TGTGTGTAAATCTTTGTCCCCTCGCCCCCCCCCTTTATTATTTTCTTG GGATAGACCCCAGGACAAAAGGTAGAAAAGAACAAAGTGTTAAAAAATTT CTTGATACATAGCCACAGATTATTTTCCTGAAAGTTCTCAACATTTATAA CTAC

S

Primers:

F: TTGTCTCCTTTTGTTTCTGCTAC (SEQ ID NO: 21) R: AACATCTGACCTTGAAGCCTAC (SEQ ID NO: 22)

>rs7895340

TCAGGGACAGTGCATAGGTGTAAAGAAGTTGCTGGTTGGGGGTTCTAATG CAGGTTTCTCCAAAAGTGAATGCCCTGTTAAAAAAAAATTCTTAACAAAT ATACAGAGAGATTTTTTTTTAAAAAAGTGTGACAGTTCTAGACACCTAGAG AGTAAA

R

TGAAGAAGCCTGTTTTCAGGTITCCCGCCTCCCTGAATTTCCCAGCATGG TCCAGGCTTTGAAATTTATTTATCTGCTTTTGGCAATGGTTGATGGGAAT TTCCCACATTTATTTTTTAGCTACAGAGAAAGGACATTATCTTTAAAATC TCTTCGTTGTTCTCTCTCTTTGA (SEQ ID NO: 23)

TABLE 7-continued

Amplimers and primers for selected markers within the exon 4 LD block of TCF7L2

Primers:

F: TCAGGGACAGTGCATAGGTG (SEQ ID NO: 24) R: TCAAAGAGAGAGAACAACGAAGA (SEQ ID NO: 25)

>SG10s405

TATTTAGAAACCATAAAATCCACCTATTTGAGGTGTACAATTGAGTGATT TTCTGTATAGTCACAGATCTGTGCAGGTCATCCACACCCCTTAACTCCAGG ACATTTTCCTCACCCCCGAGGAGAAACCTCCCTTACCCATTAGCAGTCAC TCCTCATTTCCTCCCCCCCGCCCCTGGCAATCACTGTGGATTTGCCTG TTCTTGACATTTCATATAAA

GGTATCATAAAATCTATGGGCTTTTGTGTCTGTCTGCTTTCACTTAGCAT ACGGTTCTCAAGGTTCATCCAGTATTGTAGCATCTATCAGTATGTCATTC CTTTTTAGGCCAAATAATATTTTATTGTATGGATAGACATTTTGTTTAT TCATTTATCTGTTTTTGGTTATTATGAGTAACACTACTATGAACATTTTG CACAAATTTTTGTATTGACATGTTTCCATTCCCTGGGTATAGTCCTAT GAGTGGAATTGCTGGGTCATATAATAAATAACTGTTTAACATTTTGGGGA GCTGCCAAACTTTTAAAACCTTGGGTTCTGTGATGTACCAGTTGTGTAG GCA

(SEQ ID NO: 26)

Primers: F: TATTTAGAAACCATAAAATCCACCTAT (SEQ ID NO: 27) R: TGCCTAACACCAACTGGTACATC (SEQ ID NO: 28)

>SG10S428

 $\label{eq:transform} TGCCAGGGGTTTAATGGGTTAATTTTCCTCCATTATGAGGGTTGACTCAGC CTTGGGTATTAGATGTCTTTGAGAAATCCCAGGGTTCAAATACCACACGTGG TAGAATGTTCCACTTGGAGCCAGAACATCCAGCAATCTCCACTCACGAAGGAAAAG TTTGCTTGCTTGCTTGACTGGAGCCATGACATTTTAAAAAGCGGTGGGAAAAAG TTGAAGGGAGGGGTTGGAGGCCAGAACACCAGGCTGAATGGGAGAGGGTTGGGGCCCCC TGTGAAATAGTAAACACAATGGTAGTGCCATCCAATGATAGGCACTTTCT GTCAATCAAACAATGGTAGTGCCATCCAATGATAGGCACTTTCT GTCAATCAGAACAAACAATGGTAGTGCCATCCAATGATAGGCACTTTCT GTCAATCAGAACAAAGGGAGGCCCAGAGGCCCATGGCCTTACTGGC M$

AGTAAGCTGTAGAGCTGCTGCTGCCTTTTCGTGAAAGGGTTGACACCAACCTT CTCCCCCAGGAAGAGTGACCAGGGACCTGAGGGGCATGGTCGAGCAGATG ACAGCCTTTGTAAAACATCTCC (SEQ ID NO: 29)

Primers:

F: TGCCAGGGGTTTTATGGTTA (SEQ ID NO: 30) R: GGAGATGTTTTACAAAGGCTGTC (SEQ ID NO: 31)

>SG10S422

TTGGTAGAGATGGGGTCTCCTAGGCTGGTCTTGAACTCCTGG ${\tt P}$

Primers: F: TTGGTAGAGATGGGGTCTCC (SEQ ID NO: 33) Amplimers and primers for selected markers within the exon 4 LD block of TCF7L2

R: ATAATTTTGCCTGGGCGTCA

(SEQ ID NO: 34)

>SG10S427

TATCTTATATCCCCTCCAAGCATTCATTAACTGATGGATTAGTGAGTTGG CCTTGAGAAGCATAAAGGCTCGTCTCCATGTGCTTCTAAGCATTGTGTGTCT AAGTTCTGTTTGGTTTCCTGAGTGAAACTGTCTTAATGTTACCAACAGAA GTTAAATGCCTAAGAG

W

(SEQ ID NO: 35)

Primers:

F: TATCTTATATCCCCTCCAAGCATTC (SEQ ID NO: 36) R: CTCCTTTTCAACCTCCGTTTT (SEQ ID NO: 37)

>SG10S408

(SEQ ID NO: 38)

Primers:

F: TTGAGCATGTGTTATTTAATGAGTTA (SEQ ID NO: 39) R: CCAAAATCCACACAGGCTCT (SEQ ID NO: 40)

>SG10S409

TAGTGCTCAGTATTTCCAACGTTCTGTTTATTTAAGATGAAAATTGCTGT AGTTAATAAGCACTTCCCCATGTCATTAAATGCTTAAGGATTTTTAATG ACCACATAACAGTCCATAATATGATTAAACCCCCAATTTACTGAATCAATG CCATATTGTTGGGTCTTTAGATTGTCTCCTTTTGTTCTGCTACTGTGAA TGATCCTGTGATGATCATCTTTGTGTGTGTAAATCTTTGTCCCCCCGCCCCC TCCCCTTTTATTATTTTCTTGGGGATAGACCCCAGGACAAAAGGTAGAAAA GAACAAAGTGTTAAA

Μ

TABLE 7-continued

Amplimers and primers for selected markers within the exon 4 LD block of TCF7L2

CATGCCCTTAACTCCACCCGCCCTAGAACAGAGACCCAGCCATCCAAG TCAGCCTCCCCAGGTCCTCCACCTTCAAAACAGGCAAACGAAATCATTC TTGAATAATTGGTAGGCTTCAAGGTCAGATGTT (SEO ID NO: 41)

Primers:

30

F: TAGTGCTCAGTATTTCCAACGTTCT (SEQ ID NO: 42) R: AACATCTGACCTTGAAGCCTACC (SEO ID NO: 43)

>SG10S406

TAGTGCTCAGTATTTCCAACGTTCTGTTTATTTAAGATGAAAATTGCTGT AGTTAATAAGCACTTCCCCATGTCATTAAAATGCTTAAGGATTTTTAATG ACCACATAACAGTCCATAATATGATTAAACCCCAATTTACTGAATCAATG CCATATTGTGGGTCTITAGATTGTCTCCTTTTGTTTCTGCTACTGGAA TGATCCTGTGATGATCATCTTTGGTGTGAAATCTTTGTCCCCCCGCCCCC TCCCCTTTATTATTTTCTTGGGATAGACCCCAGGACAAAAGGTAGAAAA GAACAAAGTGTTAAAAAATTTCTTGATACATAGCCACAGATTATTTTCCT GAAAGTTCT

S

AACATTTATAACTACGAGCAGTATGTAAGAGAGTTATGGTTGGAATGATT TTAATGTCTCTGGGGAATTTAACAACAAAAAAAACTTTAGGCTTCTTTGGA GAGAGACATGCCCTTAACTCCACCCCGCCCTAGAACAGAGACCCAGCCCA TCCAAGTCAGCCTCCCCGGGTCCTCCACCTTCAAAACAGGCAAACGAAAT CATTTCTTGAATAATTGGTAGGCTTCCAAGGTCAGATGTT

(SEQ ID NO: 44)

Primers:

F: TAGTGCTCAGTATTTCCAACGTTCT (SEQ ID NO: 42) R: AACATCTGACCTTGAAGCCTACC (SEQ ID NO: 43)

>SG10S407

TGGTATGTCCAGTTTACACATAAGGATGTGCAAATCCAGCAGGTTAGCTG AGCTGCCCAGGAATATCCAGGCAAGAATGACCATATTCTGATAATTACTC AGGCCTCTGCCTCATCTCCGGTG

S

(SEQ ID NO: 45)

Primers:

F: TGCTATGTCCAGTTTACACATAAGG (SEQ ID NO: 46) R: CCCGACTTTCAGTATAGAGGTCTG (SEQ ID NO: 47)

>DG10S2164

TABLE 7-continued

Amplimers and primers for selected markers within the exon 4 LD block of TCF7L2

Primers: F: CCATCTGTGGAGCAGAGTCA (SEQ ID NO: 49) R: TTCCATCAGCAGCAGAATG (SEQ ID NO: 50)

>DG1W5479

Primers: F: TCCACGCAGAGAGGATCTAAA (SEQ ID NO: 52) R: GAGGGTCCTGCATTGAGTCG (SEQ ID NO: 53)

[0178] To further investigate the possibility that other marker alleles in the exon 4 LD 50 block of TCF7L2 exhibit a higher correlation with type II diabetes than allele X, we used the DG10S478 genotype data generated in the HapMap CEU samples. The five SNPs from HapMap Phase I with strongest correlation to DG10S478 were, in descending order, rs12255372 (r²=0.95), rs7903146 (r²=0.78), rs7901695 (r²=0.61), rs11196205 (r²=0.43), and rs7895340 $(r^2=0.42)$. We genotyped these five SNPs in the three cohorts and the correlations between the five SNPs and DG10S478, the latter treated as a biallelic marker, were very similar to that observed in the CEU samples. All five SNPs showed association to type II diabetes. While some SNPs showed slightly higher estimated relative risks and lower p-values in one or two of the cohorts, none exhibited stronger association to type II diabetes than DG10S478 when the results for all three cohorts were combined using the Mantel-Haenszel model. However, although rs11196205 and rs7895340 clearly have weaker association to type II diabetes, compared to allele X (RR=1.56, P= 4.7×10^{-18}), the strength of the association to type II diabetes for allele T of rs12255372 (RR=1.52, P=2. 5×10^{-16}) and for allele T of rs7903146 (RR=1.54, P=2.1×10⁻¹⁶) 17) are comparable.

[0179] Following the subsequent release of HapMap Phase II in October 2005, two additional SNPs were identified that show strong correlation to microsatellite DG10S478-rs12243326 ($r^2=0.961$) and rs4506565 ($r^2=0.716$). The alleles associated with susceptibility to type 2 diabetes will be C for rs12243326 (C/T SNP) and T for rs4506565 (A/T SNP).

[0180] It should be noted that among those haplotypes that carry the C allele of rs7903146, those that carry the A allele of rs10885406 have an estimated relative risk of 1.06 compared to those that carry the G allele of rs10885406, but the difference is not statistically significant (P=0.22).

[0181] In an attempt to replicate and refine this association with type 2 diabetes, we genotyped DG10S478, rs12255372 and rs7903146 in a large additional Danish cohort, consisting of 1111 cases and 2315 controls and in a more genetically diverse West African cohort, consisting of 618 cases and 434 controls derived from the Africa America Diabetes Mellitus study(23). In the Danes, all three variants were strongly associated with disease risk, as previously observed in Iceland. However, the association of allele T of rs7903146 (Relative

Risk=1.53, P=4.06×10⁻¹⁴, PAR=24.4%) was noticeably stronger than that provided by the other two variants. In the West African study group, after adjustment for relatedness and ethnic origin, we replicated the association of allele T of rs7903146 to type 2 diabetes (Relative Risk=1.45, 95% C.I. =1.20-1.76, P=0.000146, PAR=22.2%), but not in the case of the other two variants. This suggests that allele T of rs7903146 is either the risk variant itself or the closest known correlate of an unidentified risk variant. The exclusion of the markers DG10S478 and rs12255372 as at-risk markers in the West African group was possible because unlike in populations of European ancestry, where the T allele of rs7903146 occurs almost exclusively on chromosomes carrying both allele X of DG10S478 and allele T of rs12255372, in West Africans the T allele of rs7903146 occurs with both alleles of DG10S478 and rs12255372. This is consistent with the observation that T is the ancestral allele of rs7903146, whereas allele X of DG10S478 and allele T of rs12255372 are both different from the chimpanzee reference sequence. More generally, this finding is also consistent with the expectation that relatively diverse populations, such as those of West Africa, provide the means to refine association signals detected in regions of strong linkage disequilibrium in more homogeneous populations.

Discussion

[0182] In this study we describe the identification of a novel candidate gene for type II diabetes within the previously reported 10q linkage region(10), encoding transcription factor 7-like 2 (TCF7L2—formerly TCF4) on 10q25.2. We show that it confers risk of type II diabetes in Iceland, Denmark and the US with similar frequency and relative risks. While the variant does not explain a substantial fraction of the familial clustering of type II diabetes, the population attributed risk of at least 20% is significant from a public health point of view. Compared to the non-carriers, the relative risks of heterozygous carrier of the at-risk composite allele (approximately 38% of the population) and homozygous carriers (about 7% of the population) are 1.45 and 2.41, respectively. Hence, this variant has enough predictive value to be of clinical use.

[0183] We report the variant as a type II diabetes-associated microsatellite, DG10S478, within the third intron of the TCF7L2 gene. The TCF7L2 gene product is a high mobility group (HMG) box-containing transcription factor which plays a role in the Wnt signalling pathway. This pathway is considered one of the key developmental and growth regulatory mechanisms of the cell; it is mediated by secreted glycoproteins, known as Wnts, which initiate many signalling cascades within target cells upon binding to a cognate receptor complex, consisting of a member of the Frizzled family and a member of the LDL receptor family, Lrp5/6(24). Wnt signaling uncouples the central player in this pathway, β -catenin, from the degradation complex and translocates it to the nucleus where it transiently converts TCF factors from repressors into transcriptional activators(25). The β -catenin protein is also important for mediating cell adhesion through its binding of cadherins(15).

[0184] The NCBI RefSeq for TCF7L2 contains 14 exons. However, Duval et al(26) showed that TCF7L2 has 17 exons, of which 5 are alternative; in addition, it was reported that three alternative splice acceptor sites are used. This study also demonstrated the alternative use of three consecutive exons located in the 3' end of the TCF7L2 gene which change the long COOH-terminal ends. **[0185]** Similar to TCF7L2, five of the six positionally cloned genes for the rare Mendelian forms of Type II Diabetes, namely maturity-onset diabetes of the young (MODY), are transcription factors(27). Additional transcription factors have been implicated in the pathogenesis of type II diabetes, including peroxisome proliferator-activated receptor gamma (PPAR γ)(7) and the forkhead gene family(28, 29). Noble et al described a missense mutation (C883A) in the related TCF7 gene in type 1 diabetes(30). However, it is not clear if TCF7 and TCF7L2 operate in the same pathway with respect to the pathogenesis of diabetes.

[0186] Mutations have been described in the TCF7L2 gene, including the deletion of an A in an (A)9 coding repeat (exon 17)(26, 31-33) and a number of mutations in colorectal cell lines(26). DG10S478 resides within a clearly defined 74.9 kb LD block (CEPH Caucasian HapMap Phase II) that encapsulates exon 4 and flanking intronic sequences 5' and 3' to the exon. It is possible that DG10S478 is the causative variant itself; it is also possible that DG10S478 is a surrogate for an underlying variant that affects transcription, splicing or message stability. Such a variant is likely to be in strong LD with DG10S478, i.e. the variant resides within the exon 4 LD block of TCF7L2

[0187] Several lines of evidence suggest an enteroendocrine role of this gene in the pathogenesis of type II diabetes. Firstly, TCF7L2 has been implicated in the development of colorectal cancer(34) and small-molecule antagonists of the oncogenic TCF/\beta-catenin protein complex have been already described(35). In addition, TCF7L2-/- mice, which die within 24 hours after birth, lack an intestinal epithelial stemcell compartment(36). Variants of the TCF7L2 gene could influence the susceptibility to type II diabetes through altering levels of the insulinotropic hormone glucagon-like peptide 1 (GLP-1), one of the peptides encoded by the proglucagon gene whose expression in enteroendocrine cells is transcriptionally regulated by TCF7L2. In concert with insulin, GLP-1 exerts crucial effects on blood glucose homeostasis(12). GLP-1 analogs and inhibitors of dipeptidyl peptidase IV are currently in clinical development.

[0188] The references cited in this specification are incorporated herein in their entirety.

REFERENCES

- [0189] 1. A. F. Amos, D. J. McCarty, P. Zimmet, *Diabet Med* 14 Suppl 5, SI (1997).
- [0190] 2. P. Zimmet et al., *Am J Epidemiol* 118, 673 (November, 1983).
- [0191] 3. W. C. Knowler, D. J. Pettitt, M. F. Saad, P. H. Bennett, *Diabetes Metab Rev* 6, 1 (February, 1990).
- [0192] 4. B. Newman et al., *Diabetologia* 30, 763 (October, 1987).
- [0193] 5. A. H. Barnett, C. Eff, R. D. Leslie, D. A. Pyke, *Diabetologia* 20, 87 (February, 1981).
- [0194] 6.A.L. Gloyn, Ageing Res Rev 2, 111 (April, 2003).
- [0195] 7. D. Altshuler et al., *Nat Genet.* 26, 76 (September, 2000).
- [0196] 8. A. L. Gloyn et al., *Diabetes* 52, 568 (February, 2003).
- [0197] 9. Y. Horikawa et al., *Nat Genet.* 26, 163 (October, 2000).

- [0198] 10. I. Reynisdottir et al., *Am JHum Genet.* 73, 323 (August, 2003).
- **[0199]** 11. R. Duggirala et al., *Am J Hum Genet.* 64, 1127 (April, 1999).
- [0200] 12. F. Yi, P. L. Brubaker, T. Jin, *J Biol Chem* 280, 1457 (Jan. 14, 2005).
- [0201] 13. S. E. Ross et al., *Science* 289, 950 (Aug. 11, 2000).
- [0202] 14. E. A. Jansson et al., *Proc Natl Acad Sci USA* 102, 1460 (Feb. 1, 2005).
- [0203] 15. W. J. Nelson, R. Nusse, *Science* 303, 1483 (Mar. 5, 2004).
- [0204] 16. C. T. Falk, P. Rubinstein, *Ann Hum Genet*. 51 (Pt 3), 227 (July, 1987).
- [0205] 17. J. D. Terwilliger, J. Ott, *Hum Hered* 42, 337 (1992).
- [0206] 18. J. R. Gulcher, K. Kristjansson, H. Gudbjartsson, K. Stefansson, *Eur J Hum Genet.* 8, 739 (October, 2000).
- [0207] 19. Y. Z. R. Bagger, B. J.; Alexandersen, P.; Tanko, L. B.; Christiansen, C, *JBone Miner Res Suppl* 1, 1 (2001).
- [0208] 20. G. Benson, Nucleic Acids Res 27, 573 (Jan. 15, 1999).
- [0209] 21. R. C. Lewontin, *Genetics* 50, 757 (October, 1964).
- [0210] 22. W. G. Hill, A. Robertson, *Genetics* 60, 615 (November, 1968).
- [0211] 23. C. N. Rotimi et al., *Ann Epidemiol* 11, 51 (January, 2001).
- **[0212]** 24. C. Prunier, B. A. Hocevar, P. H. Howe, *Growth Factors* 22, 141 (September, 2004).
- [0213] 25. J. Huelsken, W. Birchmeier, *Curr Opin Genet Dev* 11, 547 (October, 2001).
- [0214] 26. A. Duval et al., *Cancer Res* 60, 3872 (Jul. 15, 2000).
- [0215] 27. S. S. Fajans, G. I. Bell, K. S. Polonsky, N Engl J Med 345, 971 (Sep. 27, 2001).
- [0216] 28. C. Wolfrum, E. Asilmaz, E. Luca, J. M. Friedman, M. Stoffel, *Nature* 432, 1027 (Dec. 23, 2004).
- [0217] 29. J. Nakae et al., *Nat Genet.* 32, 245 (October, 2002).
- [0218] 30. J. A. Noble et al., *Diabetes* 52, 1579 (June, 2003).
- **[0219]** 31. A. Duval et al., *Cancer Res* 59, 4213 (Sep. 1, 1999).
- **[0220]** 32. A. Duval et al., *Oncogene* 18, 6806 (Nov. 18, 1999).
- [0221] 33. H. R. Chang et al., *Cancer Lett* (May 16, 2005).
- [0222] 34. N. A. Wong, M. Pignatelli, *Am J Pathol* 160, 389 (February, 2002).
- [0223] 35. M. Lepourcelet et al., *Cancer Cell* 5, 91 (January, 2004).
- [0224] 36. V. Korinek et al., *Nat Genet.* 19, 379 (August, 1998).

