DRUM LAGGING MATERIAL AND INSTALLATION APPARATUS THEREFOR

Applicant: Albany International Corp., Rochester, NY (US)

Inventors: Donald J. Farrell, Rochester, NY (US); Charles L. Pinson, Rochester, NY (US); Kaz P. Raczkowski, Rochester, NY (US)

Assignee: Albany International Corp., Rochester, NY (US)

Appl. No.: 13/625,533
Filed: Sep. 24, 2012

Related U.S. Application Data
(60) Provisional application No. 61/538,470, filed on Sep. 23, 2011, provisional application No. 61/542,657, filed on Oct. 3, 2011.

Publication Classification
(51) Int. Cl.
B05C 11/00 (2006.01)
B23P 19/00 (2006.01)
B23P 11/00 (2006.01)

(52) U.S. Cl.
USPC 492/48, 29/428, 29/700

ABSTRACT
Disclosed are lagging materials for use on a driven cylindrical pulley or drum for an industrial machine. A lagging material can comprise a seaming element along the cross-machine direction (CD) of each of the opposing ends of the lagging material for forming a seam for seaming opposing ends of a lagging material when brought together. A lagging material can also comprise coatings that increase the Coefficient of Friction of a lagging material when the lagging material is installed onto the drum such that no additional adhesive is required to keep the lagging on the drum circumference when in operation. Also described is an apparatus for installing an on machine seamable lagging including at least two opposed elongate members, such that when the elongate members are drawn together, the lagging material is stretched into a seamable position to be installed on the drum.
Figure 4B

Insert a 1/2 x 12 in all-thread through each hole and place washer and nut on each end.
FIG. 4D

6IN x 1/8 IN SCREW IN HOOKS WITH THE ENDS CUT OFF WELDED TO THE BOTTOM OF THE ANGLE IRON

24 INCHES
ATTACH INSTALLATION APPARATUS TO A PLURality OF OPENINGS ON LAGGING MATERIAL

POSITION ELONGATE MEMBERS ALONG CD OF LAGGING MATERIAL

BRING PART OF END OF LAGGING MATERIAL TOGETHER BY ENGAGING FIRST TENSIONING MEMBER

BRING A SECOND PART OF SEAMING AREA OF LAGGING MATERIAL INTO THE SEAMING LOCATION BY ENGAGING SECOND TENSIONING MEMBER

BRING A THIRD PART OF SEAMING AREA OF LAGGING MATERIAL INTO THE SEAMING LOCATION BY ENGAGING THE THIRD TENSIONING MEMBER

SEAM LAGGING MATERIAL ON DRUM

FIG. 5
DRUM LAGGING MATERIAL AND INSTALLATION APPARATUS THEREFOR

CROSS REFERENCE TO RELATED APPLICATIONS

BACKGROUND OF THE INVENTION

[0002] The manufacture of corrugated paper board, or box board, on corrugator machines is well-known in the art. The manufacture of corrugated paper board, or box board, on corrugator machines is well-known in the art. An exemplary description of corrugator machines and their use can be found in U.S. Pat. No. 6,276,420, the entirety of which is incorporated by reference herein. In the manufacture of corrugated paper board, a so-called core paper is heated by steam, which makes it more pliable, and is then fed into a nip formed between a pair of toothed rollers whose teeth mesh, thereby corrugating the core paper in a uniform, undulating pattern. Starch paste is subsequently applied to the crests of the corrugated core paper, which is then mated to a liner paper in a roll nip. There, the corrugated core paper and liner paper are bonded together to form a completed sheet, which can then be further processed as desired.

[0003] In one machine used for this purpose in the prior art, the nip is formed by one of the toothed or corrugating rolls and a pressure roll. In another machine of a more recent design, the nip is extended in the running direction through the use of a belt instead of a pressure roll. The belt holds the corrugated core paper and liner paper together against the corrugating roll for a significant portion of its circumference.

[0004] On such machines, corrugator belts pull a continuous sheet of corrugated board first through a heating zone, where an adhesive used to bond layers of the continuous sheet together is dried or cured, and then through a cooling zone. The board is subsequently cut and processed into the desired shape to be used for making boxes. Frictional forces between the corrugator belt, specifically the face, or board, side thereof, and the continuous sheet are primarily responsible for pulling the latter through the machine. Corrugator belts must travel around cylindrical pulleys or drums in operation. Some of these drums are driven, which moves the corrugator belt through the machine as well as the corrugated board formed thereon in a continuous manner. A lagging material covers the drive drum surface in order to, among other things, keep the belt from slipping.