[0225] While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 53 <210> SEO ID NO 1 <211> LENGTH: 74930 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEOUENCE: 1 cttgtgtagg aactcacgct ttgtttattc agcaatcatt cctccagaaa taaccttaat agcaacaaga aaaaagaata ggtgtttttt gagctctatc tgccagtttc tctatatatg gacattatat attgcaacat aacactcaca atgcctttaa acatcatccc cgttatacag ataagaaaac agaatttcaa agaaggtagg ggacttgccc agggatacat agctagcaag tggcagcgct ggattgagtc tgggccttgt ctgaggctcg ggtcctgtca tgctctgcgg ttgctatgtt gacatgcaaa gggagaggca gctgctggga gtctaggtgg gtttctcttt gagaatgcta acgtgaaccc tcaaggtgaa tcagaatcct tttgcaagtg aataatcaga tgtaggttcc tgtgtctccc tgtaaaatga aagcctcttt tttccaaggt ccagtataga cctgaagetg ggttactetg gaattteeet etetggetgg agtgaetgag geettgeaeg tgacattggt gaggactcgc agcctcaggt ctggcttccc ttagcaaccc ccctttcctg tetetgeete tggagtteae cattaaaaaa aaaaaagaa aaaaageeaa aacaetttat aaagttacat getgggttte ttetatgtee tagaaactgt ettaatteat etteeeett actettatat qaqeaqqaaq aaaaaaaat tqetaqteaa tqetaataat tatqqeatqt aatgtaattg gaagtgttte actgacatge teatgagagt ttgeggette atetteagge tgggatgtag cactagactt gccttgagtg tctgcacaag cctttgatgc aggtagacca tattataaat aggcgcgttg ctatggtgag gatggcagtc cttgcttgct gtgggtaacc ttttctacct tctcqqacac tqttttaaaa cacaqcaqcq tqataqcatt tcatttaatt 1020 tggaccaagg tggggtagat gaaatgttga gatttagatc taaaatgttg ttgtggtgtt 1080 tcagggggtt ctggctcacc tagtactatg gaagattttg cagattgggc ttcctcatga 1140 tttatttaga aatagatttt ctaatagatg gggtgagggg agggtggtgg gcagaaggct 1200 gggctttctt ctcttccccc tcctcctttc attgagcgct tctgcgaatg tgttggcttt 1260 gatgccccag gagctcatac agtgaaatgg aagttcaggt tggcacgttg cagaaatgat 1320 tatteetggt agtacgttte ceattaetgt taataatata aagacaattg eetgeetete 1380 aggacteetg caegtggeta cagteattte tteatggaat tagacacata geagtgggga 1440 ccaggagtgt tttattagtg attgtcctcc tgcaagtttc cagggtatct cagcttagac 1500 acatgaatta ttttttcctg ttgcttggag ggtatacttt taattatatt cattcaataa 1560 cagagcagtt caggtttgta aaatattttt tctcccccaa ccttttcccc agcatacatc 1620 1680 cccgtcccgt aagtttctgg gcagagacaa tctcaggaac ctaaaggttg ctaaaaaatt 1740 agctagttgg ccaggcgcat gactcatgcc agtaatccca gcactttggg aggctgaggt gggtggatcg cttgagccca gaaattcgag accagcctag acaacatggc aaaaccctgt 1800 ctctacaaac aaaacaaaat ctagctgggc atggtggtgc atgcctgtag tcccagctac 1860 tggggggggt gaggtggggg ggcgattgag ctcaggaggt ccaggctgca gtgagccgtg 1920

60

120

180

240

300

360

420

480

540

600

660

720 780

840 900

960

-continued

-continued	
attgtgccac tgcactgcag cctggatgac tgagtgggac cctgtctcaa taataaataa	1980
ataaataaat aaaaaataaa aaaaattagc tagccaagct gcttataggt cttttacatg	2040
gccaagccac tttctcacct ttaaaatggt aataacgttt ccgtactcat ctcaatgggt	2100
tttgagtgcc aagacagacc gtttgatgga agccctctgg ggagaaaaat gctacccaag	2160
acaggetttt caattggaga etgateeatt ggtgttttgg teagttggtg ttgaaateee	2220
tatttttcca gctcaggact gcctctctcc ctggaactct tcccgaggtg agttctgcag	2280
ccttccttgg gaacteteag ectetggate ecttettgee aggtggagtg gaeatgeeaa	2340
agttgtgggc cagactcgga ctgcctggct tgtctcagca cctttgggga cccacttccc	2400
ctctctggga actggggaag ctaacagaga tcttgctagg ggggtggaat cctgtatcca	2460
tgtgaggttg tacccccagg ctcctgagtg gtttgaaagt ggggaaccct ggccgggcgc	2520
ggtggeteat geetataate eeageaettt gggaggetga ggegggegga teaeaaggte	2580
aggagatega aaccateetg getaacaega tgaaaeeeeg tetetatgtg egtggtgget	2640
ggcacctgta gtcccagctg ctcgggagtc tgaggcagga gaatggcgtg aacccgggag	2700
geggagettg cagtgageeg agategeeee aetgeaetee ageetgggeg acagagegag	2760
actccatctc aaaaaaaaaa agaaagaaaa aaaaagaaag tggggaaccc ctcccccagg	2820
atgagaagag ccatggggtg agtctctgcc accgccaagg ggagtcaggc tcagaggctg	2880
ctacagggac agccagctct ctttagatgg tccccaccat ctagtcaggg cttgttacat	2940
atggagcaga gacagcgcag gctgctgctg ttttcctgga gaaggcccct gtcggtctgt	3000
tcagctgtag ctgacctttc ctccttgtgc tttttgggga gggagccttg gaaggagtag	3060
ggcacgtggg gcactctgct tcccggcccc acactggcga acctatggat tctgcctctg	3120
atteetgagg aaacateact gtgaaggtgg aatgageeac atacagaggt ggetgttggg	3180
gccggggagg ggtgaaacgc ccccagggtg tacattgcac caaaagccag gctgcatata	3240
gacctcagga tgggctggct tttctattta tttagaagta tttccagagg gtaacctcat	3300
tggctacaaa gcatgtctga acaagagctc cgttgttcat tcccagccct gttaccctgg	3360
caggatgcag actccaggcg gcctgttggt caggccttgg actcagagag cagtgaagcc	3420
tgaggagggg tggggggcag aggcgtgagt ggtctagggc ctcagtccct ccaggacacc	3480
ccttgccaag cgcagagaaa gctctgccca tccgtcccct caggcagtgg gattgggcaa	3540
cctgggaagc agtgaatgtg cgtcggtagc atagattcca ttccgcacgc caccctcgcc	3600
teegeeeece ageeetggga gggatgeatg eeeteeggga gacaceeaga eeegacagag	3660
aggeetttgt tggagetgga ggtgagaate tgtgggegtt gggatteetg ggttegagtt	3720
ccagctcact gccaattgcc cgagtgctgg gcgaacattt ctggaatcaa aaggagtgca	3780
gcctgcccag cagggcctac gggagccgga ggctgcaggg tgctaagatt gcgttatctt	3840
taccaagtgc ccggagctcc tgggagggaa gagagagtcc taggactcag gataggaggt	3900
ggttggagtt tetegaggaa gaeteeatge tttggttetg geeeetggaa acceeteetg	3960
aggactggac ctccaagcag accccctctg tgactccgga atgcagtgtt actctcttat	4020
atttttcttt ctttttttt ttttgagacg gagtctcact ctgtcaccca ggctggagtg	4080
cagtggcacg atctcggctc actgcaacct ccgccctccg agttcaagcg attctcctgc	4140
ctcagcctcc caagtagctg ggattacagg tgcctgacac cgcgcctggc taatttttg	4200

-continued	
tatttttagt agagatgggg ttttaccatc ttggccaggc tggtcttgaa ctcctgacc	ct 4260
cataatccac ccgcctcggc ctccgaaagt gctgggatca caggcgtgag ccaccgcad	cc 4320
cggccactgt cttgtatttc taacgtcccc ctgacttttc tgatcatgta attcttaac	ct 4380
ttctcaaaac tgagatttgt cacgtgtcct ctccccactc cattttgtga atcagagto	ct 4440
tccaggggca ggacctggag aatgggtctt tattaacaca catgtgaaaa tgcttttg	cc 4500
agcaaggcgc ggtggctcat gcatgtaatc ccggcacttt gggaggccga ggcaggcg	ga 4560
tcacttgagg tcagcctggc caacatggta aaaccctgtc tctactaaaa atacaaaaa	at 4620
tagetgggtg tggtegtggg cacetgtagt eccacetaet egagaggetg aggeatgag	ga 4680
atcactggaa cccaggaggt agaagttgca gtgagccgag atcacaccac tggactcca	ag 4740
cttgggtgat agagtgagac tctgtctcaa aaaaagaaaa aaaaagaaa atgcttttg	gc 4800
catgggctgt ctcctgcttc tgctttgcat tgggcctctg tacctaggtt gcaagatto	cc 4860
tcagggtgca cctgggctta tcgttatctg taagttatcc cagcaagcac ttaaaacad	ca 4920
gtgttggacg atgaateeec tetacaagag agggacaggg caaaaaegae aeetettge	cc 4980
togcaagotg tottggggoca aacotoaggt ctattottto ttttttttga aagtagtgg	gc 5040
tgggcacggt ggcttacgcc tgtaatccta gcactttggg aggccaaggc gggcggato	ct 5100
tgaggtcagg agttcgagac cagcttggcc aacatggtaa aactccatct ctactaaaa	aa 5160
tacaaaaatt agctgggcgt ggtggcgcat gcctgtagac ccagctactc aggaggctg	ga 5220
ggcaggagaa tcacttgaac ctgagaggca gaggttgcag ttagctgaga ccatgccat	tt 5280
gcactccagc ctgggcggca gagcgagact ctgtctcaaa aaaaaaaaaa	ag 5340
cagetetaet gagatattta gaaaceataa aateeaeeta tttgaggtgt acaattgag	gt 5400
gattttctgt atagtcacag atctgtgcag tcatccacac cctctaactc caggacatt	tt 5460
tecteacece egaggagaaa ecteettae ceattageag teacteetea ttteetete	cc 5520
ccccagcccc tggcaatcac tgtggatttg cctgttcttg acatttcata taaatggta	at 5580
cataaaatct atgggctttt gtgtctgtct gctttcactt agcatacggt tctcaaggt	tt 5640
catccagtat tgtagcatct atcagtatgt cattcctttt tatggccaaa taatattt	ta 5700
ttgtatggat agacattttg tttattcatt tatctgtttt tggttattat gagtaacad	ct 5760
actatgaaca ttttgcacaa atttttgtat tgacatgttt tcatttctcc tgggtatag	gt 5820
cctatgagtg gaattgctgg gtcatataat aaataactgt ttaacatttt ggggagctg	gc 5880
caaactttta aaaccttggg ttctgtgatg taccagttgt gttaggcagc acagcaaaa	at 5940
gtgacttttg attgccagaa acaatattta aaaagtggtt ataaaaagtg gtttgggag	gg 6000
ctgaggcagg aggatcactt gagcccagga gtttgagacc agcctgggca acatagtga	ag 6060
accctgttaa aaaaaaagaa ggccaggcac agtggctcat gcctgtaatc ccagcacti	tt 6120
gggagactga ggcgagcaga tcacctaagg tcaggagttc cagaccagcc tggccaaca	at 6180
ggcgaaaccc catctctact aaaaatacaa aaattagcca ggcctggtgg tgggcgcct	tg 6240
taatcccagc tactcaggag gcttgaggca ggagaatcgc ttgaacctgg gagactgag	gg 6300
ttgcagtgag cggagatcat gccattgcac tccagcctgg gcaacaagag cgaaactg	tg 6360
tctcaaaaca aatgaaaaga aaaggctgtc atgttagatc caccctcctc ctcagggga	aa 6420
cccctgggct gctctctggg tagagatggg aacccaggcc tcgggccagt gagtggaag	gg 6480

		-continued	
aaactttggg atgattgact	tgggactggg ctagaggtga	agaatctccc agtaggcaaa	6540
gttcggcctt acgttttttt	gtttcaagca aaccacatca	ttacccacag aggccattgg	6600
tgagatattt gtaagtctco	: tgacagtggc tggagttcgt	tgettggttg ttgtttetet	6660
gtctcagccc tggagatggg	g agtgaccacc tgctctctct	ggacagaggc tgtccacgtt	6720
catgcaattc cttggacaco	ggtggtgcag cgggaggcgt	aactgggagt gggagaccct	6780
gaactgtgcc ggttcttgca	a gagtatcact gtgacttcag	gcgagtcacc ccacatcagg	6840
cageteagaa caagggatte	g atctagaagg acctttcacc	tgggctattc tgtgactcaa	6900
attatettet eetaageeea	ı ctactgcctg gtgtgttggt	taaattagcc taaaggtcat	6960
teeeteggag aggeeetete	ggaaacctcc ctttcctgag	agtcactgct tgctggcgcc	7020
tgeeeetggg gtteetteag	g agtegtgate atgeeetgge	ctcttccttt atttggcagt	7080
cccttccctt ccccatccct	gatgagggta gggagcatct	gtctgcagct tcatcttcat	7140
tgtctagggg ctccagaaat	atctgtgagt aaataagtta	tttaatcttt gcctcaaatt	7200
tccagtgact gtagggatat	agctgtgagc ctctaggagc	tgagattttt taaatttccc	7260
acttaaacat ttatttaaaa	a attttgtgct cagcatggac	taaggacttt acattcatta	7320
actcatttac agcttgatco	: tatgcggtgg gcattcattt	acagaggatc ccattttaca	7380
ggtgaggaag aggccagcta	a ggggtgcagc ctaggttagt	attctagagc tcatcaggct	7440
gtgttgtccc cagtgaaaga	a ataagcaaag aagtgaatgt	tgtgcattga gaaaaatgac	7500
tctcggagga ggatgagcct	ctcggatatg gcgaccgaag	tgatatgggg cccttgtcaa	7560
gggtctctat tatggcatca	a agaaaagatg ctgctttcgg	tgatgcccga ggagagcctc	7620
aatattttac atgggaaaco	: taaaaaaggg gccatgttgt	ggtctctgca cctaagatac	7680
taaaggaaat attttatgga	a gagatgcaac atgtcaggcc	ttggagggaa accccaggat	7740
ccagatggtt gcactctcaa	a accagggccc ccctcacctt	ggccttcagc atttagtgtt	7800
ggaaccaata gcataagctt	tggtcaggac ctttgatgga	agccacagtg ctcattagtg	7860
accacggttg actaccttct	ctctcctaag ctgacttctg	gagggcacct gggatttccg	7920
gccagtgatc agtgctggtg	g aagcetgaag geeaatgtgt	aggtttagct gttcagtcag	7980
aacccaaaag gggccaaaga	a gatggtttcc ttcaacctcc	actgagggaa gtgaaagtca	8040
tggttcgtta aaaggctgag	g ctgggaccag agtctagggt	tctagaggtg ggaatttcta	8100
cagctttggg ggaccttgca	a agggcatttg ctcttctggg	actgcaggga gactgtgctt	8160
ctcagagatg ttagcattte	y gcttggggag agagaggaaa	ggagaggttc atgctccgcc	8220
atgatggtgg aaagtgatgt	tggtgtggtg aggagctgag	ctgaattcta agtggttcca	8280
gggaattaac aatgtteete	g cccaagtgtc ctgttccccc	acaaactaat gaggcagcag	8340
gtgtctgaag agaaacatto	g cagaatgtct gccaggggtt	ttatggttaa ttttcctcca	8400
ttatgagggt tgactcagco	: ttgggtatta gatgtctttg	agaatccagg gttcaaatac	8460
cacagctggt agaatgttto	: tcaacttgga gccaatctcc	atctactgaa ggtacgctgg	8520
tttagacaga caacagggad	: atcagcattt taaaaagcgg	tggaaaaagt ttgcttgtct	8580
tgattggagc catgacattt	: tattttgaaa tttcaaataa	catgaaggga ggtttggagc	8640
ggtttttggt ttatccaaac	ggcagtggat tgaaggctga	gaaacaccag gctgaatggg	8700
agaggggttg gggtccccct	gtgagatagt gaaacaatgg	tagtgccatc caatgatagg	8760

		- (continu	led		
cacttttctg tcatt	cagaa gcagaaaggg g	gccagaggc ccat	tggeet t	actgggcag	8820	
taagctgtag agctg	etgee ttttegtgaa a	gggttgaca ccaa	accttct c	ccccaggaa	8880	
gagtgaccag ggacc	cgagg ggcatggtcg a	gcagatgac agco	ctttgta a	aacatctcc	8940	
ctggtctcat cagega	atatt cgtcctgcct t	ccttctgag taat	cttocat c	ttaggactg	9000	
gagtcaggtg gagca	agatt ccatgttggt t	tctgttggg ccta	agagtgt c	acactgaga	9060	
cctaatttca tactt	atga attctagtac t	gctctcgaa ggta	aagagcc g	tcctctttg	9120	
getgaaggtt tttge	ctgca accttgcatt g	taatccagt gaca	acctgac g	tatctgtaa	9180	
atttetteaa attte	aagt gtattacaac c	ccgtgtgca aaag	gatgatt a	attaattgc	9240	
cttgacagta aaacaa	aaaaa caaaaaaaag g	tgtgggggt atat	ggtatc c	ctgatttac	9300	
tatagaagat gcagag	gagtg aagggagatg a	ggtggggag gagg	gggccca g	gttctggtc	9360	
ctactttttt ttttt	itttt ctaaagagat g	gagtettae cate	gttggcc a	gtctaggct	9420	
tgaacteetg geete	aagag gtgctctcac c	tcagcctcc caaa	agtgetg g	gattatagg	9480	
cgtgagccac cgagt	tage ceaggttetg t	ttettgett agte	cactttc t	gtttgaaca	9540	
aaattggaat ttcct	tttg gatctgtttc t	ttaattgta aatt	cgaatcg g	actaaaacc	9600	
tttccaattt tttca	catgt gaagacatac a	caaaagttt tatt	cggaggg t	tgcacatgt	9660	
gaaagaaaaa gggaga	aaagc aggattgagc a	ggggggagcc gtca	agatggt a	atgcagatg	9720	
tgatgagatc tctgc	cggac caaagagaag a	ttccttttt aaat	tggtgac a	aattcatgg	9780	
getttetetg eetea	aaacc tagcacagct g	ttatttact gaac	caattag a	gagctaagc	9840	
actttttaga tacta	ataa tttaattgoo g	tatgaggca ccct	tagttt t	cagacgaga	9900	
aaccacagtt acagg	gaagg caagtaactt a	gtcaatgtc agat	taactag g	aaaaggtta	9960	
gagggggccct ggaca	caggc ctgtgtgact g	agaagettg ggea	actteac t	gctacattt	10020	
catctcttcg ctata	aacat tttagctttt t	gtgtttgct gact	cggcaac a	atacatagt	10080	
gaaagtteta ataat	tgta atgettttge a	tgtctttgt attt	ttettg g	ttatcacat	10140	
cacatcaaat taaga	actg atcagcagtg t	gagaggtta tttt	tccatg t	cctcttcat	10200	
tagtgttagc ttgtg	gatgg atttgaggct c	tetgtgett teec	ecccage a	aagtgaata	10260	
ccagactttc ctatt	aaaaa aagtatttta t	ttttcagag acag	gggtctc a	ttctgtctc	10320	
ccaggctgga gtgca	gtggc acaatcatag c	ccactgcag ccto	ccaactc t	tgggttcaa	10380	
atgatectec tgeet	cagee tetettaage a	gtgeettte eeca	attetea t	gggactttc	10440	
caatccatga gatac	ttgc tgcagggaag c	cctgtctgt ccag	ggeetgt g	taatagacg	10500	
acttcacatg gtcct	gtgtt gttgtttgcc t	tctgtgtgg ctaa	agtttcc a	tgacctggt	10560	
ggettggaag eecca	.ccct gatttgtggg a	gaggcaggg aggc	caccttg t	agcgcacta	10620	
ggcgttgggc ctgaa	caagt ctgtgtgctt c	caatgtett tgtg	ggggagg t	ttacgagtc	10680	
cttcttatta tataa	agta tettgtetta g	ettggtgee ttte	cttctca g	aagcttgag	10740	
gcactctgca gatac	catct caatttgctt t	ctgggagga ggag	gaggaag c	tacccaaaa	10800	
gatgaagttc tctgt	gaggg gcttgaacac a	ggttgatag cgtt	getggt t	agttattct	10860	
catggtgtgg atgaa	aaatg gaatacgctg a	aatttcagt tact	cgtcac a	aaaataagg	10920	
cgtatgtaga aaaca	cetg ggetaagggt t	tgcatgctt ctag	gaacttc c	tgttactta	10980	
atggctgttg agtata	aaacc tcgggaacag t	ggggatcct tgga	agacccc a	aataacttg	11040	

-continued	
tatttgtggt tactcctgtc ttgtctatca atacccctgt ctatatcgtg ttagaactag	11100
gacacacaga ctggattcag aagctggcct ggggtttagg agaacatggg acctaatcct	11160
ggccatctcg atttacctcc tggatcttgt tttctcatct gtaaaatgaa ttggggtgtg	11220
gactgtttat ggcctgtagg atgctagccc tgagaatttt ctccagatat tctacggtta	11280
agtaatttta ggggacactg tctaagcagt tgcctcttgg agaatgaaga tgttcattag	11340
gatattgaag gctctgagaa gtcctaaagt taaagaaaat ctgcaatgtt ctttgtggga	11400
ccgaataatg caacctggga aatgagggat tagatgacac ttgagtagcc ttccagatct	11460
gagacgagtc tcactctgtt tgtttactcc atctgtgatg ggtgtaggca ccatcttggg	11520
gagcaagctg tgatagagag ggaacaatac cttgttaatg tttgtctaat tcactaccca	11580
ggtgcatggt agtgaattag acactacttt gtaggttctg gagggaagaa gaaaagacga	11640
gacetgeetg gaetgggget tgagaceaet gteaaataea agtaeagttg taeaaetggt	11700
agggagtggg tcatagtatg gccggtcttt ttaaaggtga ggaattctta ggcccagaaa	11760
ggcaaagtga cagateetgg atttaaceag cageecagat ttgaggeeta geacatagea	11820
aagcaccata gctattcaat agctgccaag tgggagtttg gatgatggct ttcctggaca	11880
gcgaaagcag tgatgtttgc ttaggatggc ctttggcagt gctgctgtta tccttaccac	11940
tggcaagcca tctcacgggc ccggagggga gggcaaggaa tcctaattct gtgagaaggc	12000
tctgggtaca tgagtgtgag atatggatac cctaggctct gcccctgaag acagtggcat	12060
cggatttact gcactattcc agtcggacag gcaccttaat ttttctcttt ctgggtgttt	12120
gatatggttg ggtcctattt cttctcctcc aaaccccgct agggccattc ccccaccctt	12180
cacttocogg cottocactg cagtototaa ggattotgot toatotttat gtgtgaacag	12240
ggttttgaca aacatgatta actgggtatt tttggaaggc tcaggaggaa cgcagagtgc	12300
tccggagggc aggcctggag tcaggaatgc ttcctgcaac ctgttcgtgc agtgagcgtg	12360
tetteetege eetgeeettg getggggaat gtgetggett ggagggeagg agagtgaeag	12420
gcggtttgag aactccgggc tctcccgtct tcggatggct cctgtgaaag cagggcctga	12480
aacttttatc gtcactgctg caggtgaaag actttcattt ggctgtagtg gtccaacaaa	12540
gagtatttta tttatgtgtt tccaagccct taaaaattct tttagggcac atcagtgggg	12600
agttaataga aactttgaaa taagaaaaat gcctgcaggg taagtagaac cccagccagc	12660
cageteegag ttetgtgetg ttagetggta ggttggttet cagagaagtg getggetgge	12720
tgggttacgg agcccacatc tctaatgcct tagtgttcaa tcattaagtg gattttttt	12780
tttcccttct cttcttttgg tttggaggga ggactactct aaactttact cagggcaggg	12840
tageteetga aagggeteee taacetteet ggtttatgae acaaagaaag tttggaggta	12900
ctgggataag agatggcttg ggtgaccccc ctatcatgcc ccctaacaca tacacagcaa	12960
accaaaccaa ctcacccttg atcatactcg ttgtttacac gaagggaatt tttattgtct	13020
tgtgagtgtt gagtgatgat taaacagaag agatgtgact ccaagcctgg cttcactaag	13080
atagtettgt ttgtttettt teeteeaaag taattteeta aagaattaaa ageeeettg	13140
aaacccagca ctaccttgtc tctgattatc agcataggca ggaagggctt ttaaggtctg	13200
agcccagctg tttagaggct acgagacgtg aggcaaatcc tggtatctct ctttgggcct	13260
cagtttcttc atctgtgaaa tggcacagta ctaccctcca ccaaggatga tgatgagaat	13320

				-contir	nued	
taaatgggat	gacaggtttc	atccccagct	cctgttctta	ggaaggaaaa	actgtgactt	13380
atgaagcctg	taggttgtgt	tcaggtttgt	atgaggcctc	ggacttcata	caaaggtatc	13440
aaagtggcaa	accctgatcc	agatgttttc	agttcagtca	gctggtcctt	gagcctgttg	13500
tgtgccagat	atcctgacca	aagaagctag	atgggagctg	ctgtgttgtt	ccttggggct	13560
gctggatgca	agttgtttag	gtcggcggtt	ttcaaatgct	ggtgattttg	ctcaccagag	13620
gacatttggc	aatgtctaga	gacatttagc	atggccagtc	attgggaggt	actcctggca	13680
tctcgtgggc	agaggctaag	gatgctattg	aacatcctgc	aatgcccagg	acageceect	13740
gtgacaggag	tcatccagcc	caacatgtca	ctagtgctgc	agtggagaag	ccctggctgt	13800
gtgtgggggt	gtgtgtgtgt	cctcttctac	atttgataag	gtaactcaca	cttgctgccc	13860
ccatgatcgc	tgtgggggat	gcttatctat	gccccagtcc	tggtgttggt	tgatgggaac	13920
atcaagattc	aggcaagatg	gaaaatagcc	cttagaacta	gcaggaaaag	aatctccttt	13980
catttgtcta	gaggttetgt	taaagtgeet	ttgcttctat	tttgagactt	gttcttaaaa	14040
aaaatgcgga	tatgaaagaa	aataaaaacc	acattatccc	tccacttttt	cttggaggag	14100
gatgtgttga	agaagtcaaa	gttcaccatc	cctttagata	gaatcatttt	gaacaatttc	14160
atatgtcaat	acattttgct	catctctaaa	tttcatttta	gagcctgtgg	tgttctgtgc	14220
atggatatgt	gtgcgtgtat	gcacacaaaa	ataaaaggaa	atatttattc	ttatgaataa	14280
gtatagaaat	aaattaattt	ttggaatctc	aaactatcag	agacttatgt	aataaccaga	14340
ggcaggcctg	attatgtatg	ggcaaagcat	ttgtgaacaa	tgtctccatt	gtataacata	14400
caaaacaagc	ttttcttcca	cattggatat	gcaagtcggc	cttctccaat	aagggcctgt	14460
ctctttccaa	ctccccccac	ctcccacctt	tgagcaaaca	ttatttattg	tggctgatgt	14520
gtgatcaggt	cttgatttgg	ggcctcttt	tgatgccttc	tctttgtggg	atctcaccca	14580
cgtgcccctg	gagacccttt	ggctgccagg	gcctttgttt	cccagccacc	catgtggtgc	14640
cagtagtgtc	tgctttgtag	cgagctgtcc	ccagagcctc	agcatggctt	ggggatggtc	14700
tctgaggttg	ggcttggatc	cctcccactt	ttgggctcag	aaagaatgac	tgccctctat	14760
tteeetgtee	ctgccctctc	ttatcctgtt	tcccagcccg	catcatgtta	tctttgcttc	14820
ttgtaactta	ccaaacgatt	tatgggcaag	taggggaggt	gaagagggaa	ctcatctatc	14880
aagataacct	actttgtgcc	aaccactgag	catagcaatt	gtecettete	cagecetetg	14940
aggaccgtgg	atgggattct	catgaaatga	aacaggtgag	gaacttttct	tttagggaac	15000
ttgcttgagg	tcccacaggc	agcgagtatc	aatcaacgtc	aggatctgag	ccctgttctg	15060
ttcggctgaa	aatatactcc	ctgagatggt	gtaggccacc	atggctttca	gcaggctctg	15120
tgcttggtgg	aaggaagctg	gaagctgtgt	acacacccac	ggggaacagg	gaccatagag	15180
gagcaccttt	tgagtgcaga	acctggcgaa	acatacacct	ttagagggat	tttaggtacc	15240
cttgaggctg	ggagaatcaa	gcagagctaa	gtttcccatt	ggggtgtcac	agactgaaga	15300
aacagagccc	taggtagcac	agggaagttg	attgcccagt	atcagttagt	ttggctttaa	15360
tgactgagaa	gagattccac	cagttcattg	aagagagggc	ggacttttta	ttggaggaaa	15420
gaagagtgcc	tgtaagtaga	gaagteteeg	gggtgtagtg	ctgtttgggg	caggaagaac	15480
agtgtgagcc	actgtggaga	gaaagcccaa	agagtettgg	cagggcaggg	agtaggatgg	15540
atttgaagcc	agaggaagta	tggggtctct	gtagactcca	ggcaagccat	gttaatattt	15600

				-contir	nued	
taggaagccg	tgatggagct	gcagatgggt	gtggaagtta	aagtttaact	gttcattcac	15660
cagtccttcc	cctggagaat	gtgcagcacg	tggacagtgg	aactttaagg	tccttggctt	15720
gtatttcaca	cccaagagat	gaataggtcc	aggtatgtca	tagaccagac	taatgaaata	15780
acaaatttct	tttcaaaaat	tttacttttt	gtaggaaagc	ttctctgtct	ggcatttttc	15840
ttctcccagt	tgtgactcaa	tcttaaacgt	cttcagacaa	ttagcataaa	atttcccaca	15900
gtgaattgac	gtatacttt	gagggttcca	tttcttttt	attttttt	tcttttgaga	15960
tggagtttct	cgtcacccag	gttggagtgc	aatggtgcca	tcttggctcg	ctgcaacctc	16020
cgcctcccgg	gttcaagcga	ttctcctgcc	tcagcctcct	gagtagctgg	gatgtcaggc	16080
acccgccacc	atgcccggct	aattttcgtg	tgttttagta	gagatggggt	tccaccgtgt	16140
tggccaggct	ggtcacaaac	tcccgacctc	aggcaatccg	cccgcctcgg	cctcccaaag	16200
gctgtgatta	caggtgtgag	ccactgtgcc	cagcctaggg	ttccatttct	taacccctcc	16260
ttctgatgcc	tcagaaagtc	ttgctctgta	agcctcttgt	agctgcctcg	gttcagggga	16320
agggggaggc	ttttgtttta	ggaccgtcca	gaccatagac	acatttcctg	gcacctagca	16380
cgtgttgggt	caaacaggaa	tgatgaatgc	atgcatgaat	gaggttctta	gcgctgaaga	16440
cggtgtcata	ggtggtctac	cacgccgcct	gatcattcca	atggcccatt	atgaatgtgt	16500
gtgctgcagg	gccctcccac	gatcccgtca	gcactgtgca	tgttgtgggg	aggtgctggg	16560
agaaagactg	ggtctcagaa	gatgggttag	aggtgggtcc	ttctctgctg	ctggctagca	16620
gggtagctgt	ggaggggtgc	cccatcttgc	tggtcttaaa	ttttctcact	gtaggcaggg	16680
agcatgacct	ggctgaattc	taagtccttt	tctactctga	ggttcattgt	gggtgtgacc	16740
tgctgggctc	agctctggct	ttgggagaca	ccctctcccc	ttgatctcga	caacccctta	16800
gcagagccca	gtggctccta	cagtgccctg	agctgcttgc	ccgaaggatg	cggttgtggt	16860
tatctcaccc	cctgccaccc	tgtttgcgca	agggtttgag	attgtgtggc	ccctccttgt	16920
acttcggggt	gaggcttgct	ccagaaaggt	ggtctgcaaa	ggggttggct	ggggggggagg	16980
aggaagtcat	tctccaagtg	tttgtcctca	tcgttatccc	aaattgcttg	cctggaataa	17040
ggaaggaaag	aaaaaaaaat	actcttgagt	ggtttgggcc	aggattttag	ctgatggatc	17100
tggtagttcc	ctctgtcaga	tttgttttct	ttgaactgtc	tgggccggtc	acagtgtcat	17160
tgtttaaatg	tggaatgtag	gtgttctgtg	ttctgggaaa	taaaaaccaa	aactggtcca	17220
ggggatccac	agaggtaaga	aaagaacatt	ccaataggaa	tgtttcagaa	ccaggagggg	17280
aggagagaaa	aacggctctg	ttggtctcct	agaggaagaa	cttgttagat	ttggggagag	17340
tcaggataaa	tttgacccta	agagtctctg	attcctttta	gagacttttc	ttataagaaa	17400
taaaatggaa	cttgggagag	gcggcaactt	gggaaacagc	acattctgcc	gtaatgaaag	17460
tcgtcccata	agaatttctc	tatcccttta	gccaaatttc	tgtttctaaa	aggggaaaag	17520
gggctagaga	taggcttgtt	tgttttctta	gttgaatctt	actttttgta	tttccagccc	17580
attctgcagg	gtaagaacaa	gcacagcccg	agggctcact	cagtgtgatg	ttctagagcc	17640
tggctctgcc	tcaatccctc	acgctggagg	atcaggcagc	aggggccagt	gatggatttt	17700
tttttcttcc	tttcctcccc	tattaatatt	tactgaggta	taaattacag	caaagtgcgc	17760
agacctaggt	atctaggact	gtgaggtttt	cctgtgttac	ctgtgtaacc	acgacccaga	17820
tcaagataag	gaacttttct	ggcatctcag	aggetettee	tgctcccttt	cagactccgt	17880

-continued				
	17940			
catatgcata ggatcatcat gggtgtttta attttaattt catgtctgct tgccactccc	18000			
aaatggaaat gtgttggcat ctctggatgt ttcttcataa gaaacatgcc ctgtggggca	18060			
aageeeagga cagggetgtg etgetgetgg aagteetgtg cagetggeea geetetgete	18120			
accostcogg coacgotggo actitoagot totocagoot ootgoootto coacticoag	18180			
teetgeaeet getgteetea etgatgeaee tgeeetttte etteegteet ttatgtggea	18240			
caccettaag ggagacatet teetgtetgt gttttgeace etettaaaae taeatteett	18300			
tcccttcagc attggcatct ctgtccttgt gtattacctg ggatgactat tcagttaaca	18360			
aatgetttet teetaggetg tgageecaag tttgttggat gattggatgg gggeaegttg	18420			
tgtgagagaa ggatcatggg gtagcatctg gctctcttag aggtgtgtgg gggcgtgtga	18480			
tgcctgccaa ggcgctttcg ttctgggggg ttctgtgtgt ttgaagcact tgggttgtgt	18540			
gtccctgagg cctccgtcac gggcaacete attecttete tageeteeat eccetgeeee	18600			
ctgcccaccc caggeetetg gagetggete eetteetge teactetett ttggeeagga	18660			
ttttaacata tatcacaggo tggtaggota agagottggg acttocooto accacactoa	18720			
aagootttga tottttgott tggaggtaac atcaaaagga aggotgagga agacagocag	18780			
getgtgaagt teaaegttea agttaatage ttgaetgaag gttgtgetge gttgtggeag	18840			
catcaccgag gctggagtaa acagagtgat tctgccacat tttcctggaa atgcacccca	18900			
atattggaag agggettett ttacattegg aatgaattea ggetgtagte agagetgett	18960			
ttccctttcc ccattttcct tggaagtgtg aaaacttggg ggagaagatg tttgtaggag	19020			
ggcatgatga ggggtagagg aagcccaaag agaggatctg gggagggggaa gccccatggg	19080			
atgagactet gaagttatee ttgeeeegat teegggaett getatetgee tgeettttgg	19140			
cgtggtgtct ctgtgcccct gactgttcct gatttagcga ggtgtttctg aattctgatg	19200			
gaattcaaag aagcctgggc aggcaggcag cttgacttgg ggcttggggga agcgtgcagc	19260			
ccagacatag cagogatgag agggootcag ggotgagggo tgagatgaga atttoatoao	19320			
atgcaaaagt gaaagcgacc catcgtette tecaettgat etettgetga getttgeaga	19380			
cactttggtt gttgtttaat ttaacatttt ctgcaatgct ccttttttca gattttcatc	19440			
caaagctctg tatgagaggt tttcaaaccc attttggccc tgattctatt tggcatacga	19500			
ttcaactctg gggatggtca tcttccccac acctgcgttg ggtacctttt tggtgtatgc	19560			
tcagagcatc cttggacatc ttcctggtca gtgtccagca tcgtgaagct gccctttagc	19620			
ctctcagtgc ccccagatac acctgtctct ctgcgtagcg gcactcagcg tcacctttct	19680			
gtggggtett gagaeeetga tgatateage aetatgetge eagaatteee ettggattet	19740			
ttagtgtggc ttctcaagca tcccttatcg ctataacgcc ttcatggttt ttggcataac	19800			
tgtatactac ctgtgctatt atttatttga tgcattcaaa catttgattc atttatttaa	19860			
actcagtete actgtaatee ttaattaaca eetgtgaaat tataggtttg atgtgetaet	19920			
tatttattta ttttttaata cacattagta taatcccgta acggctaaag taacactttg	19980			
tactgcctaa aaccatgctt gggagcgcca cagtttgaga aagtgcttag ccttcctttc	20040			
cctcctttag tgacttgtgg tttggggcat ctgttgactc ctagggctcc cttgttcatc	20100			
tttctgttcc taagctcagg gattagttgc tcaacccagg tgtggcctca aaattctgct	20160			

com	tinued
catggaatag cctcaggctt ctataaatct catcttttt gttttgt	ttt gtttttgttt 20220
ttgagactga gtcttgctct gttgcccagg ctggagcaca gtggcgc	aat ccactgtaac 20280
cattgcgttc tgggttcaag cgatcctccc atctcagact cccaagt	agc tgggactgta 20340
ggctggtacc accaggcccg actaattttt aaattttttg aagagat	ggg gtctcactat 20400
attgcccatg ccggaagtct agttttatag tgatgagaat tcatctg	ggg tccaaggggc 20460
cctcctgtgt tgcttcctgt gctcccctct aaataaagat actcctt	cca agttgtcctg 20520
attttcaggt catcaccatt ttttgagctg gatggggaag ttggcct	gga gcagcettee 20580
ctgtctccga gttgcattac ctcctgagag gtctcagcaa atcactg	cca tctcttgatc 20640
agagttgctg gcaagagtcc tctgtggttc taggttttca gccctgg	aga ctctcgcctg 20700
cattcattat acatgtcctt ttggtgcctt gttgaaaggc atctcct	gcc accgaagggt 20760
gtgggettet ggaaattete agaaaacaca atatgeeage eteeagg	gat gggtetecaa 20820
agetteagga acatateetg gggtgttgag gaaacaeeca eettaaa	atg ttcctcaagg 20880
gggaatgtta ctgcttgccc taaccctctt gagctgatgc tcacatg	acg tccctgagat 20940
gggcttcttt tttgcccgta cttaaagctg taaagggcca ttgtcaa	att tgtttagctt 21000
ctcaattcat gttccttaga ggatggtaaa ttaaagttag cattcct	gga cagagccttt 21060
catacattga agacaacccg gtgagtctca aggggagagg taaggga	gag atgaaaggtt 21120
ttetecagge etgtteggea geatggaetg ttettttagg taattaa	ggg agaccataaa 21180
agacaattgt gtgagtccat ttacctttca cttggggggtc ttaagtc	ttt ggttgggctt 21240
ctttaaccct gtgtgtcacc cacgggctcc tatgggtgct gttttca	ttg ttccgttatc 21300
tagttggctg gaacacacct ttggggattg gagaatggag ttctggg	ggc tttgggaact 21360
ttgagttttc ctgcaatgtc ctatagaagc ttgagtctgt gattcct	ggg cagggcette 21420
teetagttga gtgagattgg tggggeaggg eageeagtta gggggte	atg ggagcaggtg 21480
tggaaaaggt tatatgtett agtaattett tgtgacaate accetea	ttc attgatatct 21540
tetteetate atgtattagg geagtggtte ecceaatgtg etgeaca	tta ggttcacctg 21600
gagagetttt ataaaaatge caatgeeegg ggeeeaettt gggagga	gcc aggcatcagt 21660
aatttcaaag gtototaaat gatttacagt ttgggaatca oogtatg	agg atagtaagct 21720
ctgagteeta tgegttetgt geegaacaee catgaageag tetteea	agc attttacctg 21780
catcatetea atteteacae tgttaaggag atagacagta teatete	cat tttgtagaca 21840
agacaactga atctcagaga ggtttaagtc tcaggacacc aaggtca	tta ttaatcaggg 21900
ggactgtgat tgctcccttt ataaaatgta ggagatattg tggagta	cgg ttgagaaacc 21960
attgcaatag ttttcttact ttgttaagaa attaggctgg gcgtggt	ggc tcaggcctat 22020
aateecagea cattgggaat eegaggtgga cagatetett gageteg	gga gttccagacc 22080
agettgggea acagggtgaa acceeatete gaetaaaaat acaaaaa	tat tagccgggcc 22140
tggtggtgtg cacctgtagt ctcagctact tgagaggctg aggtggg	agg atcacctgag 22200
teeggetgea gtgagetgge attgtgeeae tgtaeteeag eetggge	aat gagagtgaga 22260
teetgtetea aaaaaaagaa aaaaaaggaa attagtggtg gaaggtg	act ttgcatctgg 22320
gcgtatctgc ctgcagagtt ggtgtcctta ccttgaagaa accctgc	ttt agttggagta 22380
teettaatgg ttagtggcag gaggggagga gtggtteetg ggagaet	gga acaaaatatg 22440

-continued	
gtacctgaat gcttaaggct tggcagatga gcagtcattt tcttacacag agctta	aggaa 22500
agggcatcca ggtagaggaa tcagcatgaa caaaagcaca gggccataga gttcto	cagaa 22560
ggaaagatgg ggttaaccgg agccaagcca gagatctggt ggtagtgggg ggttt	ccaag 22620
ctagaatggt tgtgtggtat tctgtcctca ggggctttga actctgtgtg ctaatg	gaggc 22680
ctcaaattct ctggggctct ggttaaaatg tagattctga tatcagttgg cttgg	gtggg 22740
gccttgcatt tctgtaagcc cttagcagtt gcactgctgc tactaccgtg agtatt	tgetg 22800
ttgagcatta ctaccttgag tattgctgtc aagtgttact accttgagta ttgctg	gttga 22860
gtattactgt cgaattttac taccttgagt gttgctgttg agtattacta ccttga	agtgt 22920
tgctgttgaa tattactact ttgagtatta ctgttgagca taaccacttt gagtat	ttgct 22980
cttgagtatt accaccttga gtattgcttt tgagtgctac tgccttgagt atcgct	tgttg 23040
agtattgcta ccttgaatat tactgttgag tattaccacc ttgagtattg ctcttg	gagta 23100
ttaccacctt gagttttgtt cttgagtatt gctaccttga gtattgctgt tgagca	attac 23160
taccttgagt attgctgttg agcattacta ccttgagtat tgctgttgag cattac	ctacc 23220
tcaaggattg ctcttgagct ttaccgcctc aagtattgct cttgagcgtt actgc	ctcga 23280
gtattgccgt tgagtattac tcccttgagt attgccattg agtttagtcc tgtgag	gtatt 23340
gctgctactg cgccttggca atggttttca aactttgcaa cacatcagaa tcactt	tggga 23400
aacctttaaa attctaacgc ccaggtcaca tcccattcca actagatcag aacato	ctggg 23460
gaatgcgagc catgcaccag tagttataaa acctgcccag gtgattccaa agtgtg	gggaa 23520
cctttgagaa gcactgcttt aggggttgga atagtcctgg ctgaatttta atcag	ggaag 23580
actgactgct ccgtttatga aacgtaggag agtggagcag ggttgagaaa ccatc	gggat 23640
agtgttetta etttgttaeg tgageaatat ttgttgagte tetgtggtgg gtteta	agggg 23700
ttcagaggac agcagtgtgc tgctaggatg gtggtctgaa ctagtggaaa ggcact	tcaaa 23760
ggaagaaaga cagaattcta agaggagagg aattttagga aggagatacc caggad	ctttt 23820
gaattacagg taatttgatc agaacccaaa actgaaatgt ctctgctctg	aaagg 23880
gtttgctggc attgagtaag gagctgcagg aaggccttta acttgtctcc aggtct	tetta 23940
acagetttgt catttacata caageaeetg eetggetaaa eeatteattt etgtag	gette 24000
cttctggatc tgtctaggga atatttgctt tgcatatttt ggggttatct taagtg	gtttg 24060
aaggaaccaa aatatttttc ttaaaaataa cactcaaatg tagttcacat gattaa	atttt 24120
gactgatttg tgagaatcag taagtgetga etgaetgagg egeeceacae ateeg	gette 24180
cttctgttac tctacgcgtg ttgctgaaac ttaacgaacc catgtggggt cttct	cgcct 24240
ggtgcagtcc ggcccagtat tcatactgag gtttgcagtg ggagaaagga aggtat	tttat 24300
ttgtaggtca ccaagcaggg caaatccagc agctcacgct taagacctga cctcto	cccat 24360
ggtttataag caagtggttt tttttttt tttttttc agactgagtc ttgcto	ctgtc 24420
acccaggetg gagtgcagtg gegtgatete ageteactge aaceteegee teecag	ggttc 24480
aagcgattet eetgeeteag eeteetgaat agetgggaet acaggegtge geeeed	cacac 24540
ctggctaagt tttgtctttt tagtagagat ggggtttcac catgttgccc aggcta	agttt 24600
ccageteetg aceteaagtg atceteetge ettgacetee cagagtgetg ggatta	acggg 24660
catgagccac agtgcctggc ctgtaagcaa gtgtttttaa agaaaggggt aaatti	ttagg 24720

				-contir	nued	
gaaacagaag	ttctaggcaa	aatggtaaat	taatacaggg	aggtaagaca	ttggtttggc	24780
ctaaaaagat	gggatattt	gaagtggggg	ctcataggtc	ataagtggat	ttaaagattt	24840
ttttggtttg	taattggtta	aggaagataa	gctttgatta	aagatttggg	gtcagcagaa	24900
agaaatgtta	ggtctggctc	gtgggcatgt	ctttttctag	gcccctcctt	ggaaagaact	24960
ttagagcaaa	gaaaggcagt	tggagcttag	tccccacttt	ctcctgatct	gaggtctacg	25020
gaccactgga	tccatttggt	ggggtccatc	tttctgaaaa	acaagtcagg	gacatgtatt	25080
gagatgatat	tattggtatt	tatagggaac	caaacaacgc	cccatgactc	tttttggct	25140
attgttttaa	gccactgttt	tttttgttt	attgagttgt	taacttattt	tttaaagcta	25200
gctagctgcc	tggaatttct	ttagaaggaa	ctgaagtttt	taaaaatttt	tatgttgggg	25260
ggtattgccc	tgcaggcccc	taaaaggggt	ccctgcgctg	tctcaaaact	tggatgcaaa	25320
aagaagttga	gttaacacag	gaggacaggg	gtagacgcac	caagggcatg	tgcctcgagt	25380
gcgtggtcct	tattaagaag	ggtggttaga	cagggaatgg	gttagttccc	aggtcggcat	25440
tcagctgaaa	cagtgatggt	taaaattctg	aaaaatgtcc	acgctctgca	ttetetteet	25500
aacacccagg	acccagtaac	tataaagccc	cctaccctgg	ggcatagcag	ggggcttcag	25560
ggacccatga	gaaggtcatc	tgctgctagt	tacactcctt	ctgggacctg	atttagacag	25620
tttggtggta	gttttgcgag	ggttaatttc	agggccaagg	atgcttctag	aatggaaata	25680
ccttcttgac	attgggagct	ttattggttg	attatgtcaa	tgtgagaatt	caggaagccc	25740
agtgctaatc	ctccatccta	aaaggagtag	attggctggg	cgtggtggcg	catgcctgta	25800
atcccagcac	tttgggaggc	cgaggggggcg	cggatcacct	gaggtcagga	gttcaagacc	25860
aacatggcga	aaccccgtct	ctactaaaaa	tacataaatt	agccaggtgt	ggtggtgggc	25920
gcctgtaatg	ccacctactc	gggaggctga	ggcagggaga	attgcttgat	cccaggaggc	25980
ggaggctgca	gtgagccaag	attgtgccac	tgccctccag	cctgggcgac	agagcgagac	26040
ttcatctcac	aaaaacaaac	aaacaaacaa	acaaaaacta	aaaggagatt	tcctccttct	26100
gtcctttatg	ggagacttca	accttgggaa	agtctggaat	ccttggacat	tagaaattct	26160
gaagttttgg	ctggctgtag	tggctcatgc	ctataatccc	agcacgctgg	gaggccgagg	26220
caggtggtca	cttaggccag	gagtttgaga	ccagcctggc	caacatggtg	aaaccccatc	26280
tctactaaaa	atacaaaaat	tagctgggcg	tggtagcgga	cgcctgtaag	cccagctact	26340
tgggaggctg	aggcaggaga	atctccagaa	cctatgaggt	ggaggttgca	gtgagctgag	26400
atcacaccat	tgcactccag	cctgggcaac	agaacaagat	tccgtttcaa	gaaagcagaa	26460
actctgaaat	ttttgcctgt	ccaggccaca	tcaatcccat	tcctctgctg	tctctgcagg	26520
attctgtgag	gaataattag	ttaatgtttg	cagagcactt	tgaaatcctc	agatgaaagg	26580
caccggagaa	gcacaaagta	ttattattta	ttattagctt	gccccagaat	ggaggcgcat	26640
gaggccctgg	cageteeetg	cctcgtgcca	ggtgtgatcc	tcctgctggg	cttttcctgc	26700
ctgatgagct	tttttttt	tttttttt	gagatcaggt	tcagctctgt	cgcccaggct	26760
ggagtgcagt	ggcatgaaaa	cagttcactg	cacacagete	actgcactgc	agceteaaac	26820
acctgggctc	aagcaatccc	cctgcctcag	cctcccaggt	aactgggact	atatactaca	26880
ggcatgcgcc	accactcctg	gctaattaaa	aaaaattttt	ttttgtagag	atgggggtct	26940
cactatgttg	cccaggctgg	tctcaaactc	ctgggcctca	aagatgccaa	aggttcacac	27000