[0005] Conventional prior art lagging materials are manufactured in endless form and are typically uncoated or coated on one surface. Also, prior art lagging materials are installed on a drum by adhesive bonding, that is, using a very strong rubber contact cement like 3M 1300, which adheres to the lagging material and to the drum surface. This lagging material is used to provide friction between the belt and driver roll in order to pull the belt and board through the machine section. There are many variations of lagging material, for example, woven lagging material, some rubber lagging material, lagging materials having different shaped surfaces, and so on. None of the prior art lagging structures have a seam or are on-machine seamable as the gluing process does not require it.

[0006] Prior art glued lagging materials must be replaced from time to time, either periodically (e.g., annually) or for other reasons. To replace it, a crew of people has to grind, scrape, and remove all the lagging material and glue off the drum to allow the new glue and lagging to be installed. In most cases, this requires several days of work and machine downtime.

SUMMARY OF THE INVENTION

[0007] In one embodiment, a seaming apparatus to install lagging material designed to be on machine seamable comprises at least two opposed elongate members, each elongate member being structured to be placed longitudinally along the cross-machine direction (CD) of a drum over opposing sides of a seaming area of a lagging material for installation of the lagging material on the drum. A plurality of lagging material engagement members are attached to each opposed elongate member; and a tensioning member is operably engaged with the opposed elongate members for drawing the opposed elongate members together in the machine direction (MD). Each lagging material engagement member is structured to engage a seaming area of the lagging material such that when the elongate members are drawn together, the lagging material is stretched into a seamable position to be installed on the drum surface.

[0008] In another embodiment, also disclosed is lagging material for use on a cylindrical pulley or drum or roll for an industrial machine, the lagging material comprising: a substrate; a seaming area for seaming opposing ends of a lagging material when brought together; and a first coating on a drum-contact outer surface of the substrate (i.e., inner with respect to the drum/drive roll of the machine), wherein the coating increases the Coefficient of Friction of the lagging material when the lagging material is installed onto the drum such that no adhesive is required to keep the lagging material on the drum. The lagging material can further comprise a second coating on the opposite outer surface of the substrate. The first or second coating can comprise a coating made from a thermoplastic or thermostet material. The coating can be an elastomer and can be selected from the group of a polyurethane, a rubber, silicone, and other known elastomeric materials. The coatings on each side of the lagging may be of made of the same material or different materials.

[0009] The lagging substrate can comprise at least one layer selected from the group of woven or non-woven fibers and/or yarns or spiral links. The fibers and/or yarns are selected from the group of: natural fibers and/or yarns and synthetic and/or fibers and/or yarns. The lagging material can also comprise at least two layers. For example, the lagging material can include a woven substrate layer and a fibrous batt material layer, the batt material being manufactured and applied by techniques known to ordinarily skilled artisans such as carding and needling respectively. The lagging material is manufactured such that it is stable in the cross-machine direction (CD). The cross-machine direction (CD) width of a drum of a corrugator machine is typically up to 5 meters or more. The lagging material is also extensible to a degree in the machine direction (MD) along the drum circumference such that it can be stretched sufficiently along the drum surface so as to be seamed on the drum surface yet also maintain that total length over the service life of the lagging material.
The lagging material can comprise a plurality of openings spaced along the cross-machine direction (CD) of the seaming area on each of the opposing ends of the lagging material, the openings being configured to receive the engagement members of an installation apparatus when the lagging material is placed around a drum’s outer surface. The lagging material can also comprise each opening being substantially laterally paired in the machine direction (MD) with an opposing opening on the opposing end of the lagging material. The lagging material can be configured to be a lagging for a drum roll in a corrugator machine used in the manufacture of corrugated packaging board. The uncoated lagging material can be at a weight of from about 6.3 oz/ft² (1.9 kg/m²) to about 10.5 oz/ft² (3.2 kg/m²) and a caliper (thickness) of from about 0.162 inches (4.1 mm) to about 0.270 inches (6.9 mm). For example, the uncoated lagging material includes a weight of approximately 7 oz/ft² (2.1 kg/m²) and a caliper (thickness) of approximately 0.180 inches (4.6 mm). Where the coated lagging material has only the first coating on the drum contact side, it can comprise a weight of from about 10.7 oz/ft² (3.3 kg/m²) to about 17.9 oz/ft² (5.4 kg/m²) and a caliper (thickness) of from about 0.192 inches (4.9 mm) to about 0.320 inches (8.1 mm). For example, the coated lagging includes a coated weight of about 11.9 oz/ft² (3.6 kg/m²) and a caliper of about 0.213 inches (5.4 mm). Were the coated lagging material is coated on both the drum contact and sheet contact sides, the coated lagging material can comprises a weight of from about 15.1 oz/ft² (4.6 kg/m²) to about 25.2 oz/ft² (7.7 kg/m²) and a caliper (thickness) of from about 0.221 inches (5.6 mm) to about 0.368 inches (9.3 mm). For example, the coated lagging can include a coated weight of about 16.8 oz/ft² (5.1 kg/m²) and a caliper of about 0.245 inches (6.2 mm).