				-contir	nued	
cttggcctct c	aaagtgctg	agatgacagg	cgtgagccac	tgtgcctgtg	ctcaattgat	27060
tttctttatt a	aagaaacat	ggaagaaagt	gaaggatgag	aatcagtaac	gtaacgtgtg	27120
cttcagattg t	ggacaagtg	atgtgaagga	aacacattgg	tcccactgtg	gtgacagagc	27180
aggggtttcc t	tacctggca	aggttgcggc	tgccattcct	tggggtctgg	ggttaagacc	27240
atctgcctga g	ggtaacgca	gtaataaatc	agtactaaag	ggcgtactaa	agtactgtat	27300
tgctaggcta g	gccatgctt	ggtgtatttt	tttttttt	taattgagac	ggagtettge	27360
tttgttgccc a	ggctggagt	gcagtggtgt	gatetegget	cactacaacc	tctgctgccc	27420
agtttcaagt g	attctcctg	ccttagcctc	ctgagtagct	gggattacag	gcacgtgcta	27480
ccatgcttgg c	tagttttaa	aatattttta	gtagagattg	ggttttgccg	tgttgtccaa	27540
gctggtctca a	actcctgac	ctcaagggat	cageceacet	cggcctcccg	aagtgctggg	27600
attacaggca t	gagcctggc	tggtgtattt	gttttaaatt	taaagtttac	taaatttaat	27660
gatatctggg g	aatcagctt	gcttcctggg	gatctggatg	tacttgaggt	gagagggtgg	27720
ggattcagaa t	tatcctttc	tatcgcagca	tgttctggat	tgattcatgt	aggtctcaag	27780
tgtgtgtaat a	tttcatttc	tttgtgcaat	tttggcatgc	cgaggcgggc	accctgaagc	27840
teeggeagag e	ctggagaca	gagtggggag	ctctccgctc	tttcccttcc	ttcatcccag	27900
ctgacttcga c	tggaattga	attcatcagc	tgctggagag	ttgttttatt	tgccctgctg	27960
gtggagaggg a	ggaaaggaa	catcatgggg	ccaggetttt	ttttttaaa	ggaaagattt	28020
gatttacttt c	ccccttagt	agcatgatgg	gcacctgcac	ccgccagcta	atcagaagcc	28080
actgtcccct g	aatgcctcc	gctgcccacc	agateetgae	agcatcccac	gcgggagcac	28140
tetegtgtge e	cctggcagc	ttctgctgcc	tggcagttct	ctaaacttgc	tggtgtetet	28200
ctgcccggag g	ctcagaaac	ccagaggact	gaccacttct	tgaggctcat	gtccagtttg	28260
caaagagccc c	cagcaagca	gagaagggga	tttttgtacc	agcgatatct	cttctccact	28320
cctcaacaca c	tcctttcca	ctctgtctcc	tataaacatg	gaacagccag	gaatactcaa	28380
atcctagcct g	tcatgaagc	caaaaattga	tagagatcta	ctgtccagaa	tgatttctta	28440
tagtgaccct g	tgtttagtt	ggtaagactt	tcttaaacca	tgagggattc	tggtcccaca	28500
gggcagtaat a	tctggggca	gagcctgaga	cttttctcat	tgatttcctc	tgtgagccag	28560
gagtgactgc t	ctgatgcag	ggtgctgtgt	ggttggtaga	agetggegtt	atcccatttt	28620
acccacgagg a	aacaaatga	ccagtggtgg	agcgggagct	cagcatccca	tgtgcccact	28680
teeteetegg g	tggactttt	cacctgccca	tgeegtette	tttgcaaact	ttactgcagt	28740
gacggagaca t	ctttaaata	caaattcttg	ggggaaccct	gtgttccttg	gctggagcct	28800
ggctgggaag g	aggagggag	cagagggctc	tcttgggtgt	ggcctattgc	agttgagcca	28860
gggaaagget g	gtccactgg	agacaccctc	tctggtcacc	gcagacttcc	tgccctccat	28920
ccagtgtcct t	ctacttgca	ggatgtgtgc	ccagcagaga	gaatctctga	agccatgtca	28980
ttattgggat a	acattcctg	tcccagtcac	cttatttctc	agaaaaagga	caatgggaaa	29040
caagttttta t	tgaatccta	tgctgggcct	attaatgggg	tctcttactt	ttcatagcag	29100
cactgcaaac a	gagttacgt	ttctattcat	tttatggatt	agaaagctga	gatccagagc	29160
gggcagatgt a	aacctgggg	tctttaaaat	gcatcctttt	tgcaaacaaa	taaacttagt	29220
gtattaaaag g	gctggagag	agcagagtaa	ggtaacattt	gggtggtcag	catgtagttc	29280

	-continued	
- tgggtcccca cagtggagat ggcacagtgc tggg	tgctgg gggaactatg gtcactaaga	29340
gacactgaat aatttaatgc atgcccctga ttcc	atcact gactgttgag gtaacacata	29400
catttatatt gtcagtggtg gtgatgatta catg	agetge gtaaagegtt tgaecagtge	29460
ctgcacataa catagtaggt gctcaataaa gatc	acccac tcttaagagg tgggaggagg	29520
tgaagtcatc tttctgggga gtgttgccct gttg	ttetet getgeattet ttetgteett	29580
tgggctccga gaatgctggg ttgggcagtg tgag	tggtct tctcaggcct ctgtgacatg	29640
ttgctttcat gaaaggttcc cctctagcca aaga	ctgagt ggteettgea ggetttetee	29700
tgagteettt ttttttttt tttttttt ttaa	agacag agactctgtt gccagattgg	29760
agtgcagtga cgcggtctcg gctcactgca accg	ctgcct cccaggttca agcaatctac	29820
aaaatgcatc tataaaatga tgcatcagcc tcct	gagtat ttgggatcac aggtgcccac	29880
taccatgcct gggtattttt ttgtattttt agta	gagaca gggtttcacc ctgttgacca	29940
gtttggtctc aaactcctga cctcgagtga tccg	cctgtc ttgacctccc aaagtgctgg	30000
gattacaggc gtgagccact gcacctggcc tctc	teetga gteettttgt ttgtgeetge	30060
tttggggatt ccctctggct ggggtggact gccg	ggatct gtttgtccag tgtacatttc	30120
ctggtcacct agcaccggcc agctgcggtg ctgg	gaggaa cagggcctgg ctctgggagg	30180
cagctgggag agtcaggaag tgaagaaagt tctt	gtgggt gtgatggtgg aaacccaagc	30240
agcgtccaga gggagcacaa gagggaggga caaa	tettgg gagggteeeg ggeeaatggg	30300
acccagtgta agaaattgca cctgtcctgg caga	tagaga aggtggaagc agtgaatggt	30360
agagcateet castettete tetgecagea agea	cetttg gggaagteet caeggaeagg	30420
aatgtogtgt gtottggott gagatgtoaa agaa	acatgt tggacacacc atggtgacag	30480
agcaggagtc tcttaacccc ggcgtggttg aggc	tgeegt tetggtggga tetggggtea	30540
gtcaggggtt aacagtcgct cctgcttgcc tgat	tgacac agtaataaag gcagtgacac	30600
caaactaggt ctcaggaatg tgtcctcgtt agaa	agactc actaatggtt gtgggggggt	30660
ggcccatgag tccttctggg tggtggcgag aagt	agggga ccctttgggc tttgcccttt	30720
ttggtcatag gacttcactc cacagacata attg	aaccgt tgggtttctg cagccaaatt	30780
caaatgtcac caatcttggt cacccctttc atct	cttggg tcctctgtaa gttatagcta	30840
tctgatagtt tactgaaaaa taaactgaaa atat	gtttta aattgtactt tcgatttaaa	30900
ataatgttta gagacaaaaa aaaagggtcc aatc	cacttg gagaaaagca ttgtcaaagg	30960
tggttgattt ttttcttttg ctgttttaaa gtgg	taagtg gatgagtgtt ttggatatat	31020
tgatttttca ggtgtgcagg cggtcacatg aaca	gctgac atttttttt ttttcatgtg	31080
gacttcagcc agtcttgaca cctgcccctt aacg	aaaagt aaaccatcgc cttgtttgac	31140
agtttaagtg cagtgatacg gatggaggca ggtt	tacgtt atgttaaagg cttgacaacc	31200
cagaaccccc ctgttggttt ctttgttgta acct	ttgagc cggtggcctg ctgaaatgtc	31260
acctttgccc ttctttaaaa gcaggaataa tagg	tggtga gtgggtggat gcctcttaaa	31320
atactggaaa gtgctgtggc ccgagggtaa gctt	tttaga agtgagtgtg tgtgttgtgt	31380
tgttttaatt aatgaatctt ctgggcctga agat	aatgag gtcagtgagg gcagccatgc	31440
tgcctcacag ctcaccttag ggtccttgtt gtcc	agaacg tgcctgacct actggagggg	31500
cctgggaatg cttctttgat tgacgtgggt agga	agacag atgtggcggc ctccatgctg	31560

			-contir	nued	
atgggaggca gctg	ggaaga aggtcatggg	caccatctca	ggagtggcag	agccacctcc	31620
ccctctcctc accco	gtgtg tctggattct	tccagctgtg	tggtccttct	tcctgcctgg	31680
aaatgagcat cctgo	cagage teggeteetg	ttcacaccct	cctcctaacc	ccctactctc	31740
cctctccctt tcato	ccaggg ctggaggacc	agatgggctt	tacctgatgg	agtgtgcttt	31800
gctgacatgg tgcaa	agagc caatteetgg	ttgcaaagag	gcagctgggt	gcagaggcgg	31860
ggtgcattcc tgtaa	ataata ataacttgtg	tttttataat	actttacagt	ctaagtactt	31920
ttcaaatact tgaco	ctcatt tagttctcac	cacagccctc	tgaagggata	ttactattac	31980
cttcatttta tagat	gcgtt aaccagggct	tgttttggga	ggtagagggg	gtgtgagggg	32040
gacagagggg aggga	aaccag tgttgaatga	attctgaggc	cctgccaaag	cagccagcta	32100
gctaggtgtt gttta	aatgga ctctttgcat	ctacagaatg	agggaggtgg	gatgagggga	32160
aattatttca caata	aactga aggtcggaga	gactaactct	ctgctcattg	tcacacagca	32220
gttgagtgcc agete	gggatt tgtcacccag	gtcacctgac	tcctaagccc	tgtgatcgtt	32280
ctcttctgtc tctag	gtatac ccagcataat	gcccggcaaa	gtgctggcat	caataaatat	32340
ttgtcgaatg ttaaa	atgagg cttaaagaga	accattcatg	cttggcacag	gggcacagtg	32400
agacaaacat gttto	ectgee etegtaaeet	tcgcttccaa	attctgtgac	cttgggcggg	32460
ttgcctgagc tcttt	tccag ctcagtttcc	tgaaaactca	tccggaaaat	gggtaaaata	32520
tcagagtgca ttct	ytatgg taagactgca	aatgttagat	gattetgeta	cttattattg	32580
ttttcttttt ctcad	ccacac accttccctt	tttatgtaca	cctcctagga	agtaagtttc	32640
tgataacata ctgca	attgtt ggataacagc	aacaaaaagc	acttcctgac	attattgccc	32700
aaatcaccaa atgag	gcaat taccaacttt	ggaataagaa	tagcaacggt	ggtaagagct	32760
gacatttctt gages	gettge catatgetgg	gtgtactact	ataagctgct	gcctgcaatt	32820
atgatttggg aacaa	actctg aaagtagtta	cctcccattt	tatagaagag	taaactgagg	32880
ttcagagagg ttaag	gtaacc cccccagggt	ctctcaggaa	gtagttggtg	gcctgggatt	32940
caaacaccag aatto	ggtctg acttcccact	ctttaaacca	cactcaaaac	tgaactctcc	33000
acgtgtgtgt gttct	gggca ttttcgcatc	tcccttggct	tgttgacagc	gtggactttt	33060
gettteecat tetea	atagaa catggccagt	gcaggaggag	gaaatccaca	ctggtctttg	33120
gactgaacca gaggo	ctggcg atggtcccga	aacagggtgc	caagtggctg	acccttgttt	33180
ttatgcettg egete	ygtaag cttgggggcac	caggagttct	ttgaatttct	ctttcttgac	33240
tgtccacgcc ttctt	taggc aatcttttaa	caggctatgt	tttaaatctt	attgacatct	33300
ctgaagaaag aggag	ygaaaa aaaaatcaag	acatggcctt	agagaagtga	caggttttct	33360
ttgagatttt gtttt	ctgtt ttccttttta	ttttgtgcac	attgcaaaac	ctctttggga	33420
tgatgatttc gtgtg	gtttc ttggtagccc	ttgggcagct	gctgccaggt	ttcacccaaa	33480
tgcattgtga cccco	tgttt cgtgggacgg	ctttgcctcc	acatggctga	ttgtgctctg	33540
tgtgtccgct gtggg	gcagag tgtgattgta	agaatcagaa	ttctgctggg	cttgcaagca	33600
tttaaaaaat ctcta	ataagt ttgagaactg	gttggaaggg	agagatgcag	cgacttagaa	33660
caccoggoot goage	etgage tteegtgtge	ctgggaggag	cccatatgga	gaaacaggaa	33720
aattccactt cacca	agaaag ctggggaaat	gagtgggagt	aggggccagg	ctggttaact	33780
aggaagactt ttggt	cactc tgctttactt	agcctaaagt	gttcatttcc	cccttaagcg	33840

			-contin	nued	
gtggttaata cgc	gtatctg cagattta	ct ttttggatga	tttaaaatct	tgcaacatct	33900
caagggattg tat	cctgatg atactgat	ca tattaataac	aagataatag	cttataatat	33960
aatagctagc aat	taccaag cacttacc	t acaccaggta	caatgccagg	catttgatcc	34020
ttacacgaac tct	gagagat ggctgttt	gt attcccattt	tacagatgag	ggaagctgtg	34080
ctgagagagg tgag	gttcatt tgcccaag	ct cacccacttt	gagatggtct	gcttttatat	34140
cctcttagcc caa	ttetttt ggatgtea	gc acttggcatg	tattaggcac	tggataagtg	34200
ttttgttgaa tga	acaaaat gatggaac	t ggatttgaad	ccaggtctga	gctggctttg	34260
agtetteaga atag	gtaggtc caattagt	gg agtggggggt	cagtagtcca	aagggaaagg	34320
agcaaggaga cat	tgtgggg gccgagaa	ga gggcttctgg	ggtgtttcct	gggcacattg	34380
gcattaaagg cat	agtgtga agtgccat	cc aagaccatgt	gctggattag	tgtttttcct	34440
ctccacttga ggt	gettgeg attggett	tgccccggtg	tctgcaaagt	gagttgggct	34500
gaactcagga aga	cettttg gttgggat	ga ctgtgtattc	acctgcacct	gagtagggac	34560
tgagtttcac ttg	ccagttt taccgcag	ca agacctcgtt	aagttggctt	cctctcattt	34620
aggcatttgg gaa	actttag gcggctgg	ag tttaattete	aaggcaaagc	cccttttcaa	34680
gggacatgaa gaa	aggcaga gggatata	t taaaatacct	gaatgaactg	tttctttttc	34740
tttttatttt ttg	agatgga gtctccct	ct gtcacccaag	ctggagtgca	gtggcacgat	34800
ctcagctcac tgc	aaccttc acctccca	gg ttcaagcgat	tctcctgcct	cagceteece	34860
agtagetggg act	gcaggtg tgcaccac	ca cacccagcta	atttttctat	tgttttattt	34920
tattttattt att	ttttaat ttttttt	tg agacggagtc	tcgctctgtt	gcccaggctg	34980
gagtgcaatg gcg	tgatete ggeteaet	gc aageteeace	tcccgggttc	atgccattct	35040
cctgaatcag cct	cccaagt agctggga	ct acaggcacct	gccaccacac	ccggctcatt	35100
ttttgtattt ttag	gtagaga tggggttt	ca ccatgttggc	caggtctctt	gaccttgtga	35160
teegeeegee teg	geeteee aaagtget	gg gattacaggc	gtgagccact	gcgacttgca	35220
tgtagacagt aat	ggcaggt cactatca	gt gggtctgtta	atcaggtgtc	caacctggtg	35280
ctgggcttgg tgg	ctcatgc ctgtaatc	ct agcactctgg	gaggccaagg	cgagtggatc	35340
atctgaggtc agg	agtacaa gaccagcc	cg gccaacatag	taaaacccca	tctctactaa	35400
aaatacaaaa atta	agctagg catggtgg	ga tgcatctgta	gtcccagcta	ctcaagaaga	35460
tgaggcagga gaa	tggettg aacetggg	ag gcggagattg	cagtgagcca	agatcatgcc	35520
actgcactcc atc	cageetg gacaacaa	ag cgagactctc	acaacaaaac	aaaacaaaca	35580
aacaaacaaa caa	aaagtca cttgcttc	t tttttgettg	cttatggaca	taaaccctgt	35640
aaactatctc ata	catcatg ggagtgag	t tgcagtgggt	agactgctat	tcacaaactc	35700
atatacatcc tate	gaaggag tacaggtt	aa ataaccatta	tccaaaatgc	ttggggctga	35760
aagtgttttg gat	ttttaat ttttttca	ga ttttggaata	ttcgcatata	cataatgaga	35820
tateetgggg atg	ggaccca aatctgaa	ca ggaaattcat	ttatgtttta	tataaaccct	35880
ttttttttt ttt	tttttg agacagag	t teacgettgt	tccccaggct	ggaatgcagt	35940
ggtgtgatct cgg	ctcactg caacctct	ac ctcccaggtc	gaaacgattc	teetgeetea	36000
gcctcctgag tag	ctgagat tacagggg	ct teccaceacg	cacagctaat	ttttgtattt	36060
ttagtagaga tgag	ggtttca ccctgtta	gc caggctggtc	tcgaactcct	gacctcaagt	36120

aont inuad

-continued	
gatccacccg ctttggcctc ccaaagtgct gggattacaa tgtgagccac tgtgcatggc	36180
cttatataaa ccttaggtaa ttttatacaa tattttaaat aatttttgtg catgaaacag	36240
agttttgact gcattttgac tgtgactcct cacttgaggt caggtgtaga cttttccact	36300
tgtggtgtca aatttcagat tttgaagctt tatataatga gatagggtct tgctctgttg	36360
cccaggetga agtaeggtgg cacaateaca geteaetgea accatgaeet eetgggetea	36420
agtgateete ceateteage cacetgagta getgggaeta eaggeatgea etgtgaetgg	36480
atttttttt tttttttt ttttgagacg gagtctggaa tctcaagtct cgctctggtg	36540
cccaggetgg agtgcaagtg gegegttett ggeteactge aateteegee teetgggtte	36600
aagtgattet cetgteteag eeteetgagt agetgggatt ataggegtgt geeaceaett	36660
ctggctaatt tttgtagttt tagtagggtc ggagtttcac tgtgttggcc aggttggtct	36720
tgaactcctg aactgaagtg atctgcccac cttggcctcc cagagtgatg ggattatagg	36780
catgagccac cgtgcccagc cttggctaat tttttatatt ttttgtagag acagggtttc	36840
gctatgttgc ccaggttggt cttgaattcc tggactcaag caatctgccc accttggcct	36900
cgcaaagtgc tgggattaca ggtgtgagtc accgctcctg gcctgaagca ttttggattt	36960
ttgggttaga gttgcacagc ctttactgtt attatcctga tgttattatc cacattttac	37020
aggcaaggat ctggaggcgt agagaggtaa aatcattttt tcaaagcccc agaagtacta	37080
agccgcagat tctgaatttg aactcaggca ttctgggtca gaattagtga ggttttaagt	37140
taatttttt tttttttta gatagagtct tgctctgtta cccagggtgg agtgacagtg	37200
gtgctatctc ggctcactgc aacctctgcc tcccgggttc aagtgattct cctgcctcag	37260
cttctagagt agctgggact acagacatgt gccaccacgc ctggctaatt tttgtatttt	37320
tattagagat ggtgtttcgc cacgttggcc aggctggtct tgaactcctg acctcaggtg	37380
atctaaccac ctcggcctcc agaagtgctg ggattacagg cgtgagccac tgcgcctggc	37440
ctaccccctg tcgcccaggc tggagtgcaa gtggcacagt ctcggctcac tgcaacctct	37500
gcctcccagg ttcaagcgat tctcctgcct cagcctcctg agtagctggg attacagata	37560
cccaccacca tgcctggcta attttttt tttaagtatt tttagtagag acagagtttc	37620
aacaagttgg tcaggeteet ettgaaette tgaeeteatg atetgeetge eteggeetee	37680
caaagtgctg ggattacagg catgagccac catgcctggc ctaagtttgg tttttaacca	37740
tgctgctttt tctagaccct tctgtcagcc agctccacaa tggtgaatca gggagttagg	37800
tccgtctgta agagagggcc caggagctgg gtcagatagg taaagagaca ttccttagtt	37860
cttatectet getaceaage cattlettgg gateaageee tetttggeet gtgteattee	37920
acctccatta agttcagcct tctttccttc tttccacatc tttccactgc tgttgaaaac	37980
ttgagacctg aaatcccatc tcctgaattc ctgggagctc tagaagtgga gatggccagg	38040
ttctgtggtc agagctggtt gggattacaa ataaaccaaa gcctgggaaa ctttcttgct	38100
attaatagog cagacotttt ggggagggaa tacocaaact ogatgotgtt ggaattgatt	38160
ttgcctgtct agatgacata ctaatgagct aagtggttag cttcggatca ttattgctct	38220
tteecaagee aagttetttt aaagaetaaa aecaeaaaag cagagaaega gttgggttag	38280
agaggcatag tggctgggtc cagagaaggg agagtggtca gccctggcct taaacatgag	38340
aaaataaagg tggtccttgc tttggaatga gttagtggtg ctgactaatt caactggttt	38400

-continued	
ttettttet ttttggaagt ggaatttgat ttggtgtetg gattttgata gggeeattta	38460
tatttettea geaetttttg gttettgeag aaagttaeat teetagttee teaaetgett	38520
atttettttt ggtttttgaa geaggaattt gatttggtgt etgggttttg ataggggtgt	38580
ttatgtttca tcaatgtott ttggttottt cagogtttot otoottgtot gtoatgtgto	38640
agagagggtg cctgtcaacg attctctctc tccagggaga aagtctttct taaaacagcc	38700
ctaagateet tateteetea aateaeceae tttgatgata atateeattg ttetettete	38760
tgcttcttgg catattctag tcagtctatg tatacaatta aaaaaacaaa acagccctct	38820
gtgtccaaag tgcttggaat atcccagtgt ttcacaggag actttggaag tggacaaaac	38880
tgtatttcct tccccaaatg aggttattgt gctcgaaata tctcctggta gtttattaaa	38940
ggaaaccgca ggcaggggta agagaggcag tttctacagc ctgcaaccct attatcttgc	39000
ctettettt egaceeteet teeteetet eetettetet eeeeetea eeetatteaa	39060
cccagcccca catgtcatgc cgtccccagg aggtagccct gcagccctgc ttctctggga	39120
tggtctgttc ttgccacccg tcccatggaa cgtgaagaag gaatttgggg tgtggacttc	39180
cttgagtgac taggattaga cccgtcgggt ctgcagtcag acgagaagcg tgtgggcaaa	39240
gggaactatt gtgtgaggct tetetggaca gaaageetge etteatettt taetgtgeet	39300
aatggacaat tgagacattc agcttatgtc tgaaaggaaa gtgggccggg atggtctagc	39360
agacctccca gatgaaggct tgtaggagga gcaaatagag acaaggatta ccaacagggg	39420
gaacaactgg ggcagagtcc tgggagagaa tgtttatttc cttgctctct aggagggatt	39480
tggaaagagc cataatcctg ggttaggagt aatttgttac agcaagatga tacttgagtg	39540
acaggetget tetggetgag geageaagae ttgeatgeag gggggtegtg gggeeteeag	39600
aaggtcagcc teeegtaaat etteaceetg getttggggt ttgtteetee ceaageaaaa	39660
ttaaccagag gcactgctga cctttgggct tcctgggtgt agcgttacga agcatctcca	39720
catgtttgtc acagctagaa tttgacaata aaaatttgga cagggagacc ctgccagagc	39780
cactgacctc tttccaatgt gacaagggga aaaaaaacaa aaggaaaacg cagcacgggg	39840
tgeggtttea gttgaagttg gaggacaegg ageeeageet gtetegeatt tgetgtetat	39900
gtagactcac taaagcaagt taattcattg ctctttgacc gccaagtctt tcgttgtctt	39960
ttgttgttgt ggaatggggg aaagaaatac agaatgggga ggagaaccta attagaaaaa	40020
tcaagccttg agagctccca gccatggaga aagaaaggga ttttttagaa gttgtgattt	40080
taatatetge tgeaatetga tgatteatgg atttaaaata accetteeag gteaceagga	40140
ccctgttact tgctggcttt gtacctctca aaggtcattt gttggcttcg tctcttaaca	40200
atttccatgg tagacctaaa atttctggct gtgaaatccc ctgtgtagtg ggaagaagaa	40260
atagcaaatc ttagctgcct tggacctgat ataattattt gtcttcattt acatggttta	40320
teetteaagg ttgaataaat gatgtgggag etagteaagg ggetttaggt atgtgattte	40380
atgeetaett ttttttaggt agagaaaetg aggteaeagg gtaetagaga atggaeteta	40440
agattcaggt ttctgaattg cctgtggttt tgttgactca actgctcttc tgttgttttt	40500
tagecacatg cettgaaaca gteetette eeatgtttet teateageae cattaaecea	40560
aggtatactg teetetetta tettteacaa ggtettggag tteeeatgee tttgtaagea	40620
tccctccccg agattcagca ccaaccaaaa tcacatttgg aaaaattgct tgtttcccaa	40680

				-contir	nued	
gaagetttgg	aggatatgat	tttgtataga	acgggttcac	aggttttctg	ttcattcttc	40740
tatggtggag	tgtgtgtgta	tgtgactctg	tettetetee	attcctcttt	tttttttt	40800
tttttgaga	tggaatttcg	cttttgtggc	ccaggcttga	gtgcaatggc	gtgatctcgg	40860
ctcactgcaa	cctccacctc	ctgggttcaa	gcgattctcc	tgtctcagcc	tcgcaagtag	40920
ctaggattac	aggcatgcgc	caccacgtcc	agctaatttt	tgtatttta	gtagagatgg	40980
agtttcatca	ctttggtcag	tctggtcaca	caaactcctg	acctcaggtg	atccaaccgc	41040
ctcggcctcc	caaagtgctg	ggattacagg	tgtgagccac	cgcgccaagc	ctccccatcc	41100
ccttttatct	cttaaatgaa	tgtggtcacc	atcaaagatg	gtgcctgact	cttttttgtt	41160
ttcagttcat	cttaaattca	catataattc	acacgtcata	aaatgtaccc	atttaaggtg	41220
tacagttcag	tggttttta	gtctatttag	tatatttaca	agattgtaca	aacataccag	41280
tatcttaata	tttttatcat	ccccaaaaga	aacactgtaa	ccctagcagc	cagtctctac	41340
ccgccttccc	catageteet	ggcaatcact	aatttacttc	ctgtctctat	gaatttgcct	41400
attttggtta	tttcatataa	aaagaatcat	acaccatgaa	actttcttca	tctgccttga	41460
agttagcata	ttttcaaggg	ctaccatgtt	gtggcatgtg	tcagtactcc	atttgttttt	41520
attactgaat	agtattccat	tttatggctg	taccgcattt	tagttatcca	gctatcggtt	41580
gagacttggt	gcattcttat	cccagaacat	accatattca	gctcccagtg	acacccacat	41640
tcattcctgg	gctgctcctt	gtettecage	tattttcctg	gteteetgtt	gcctctgcct	41700
acttcagcat	gctgtagaga	catgggtagt	aactaaaaca	ttccaattaa	ctgcattgta	41760
cttggccttt	ttataagaag	cagtaattag	aaaatatggt	ggccacaaga	ttgatattaa	41820
agtgaaagat	tgtaaatact	tttctgcctg	aaggtagatg	geetetggee	tgcctcttag	41880
tgggaggttc	ttccaggagc	ttgcaagcat	ccattatttg	ttagtcatca	gcttagcggc	41940
caaggagcat	tagcctgtct	tgctctgtct	gctgaagact	ctgagagaca	tgggagggca	42000
agggctgctc	cttttgaatt	cttccaatgt	cttcatgtcc	tttaacctcc	tggcttaggg	42060
acttgtgtgc	tggtggtgga	gctgacattt	gtttggaatc	cacagccctt	tgggtgggac	42120
tcaatcttgg	ggttgcctga	agactttgag	atggctaggt	ctgggcctct	tttggtcact	42180
atggaacaag	actgtctcag	aggccagagt	ctgtctcacc	agctccctgt	cttgggactg	42240
caccattgca	gggtctttgc	cctcccctgg	agatttctct	tcctgcctgg	gcacccattg	42300
gccattctgc	ccgtaagctc	agtagggtgt	aggcaaaaga	gttctggcct	ggaagtacca	42360
aagtcctgcg	ttctggtttc	agtccctcat	aactgtgtat	aactaagtca	cttagttttc	42420
tgtgcctcac	tttcttctgt	tttaagatgg	atttggagat	tattggcttt	gaccacctaa	42480
aaaggatgta	gtgacaatca	atttagaggt	ctaaaagagc	ctttgaggaa	gtaaaatgga	42540
atcttcaaat	ggactacatg	ctgattattg	acactgccct	agcactgata	gttgatgttg	42600
actgatggtc	agaattgett	ggcaagttgg	aaaaagtac	gtacagatcc	tgggccacta	42660
ccaagtttca	tttaacagat	ctggagtgca	tcaggaaaaa	agtccctcta	aacaagccag	42720
caaggtttgg	atactgtgca	acctttttt	tttttttt	ttccttttga	gatggagtct	42780
ggctctgttg	cccaagctgg	agtgcagttg	cacaatcttg	gctcactata	acctctgcct	42840
cccaggttca	agcaattctc	ctgctttagc	ctcccgagta	gctggcataa	caggcgcctg	42900
ccaccacacc	cagctaattt	ttatatttt	tggagagatg	gggtctcacc	atgttggcca	42960

		-continued	
ggctggtctc gaactactga	cctcaaagtg atccgcccac	ctctgcctct taaagtgctg	43020
ggattacagg catgagccac	tgtgtctggc cctacttacc	ttetttgtgt taatteetge	43080
accattgatt agcttattgt	cccattgact gtgtctttag	atgacttete tgggeeteag	43140
aatatctagt ccatagctga	. cacagagcat ctgtttaatg	gtaaatgctg caggaatcca	43200
tgcattggag tagaaagagt	tttagatcat gttcctcatt	tcttgctaca gacttaggca	43260
aagcgtggag aagaggttgt	ccaatgaaga aatgaagtga	catgccaggt cagtggcaga	43320
gctaggcctg gaaaataggt	ttccagactc ttccctttct	accatacttt tcctgggagt	43380
acgcactcgt aatttgaaga	. gcgacttttg ggagagggtg	gaaggaaggc ctgggcctca	43440
gcctaagggg cccattggtt	gtgagaggag ggtctggtga	aattccatac cgattgtccg	43500
tgtgtgagct gctgtaccat	agceteeetg cagaaceaet	aacctgtcaa atgcagaaat	43560
agttcaggga cagagctgtt	aaaggattgg cgggttaaag	aaaacagtga atcccaagtt	43620
ttgttaattg gattttttg	tttgttagtt atttgttttg	cttcattgtc ttcatcacac	43680
cagggggcctc cttaaatctg	gtggaaaaat ttccttggaa	aacaattcag tgtttgtcca	43740
tagacttggg agggagagat	gctagatgct ggaaagtctt	gcttattact ttggggacac	43800
tgagatgttc ccttcaccat	gtactttgag acacacatcc	tggttgagtt caggcaagga	43860
tgcctaacag ttgataagaa	. aactgggaaa gatagaaggg	atttgtaagg taagtcaggg	43920
tgagtgaaaa cacatccggt	atgctggaga cctagatgct	tgactgccac tcgctcctgt	43980
cacctcagtc aatctgggtc	ttgctctgtt ggccttagtt	teeteettge taacaggtta	44040
gttccacctt tctgcccatt	tattttgtag ggttattgtg	gatgtcattc tgaactctaa	44100
aataccctct aaatatgaag	tgatattagt gctctttaca	ttgttatgat taaaaatatt	44160
tatgagaaaa aggttaactg	taaggatttc attgaaaatc	ttataacaac caactgatag	44220
agatagaaga taaggctatt	aaattgttca cacagatgcc	ttgatatect acetttttee	44280
ccctatattc cttttatgtg	agaaatgaga tagtgattta	agggaaaaac ttaaaagagt	44340
tccgactatg ttggttttt	ttcccccaag tcaaccttaa	tatcttactt aaatcttttt	44400
ctttttatc ttttctttc	tttttttttt ttccctccct	ccctcctttc ctcctcctcc	44460
tteeetteet ectecteett	ctgctgcttc tctctctct	tetegtttee ttttettte	44520
tattetteet ttttetttg	agaccaggtc ttgctctgtt	gctcaggctg gagtgcagtg	44580
gcaccttctt ggcttattgc	aacctctgcc tcctgggctc	aagtgateet eccaeeteag	44640
cctcccaagt agctgggacc	acaggcacgc gccaccacac	tcagctaatt ttttttttt	44700
ggtagagatg gggtctccta	. ggctggtctt gaactcctgg	actcaagcaa tcttcctgcc	44760
tcagccttcc aaagtactgg	gattactggc gtgggccacc	atgcctggct tgaaattttt	44820
ctatggcttt attctttctc	caagtacaga gtctacccaa	ccttctgaga tctttggttt	44880
tcttttccta ggtaactata	. gtacatactt atttatgtta	aacaacagca atcacacatt	44940
tctttttcta tacagtcatg	ctttataggc aaataaagcc	tccgtcttag gctttctgga	45000
ttttttcaaa agatgcaatt	cctggagtat gtttttactt	agagcaaagc agcctagtct	45060
cctatacctt ctgcatctgc	agaaaagttg gttaaacaga	ctttgtaatg atgcccctta	45120
caattctgaa gggacttgtg	aaatagtttc acagagtttc	agtgttaggt atatttgatc	45180
aatgctaact tttggaaaac	tttggtgcct gtatgattca	gagggtaggg cagaatatta	45240

				-contir	nued	
aattaatcac	aacttcttgt	attttaacca	ttctgggtaa	attgggattc	cgtgacgccc	45300
aggcaaaatt	atttgtttat	agaagatggg	ctgaattttc	catcgtccat	ttctgagaaa	45360
tgaggtaggt	ttagaaagag	acaatcaggc	ctcttcttta	acagaaatgt	ttgtgtctac	45420
taggtgtgtg	tcacaatatg	agttcctgaa	gaaataagtg	tccgctattg	ggttgtatac	45480
ttgtacttcc	tattttctta	ttttgcacat	ttttctggta	tttccctttc	tatggtgagt	45540
ggcttctgat	cgtctttcct	tttgtaaagt	gtaatgatat	gagaatcata	atcgtggtgc	45600
ggtetttgt	gttgcatatt	tgtagggggt	cagtatgaat	ggcccgtggt	gaggetgeae	45660
tgaaagatta	ggagcagcca	ccttgatgcg	gaggaggctt	agtgactttg	gacatgatgg	45720
gctatggctg	gctatactct	cagctttggg	cgcataagca	gagtattgat	tttgtatttg	45780
gttaaaacca	gaagtacaac	tttctggcac	cagaggatta	ggaaaattta	acagcggaaa	45840
gccatcatga	ggatagtaac	caattaattc	gattttttg	gtcagacatg	gctcccacct	45900
gtaatcccag	cactttggga	ggctgaggtg	ggagggtcat	ctgaggtcag	gagtttgaga	45960
ccagcctgac	caacatggta	aaacccgatc	tctactaaaa	atacaaaaat	tagcctggcg	46020
tggtgatacg	cgcctgtaat	cccagctact	cgggaggctg	aggcaggaga	atcacttgaa	46080
gctggaaggt	agaggttgca	gtgagtcgag	cttgcgtcac	tgcactccag	cctaggcaac	46140
agagtaagac	tgtatctcaa	aaataccata	attcgttttg	tctttcttt	acttttttct	46200
ttccttttcc	ttcccctctc	ccctcccctc	cttccctttc	ctcccctttc	cttccctttc	46260
catctctttc	cttcctttct	tttctctctt	tctctctttc	tttcaacagg	gtctcgctct	46320
gaaccttttc	cagtcagaat	tgctcaggga	tttttagact	tccattctgg	aaaagagggg	46380
gtagttattt	tggtgagatt	gtggtcttgt	ggttagacct	tgtgatgggg	gcctcagcca	46440
aagggttcag	gattttttc	caagcttttc	cctcacaact	tgagttaatc	cgaaacgttg	46500
ctattaggcc	accggacatg	cttttctgca	tgcctgtgtt	gggctgtttg	gattgaaggc	46560
ccagcaaggg	aaggcaccct	cgcccatctg	acacaggcag	gcctctacaa	ttttattccc	46620
taaccagggc	atgacaaact	atggcccata	gaccaaaatt	ggcttgccac	gtgcttttt	46680
ctggccagtg	agttaagaat	gactttttat	tatcattatt	attaatattt	tttgagccag	46740
gttctcattt	tgtcacccag	gctggagtgc	agtggtgcaa	tcacggctcc	tgcagcgtga	46800
aactcctggg	ctctagcaat	cctcctgcta	actttttta	tttttgtaca	gtcttgctgt	46860
tgttgcccag	gctggtctgg	aactcctggc	cttaagcaat	ctteeggeet	tggccttcca	46920
aaatgttggg	actacaggcc	tgagccgctg	catccagcac	ttttattatt	tttaaatggt	46980
tgaaacacat	caagagagga	ataatattt	ctgacacagg	aaaatgatat	gaaattcaca	47040
tttcagtatc	tgtaaataag	cttttattgg	agcacagcca	tgatacaaga	catatactga	47100
ctgcctgtgg	ctgctttcga	gttacaatgg	ctgagtcgag	tagttatgac	agagattgtg	47160
tgggccgcaa	agcctaagat	atttgctgtc	tggcactttg	cagaaaaagt	ttgccaaccc	47220
tgccctgaac	aaataaaggg	acaaattcca	cttgccccgt	ccatctgtgg	agcagagtca	47280
ctgaaaggaa	atactggaaa	tactggaagc	cacttggtgt	tttatcaagg	atgtgaggtt	47340
tcctggcaac	tttgtcgcca	tatcatcatc	atcatcacca	tcatcatcat	catcatcatc	47400
atcatcatca	tcatcatcat	catcatctgc	cctttaagtt	ttctgcttgt	ttagaaaaga	47460
aatttataca	gagcccccag	tagcagctgt	aaggggggcag	gttcttggag	cageceatee	47520

		-continued	
tcaacattct tgctgct	gat ggaagattet caaggatgaa	ggcccctcta tgggagcagg	47580
atcagtctgg ctttagt	aga tgccaatttc tgctaagact	atttcctaaa ggagcctctc	47640
ctcatttgcc ttttctc	cct gttttcattg ggggaggtgg	aagaggagaa aaataattag	47700
agatgctcac ctttttc	ttt ttgctggcaa tttaacagtc	ttttcagctg ctttgattcc	47760
tttcaggcca ttggtgt	tgt atatatttca agatttgctc	acaggtccaa agcttaactt	47820
aagctccctg agacata	tca taaaatatga tttggggaaa	aaccctaatg ggccatgatc	47880
agaacattat tattcaa	caa aggatgaaat gcttaagcca	agatggcctt ctttctttct	47940
ttetttettt ettttt	ttt aatgaaagtt gagcagacto	ccgtccaaca gttttcaatg	48000
taggaattcc cacagcc	cca tttgattgca gtttgttgaa	aagtttaatg tttttgtagg	48060
caattcataa tttccac	att gaacageetg agaggaagag	agctggagcc cactgttgtt	48120
tttgtagtgg gatggtg	gga acttttttt tccctccccc	aaaaggatat aaaactaagt	48180
cagatggttg ggaaaac	gtg gcacagggtt ccagecettt	tgtaaatctg agatgccccc	48240
teetttaggt etteett	tag gacccaacag aatagaaatt	cctgctgctt aatgtctcca	48300
ggaaggaaaa aaatttt	cct ctaggctgta atagtaccta	attteettt tettetett	48360
atttatttat tttccct	att aataagcacc aattgtagaa	. gatgaaggaa gctgggaaac	48420
ccatcacttt tggagaa	ggt taatagette etttagaaaa	tcctgacata atacttattt	48480
ccccaaaagg cacttca	tca gcctgaatgc cagttaagat	tcaaggaatg ggcttggatt	48540
tgtgtgtacc cagcggt	tct gtggcatcaa gttgcactgg	gaaggagagt ttgggggtgt	48600
cactgtggag teeetge	aag tcagcaggac cagggctgtc	tteetgeace atetggattt	48660
ggttagetet etetggg	cag tgggggccgag teteatttee	tccaacaata atgttatata	48720
ggcaatgatc ctgggct	gcc ctaacataat tgaaaattat	gtgtattgta ggcttggagt	48780
gctgaaatgt gggctca	taa aaatatgtgg tgcaggtagc	e ctatggagat tggatgtggc	48840
acacaatgaa gctttta	tgt aaagtaagaa ttataagtct	. ccatgttaat attgtattat	48900
gagtatgaca gttcttg	ggt gggteeteag ggeaggtete	l tcaccttcaa caaagcccga	48960
gtttcctaat tctacag	agc tggtatttgg atgtaatcaa	atcggttttg caggtggcca	49020
aagatgaaaa cttgtcc	acc aatccagete teeceactga	gggatagcat gggatgtaga	49080
tgggtttgac tccattt	ggc atttttgttc acgggttttt	. atgagatgga gaggtgagtg	49140
ttggtgggtg tccattt	tgg ttggcctcaa ggaaatgact	. ctattgagtg gttttgacca	49200
atgcagctca tatagtt	atg tggtaagtga gaatgggaag	ı aagttgggat gagatggggc	49260
agtttagatt cccagag	ccc tctggcctgg gttacagatg	gagactggaa atatttactt	49320
tagtggttct caacttg	aga tgatactgct cccagagaag	ı gtatttggaa gtgatgagat	49380
ggtaaggata accaagg	ggg ttootgttgg tatttactgt	. ctggggggctt ggagtcctac	49440
aagteettea gtgtttg	ggg cagacteeec acetaatace	ctgtcgcaga taggacaact	49500
cattcagtac acagatg	aaa aaaacagaga tcactgaago	aaggggagtc gatgcagggt	49560
cttgtggcaa gatgcag	aca caaceggaet aataactage	ttgctcacca cgggaggcct	49620
ctaggtgaaa gctctga	att tgtagcagac acacccacct	cgtatagatc ctagacgtca	49680
tgggaaaatc gactgtg	tac tttggcaagt agttcttggg	caatgatett ceagetttag	49740
gtataaccaa atttggt	ttg aatttgccaa gcagtcgtat	cttcgaggaa ctccgtcggc	49800

		-continued	
tggettgtgg atggettt	gg cacttetgte tetegtggga	tttgtgcaaa cccttctttc	49860
tgtattatcc tttcctgt	ct tttttctttc tattgaaatt	gttctgacca tcaagaccta	49920
actctgtgca gccttccc	ca gtctattgtc ccagaaattc	tgtcatcttt cttggcattt	49980
cctgagtccc tgagtctc	tg tcacagtgtc accatgttct	gtcttgattt acctgtgtct	50040
gtaaggetee teatgetg	gc aaaactcccc gagagcggac	atctttgtct ctcctagtgc	50100
ttgtcacagc ctgtacac	aa agcaagtagt actcagtgtt	cattgagtaa agttttctat	50160
agaattaata ttaaaacc	ag ccatttattt tgcttgagga	ggtctccgaa atgaccaagg	50220
tgtctcctta tatcttat	at cccctccaag cattcattaa	ctgatggatt agtgagttgg	50280
ccttgagaag cataaagg	ct cgtctccatg tgcttctaag	cattgtgtct aagttctgtt	50340
tggtttcctg agtgaaac	tg tcttaatgtt accaacagaa	gttaaatgcc taagagtttc	50400
ttatacatgg gctgagta	cc tctgtgactg ggcaagccac	ctcacctcat tttaccttgt	50460
ctgcaaaatg aggaactg	gg tcaactcatc gttcaaatct	cactgaaagc taattgatcg	50520
cttttgacag aagtagct	cc cttgggccgt atatttattt	cctagcttgg aggaaggtgg	50580
ggacagacag aattgatg	ta cacctttatt tttatctcta	tggtaaacct gtgcatacta	50640
aagcatteet etggtett	tt gagatgagtg tatacattgt	gtctggccct gtgcattttt	50700
taccaagaag taagtttt	gt tgagtaaact tgggttgtat	gaagaactgc atgctcaccg	50760
tactcaagta gcttttgc	ta cctaaaggac agctgctcat	atgtacttga cttcctttaa	50820
agtgaaggat gatgacat	tt gaaaaacgga ggttgaaaag	gagcagattt ggaattgatg	50880
gtttcctagg acacttct	gg cttgagattt gtgttttact	ttcttccttt ggaatagctc	50940
tatattettt eeteteee	tc cccacctctc ccactcccct	ccageceeca ccaagttaag	51000
gtagtagtaa tgaaatca	tt ttttctgaag ctaccctgta	ctttgaatgc aaagacaaaa	51060
aatacagttg ctagtaac	at taatcttcta tatgtgtact	tactgaactt gagctctgag	51120
gaagacccta ttggaatt	gc atgctttttt atttttttaa	tgattatttg catgcttgta	51180
tgtttttcag tttctgac	cc atgtcacagt tatttcttgg	gctagttgtt ctgcatttac	51240
tttctgaatt cattgttt	tt catttcactt ttgtttcctc	tcgccagtat ctccagatga	51300
aatggccact gcttgatg	tc caggcaggga gcctccagag	tagacaagcc ctcaaggatg	51360
cccggtcccc atcaccgg	ca cacattgtcg taagtaacct	cccagagatg atggcttcct	51420
ttattgaggg ggtgaaaa	ag aaaatgcttt tttgatgata	acaggcetta tttgteattt	51480
ttttctttct ttaaacac	at tttctttgga aatattgttg	ggtatagttt atatctataa	51540
ggtattcatt ttctgcta	tt ggaccttaat gattgtaacc	tacctggaaa ttttacaaac	51600
ctttcctcca ctcttttc	ca tgtatttggt taaaatctag	ccttgtgggc tctagtttat	51660
aggacacaat caccatgg	ta tggaggagac tagaggtggt	atcaaagcag ttataaaaat	51720
acattcaggg caggtgaa	gt gaagaagagg gaattagaaa	actcaaaagg gggtcctgga	51780
tttgaaactt gcctatta	tc ctctccccca atttatctta	atatttgttg gcaacattct	51840
acactaacat tagaaaaa	tt tcatctgggc tggctgactt	gtaaacctag agtagaaatg	51900
aactttgaaa ggctaaaa	tg gaatttaatc tatacatcca	tggctttgaa agtatgtagg	51960
tttgatagag aaagcatt	tg tttttagtac taagagacta	caagtgtgtg tctacatata	52020
tttttaatgt attttctt	ag ggttttgtag gctctaagag	tggaatttat aaattaacct	52080