In another embodiment, a method comprises: positioning opposing ends of a lagging material around a drum's drive roll's for seaming; attaching an installation device to a plurality of openings on each opposing end of the lagging material, the openings configured to receive engagement members of the installation apparatus when the lagging material is placed around a drum’s outer surface; bringing the ends of the lagging material into a seaming position with the installation apparatus; and seaming the lagging material onto the drum. The installation device and the process of installation of the lagging material on the drum stretches the lagging material onto the drum, and the lagging has a sufficient Coefficient of Friction such that no additional adhesive is required to keep the lagging in place on the drum during operation of the machine.

BRIEF DESCRIPTION OF THE FIGURES

For a more complete understanding of the invention, reference is made to the following description and accompanying drawings, in which:

FIGS. 1A and 1B are a schematic view of a typical belted section of a corrugator machine.

FIGS. 2A and 2B are a cross sectional views of a lagging material.

FIGS. 3A, 3B and 3C are a respectively a perspective view and a top view, and a side view of and embodiment of the lagging material as installed on the drum after stretching and seaming.

FIG. 4A shows a perspective view of an installation apparatus for installing a lagging material on a drum.

FIG. 4B is a plan view of a portion of the lagging material installation apparatus.

FIG. 4C is a plan view of lagging material installation apparatus as shown in FIGS. 4A and 4B in conjunction with a lagging material being installed on a drum.

FIG. 4D is a side view of the installation apparatus.

FIG. 5 shows a flow chart for a method of seaming a lagging material on a drum.

It will be noted that the same reference numbers are used to refer to the same features throughout the Figures.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Initially, although embodiments are disclosed in the context of a drive drum in a corrugator machine, ordinarily skilled artisans will appreciate that the disclosed embodiments of the lagging material and installation device have application to other drive roll covers or other industrial machines that include drive drums, such as papermaking machines and nonwovens manufacturing machinery.

FIGS. 1A, 1B and 1C are schematic views of a typical belted section of a corrugator machine. A corrugator machine 50 in FIG. 1A has an upper corrugator belt 52 and a lower corrugator belt 54 which together support and pull a corrugated paper product 56 therethrough. After passing over hot plates 62, the upper and lower belts 52, 54 are pulled by the corrugated paper product 56 between them, maintaining the speed of the operation and cooling the paper product 56. Weighted rollers 66 apply pressure from within the endless loops formed by belt 52 and belt 54 toward one another, so that corrugated paper product 56 may be held therebetween firmly as the starch based adhesive (applied upstream from the present section) cures. Upon exit from between the upper and lower belts 52, 54, the corrugated paper product 56 is cut and/or stacked or further processed as required. Drums 25 have lagging material (not shown) installed on their surface.

FIG. 1B shows a doublebacker section in which the upper belt 52 is replaced with a much shorter corrugator belt 72. In this case, the upper belt 72 does not pass across the hot plates 62. Instead, the upper belt 72 is disposed opposite the lower belt 54 downstream from hot plates 62 in what may be referred to as cooling, or pulling, zone 74. In this variety of corrugator machine 70, weighted steel shoes push the corrugated paper product 56 against the hot plates 62. In this case, the upper and lower belts 72, 54 disposed downstream from hot plates 62 pull the corrugated paper product 56 through the machine 70. As before, weighted rollers 66 apply pressure from within the endless loops formed by belt 72 and belt 54 toward one another, so that corrugated paper product 56 is firmly held therebetween as the starch based adhesive cures. Upon exit from between belts 52, 54, the corrugated paper product 56 is cut and/or stacked. Drums 25 have lagging material (not shown) installed on their surface.

As will be appreciated, corrugator machines place the belts, and hence the drive drums 25 and pulleys, under highly stressful and adverse conditions. The belts 52, 54, 74 to operate properly, must move at the speed of the drum surface as the belt and board move through the section. This is achieved by applying lagging to the drum surface(s), lagging being a material that wraps around the drum surface and provides sufficient friction between the belt’s inner surface (nonsheet surface) and the lagging to prevent the belt from slipping.
Conventional prior art lagging is be installed on a drum using a very strong rubber contact cement like 3M 1300L, which adheres to the lagging and to the drum surface.

Disclosed is a lagging sufficiently elastic in the machine direction (MD) and having other properties, such that it does not require adhesives such as those above to maintain grip on a drum, and an installation apparatus therefor. For example, in one embodiment shown in FIG. 2, disclosed is a double coated lagging material, with a coating on both the drum surface side (inside) and the belt contact side (outside), such that the inside coating has a Coefficient of Friction to prevent the lagging, once stretched and seamed, from slipping on the drum surface. As will be understood, although the embodiment shows a double-sided lagging, as the inside coating has a Coefficient of Friction to prevent the lagging from slipping on the drum surface, embodiments also include a lagging material with a coating on only the drum surface side (inside), and not on the paper belt side.

As will be appreciated, as the belt is wrapping a steel drum, the single or double-coated lagging prevents the lagging from slipping on the drum and also prevents (or at least minimize) the belt from slipping on the lagging. For example, a coated lagging can have a Coefficient of Friction of about 7 times greater than that of a conventional lagging, as shown in the Table 1.

For such a lagging, it is advantageous to have, among other things, an efficient and effective way to install the lagging on the drum without glue adhesive. For example, lagging is replaced on a periodic basis due to wear or for other reasons. For a conventional prior art lagging material such as that heretofore described, once it is glued to the drum surface, in order to replace it (e.g. annually) a crew of people have to grind, scrape, and remove all the material off the roll/drum to allow the new glue and lagging to be installed. In most cases, this requires several days to accomplish while the machine is down and out of operation.

In various embodiments the lagging material is configured to be a lagging for a corrugator machine drive roll/drum in the manufacture of corrugated packaging board. There are many variations of lagging, some woven, some woven with needed butt, some coated on the belt or (non drum) surface contact side; however no conventional lagging material has a cross-machine direction (CD) seam or is made to be on machine seamable. Accordingly, in one embodiment, as shown at FIG. 2, disclosed is a lagging sufficiently elastic in the machine direction and having other properties such that it does not require strong adhesives or glue to remain on the surface of the drum 25 during operation. For example, in one embodiment, disclosed is a lagging including a double coated 19, 20 substrate 17, 18, with a coating 19, 20 on both sides of the lagging material 10, such that the Coefficient of Friction of the stretched lagging is sufficient for the lagging to remain in place on the exterior drum surface during operation of the machine and to prevent the corrugator belt from slipping on the drive drum while moving through the corrugator machine. The coatings 19, 20 can include thermoset or thermoplastic material. The coating on the outer surface 19 can be the same as that of the drum-contact surface 20, or can be different (i.e., a functional coating chosen for desired qualities for the inner/outer surfaces). Coatings 19, 20 can include elastomeric coatings selected from a polyurethane, a rubber, silicone, and other known materials (or combinations thereof).

In another embodiment, shown at FIG. 2A, a lagging includes a lagging material 10 including a substrate 18 with a single coating 20 on only the drum surface side (inside). As will be understood, FIGS. 2A and 2B are exemplary embodiments of a double coated lagging material and single coated lagging material respectively, and the number of substrate layers, materials can vary in other embodiments.

Accordingly, specifications for a lagging material can be configured for use on industrial machines as described herein. Exemplary weights and caliper ranges for embodiments of the lagging including (1) an uncoated substrate, (2) a single coated lagging coated only on the drum contact side, or (3) double coated on the drum contact side and sheet contact side are given in Table 2 as follows.