				-contir	nued	
cttgagaaga	tagctcagcc	ttatttgaag	attcccttct	atgtatttat	atcatgagct	52140
ggacttcata	cttttgaaat	aattaatgga	aggcatattt	ttataatgaa	tccatccatg	52200
acaggtagaa	ttatgcaaag	catgaatcaa	tcatgggttt	ttcatttgag	tatcacaaaa	52260
tgttaatcat	aaatacattt	tgcctctata	ttgtaatttc	taaaaattgc	aaaataagtt	52320
tcttaagtag	aaaaatctta	agatgcattc	tgccattttg	ggctaactgc	ctccttattt	52380
tggagettge	tgtaattgag	catgtgttat	ttaatgagtt	atacctctgt	catatgtgtg	52440
tgtttatatc	acaaaataac	ttattttat	aaaaccatat	tttgagtcat	catttgtgac	52500
aatgtcttct	tttctctggt	ataaatgagg	catgtagaaa	gaagattgac	atttgctaga	52560
agetteecet	ttcctctaac	tccacaataa	aatggatgct	cataattaca	tctgctccta	52620
taaggtcaag	atttcagggc	tggaagtgac	cttagatcat	ttaggcccaa	cttgccctca	52680
ggaaaggaaa	ctgaggccca	gagatgcctt	aagtgaattg	cccaatgtca	cacgctgagt	52740
cagtggccag	agcaaggctt	ggatccagtt	ctctgctccc	tttccagagc	cttgtgatgt	52800
cttctctcct	acaggaggtg	aaaataactg	ctgtggctgg	ttctgttttg	ctgactgtaa	52860
attgggtcat	ggtcagggac	agtgcatagg	tgtaaagaag	ttgctggttg	ggggttctaa	52920
tgcaggtttc	tccaaaagtg	aatgccctgt	taaaaaaaaa	ttcttaacaa	atatacagag	52980
atttttttt	taaaaaagtg	tgacagttct	agacacctag	agagtaaagt	gaagaagcct	53040
gttttcaggt	ttcccgcctc	cctgaatttc	ccagcatggt	ccaggctttg	aaatttattt	53100
atctgctttt	ggcaatggtt	gatgggaatt	tcccacattt	atttttagc	tacagagaaa	53160
ggacattatc	tttaaaatct	cttcgttgtt	ctctctctt	gagtgaggag	agaagatgtg	53220
aatcctggca	gtggttcaga	gtggacacag	cccctgtgtt	tgtggcatag	gctctgtggg	53280
ccccatgcca	gggagcagta	cccccgtgta	aaggagtggg	ggtttgtcca	tttggataga	53340
gcaaagatcc	tccacctcaa	atcccacaag	aacagttgcc	acaacctggg	ccctaagcat	53400
ctcattttcc	tatgtagaaa	ttaatgatct	ggaggagatg	gcaaaacatt	ccttccagag	53460
cctgtgtgga	ttttggccag	gggtgcagca	aggggggctta	ggcacctttt	tcctctgctg	53520
tgtcttagca	ggcgtgttga	ccatagcaac	tcccctgggg	catacacacc	ctcttgtaga	53580
tggagacctt	tgtccaaagc	agccacagct	ggcaactgtc	tacaatcttt	tgggctttct	53640
gctgtgctca	aggggatctg	ggaatggcca	ttgcctagag	gggatgggct	ggtggaggaa	53700
ggtgggctct	gggagccggg	gagaagggaa	aagccatgaa	tttggacaaa	aggacaaatg	53760
tggtttacat	ttgtgaaata	cttgaatgct	tgtcatgaat	ggtgactttg	gttctatgag	53820
tcagccctgt	gatggggtat	ttctgcagtc	ttcacctgac	accaggggtg	agaaggagga	53880
tttctgggga	ggaggaaaga	gttgagggag	ataggaaagt	agagtggaag	aaaggccttg	53940
cgttgttgac	ctctatccac	ctggtcacct	atagtttttg	ggattgagga	tgcatacacc	54000
ttgagactac	aaatttatga	ttatatttt	gctgaacata	aggcaatgtg	ccaaccaaaa	54060
ccagctgttc	tttggctggt	acagtgtgtc	tttgtttgta	aagggtgcat	tctgaatggt	54120
ggctgataca	tcatttgggt	ctttgtacag	ttaaacattg	gccagagggt	ctggttcgtg	54180
tttagagtcg	ccgatgaagg	gctaactttt	ctccagacac	ttggggctct	tgttcacact	54240
ttgcttttca	ctcttttaag	taagacatag	tcacatcaca	gtgtttcatc	agacatgttt	54300
caaaataatt	gtctaaggat	tgcttcttaa	tttccccgaa	atttggaatt	gttgtaactt	54360

		-continued	
ttgggccaag ctatttca	ca attatttcta atgtctcgct	tgaagaatag ggatgtattc	54420
agtgttgatt attaatca	t cgaaactaca actttacaga	ttgctaagaa gaataacttc	54480
ttccagtacc catatgggg	gc agaatettea egtgggaatt	cagagcattt tgttggacta	54540
ttttaatctg attggatta	at tttcatgtgg tatgtgggtt	accacattag aaacgattga	54600
tgtgtagaat aaatgttc1	tt aacaagtgga ggtcaactta	tcaaatgata tttacattaa	54660
gaatagactc cacaaatti	it agtteetgta getgatatag	catctcattt gttatataat	54720
ccagtgattc ctaatctg	ig tteagaggag agaggaaate	gattgcaaca gggacgatgc	54780
cttcattggc tggcccaaa	aa ctgggagttt atacaaggcg	tcagtetttg cetteeteet	54840
ccctgccttc cctcttcc	t ctteetteee cataeteeee	aacaaattca tggacttctt	54900
aacaactcag agacattag	ge cacaagttee aagacaeeee	cacececcag cetececagt	54960
cctattttcg cattcata	a actaaactet ttttettet	. tggtggagtt ttgaaattta	55020
tatttttaat tetttgeto	cc cttttttcct cttacaaaat	. gagtgccaag cagctaagtt	55080
gtgctgagtg gtagagtti	tg agtcagtett ggetggtaag	ı ctgtggggtt aggagccgct	55140
ccctggatac cacctctg	gt gtctttgcta tacaaagact	ttcatttagc ctcctttgta	55200
tccagcaaaa aaagattca	ag tacccaaaat ggtggtattt	tggtatagta tgtatcttac	55260
aaaacggcaa aagacttca	aa aagtteetae aattttatet	tgggggtttc cttttgaagt	55320
cgatgtagaa ttttaccti	cg gggtggattt tttgtacttc	ttggtctggt gtgttttgtt	55380
gtgtaatgag catggaggi	tg tgggataaga aagcagactg	aateeegagg aacaaageet	55440
gccagactgt ggtggtgta	ac ttttcttgtt gttattgctt	aaatgctgca agagagtgga	55500
aaactcttac gaaataato	gc acgatgggta gaacttcaga	gaaaatctct gccgtctacc	55560
ctgtgcattt tcgaggaag	gc tcagagggca tgctgaacct	ttgctttttg tttctgaaga	55620
gttcagggga acctaccca	at aattaatttt ttaaaacact	acctagagag caccctcttg	55680
gttattaaac acatgcgci	tg tttcgatggg atgtttgacc	tggattgtgg atgcttgctg	55740
ggacgtggca tgtgttggg	ga ggetetgtge tgeetgetga	gcaccagcaa agccacagtg	55800
gecectacet etgtgggag	gg ccctgtgcca ggtgccctca	aagagtaggg ggcccatgag	55860
ggtatgacca ggggggacci	tg attteggetg agaagttgge	ggggattaca ggcctgggcg	55920
gctccctgag gaaattgca	at taaaaatgag atctgaaggo	ttgattgggg ttggcccaat	55980
gaagggatag gagaaggga	at ggggagtggg cagaaggaaa	cacatgtgtg aaggteetea	56040
agggaaaagt gcttggcti	tg gacagaggca ggaaatcagg	ı taggaggeta gaggteggge	56100
agggctccgg gagagtgad	ct tggggtgcag catatggtga	ggatctgaca ctggggagtc	56160
atttgagcag gttggctgi	t tctgtaggag cgtgtgttaa	gctgctggca gtggggatgg	56220
tgaaaataga gatgtggaq	gg aaacagcagc ggaacttgct	gacaggttag atattggcat	56280
tgagggagaa aggagagto	ca aaggtaggta gatggagatg	r cttcactgag tgggggagtat	56340
tggaggagga gcaggttt	gg ggtggaagcg ttgtcctttt	agagagattg tatttgccat	56400
tgattgattc attcattg	t tetgeaaata tttagtgtgg	gaaaaagcat gctagacacc	56460
aagagagagt ggagtcaa	cg aagaacgata acagcaacaa	agactgtagc gcttcctatg	56520
cgaggcttgt tccagttg	ct tcagaggctg tgttacccct	gttctagaga ggaggaacta	56580
ggcccaggga ggtggggal	t tgcccagtcg tgggagtcag	gatgtgaaac aaggcaccct	56640

-continued	
ggctccagag cacaccgtcc tctcaaccac tgcagagaag ctgggaaaga gacaaataag	56700
tgggtgctta gagcacaatg tgtgtggtgt gccaagagca gctggggagcc ctgggacccc	56760
cagggaaccc cagccccacc tgggcatggt gggcatggct ggaggaggcc tgctggcttt	56820
gctggagagt gggacatgca tcaaggtggc cagagactgg gcttctgggt gtcgtgctgt	56880
gactgctgca aagggctcat tgacatatgg tggggagggc cagcgtattt tctgcgggca	56940
ggacatttgg gggatatggg gtgtgaccct gtactatcta aaatctttta cttctggatt	57000
atctccactt tctctactgc atatatactt tgtttttatt tattttattc atttatctat	57060
gactcagcca gactctctaa aagagttgac ttgtgtttcc tagcagccac tgagtcagaa	57120
ctttcccatt tcgcagtcag ggctgtggtc agggtgtctg tgttgtctaa ggatataaag	57180
caagcetteg ggeactaeea aaacattatt ttataaggag aactatgagt aeetaatagg	57240
aagaaccagg caatcaggtt atcttttggt gaggaagaag tggtagatgg gatcattggt	57300
getttgaagg gagtgggtgg tgtagaetee aaagtgtaea tggggeeatg atagagteta	57360
tgtcagatgt ccaaagette etteteteet eeeagaaaet etgteetetg gtgaagagtt	57420
ttgaagtttc ctgaggtttg ggttcatggt gtggcaggtg ataccatggc aatagaaaat	57480
atcccatcaa gaaggattgt gtgacctcag ttgtagcccc tgcatgttgg aatcacaaca	57540
atttgcaggg cottaaaatc aaatgocatt toaccaactg cootcoccog tttttttcag	57600
cactgtttgg tagctatctg tttcccctga tattcttgga cacttccaga gatgggggct	57660
ctatctcctg gtggtagact gtttcttttt ggtacaatat gaactcttaa gagagttcta	57720
cctttaggga gctgcagtct ctctcctgga aatgctcaac tccttaattc atgttttgct	57780
gttaaattet getaatgeet eacettaeat gtettgaeaa tttgaaggta getattgtat	57840
tccccgcaac cccaagtett etetteaaaa tgattattaa ttgtaattea aateateagt	57900
gactggtatc ttagactact taaggatggg aattgctaat tttgtattta aaagttgtac	57960
ctctaaagta agtgaaattt atttttaaac gtagctttct tcattcataa agtttatgtt	58020
cattgtaggc agtttggaaa acagcccata atctcaccac tcggagatta cattgtgaat	58080
aatttggtat attteettt agaaatatae caaattatee tttttteete tgagtgtatg	58140
aatatttata tttgttttta acatacttga gctcatagtg ctcagtattt ccaacgttct	58200
gtttatttaa gatgaaaatt getgtagtta ataageaett eeecatgtea ttaaaatget	58260
taaggatttt taatgaccac ataacagtcc ataatatgat taaaccccaa tttactgaat	58320
caatgccata ttgttgggtc tttagattgt ctccttttgt ttctgctact gtgaatgatc	58380
ctgtgatgat catctttgtg tgtaaatett tgteeceteg eeeeteece ttttattatt	58440
ttettgggat agaeeecagg acaaaaggta gaaaagaaca aagtgttaaa aaatteettg	58500
atacatagee acagattatt tteetgaaag tteteaacat ttataactae gageagtatg	58560
taagagagtt atggttggaa tgattttaat gtctctgggg aatttaacaa caaaaaaact	58620
ttaggettet ttggagagag acatgeeett aaeteeaeee egeeetagaa cagagaeeea	58680
gcccatccaa gtcagcctcc ccaggtcctc caccttcaaa acaggcaaac gaaatcattt	58740
cttgaataat tggtaggctt caaggtcaga tgtttatttt agataattca cagcataaat	58800
ttatatgttt taggtacctt agcccctgaa tatactcagt tcatttagga ctattttaga	58860
ggtettgagt ttaetettat aaceteacat ttttttgtga atttttagtt etattatett	58920

			-contir	nued	
tgttttcatg gcat	attatt gggcaaagat	actatttatt	cgatgctatg	tgtgagctgg	58980
gtcaggatta tgad	ccctgag ttatgtttct	gggaaaatgt	acccacttgt	caaagatgcc	59040
gttggctcct gtga	attaagg tcagcccaca	a atgaatgtgg	ggagggctgg	cagcetetea	59100
aatcagctct tgad	ccatttc tcaagctgg	g geetgttgtg	cttggggggaa	gagtetttgg	59160
cageteaget egge	ggctagc gtttcctgad	atttgtttcg	ctgaatgtta	acaaggttac	59220
tggaaaaaag ggtt	ctctcc taaaataggt	ttagggaagc	actgggatat	gcgaagtgaa	59280
tgagtttctt tage	ggcagga tettgaetet	gcaggggggt	tggaggcctt	ccctagagtg	59340
gggcttccta acad	etgeaga getetteeea	a ggacgagggg	caagattggg	acctactttg	59400
gaaggttgtt ttto	gtttegg caeetgetet	: gtttacgaag	cgtgggagcc	tgttttaaat	59460
taatgtgcgc ctad	cttagag ctacactcat	ggttttgact	atgtttatct	ttccagtaaa	59520
taaaacaaaa ttgt	tcattt ggcacccago	c ctgtcctgct	tgtcatttct	tgtcttgctg	59580
attaactcta tgga	atgggggc atgtttctcc	c aaccagattg	taagtttctt	gaagccaagg	59640
agccctgtgg ttga	atttett cacatgtggo	c teteteteet	cccacaatgg	tgcttcgtta	59700
attaagcaga aaad	eccatct ctggttaggg	g actggagttg	atttcgtttg	gaatgagtgt	59760
gacttcatca tgad	cctgaaa gtgttcagaa	a ccatcttggt	tagcacaagg	gcgtggacgt	59820
gtgtctactt tcta	acctgat gggatagcat	gtttaatttg	gggttatgac	actgaatggt	59880
ttgccagtaa ctto	gctaatc caaccttata	a cattccagct	cacagtggag	cgtgtctaat	59940
tgccacagca gcat	ttatgt ggaacgtggt	tgcacaaaag	ctccagaaag	tcaggctgag	60000
ggctcctatc tcto	ectcaat cttggtttad	gatgtctgtt	tctgaggaat	cctgggatgg	60060
ggccactggc tctt	taagag agageeegat	ttggaaatct	aggacttgat	tgttgattat	60120
gggcaataga taca	attttaa gaatgatgtt	gtaggctgta	tgaagtcatt	tgatgattgt	60180
tttgttaatg gctt	cgcaggt cagattttca	a tctttttaaa	ttaattatca	tagaaggaga	60240
aaacaactgg att	ccagaat tgtcccttga	a ggtgtactgg	aaactaaggc	gtgagggact	60300
cataggggtc tgg	ettggaa agtgtattgo	c tatgtccagt	ttacacataa	ggatgtgcaa	60360
atccagcagg ttag	getgage tgeecaggaa	a tatccaggca	agaatgacca	tattctgata	60420
attactcagg ccto	etgeete ateteegete	g ccccccgcc	ccctgactct	cttctgagtg	60480
ccagattcag ccto	ccatttg aatgccaaat	agacaggaaa	ttagcatgcc	cagaatccac	60540
gtctttagtg cact	ctctcc ccagetecaa	a acctgttact	gcttgtgttc	aacatctcag	60600
taaagctcaa caad	categae ceattaetta	a ggcctcaaac	cttgggtggc	atcgtcgatt	60660
getetttet ttea	atacccc acattcaaco	c catcageeea	tcccacaggc	ccaagtgtgt	60720
cctctctacc ttca	aaagcgt gtgtggcato	c caccgcttat	caccacctct	gccattacca	60780
ctggagtcca gtgo	ccatcat ctctcactto	g gatgtggcca	gagtgtcttt	gctggtctcc	60840
ttcttgcttc ctac	cctttgt aacagcctat	catctatctc	tggtctccat	ageteactee	60900
catactttga gago	ggeettt gaaageetta	a gacagatcat	atcacagacc	tctatactga	60960
aagtcgggat aaat	tttatc tctggaaaga	a gtcccaaagc	agcgatgaac	agatattttg	61020
tcctgtcact tgat	cgaagag gtggggcttt	gagacccaag	agcttagaat	ggagagccta	61080
gatgccacta agco	ccaggca ctggccatgo	e ttegagtgga	gcttttgtgc	tggtggagga	61140
gagatggctg gggg	gacacct gtaggctgag	g caagtccccg	ttcatcagac	cctggctcat	61200

		-
-cont	1 11 11	ed

				-contir	nued	
ccagcagggc	gtggctgatg	ttttcaatgt	tgtatcctga	gtgggaccca	gatgcttccc	61260
aactgtgcca	catctgagcc	ctgcatgcca	tctgtccagt	tgcagcctga	ctgcaatgtg	61320
aggctgctga	agagctctgg	atggtgtgaa	gcaatctgtt	ttctagcccg	agcctgcata	61380
gctggtggat	cctggaccgt	gattaagtgc	atcacctagg	cttcaatgag	atggagtcac	61440
tgtgtgtcca	aacagtggga	taaaggcttt	actctttgtc	ttcctgctct	gagggcacaa	61500
gctgcttgtt	tctctcacaa	ggacaccgtc	tgtgttgctc	aggtgctggg	gtgaaaaaaa	61560
cagcaagcat	ttgaaaaggc	tgaagaagga	aagaaagctg	agagcggtac	agccttgggg	61620
actgagccat	cccattgtcc	cagaggtggg	ggtgttatca	agacctgttt	ttgagccata	61680
cctctgactc	ttcctggaaa	gttagaccca	actcaagaac	acactaagag	aagtgtttcc	61740
ccctagccct	ttcagattga	aaggagacgc	caaccttgat	gggtggaggt	agaaaataaa	61800
gtcccaaaac	agtgtcttgt	aagcgaaggg	gaacatggct	gggcagaggg	cttctggtga	61860
aacttttggg	agtattcagt	tggaactcag	gaaaaaaaaa	ttgtttttt	ggaaagaggt	61920
agcagccccc	ttcagccaaa	gctcataaat	gaaggaatgt	ctgagactca	gaattacagt	61980
gaccaaggca	agacattgtc	aaaggctgaa	taagtgagtt	tgactgacag	aggccatctc	62040
catttttagt	atatggccaa	gcatctttcc	cacagtette	cttgagcccc	ttcccatccc	62100
acttctgaaa	agcactgagt	tggccattat	tatgctttt	tcttaaatta	tgaagttgtt	62160
ttcaggtatt	gagaataaca	cccaggtgct	gaactcccag	cataagaaat	caaacattca	62220
aaatggagta	aggttctgaa	gctgacatct	gtctctacac	attttttt	ttctgataat	62280
ggcatttcct	atctccaccc	tcactcttt	tgttgtggtg	aactacactt	cccttgttcc	62340
actcggttct	gttgcacatg	tgattaggca	aggggcagat	atgtgatatt	tattatgagt	62400
cttttccacg	cagagaggat	ctaaatctgg	ctctttgcaa	ttgccttcat	acatgtgcat	62460
acacaccaca	cacacacaca	cacacacaca	cacacacaca	cacacagaca	catacatatg	62520
cacacacccc	gactcaatgg	aggaccctca	tttgtagaag	ggtaaaatgg	gtgaggcgga	62580
aatgcctgta	tggcaccatg	gagttctgtg	tagccagttc	taatcctggg	ctatttggta	62640
aggaatgaag	ttggagatag	tcttctgtcc	cttacaacca	aaggaattct	aactaatagt	62700
ttgccaagtt	ttatgtttat	aataaaaaat	gacatgcttt	ttcttttgga	tttttaatgc	62760
ttttgaatta	aaaatgctag	aacatgaact	gattetteta	tcgctattta	gatagagcct	62820
tgcaagagca	gagcacgcat	gctttcttta	agaacaggtt	ggtttgtggt	cgtctgagga	62880
ctgttttaag	gagacttatt	atacacaatc	atcccccaca	aatgatttct	aaagagaggc	62940
tggtatgaaa	gaaggagttt	ccatgattct	gtcctgtggt	tctggggaat	tctgaaaatg	63000
aactttagat	atttttgtga	aattcttatt	ttcatatttt	tggtatctca	gagttttctt	63060
ttctggcttc	tgtttaacat	actcttcttt	gccctaaatc	tctcttattt	ttgctccttg	63120
ggacaactga	agaatcctta	gataattaat	agtatgaaat	actgcccttt	tagttgaaaa	63180
atgtcacaat	aatgtaataa	gataaataag	gaggtgtcgc	tttaacctgt	atcgtgtagt	63240
ctcctctact	tactaacact	tacttgtatt	actagaagca	ttattttta	aatcatggaa	63300
aattggtggc	aagctgagca	tacagttgtt	tatttctgtt	tgactgatta	ttacaacttc	63360
attatttgat	gaaggttctg	tacgttttcc	tttaagacac	atagaaattg	tgagaagatc	63420
ctgcagcccc	gaaaggctac	agtgttgatc	caaggactct	gagccgagtg	cagggtttgt	63480