<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>Average of Kstatic</th>
<th>Average of Kdynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Lagging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>steel</td>
<td>0.30</td>
<td>0.26</td>
</tr>
<tr>
<td>Coated Lagging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>steel</td>
<td>1.58</td>
<td>1.41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 2</th>
<th>Nominal Weight oz/ft²</th>
<th>Low Range (<10%) oz/ft²</th>
<th>High Range (≥50%) oz/ft²</th>
<th>Nominal Weight kg/m²</th>
<th>Low Range (<10%) kg/m²</th>
<th>High Range (≥50%) kg/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td>7.0</td>
<td>6.3</td>
<td>10.5</td>
<td>2.1</td>
<td>1.9</td>
<td>3.2</td>
</tr>
<tr>
<td>Single</td>
<td>11.9</td>
<td>10.7</td>
<td>11.3</td>
<td>3.6</td>
<td>3.3</td>
<td>5.4</td>
</tr>
<tr>
<td>Coated</td>
<td>16.8</td>
<td>15.1</td>
<td>25.2</td>
<td>5.1</td>
<td>4.6</td>
<td>7.7</td>
</tr>
<tr>
<td>Double</td>
<td>18.0</td>
<td>16.1</td>
<td>27.0</td>
<td>5.5</td>
<td>4.5</td>
<td>8.0</td>
</tr>
</tbody>
</table>

As will be appreciated, the higher end of the range is elevated as there may be some machines that may need a thicker belt on one of the drive rolls so that the effective diameter (e.g., diameter of the roll together with thicknesses of the lagging and the corrugator belt) of the two drive rolls are the same and they pull the corrugator board at the same speed.

In one exemplary embodiment, a lagging material 10 of FIG. 2 can be a woven substrate with needled batt fiber 17, 18 formed from 100% percent synthetic fibers and yarns. As configured for a corrugator machine, specifications of a lagging can be, for example, the uncoated lagging material can be at a weight of about 7 oz/ft² (2.1 kg/m²) and a thickness of about 0.180 inches (4.6 mm), the single coated lagging can weigh about 11.7 oz/ft² (3.6 kg/m²) and the thickness is about 0.213 inches (5.4 mm), and the double coated lagging can weigh about 16.8 oz/ft² (5.1 kg/m²) and the thickness is about 0.245 inches (6.2 mm).

A seamable lagging material can be configured to be installed for use on a cylindrical pulley or drum for an indu-
trial machine. In another embodiment, as shown in FIGS. 3A, 3B, and 3C, the lagging material 10 is made seamable for easy installation and removal from a drum 25. FIGS. 3A, 3B and 3C are respectively a perspective view, a top view and a side view of the lagging material 10 as installed on a drum 25. The lagging material comprises a seaming area 13 for seaming opposing ends 11, 12 of a lagging material 10 when brought together. In FIGS. 3A and 3B, the seaming area 13 is shown as a clipper hook seam 16, however as will be appreciated, the seaming 16 can include seaming methods or elements known in the art of industrial fabrics, such as clipper hook seams, spiral-links, and pin-seams wherein the yarns of the substrate actually form seaming loops themselves, or any other seaming method such that the seaming elements for each edge of the lagging can be interdigitated, forming a tunnel in which a pin or pintle 17 can be inserted therein. So too are other non-pintle or pin methods of seaming as known to those of ordinary skill in the art within the scope of disclosed embodiments, as for example, sewn or seamed webbing where sewing tabs affixed at the ends 11, 12 of the lagging material are joined with glue or studs in the through direction to seam the fabric. As shown, the ends 11, 12 of the lagging material are connected to the seam 16, and the ends 11, 12 of the seam 16 have been connected with a pin.

[0036] FIGS. 4A and 4C are respectively a perspective view and plan view of an installation device 1 for installing a seamable lagging material 10 onto a drum surface. The apparatus comprises two opposed elongate members 2, 3 each elongate member 2, 3 being structured to be placed longitudinally along the cross-machine direction (CD) of a drum 25 over opposing sides of a seaming area 13 for a seam 16 of a lagging material 10 for installation of the lagging material 10 on the drum 25. The elongate members 2, 3 can be substantially the same width as the cross-machine direction (CD) width of the lagging material 10 itself. For example, for a lagging installed on a drum/pulley of a corrugator machine, the elongate member can be about 24 inches (610 mm), which is the cross-machine direction (CD) size/dimension for such a lagging. As will be understood, corrugator machines can have drums of cross-machine direction (CD) widths of 5 meters (approximately 200 inches) or more. Thus the lagging material 10 as just described could be applied in circumferential strips, and thus installed on the drum 25 in sections until the full surface is covered. However, the installation tool can be configured to the desired cross-machine direction (CD) width for any lagging size 10, including up to a cross-machine direction (CD) width where a “full size” lagging 10 can be installed in one piece on a drum 25.

[0037] In one embodiment the each elongate member comprises a base portion 2a, 3a and an upright portion 2b, 3b, such as an angle iron as is shown. For example, each elongate member is aligned in the cross-machine direction (CD) and placed over each end 11, 12 of a flat (non-continuous and unseamed) lagging 10 that is wrapped around a drum 25 for installation thereon. The base of the angle iron is placed along the cross-machine direction (CD) on the drum over one joining end 11 of the lagging 10, and the upright portion 2b, 3b of the angle iron stands substantially perpendicular to the drum. Each elongate member 2 is configured to be substantially laterally paired in the machine direction (MD) with an opposing elongate member 3 around the seaming area 13 when installing the lagging material 10 on the drum 25. As will be understood, while the elongate member is shown as an angle iron, other embodiments are contemplated. For example, instead of an angle iron, a rod or planar element could be structured to act as an installation apparatus.

[0038] A plurality of lagging material engagement members 4, 5 can be attached to each opposed elongate member 2, 3. For example, a plurality of hook elements 4a, 4b, 4c, 5a, 5b, 5c are attached to each respective elongate member 2, 3. As shown in FIG. 4A, three lagging material engagement elements 4a, 4b, 4c, and 5a, 5b, 5c attached to each opposed elongate member 2, 3. As shown in FIG. 4A, the hooks are attached to the bottom upper surface of the base 2a, 3a of the elongate member 2, 3 as the plurality of hook elements 4a, 4b, 4c, 5a, 5b, 5c are each attached to the angle iron 2, 3.

[0039] FIG. 4B is a plan view showing the elongate member 2 further comprising an angle iron; and the plurality of hook elements 4a, 4b, 4c are each attached to the angle iron 2. For example, in the embodiment three 6 inch by ½ inch (152 mm by 3.12 mm) hooks 4a, 4b, 4c are welded to the bottom of the angle iron 2, which gives sufficient strength to withstand the tensile strain on the apparatus 1 when installing the lagging material 10 onto the drum, as described herein.

[0040] As will be understood, other embodiments of engagement devices 4, 5 can be employed, such as clasps. Also, any number of techniques may be used to attach engagement devices 4, 5 such as welding, screwing, or hooking to an elongated member 2, 3.

[0041] As shown in FIGS. 4A-4D, the lagging material engagement members 4, 5 are spaced at substantially regular intervals along the cross-machine direction (CD) of each of the elongate members 2, 3. The substantially regular intervals as described herein account for differentials in the intervals for various embodiments. For example, as shown in FIG. 4B, the middle engagement member 4b can be somewhat off-center by a measurement sufficient to allow a tensioning member 8 to be operatively included in the installation apparatus. For example, for an elongate member 2 that is 24 inches (610 mm) in cross-machine direction (CD), the space between engagement member 4a and engagement member 4b is from about 9 to about 11 inches (from about 228 mm to about 279 mm), and the space between engagement member 4b and engagement member 4c is from about 15 to about 13 inches (from about 381 mm to about 330 mm). In an embodiment where each elongate member 2, 3 is similarly made, this allows for an offset 28 of from about 1 to about 3 inches (25 to about 76 mm) between engagement members which are paired in the machine direction (MD) as described below and shown clearly in FIG. 4C.

[0042] Each lagging material engagement member 4, 5 is positioned to engage the seaming area 13 at corresponding openings 14, 15 on the lagging material 10. For example, as shown in FIG. 4A, one elongate member 2 has three hooks 4a, 4b, 4c, each of which is positioned to engage one end 11 of the lagging material at corresponding openings 14a, 14b, 14c on the lagging material 10. The hooks 4a, 4b, 4c are spaced at substantially regular intervals along the cross-machine direction (CD) of the lagging material 10. The opposing elongate member 3 has three hooks 5a, 5b, 5c, each of which are positioned to engage one opposing end 12 of the lagging material at corresponding openings 15a, 15b, 15c on the lagging material 10. The hooks 4a, 4b, 4c and 5a, 5b, 5c are spaced at substantially regular intervals of each elongate member along the cross-machine direction (CD). The corresponding openings 14a, 14b, 14c and 15a, 15b, 15c are also spaced at substantially regular intervals along the cross-machine direction (CD) of the ends of the lagging material 11, 12. This
configuration causes the ends of the lagging material 11, 12 to come together and meet in the seaming area 13 when the installation apparatus is employed, as described herein. [0043] As shown on FIGS. 4A and 4C, each lagging material engagement member 4a, 4b, 4c on one elongate member 2 is substantially laterally paired in the machine direction (MD) with an opposing lagging material engagement 5a, 5b, 5c member on the opposing elongate member 3. As shown, hook 4a is paired in the machine direction (MD) with hook 5a, hook 4b is paired in the machine direction (MD) with hook 5b, and hook 4c is paired in the machine direction (MD) with 5c. As explained above, the hooks are positioned to engage corresponding openings 14a, 14b, 14c and 15a, 15b, 15c in the lagging material, and as such, each opening 14, 15 is substantially laterally paired in the machine direction (MD) with an opposing opening 14a, 14b, 14c member on the lagging material 10 when the lagging material is wrapped around a drum 25 for installation thereon. As shown, opening 14a is paired in the machine direction (MD) with hook 15a, opening 14b is paired in the machine direction (MD) with hook 15b, and opening 14c is paired in the machine direction (MD) with 15c. Again, as shown in FIG. 4C, a pairing in the machine direction (MD) allows for some differential, as for example between engagement members 4b and 5b, which have an offset 28 in the cross machine direction (CD) to allow for a tensioning member 8 to be operably engaged with the elongate members.