				-contir	nued	
acttggacct	gcaggctggg	tggcgtctgt	gggagcagtg	tgttgagaga	gattctgagg	63540
ctgtatgtgt	cagggcctcc	aggggaagga	tgcattgatg	gattaatttc	tgccaaggct	63600
gaaagaggag	agagtaagag	gctgtagagg	tgtcacagct	gtcattgctg	ttttaggcag	63660
tcaagctttt	gggaaagtgt	cagaaattga	gccccctact	ggatctatcg	gagccctgtc	63720
aaatgtccat	ttagatgtcc	tggtgaacaa	aagttctctg	actcaccatt	taaaaacttg	63780
ttccaaatga	aattatggga	gaaaggaaca	tttttcatcc	gaacccagaa	tgaggatgta	63840
cccaaggaaa	aggacgtagg	ctcaggagct	ggactgtggc	tcagctggcc	tgatgtatcc	63900
cactttgttc	ctcccatggc	tgggatgtct	ctttgctctc	catgacccat	gtatcttgag	63960
gacatgacac	atggaccaag	cttgaactgc	ggattcattt	ttatgcattc	tacctgtgaa	64020
tgattgcagc	ggatctagtc	gtatttctga	gagttactca	aactggactt	cagcagtgaa	64080
ctctacagtt	ctcttttcct	cccacctttc	tattagacat	tgcatgatac	aaaaatcaag	64140
atatttctaa	gagggtgata	acttcaatgt	tatctaaact	tttaatttgg	aagaagaggg	64200
gttctttgtt	ctttttaaaa	agatacaaac	gaacttcttt	atctgattct	tttttggtg	64260
caaacccatg	atgccttctt	cctgattcat	ctgctacact	gtgagttcaa	gcctggcgtg	64320
ggacacaggc	acagctctca	tgccaacgat	ctcatggtta	agttttggaa	cataatttga	64380
aaaatgtaac	ccattgagag	gcagtaagga	catacggtga	gctagtgcgt	gtttggacgt	64440
ctgtgtggaa	taagtgagtg	ggtagagagg	acatttgtca	aggagcggga	gggcgggcca	64500
ttggcttggg	ggaaatgggc	tgagactcta	ggggtggcca	gcaccgcata	cggaggccag	64560
cagggttggg	cttggctaag	tgctgtggtg	tctggatgcc	tatgtgagtt	tcctccagaa	64620
gttttcagtt	ggcaaagtag	aacctgctgg	atatgtagca	agggtgtgga	ttgtcgggat	64680
cctgctgggc	gcaggcgtgt	gataccagag	gtcagaacag	aagctgaggg	atgaggettt	64740
gggagctttt	tgtcatgcac	tgtcctggag	cctcagttac	tacaaagtct	gcaaatgata	64800
gaccggagct	ttggttctgc	ctgatgctag	ctcccctgtt	cctgattttt	cttttcaata	64860
ttagacttaa	tcccagaatt	cacatgttga	aagaaaactt	agaggtctag	tgacataaaa	64920
gcctcatttt	gatcgttaca	gaactgatgc	cttgagaaat	ggagagagaa	gtacacgatc	64980
atggtaatac	tggatgttca	ctgagcactc	actagctcca	ggccttttct	aagtaattta	65040
tgaagttgtc	aggtttaatc	ctcacaacgc	ccttatgaat	gagctattgt	tattatcccg	65100
atttggcaga	tgaggaaact	gaggcttgag	gggaggatga	cgtactcaag	gtcacacagc	65160
tgggaggcgg	caagctggaa	gttgaaccca	aggagtetea	catcggagcc	aggactctca	65220
cccttcagtg	ttatgctgcc	ttaatcaggc	acacatacag	gcggggagag	gcaggtttcc	65280
ggacaccaga	ctaggctggt	gccggtcagg	ctacaccagg	gaacctggag	gcctgtcatt	65340
cttttgtgat	gctgttagtt	cctgttgagg	aagtgaggct	ttgtgggttc	ccaggaggaa	65400
aaggtatgaa	ctcatggcaa	aagaaaggaa	ccaaaaaagg	gagatttgca	tcacaatgag	65460
ccttctattc	atcctaaatt	atacctcctt	ttataccatg	tgtgtctgca	aacttgtggg	65520
taaatcacaa	atctttctgg	taagttacaa	tggatggaag	gtttttgcat	ttctctcaaa	65580
tcaccaacca	tttaatgcta	tgtgtagtca	ctccctaatc	tatcttttgt	ataaatttgg	65640
atctttgagt	attggggttt	tccatgatgt	ttggcagttc	cccttagggt	gtctatctca	65700
aagtttgtca	cactgacaag	ctttggggag	agaagttaga	ggtgggcttc	cctgttttta	65760

		-continued	
gtggctgtgt ctgattgtt	c tgtctgttct ccaggacagg	agagattgat tgctttctag	65820
cttttttaa aattaaaac	a acaacaacaa aaaaatacag	aaaggtacaa aggataacaa	65880
acacattcat gtacctgcc	a cctaaaataa caattactaa	tetttteace etectageee	65940
atgatettee eteccagge	t gttattaata tgaaaaccga	gttcaggttt ttatactttt	66000
cgacatctat ttatattaa	c gtatgtatta taaataatct	tagtagtttt taactttgac	66060
ataagtggct tcacattcc	a cataacattc tgcagcatgt	tttcttttat ttttatttt	66120
ttctttattt ttaaatttt	t attttgcagc atgcttttct	tattcaacat tacatttgaa	66180
ttttttcaac attgtacat	t gaaatttagc tcattcttt	taactgctct gtagtattta	66240
ttgtatgcat atactacag	c tttctatttc tgtattgatg	gttaattagg ttgcttacag	66300
ttttttaaga ttacagatt	c tgctgtaata accatccttt	gggcaagtgt atgtaggtac	66360
ctatatatga gtttctcta	g gattcatacc aaagtagagg	aattggtagg gcattggttt	66420
gctggtttta attttaatt	c acatgctatt gtcaagctct	ccagaacaac tggatgagtt	66480
gattggatca atgagtatt	t ccatcaccag catataaact	ctttcctcat aatcacacca	66540
atgettgate etgttggae	t taaaattttt gccaatttgc	tgggtatgca acggcatctt	66600
acctaatttg cctttattt	g atgactcctg aggttgaaca	tctggtcata tgtttatttt	66660
ctcctctgtg gcttgcctg	g tttaatgeet tetteatttt	aaagaatcag atagttttct	66720
gttattgatt tataggaac	t ctttatataa gttgaaaact	tgattatatg tgttggaaat	66780
actttttcta ggctgtgat	g ttttaaaata ttgctttaga	tgggttttca tttttacctt	66840
ttattttaga gatggagtc	t cactgcattg cccaggctgg	attgcagtgg ctattcacag	66900
gaaagagcat agtatgtta	c ageeteeace teetggtace	aagaggteet eetgeeecag	66960
cctcctgaat aggtgggac	c acaggtgcac atcactgtgc	ctagctttgg atgggttttg	67020
aaagaaagaa gttttaaat	t ttaatgeeet caaatteate	tgtattttcc tctgtgcttt	67080
tattttgtac ccactctaa	g tageteegaa ttetgeagat	agttggtgca ggaattctga	67140
ttttgagtgg acatctgct	c tctaacagtc acattgaagg	aaattaggtt tttttggtag	67200
gaatctaagc aaggggttg	a tttgtaaact aggetttaaa	tatgatttta agcaactcac	67260
ttagaacaag atacaaaaa	t tgtggactgg acctatatct	ggaaaacttg aaagtgctag	67320
ggcaataaat aattcttgg	t cacatacagc cgagatcctg	ggctcctgac tctgggacag	67380
aagettteta tattttate	t catcagtett tgeaacagge	tccttgaagc aattttatcc	67440
ccattttaga gataagaaa	a ccagagctta aagcagttag	ataatttatg aagtaagtgg	67500
cagagccaag attcaaatc	c agacctttct gaccacaaag	ctcgttgctg aataccgcgc	67560
ctcattgcct tcttgcgaa	t tacttgggat ttgtttgaat	cccaaaatct ttatatgtta	67620
ttttaaattt gaatctaat	t ggaagtgggg cagtgagggt	agaggacaga aagaagggga	67680
agagcttgag actcaataa	t agaaacaaaa aacccgtctc	caggagggggg gttcaaaagg	67740
aagaattcca tatttcatg	t aactgaaacg ttaaaagccc	aaataattgc atcatgcaag	67800
tctgatgctg agtaatcac	c ctcccccata ttattgggga	gaggggggcaa gaagtctggg	67860
aagctgtttt tgcctaagg	a attacattcc aggggactct	gaggatttag gtaaccacaa	67920
aagccattta tttcgagta	c actgagattt ctaccacttt	gatccctaat ccatagcata	67980
attaataaat gaaatgtgc	t gtagcatggg ttttttacaa	agtgtacttt taaaatggct	68040

				-contir	nued	
tttggtctga cat	gattcat	ttgccacttg	gaaaagcgtc	atcgcctcag	atgggcaggc	68100
tgggagaggc tgc	ctggtgg	gtagctgagg	gcggtttcct	ggggcacagt	tcctgccttg	68160
ggcctctaca gag	cggtctc	atccaaacat	ctcccagact	ctgcgttttc	caggaagcgt	68220
gcagaaatag gag	gccagta	ctgaaatgct	atctgctctg	tgtatgtcag	aagaccacaa	68280
accacttata aca	aatgaag	atctttttat	ttgttcttat	ccctttatgt	cacttgagga	68340
aagttgctgt gag	taggtga	tgatcattac	agtgatcact	ggttgcccaa	actgagaagc	68400
cagacatttg gct	tggtttc	tctcccttcc	tettgtetet	cctaccctgt	aaacacatac	68460
ttggtgatta ccc	atgggga	gacaagacag	gctgggaata	tatacttctg	caacttcagc	68520
ctcctgggtt cca	gcgattc	tcctgcctca	gtctccagaa	gagctcggat	tacaggtgtg	68580
caccaccagg ccc	agctaac	tttttgtatt	tttagtaaag	atggggtttc	atcatgttgg	68640
ccaggctggt ctc	gaactcc	tgacctcagg	tgatctgccc	tteteggeet	cccgaagtgg	68700
tgggattata ggc	gtgagtc	accgagcctg	gccccaggca	ataatatacc	agtgggcaag	68760
aaaatattct tgc	tctcatg	ggacttctgt	tgggggtcag	ggtataggga	ggaaggcata	68820
gagatgaaaa cca	gtaaata	agtaacaggg	gaaaacattt	taaatacatt	aataactaat	68880
aaaatagaaa taa	atctgtt	ggctacttaa	caggatgtgc	cacattccag	atacattacg	68940
ttaatcctta tga	tctttgg	gggctaagta	ttagtattcc	attttacgga	tgaagagact	69000
gaggeteaga ggg	aagggag	gtggetttte	tcaggtggaa	agccagacct	tttcagtggt	69060
cattcagttc ata	gctaagg	tcttattttc	tgtgctctct	gtcggctgaa	aatgggcaag	69120
gtaatttcac ata	gtgacag	gagccatgtc	agagaaagag	caggacagtg	ggacagagag	69180
ggaccaggct ggg	ggctgtt	tgagatggag	ggtcaggaag	aaccaaacta	agatgtgaac	69240
agtgggaggt gtt	ggagctg	tggtgcttgc	ctagaaggac	cctcatcgag	caaatagaag	69300
cttctggcag gaa	gaagtta	atgtettgeg	tgtgccctat	gtaggttcat	tagggccttt	69360
aaaggggggaa gaa	ggtggtg	gctataaatg	ttacaatctt	acctttggcc	cctagggatt	69420
ctgtctttca acc	ttggttc	agtaacaact	tgtgactgcc	caacagggct	tcctttcggg	69480
agagaatggc ttg	ttacatt	caaatatgcc	atgaaagtat	caccatttat	ttcagtgtct	69540
gatgccccag ctt	gggcagc	ctgagcaggc	tctgaatggg	tctgaagagg	ccctttagag	69600
tagagatgaa gag	ggggtgg	ggaatcctca	attctaaaca	aagagtctgc	aatgggaaga	69660
tggccaaatg ctg	ttttgg	agtgggtgag	agggaaaaga	aaggtataga	tggttcgttg	69720
gaaaatgtgg ttt	tataccg	ggttttggtg	tcaggtcccc	gagggcaaca	tggactccac	69780
actgtgatcc tcc	gggcagc	tcatageeec	agccccttcc	ttttgcttcc	tggtcagttt	69840
gtgagaagga ggg	gttgtgt	ctccaatctg	agcaataagg	ggtctgaggg	gggttggatc	69900
catgtggctt tcc	tgtgtct	tgttccttgt	aaaagttcca	ggttttgggt	cgtgagctgt	69960
gtgtgtgtgt gtg	cgtgtgt	gtgcgctgta	cgttaatatg	gagagatggg	cttgggccag	70020
tgggaaatag aga	gacccgc	aagcacagag	tgacagggtt	tgatagtaag	cagcaggcca	70080
gcgttgctgc ttt	tattcct	cggtaaatcc	ttgcacaatg	ccatatgctc	ttgcattccg	70140
tagctgctgc ata	gggtgtg	atttagttaa	tgcccgctct	gcaaacagga	aacggtgctc	70200
actgctgtgt atg	cttttca	tggagataaa	gtgtcaggag	caagacccca	aacctgcgaa	70260
atcactaatg caa	ccgcccc	ccatgcccca	aaaggtggga	gtgggggata	aaaagagtag	70320

		-continued	
gaaagtggtg tgggga	gggg aagctttagg gccataactc	agacaatttg tcaggcagtg	70380
gcatcggttg ggagga	aaat attgatgtac actttttgtt	tttgaacctg aagtttgggt	70440
tttttcggat gcattg	gagg acttttaaat gttttcggag	l tgccagagtt tggactgtta	70500
ggtcaccgta ggtacc	ggct tgcatatcat ttcagaggaa	tattttcaaa actccataaa	70560
aacatgcggc tttcaa	ggct ggaccacttg ttcaggtcct	cctcccaccc cccacccttt	70620
ttggcaaaac catgca	aaca ttggtattca aaaatatttt	gttacttttc ttggcaaagt	70680
gttccaagaa ggaatt	gcaa cacagtetea gagttaggag	gcaactttct ggggaaaagg	70740
cggggggttgg ggaggt	ttgg agtttgaatc aaaaacagac	accgaagctt taataaaata	70800
aatgaagcgg agccct	ttca gctcacggtg gactgtgttg	gtgcgcgggt caggctttaa	70860
cgtgcctagt ggaaat	tgac agtctgagaa ctgggacata	aacaaaaatg tcagtccctg	70920
ggagtettgt teactg	gaca atgteteaat tgtteette	gttttcaagg cagcagggag	70980
agtggaatat taactg	ttta ctgcccaaag ctggctcgga	aattgcttgg agaaggggag	71040
aaaaaagaca gaaaat	caca ttttttattt agaaactatt	. aaacatgtca gtaagagata	71100
ggaaaagagc agattg	tttt ctccttaatt atctgccatt	cacttccata tttctgcata	71160
ccatttttgg ggtgtg	tgtg tgtgaaggaa cagcagggtg	tttcttttta aatttgaatg	71220
ttagccttgc atattg	tcag tttttaaagc ttgctggcat	gtagattatc cgcccccggt	71280
ggatatgaca gtgggc	ttta ggaaaggaag tgtgatttct	gataacattt acatcttagc	71340
tgttcagcgg ataccc	tgtt agtgtttgtt cttcagaatg	ctcagataga acaaaaatca	71400
agtggttgga atttta	aaaa acaaaatgta tttggctctc	e cataaaaatg catttagtga	71460
taaagggggg cagcaa	gtaa ctatgtctga gagaaggaat	tgcaggcaca gaggagatcc	71520
agaattetgt teacae	ttga atttacttga ttcgagaaac	aaacagcaaa gcctggtgta	71580
ttggccttta tctggg	caaa gttcaaaact caactggtaa	ttatgtcctt agaagcctta	71640
aaaggactgt gttgtt	acaa aagcagtgac tgagcttact	tcttcaggac cgaatgcact	71700
cgagttgttt gttaga	taaa cttgttttaa taaatggggg	ggtcagggga gaggtttctg	71760
ttcttggaag attccc	tgat aagtagettt ettetettge	agaacttcag gctttctctc	71820
caagcgaggg gtttgc	aggc agctaaagtc agcttcggct	tctgcttcct gtcagtcagg	71880
aagtcacttc cttaac	ccaa attacaagct agagcacaac	tccccagcca taccgaaaag	71940
agcaggtttt tcccag	aaga ctgtgtttct agatgcggaa	gtgtaaattg gtacgctgtg	72000
tgatcatgga atgccc	aaaa tacataggga acagtgttgt	tggaaagagg cgctgtgtcc	72060
ccaaggagaa gacgcc	gccc agaatggctg gatcgcctgt	tgtggctgag tgcgaggcag	72120
ctgtggctgg ctgctg	tgtg acgatgacct agtagccacc	catgtggagt cctggctgcc	72180
tcagaaccct atcaca	tcta ggcaaaatct tgcattttt	atctgggagg cctgaggact	72240
tcagggctgg tggata	gtaa gctccttggt tatctcacag	ı atacaagagg tettgggaat	72300
ccacgatcaa acttga	tgtg tgcgtttacc ctcctccctt	tgaatctgtt attcaaatat	72360
ttaagcctcc aacctt	gtgg cccctacctg caccacccct	cacccccccg acaaaaatca	72420
agctcttgac ctcatg	gett ettteagtga eeettggggg	acagggtttc ccaaggctgg	72480
ttgccagctg gcatgg	teee eegttggtga agtggagaee	tgtgtttttt tggtcatttt	72540
gcaaagagct tatgga	tgac agcagttete tgtgeetege	tgggacagag tgtattctga	72600

	-continued
ggtccagcgt ctgcatggag atctgcctat ccttc	cacttg gggtgctcag tagataacgc 72660
ggccactttc ctatacattt ccttaattta aggga	aacagc gtaaactcag cccaggtgga 72720
ttaatctctc cagtgacttt tgaaacttca atttc	ccaatt tccctcttat gtctaggtgt 72780
gagtgaggat acgtgtagta attgtcgcag gtatt	tagtga gaaagggtgc agatcacaca 72840
aatatttcac acgttattag ttggaccaga ctttg	ggaggc aagggagggc cgtgtcacct 72900
aggaaatttg ctcttccgtg gagatgaaag ggcag	gtgaat taagtgeetg ettttetee 72960
ctttttccct ctgacggtta ttgatcctcc cctgg	gaactg tacagttcac gttctgatct 73020
ttttcttgac aaagggaatt cccagtttgt tcgct	tggcga acgcactagc aggtgaggag 73080
ttaaaagttg gcaacgcctg ccctctcgag agtgt	tcagga tttttagtct cttccttgag 73140
agctagaaga tgtttctaaa agaatctctt tggtg	gactta gaagtggaga gagctttaga 73200
agcatggcac aaataaaagg aaagaggcaa acacc	cgtcat tctacatctg tttattttgt 73260
tattaacaaa aggcaaggcg attttcatta aagtt	tttgct ggggttgggg ttgagggtgt 73320
agagagcaaa agtgtgagtt gtacaccatg actgg	gaatcg cttggacata ctcttcagca 73380
gacatcgtgt gactgtggaa gaaatgagtt tcatg	gaagat gactgataga aggaagccac 73440
tgaaccagtc ctctatcacc tcttccaagg ctaaa	agtttg gagccacttg cagaaggctc 73500
teetcaaace cetgtgttet ttgeetaece etget	tgttgc cacatcatct tggagagctg 73560
gctgcttccc tcctcaacta gaagttccta gtgcc	ctgctt agttcttgtc tcttgcttcc 73620
caagtgctca caaaatacat ccatgttcgc tacga	aggaaa tggaccacat aaggtttccg 73680
tgaaaacctt agcccttagg tctaacacag tagga	aacaga agttaatgtt ttcctgacgt 73740
agaagtttet ettgetgett etggteacat ttett	ttettg tgtggttett etatggetae 73800
tgcacttttt tttttttctt actgtctccc ccttc	ccccca cacaccacct tttggggata 73860
gggtggcagg tgagaatata aacagataat ggtta	aagaga tagtttagtc tttctaggcc 73920
agattattta gtttttgcca tctaggtaaa attcg	ggtcca attaagcgtc cattaagtgt 73980
tttaatataa gctggagaag gagttgaacc tggag	ggtcag ggctctgtgg tctattacag 74040
teecetggg gtetetagee caagggagae teeag	gggtct taataaatga ctggggggttt 74100
cattttgagg cctttactac caaagactga ataat	tacatt gggcatgatg gttttgtcct 74160
aaacattaac agccacaaaa ggtagagagt gtgtc	ctgttt atagatacac atgtatcatg 74220
aataattagt tggggactgt gcatcaggtc tctca	atttta cattcgagga agcaatgcac 74280
ggaatgaatt ctggacctgc gaactctgaa tttca	aattet etgteteeta ettttaetgg 74340
agtgcttgca aacagtacag tgtttttgtt gtgaa	agttat accgtgcctg taatctctct 74400
gcgggtggcc ctcctaagcc ctacttcaag aaata	agetet aageteatga caeeegeeee 74460
accegatgee tacatatgte ttatateett ggagt	tagtgt ttggggttgc aaatttgact 74520
ttagggagac atactctctg atgataggct aatgc	cttata tttactgata aactteettt 74580
ttgacggtca tgggcttcgg gggccaccca accaa	aactgt gtggctgctt ttatgttggg 74640
ccaaaagaca ggctccttgt gtcctcccag tttct	ttaaac aatgaagtca tggcatttta 74700
cagtgctggt gaatggattg agattgtggt ggccc	ctggaa tgtggcactg ctctggctgg 74760
agggaagatg agagtgaggg atggagagga gagga	agagcg ggagatggga acctggtgga 74820
cacaggaggg agtgtgagtt ctgagggcca aagga	aaactt gacaccggat gggacattaa 74880

		-contir	nued		
tctgattctg ttatctgagg ctgtcaccag to	cctccctgt	cctcctggca		74930	
<210> SEQ ID NO 2 <211> LENGTH: 384 <212> TYPE: DNA <213> ORGANISM: Homo sapiens					
<400> SEQUENCE: 2					
ttcaggccat tggtgttgta tatatttcaa ga	atttgctca	caggtccaaa	gcttaactta	60	
ageteeetga gacatateat aaaatatgat tt	ggggaaaa	accctaatgg	gccatgatca	120	
gaacattatt attcaacaaa ggatgaaatg ct	taagccaa	gatggccttc	tttctttctt	180	
tctttctttc tttttttta atgaaagttg ag	gcagactcc	cgtccaacag	ttttcaatgt	240	
aggaatteee acageeeeat ttgattgeag tt	tgttgaaa	agtttaatgt	ttttgtaggc	300	
aattcataat ttccacattg aacagcctga ga	aggaagaga	gctggagccc	actgttgttt	360	
ttgtagtggg atggtgggaa cttt				384	
<210> SEQ ID NO 3 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Homo sapiens					
<400> SEQUENCE: 3					
ttcaggccat tggtgttgta				20	
<210> SEQ ID NO 4 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Homo sapiens					
<400> SEQUENCE: 4					
aaagttccca ccatcccact				20	
<210> SEQ ID NO 5 <211> LENGTH: 366 <212> TYPE: DNA <213> ORGANISM: Homo sapiens					
<400> SEQUENCE: 5					
ttgtcccttg aggtgtactg gaaactaagg cg		0000		60	
aagtgtattg ctatgtccag tttacacata ag				120	
ctgcccagga atatccaggc aagaatkacc at				180	
cateteeget geeeceege eccetgaete te				240	
gaatgccaaa tagacaggaa attagcatgc cc				300	
cccagctcca aacctgttac tgcttgtgtt ca	aacatctca	gtaaagctca	acaacatcga	360	
cccatt				366	
<210> SEQ ID NO 6 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 6					

ttgtcccttg aggtgtactg g

<210> SEQ ID NO 7 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 7	
aatgggtcga tgttgttgag	20
<210> SEQ ID NO 8 <211> LENGTH: 558 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 8	
gctgtgaaat cccctgtgta gtgggaagaa gaaatagcaa atcttagctg ccttggacct	60
gatataatta tttgtcttca tttacatggt tyatccttca aggttgaata aatgatgtgg	120
gagctagtca aggggcttta ggtatgtgat ttcatgccta ctttttttta ggtagagaaa	180
ctgaggtcac agggtactag agaatggact ctaagattca ggtttctgaa ttgcctgtgg	240
ttttgttgac tcaactgctc ttctgttgtt ttttagccac atgccttgaa acagtcctct	300
tteecatgtt tetteateag caccattaac ecaaggtata etgteetete ttatetttea	360
caaggtettg gagtteeeat geetttgtaa geateeetee eegagattea geaceaacea	420
aaatcacatt tggaaaaatt gcttgtttcc caagaagctt tggaggatat gattttgtat	480
agaacgggtt cacaggtttt ctgttcattc ttctatggtg gagtgtgtgt gtatgtgact	540
ctgtcttctc tccattcc	558
<210> SEQ ID NO 9 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 9	
gctgtgaaat eeeetgtgta g	21
<210> SEQ ID NO 10 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 10	
ggaatggaga gaagacagag tca	23
<210> SEQ ID NO 11 <211> LENGTH: 364 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 11	
aagggagaaa gcaggattga gcaggggggag ccgtcagatg gtaatgcaga tgtgatgaga	60
aagggagaaa gcaggattga gcaggggggag ccgtcagatg gtaatgcaga tgtgatgaga tctctgccgg accaaagaga agattccttt ttaaatggtg acaaattcat gggctttctc	60 120
tctctgccgg accaaagaga agattccttt ttaaatggtg acaaattcat gggctttctc	120