[0044] The apparatus comprises a tensioning member 8 operably engaged with the opposed elongate members 2, 3 for drawing the opposed elongate members 2, 3 and consequently the lagging ends together in the machine direction (MD). In one embodiment, the apparatus comprises a plurality of tensioning members 8a, 8b, 8c, but as is apparent, the apparatus can be configured to have any number of tensioning members 8n. As shown in FIGS. 4A and 4C, the tensioning device 8 can be an all-screw or threaded bolt. FIG. 4D shows a side view of the one elongate member 2.

[0045] In another embodiment, tensioning member 8 can be a come-along winch (not shown). The come-along can operably engage with the opposed elongate members 2, 3 for drawing the opposed elongate members 2, 3 and consequently the lagging ends together in the machine direction (MD).

[0046] As shown, the elongate member 2 is a one quarter inch (6.4 mm) angle iron, the side view showing the upright portion 2b of the angle iron. Holes 6a, 6b, and 6c are drilled into the angle iron at substantially regular intervals. As will be noted, the measurement from hole 6a to holes 6b and from hole 6b to hole 6c are about the same, and hole 6b is in the center of the upright portion 2b.

[0047] When opposing elongate members 2, 3 are in an installation configuration, as shown in FIGS. 4A and 4C, the inner faces of the upright portions 2b, 3b face one another, while the base portions 3a, 3b laterally extend away from another. The tensioning members 8a, 8b, 8c extend transversely through the holes 6a, 6b, and 6c and corresponding holes 7a, 7b, 7c on the opposing elongate members 2, 3. As shown in the FIGS. 4A and 4C, the tensioning member 8 is a screw with a bolt end against one outside surface of one upright portion 2b of the elongate member 2 and a nut 9 on the outside surface of the upright portion 3b of the opposing elongate member 2. As shown in FIG. 4C, middle holes 6b, 7b in the upright portions 2b, 3b of the elongate members 2, 3 allow the tensioning member 8 to transversely thread the holes 6b, 7b at approximately the center of the installation apparatus 1. As explained above, the engagement members 4b, 5b are attached to the elongated members 2, 3 such that they are offset 28 so as to allow the middle tensioning member 8 to extend transversely between engagement members 4b, 5b between the offset 28. The tensioning members 8a, 8b, 8c are positioned proximate to the respective machine direction (MD) paired lagging material engagement members 4a, 5a; 4b, 5b; and 4c, 5c. This causes the tensioning member to place a direct pulling force on the respective machine direction (MD) paired engagement members 4a, 5a, 4b, 5b, and 4c, 5c when the tensioning device is operated to draw the elongated members 2, 3 together.

[0048] In an embodiment where the tensioning member 8 is a come-along winch (not shown), the come-along can operably engage with the opposed elongate members 2, 3 for drawing the opposed elongate members 2, 3 in the machine direction (MD) as follows. When opposing elongate members 2, 3 are in an installation configuration, as shown in FIGS. 4A and 4C, the inner faces of the upright portions 2b, 3b face one another, while the base portions 3a, 3b laterally extend away from one another. The tensioning members 8 can be positioned such that a pair of hooks from the winch engages transversely through the holes 6a and 7a such that the winch can be operated to pull the opposing elongate members 2, 3 at that position. The winch can be similarly engaged at holes 6b and 7b and again at 6c and 7c respectively.