-continued	
ctggacacag gcctgtgtga ctgagaagct tgggcacttc actgctacat ttcatctctt	360
cgct	364
<210> SEQ ID NO 12 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 12	
aagggagaaa gcaggattga	20
<210> SEQ ID NO 13 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 13	
agcgaagaga tgaaatgtag ca	22
<210> SEQ ID NO 14 <211> LENGTH: 579 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 14	
ctgatgaggg tagggagcat ctgtctgcag cttcatcttc attgtctagg ggctccagaa	60
atatetgtga gtaaataagt tatttaatet ttgeeteaaa ttteeagtga etgtagggat	120
atagetgtga geetetagga getgagattt tttaaattte ceaettaaae atttatttaa	180
aaattttgtg ctcagcatgg actaaggact ttacattcat taactcattt acagcttgat	240
cctatgcggt gggcattcat ttacagagga tcccatttta caggtgagga agaggccagc	300
taggggtgca gcctaggtta gtattctaga gctcatcagg ctgtgttgtc cccagtgaaa	360
gaataagcaa agaagtgaat gttgtgcatt gagaaaaatg actctcggag gaggatgagc	420
ctctcggata tggcgaccga agtgatwtgg ggcccttgtc aagggtctct attatggcat	480
caagaaaaga tgctgctttc ggtgatgccc gaggagagcc tcaatatttt acatgggaaa	540
cctaaaaaag gggccatgtt gtggtctctg cacctaaga	579
<210> SEQ ID NO 15 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 15	
ctgatgaggg tagggagca	19
<210> SEQ ID NO 16 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 16	
tcttaggtgc agagaccaca ac	22
<210> SEQ ID NO 17 <211> LENGTH: 486 <212> TYPE: DNA	

-continued	
<213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 17	
tatttagaaa ccataaaatc cacctatttg aggtgtacaa ttgagtgatt ttctgtatag	60
tcacagatct gtgcagtcat ccacaccctc taactccagg acattttcct cacccccgag	120
gagaaacctc ccttacccat tagcagtcac teetcattte eteteeece ageeeetgge	180
aatcactgtg gatttgcctg ttcttgacat ttcatataaa tggtatcata aaatctaygg	240
gettttgtgt etgtetgett teacttagea taeggttete aaggtteate eagtattgta	300
gcatctatca gtatgtcatt cctttttatg gccaaataat attttattgt atggatagac	360
attttgttta ttcatttatc tgtttttggt tattatgagt aacactacta tgaacatttt	420
gcacaaattt ttgtattgac atgttttcat ttctcctggg tatagtccta tgagtggaat	480
tgctgg	486
<210> SEQ ID NO 18 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 18	
tatttagaaa ccataaaatc cacctat	27
<210> SEQ ID NO 19 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 19	
ccagcaatte caeteatagg ac	22
<210> SEQ ID NO 20 <211> LENGTH: 428 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 20	
ttgtctcctt ttgtttctgc tactgtgaat gatcctgtga tgatcatctt tgtgtgtaaa	60
cettigteee etegeeeeet eeeetttat tattitetig ggatagaeee eaggaeaaaa	120
ggtagaaaag aacaaagtgt taaaaaattt cttgatacat agccacagat tattttcctg	180
aaagttetea acatttataa etaesageag tatgtaagag agttatggtt ggaatgattt	240
taatgtetet ggggaattta acaacaaaaa aaetttagge ttetttggag agagacatge	300
cettaactee acceegeeet agaacagaga eecageeeat eeaagteage eteeceaggt	360
cctccacctt caaaacaggc aaacgaaatc atttcttgaa taattggtag gcttcaaggt	420
cagatgtt	428
<210> SEQ ID NO 21 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 21	

ttgtctcctt ttgtttctgc tac

-continued	
<210> SEQ ID NO 22 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 22	
aacatctgac cttgaagcct ac	22
<210> SEQ ID NO 23 <211> LENGTH: 330 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 23	
tcagggacag tgcataggtg taaagaagtt gctggttggg ggttctaatg caggtttctc	60
caaaagtgaa tgccctgtta aaaaaaaatt cttaacaaat atacagagat tttttttta	120
aaaaagtgtg acagttctag acacctagag agtaaartga agaagcctgt tttcaggttt	180
cccgcctccc tgaatttccc agcatggtcc aggctttgaa atttatttat ctgcttttgg	240
caatggttga tgggaattte ceacatttat tttttageta eagagaaagg acattatett	300
taaaatetet tegttgttet etetetttga	330
<210> SEQ ID NO 24 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 24	
tcagggacag tgcataggtg	20
<210> SEQ ID NO 25 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 25	
tcaaagagag agaacaacga aga	23
<210> SEQ ID NO 26 <211> LENGTH: 574 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 26	
tatttagaaa ccataaaatc cacctatttg aggtgtacaa ttgagtgatt ttctgtatag	60
tcacagatet gtgcagteat ceacaceete taaeteeagg acatttteet caeeeegag	120
gagaaacete eettaeeeat tageagteae teeteattte eteteeeeee ageeeetgge	180
aatcactgtg gatttgcctg ttcttgacat ttcatataaa yggtatcata aaatctatgg	240
gcttttgtgt ctgtctgctt tcacttagca tacggttctc aaggttcatc cagtattgta	300
gcatctatca gtatgtcatt cctttttatg gccaaataat attttattgt atggatagac	360
attttgttta ttcatttatc tgtttttggt tattatgagt aacactacta tgaacatttt	420
gcacaaattt ttgtattgac atgttttcat ttctcctggg tatagtccta tgagtggaat	480
tgctgggtca tataataaat aactgtttaa cattttgggg agctgccaaa cttttaaaac	540

-continued	
cttgggttct gtgatgtacc agttgtgtta ggca	574
<210> SEQ ID NO 27 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 27	
tatttagaaa ccataaaatc cacctat	27
<210> SEQ ID NO 28 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 28	
tgcctaacac aactggtaca tc	22
<210> SEQ ID NO 29 <211> LENGTH: 571 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 29	
tgccaggggt tttatggtta attttcctcc attatgaggg ttgactcagc cttgggtatt	60
agatgtettt gagaatecag ggtteaaata eeacagetgg tagaatgttt eteaaettgg	120
agocaatoto catotaotga aggtaogotg gtttagacag acaacaggga catoagoatt	180
ttaaaaagog gtggaaaaag tttgottgto ttgattggag ocatgacatt ttattttgaa	240
atttcaaata acatgaaggg aggtttggag cggtttttgg tttatccaaa gggcagtgga	300
ttgaaggetg agaaacacca ggetgaatgg gagaggggtt ggggteeeee tgtgagatag	360
tgaaacaatg gtagtgccat ccaatgatag gcacttttct gtcattcaga agcagaaagg	420
gggccagagg cccattggcc ttactgggma gtaagctgta gagctgctgc cttttcgtga	480
aagggttgac accaacette teeceeagga agagtgacea gggaeetgag gggeatggte	540
gagcagatga cagcetttgt aaaacatete e	571
<210> SEQ ID NO 30 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 30	
tgccaggggt tttatggtta	20
<210> SEQ ID NO 31 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 31	
ggagatgttt tacaaaggct gtc	23
<210> SEQ ID NO 32 <211> LENGTH: 614 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	

-continued

Continued	
<400> SEQUENCE: 32	
ttggtagaga tggggtctcc taggctggtc ttgaactcct ggrctcaagc aatcttcctg	60
cctcagcctt ccaaagtact gggattactg gcgtgggcca ccatgcctgg cttgaaattt	120
ttetatgget ttattettte teeaagtaca gagtetaeee aacettetga gatetttggt	180
tttcttttcc taggtaacta tagtacatac ttatttatgt taaacaacag caatcacaca	240
tttctttttc tatacagtca tgctttatag gcaaataaag cctccgtctt aggctttctg	300
gattttttca aaagatgcaa ttcctggagt atgtttttac ttagagcaaa gcagcctagt	360
ctcctatacc ttctgcatct gcagaaaagt tggttaaaca gactttgtaa tgatgcccct	420
tacaattotg aagggaottg tgaaatagtt toacagagtt toagtgttag gtatatttga	480
tcaatgctaa cttttggaaa actttggtgc ctgtatgatt cagagggtag ggcagaatat	540
taaattaatc acaacttott gtattttaac cattotgggt aaattgggat toogtgaogo	600
ccaggcaaaa ttat	614
<210> SEQ ID NO 33 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 33	
ttggtagaga tggggtctcc	20
<210> SEQ ID NO 34 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 34	
ataattttgc ctgggcgtca	20
<210> SEQ ID NO 35 <211> LENGTH: 633 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 35	
tatettatat eccetecaag catteattaa etgatggatt agtgagttgg eettgagaag	60
cataaagget egtetecatg tgettetaag cattgtgtet aagttetgtt tggttteetg	120
agtgaaactg tottaatgtt accaacagaa gttaaatgco taagagwtto ttatacatgg	180
gctgagtacc tctgtgactg ggcaagccac ctcacctcat tttaccttgt ctgcaaaatg	240
aggaactggg tcaactcatc gttcaaatct cactgaaagc taattgatcg cttttgacag	300
aagtagetee ettgggeegt atatttattt eetagettgg aggaaggtgg ggaeagaeag	360
aagtagetee ertyggeege alattatt eetagetegg aggaaggegg ggaeagatag aattgatgta cacetttatt tttateteta tggtaaacet gtgeatacta aageatteet	420
ctggtctttt gagatgagtg tatacattgt gtctggccct gtgcattttt taccaagaag	480
taagttttgt tgagtaaact tgggttgtat gaagaactgc atgctcaccg tactcaagta	540
gcttttgcta cctaaaggac agctgctcat atgtacttga cttcctttaa agtgaaggat	600
gatgacattt gaaaaacgga ggttgaaaag gag	633
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-

<210> SEQ ID NO 36

-conti	nued

-continued	
<pre>LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Homo sapiens</pre>	
<400> SEQUENCE: 36	
tatettatat cecetecaag catte	25
	20
<210> SEQ ID NO 37 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 37	
ctccttttca acctccgttt t	21
<210> SEQ ID NO 38 <211> LENGTH: 1081 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 38	
ttgagcatgt gttatttaat gagttatacc tctgtcatat gtgtgtgttt atatcacaaa	60
ataacttatt tttataaaac catattttga gtcatcattt gtgacaatgt cttcttttct	120
ctggtataaa tgaggcatgt agaaagaaga ttgacatttg ctagaagctt cccctttcct	180
ctaactccac aataaaatgg atgctcataa ttacatctgc tcctataagg tcaagatttc	240
agggctggaa gtgaccttag atcatttagg cccaacttgc cctcaggaaa ggaaactgag	300
gcccagagat gccttaagtg aattgcccaa tgtcacacgc tgagtcagtg gccagagcaa	360
ggettggate cagttetetg etecetttee agageettgt gatgtettet etectaeagg	420
aggtgaaaat aactgctgtg gctggttctg ttttgctgac tgtaaattgg gtcatggtca	480
gggacagtgc ataggtgtaa agaagttgct ggttggggggt tctaatgcag gtttctccaa	540
aagtgaatgc cctgttaaaa aaaaattctt aacaaatata cagagatttt tttttwaaaa	600
aagtgtgaca gttctagaca cctagagagt aaagtgaaga agcctgtttt caggtttccc	660
gcctccctga atttcccagc atggtccagg ctttgaaatt tatttatctg cttttggcaa	720
tggttgatgg gaattteecca catttatttt ttagetacag agaaaggaca ttatetttaa	780
aatctcttcg ttgttctctc tctttgagtg aggagagaag atgtgaatcc tggcagtggt	840
tcagagtgga cacageceet gtgtttgtgg cataggetet gtgggeeeea tgeeagggag	900
cagtaccccc gtgtaaagga gtgggggttt gtccatttgg atagagcaaa gatcctccac	960
ctcaaatccc acaagaacag ttgccacaac ctgggcccta agcatctcat tttcctatgt	1020
agaaattaat gatctggagg agatggcaaa acattccttc cagagcctgt gtggattttg	1080
a	1081
<210> SEQ ID NO 39 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 39	
ttgagcatgt gttatttaat gagtta	26
<210> SEQ ID NO 40	

-continued	
<211> LENGTH: 20	
<212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 40	
ccaaaatcca cacaggctct	20
<210> SEQ ID NO 41 <211> LENGTH: 599 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 41	
tagtgeteag tattteeaae gttetgttta tttaagatga aaattgetgt agttaataag	60
cactteecca tgteattaaa atgettaagg atttttaatg aceacataae agteeataat	120
atgattaaac cccaatttac tgaatcaatg ccatattgtt gggtctttag attgtctcct	180
tttgtttctg ctactgtgaa tgatcctgtg atgatcatct ttgtgtgtaa atctttgtcc	240
cctcgccccc tcccctttta ttatttctt gggatagacc ccaggacaaa aggtagaaaa	300
gaacaaagtg ttaaamaatt tottgataca tagocacaga ttattttoot gaaagttoto	360
aacatttata actacgagca gtatgtaaga gagttatggt tggaatgatt ttaatgtctc	420
tggggaattt aacaacaaaa aaactttagg cttctttgga gagagacatg cccttaactc	480
caccccgccc tagaacagag acccagccca tccaagtcag cctccccagg tcctccacct	540
tcaaaacagg caaacgaaat catttettga ataattggta ggetteaagg teagatgtt	599
<210> SEQ ID NO 42 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 42	
tagtgeteag tattteeaac gttet	25
<210> SEQ ID NO 43 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 43	
aacatetgae ettgaageet ace	23
<210> SEQ ID NO 44 <211> LENGTH: 599 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 44	
tagtgeteag tattteeaae gttetgttta tttaagatga aaattgetgt agttaataag	60
cactteecca tgteattaaa atgettaagg atttttaatg accaeataae agteeataat	120
atgattaaac cocaatttac tgaatcaatg ccatattgtt gggtotttag attgtotoot	180
tttgtttctg ctactgtgaa tgatcctgtg atgatcatct ttgtgtgtaa atctttgtcc	240
cctcgccccc tcccctttta ttattttctt gggatagacc ccaggacaaa aggtagaaaa	300
gaacaaagtg ttaaaaaatt tcttgataca tagccacaga ttattttcct gaaagttcts	360

-continued	
aacatttata actacgagca gtatgtaaga gagttatggt tggaatgatt ttaatgtctc	420
tggggaattt aacaacaaaa aaactttagg cttctttgga gagagacatg cccttaactc	480
caccccgccc tagaacagag acccagccca tccaagtcag cctccccagg tcctccacct	540
tcaaaacagg caaacgaaat catttettga ataattggta ggetteaagg teagatgtt	599
<210> SEQ ID NO 45 <211> LENGTH: 641 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 45	
tgctatgtcc agtttacaca taaggatgtg caaatccagc aggttagctg agctgcccag	60
gaatatccag gcaagaatga ccatattctg ataattactc aggcctctgc ctcatctccg	120
ctgscccccc gccccctgac tctcttctga gtgccagatt cagcctccat ttgaatgcca	180
aatagacagg aaattagcat gcccagaatc cacgtcttta gtgcactctc tccccagctc	240
caaacctgtt actgettgtg tteaacatet eagtaaaget eaacaacate gaeceattae	300
ttaggeetea aacettgggt ggeategteg attgetettt tettteatae eccaeattea	360
acccatcagc ccatcccaca ggcccaagtg tgtcctctct accttcaaag cgtgtgtggc	420
atccaccgct tatcaccacc tctgccatta ccactggagt ccagtgccat catctctcac	480
ttggatgtgg ccagagtgtc tttgctggtc tccttcttgc ttcctacctt tgtaacagcc	540
tatcatctat ctctggtctc catagctcac tcccatactt tgagagggcc tttgaaagcc	600
ttagacagat catatcacag acctctatac tgaaagtcgg g	641
<210> SEQ ID NO 46 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 46	
tgctatgtcc agtttacaca taagg	25
<210> SEQ ID NO 47 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 47	
cccgactttc agtatagagg tctg	24
<210> SEQ ID NO 48 <211> LENGTH: 284 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 48	
- ccatctgtgg agcagagtca ctgaaaggaa atactggaaa tactggaagc cacttggtgt	60
tttatcaagg atgtgaggtt tcctggcaac tttgtcgcca tatcatcatc atcatcacca	120

-continued

tcatcatcat catcatcatc atcatcatca tcatcatcat catcatctgc cctttaagtt	180
ttctgcttgt ttagaaaaga aatttataca gagcccccag tagcagctgt aaggggggcag	240
gttettggag cageceatee teaacattet tgetgetgat ggaa	284
<210> SEQ ID NO 49 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 49	
ccatctgtgg agcagagtca	20
<210> SEQ ID NO 50 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 50	
ttccatcagc agcaagaatg	20
<210> SEQ ID NO 51 <211> LENGTH: 145 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 51	
tccacgcaga gaggatctaa atctggctct ttgcaattgc cttcatacat gtgcatacac	60
accacacaca cacacacac cacacacaca cacacaca cagacacata catatgcaca	120
caccccgact caatggagga ccctc	145
<210> SEQ ID NO 52 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 52	
tccacgcaga gaggatctaa a	21
<210> SEQ ID NO 53 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 53	
gagggtcctc cattgagtcg	20

1. A method of diagnosing an increased susceptibility to type II diabetes in an individual, comprising detecting a marker or haplotype associated with the exon 4 LD block of TCF7L2 in the individual, wherein the presence of the marker or haplotype is indicative of an increased susceptibility to type II diabetes.

2. The method of claim 1, wherein the marker or haplotype comprises at least one marker selected from the markers listed in Table 6.

3. The method of claim **1**, wherein the increased susceptibility is characterized by a relative risk of at least 1.2.

4. A method of assessing an individual for probability of response to a TCF7L2 therapeutic agent, comprising: detecting a marker associated with the exon 4 LD block of TCF7L2, wherein the presence of the marker is indicative of a probability of a positive response to a TCF7L2 therapeutic agent.

5. The method of claim **4**, wherein the marker is selected from the group consisting of DG10S478, rs12255372, rs7895340, rs11196205, rs7901695, rs7903146, rs12243326, and rs4506565.

6. The method of claim **5**, wherein the marker is marker DG10S478, and wherein the presence of a non-0 allele in

DG10S478 is indicative of a probability of a positive response to a TCF7L2 therapeutic agent.

7. The method of claim 5, wherein the marker is marker rs7903146, and wherein the presence of a T allele in rs7903146 is indicative of a probability of a positive response to a TCF7L2 therapeutic agent.

8. A method of diagnosing a decreased susceptibility to type II diabetes in an individual, comprising detecting a marker or haplotype associated with the exon 4 LD block of TCF7L2 in the individual, wherein the presence of the marker or haplotype is indicative of a decreased susceptibility to type II diabetes.

9. The method of claim **8**, wherein the decreased susceptibility is characterized by a relative risk of less than 0.8.

10. A method of detecting an increased susceptibility to type II diabetes in an individual, comprising identifying the presence or absence of an allele at a marker associated with the exon 4 LD block of TCF7L2 in the individual, wherein identification of the presence of the allele is indicative of increased susceptibility to type II diabetes in the individual.

11. The method of claim 10, wherein the marker associated with the exon 4 LD block of TCF7L2 is a marker in strong linkage disequilibrium, characterized by r^2 greater than 0.2, with the exon 4 LD block of TCF7L2.

12. The method of claim 10, wherein the marker associated with the exon 4 LD block of TCF7L2 is a marker in strong linkage disequilibrium, characterized by r^2 greater than 0.2, with one or more of the markers listed in Table 6.

13. The method of claim **10**, wherein the marker associated with the exon 4 LD block of TCF7L2 is selected from the group consisting of the markers listed in Table 6.

14. A method of detecting a decreased susceptibility to type II diabetes in an individual, comprising identifying the presence or absence of an allele at a marker associated with the exon 4 LD block of TCF7L2 in the individual, wherein identification of the presence of the allele is indicative of decreased susceptibility to type II diabetes in the individual.

15. The method of claim 14, wherein the marker associated with the exon 4 LD block of TCF7L2 is a marker in strong linkage disequilibrium, characterized by r^2 greater than 0.2, with the exon 4 LD block of TCF7L2.

16. The method of claim 14, wherein the marker associated with the exon 4 LD block of TCF7L2 is a marker in strong linkage disequilibrium, characterized by r^2 greater than 0.2, with one or more of the markers listed in Table 6.

17. The method of claim **14**, wherein the marker associated with the exon 4 LD block of TCF7L2 is selected from the group consisting of the markers listed in Table 6.

18. A method of detecting an increased susceptibility to type II diabetes in an individual, comprising detecting an allele at a polymorphism associated with the exon 4 LD block of TCF7L2 in the individual, wherein identification of said allele at the polymorphism is indicative of increased risk of type II diabetes in the individual.

19. The method of claim **18**, wherein the marker associated with the exon 4 LD block of TCF7L2 is a marker in strong linkage disequilibrium, characterized by r^2 greater than 0.2, with the exon 4 LD block of TCF7L2.

20. The method of claim **18**, wherein the marker associated with the exon 4 LD block of TCF7L2 is a marker in strong linkage disequilibrium, characterized by r^2 greater than 0.2, with one or more of the markers listed in Table 6.

21. The method of claim **18**, wherein the marker associated with the exon 4 LD block of TCF7L2 is selected from the group consisting of the markers listed in Table 6.

22. A method of detecting a decreased susceptibility to type II diabetes in an individual, comprising detecting an allele at a polymorphism associated with the exon 4 LD block of TCF7L2 in the individual, wherein identification of said allele at the polymorphism is indicative of decreased risk of type II diabetes in the individual.

23. The method of claim **22**, wherein the marker associated with the exon 4 LD block of TCF7L2 is a marker in strong linkage disequilibrium, characterized by r^2 greater than 0.2, with the exon 4 LD block of TCF7L2.

24. The method of claim **22**, wherein the marker associated with the exon 4 LD block of TCF7L2 is a marker in strong linkage disequilibrium, characterized by r^2 greater than 0.2, with one or more of the markers listed in Table 6.

25. The method of claim **22**, wherein the marker associated with the exon 4 LD block of TCF7L2 is selected from the group consisting of the markers listed in Table 6.

* * * * *