[0049] Each lagging material engagement member is structured to engage a seaming area 13 of the lagging material such that when the elongate members are drawn together, the lagging material is stretched into a seamable position to be installed on the drum.

[0050] Accordingly, a seambale lagging material can be configured to be installed for use on a cylindrical pulley or drum for an industrial machine using an installation apparatus. In another embodiment the lagging material 10 as shown in FIGS. 3A and 3B is configured to be installed using embodiments of the installation apparatus 1 as described in FIGS. 4A-4D. FIGS. 3B and 3C are respectively a perspective view and a top view of the lagging material 10 as installed on the drum 25. The lagging material comprises a seaming area 13 for seaming opposing ends 11, 12 of a lagging material 10 when brought together. In the embodiment shown, the openings are placed on either side of the seam area 13 in the lagging material. The lagging material 10 includes a plurality of openings 14, 15 spaced along the cross-machine direction (CD) of the seaming area 13 on each of the opposing ends 11, 12 of the lagging material, the openings configured to receive engagement members 4, 5 of an installation apparatus 1 when the lagging material 10 is placed around the drum. As explained above, engagement members 4a, 4b, 4c from an installation device 1 are substantially laterally paired in the machine direction (MD) with an opposing lagging material engagement 5a, 5b, 5c. The engagement members 4a, 4b, 4c 5a, 5b, 5c, are respectively positioned to engage corresponding openings 14a, 14b, 14c and 15a, 15b, 15c on the lagging material 10. Each opening 14a, 14b, 14c, on one end is substantially laterally paired in the machine direction (MD) with an opposing openings 15a, 15b, 15c on the lagging material 10 when the lagging material is wrapped around a drum 25 for installation thereon. As can be seen in FIG. 5C, the openings 14a, 14b, 14c, 15a, 15b, 15c did not experience rips or tears during the installation process with the installation apparatus 1.
A method for installing a lagging material using the device embodiments described herein is disclosed. Consistent with the embodiments of the installation apparatus 1 described in FIGS. 4A-4D, disclosed is a method comprising positioning opposing ends 11, 12 of a lagging material 10 around a drum 25 into for seaming. As shown in FIG. 5, at block 100 is shown attaching an installation apparatus 1 to a plurality of openings 14, 15 on each opposing end 11, 12 of the lagging material, the openings 14, 15 being configured to receive engagement members 4, 5 of the installation apparatus 1 when the unstretched lagging material 10 is placed around the drum 25 circumference bringing the ends 11, 12 of the lagging material into a seaming position at the seam area 13 by engaging the seaming apparatus components to stretch the lagging material in the machine direction (MD) with the installation apparatus 1, and completing the seam of the lagging material 10 onto the drum 25. The installation of the lagging material 10 on the drum 25 stretches the lagging material 10 onto the drum, and the lagging material surface in contact with the drum surface with a sufficient Coefficient of Friction such that no adhesive is required to keep the lagging from slipping on the drum surface.

At block 200, the method comprises positioning at least two opposed elongate members 2, 3 longitudinally along the cross-machine direction (CD) of a drum 25 over the opposing sides 11, 12 of a seaming area 13 of the lagging material 10 and attaching a plurality of lagging material engagement members 4, 5 attached to each opposed elongate members 2, 3 along the cross-machine direction (CD) to the plurality of openings 14, 15, the openings being correspondingly spaced along the cross-machine direction (CD) of the seaming area 13 on each of the opposing ends 11, 12 of the lagging material. At least three of the lagging material engagement devices correspond to at least three of the spaced openings at each of the opposing ends 11, 12 of the lagging material 10. As described above the lagging material engagement members can further comprise hook elements, and the method includes engaging each hook at a corresponding opening on the lagging material. The lagging material engagement members are spaced at substantially regular intervals along the cross-machine direction (CD), as described herein.

Consistent with the description of the installation device 1 herein, the method farther comprises engaging each lagging material engagement member 4 on one elongate member 2 with the openings 14 on one end 11 of the lagging material 10, and engaging each lagging material engagement member 5 on the opposing elongate member 3 with the openings 15 laterally positioned in the machine direction (MD) on the opposing end 12 of the lagging material 10.

At blocks 300-320, the method comprises bringing the ends 11, 12 of the lagging material together by operating a tensioning member 8 operably engaged with the opposed elongate members 2, 3 for drawing the opposed elongate members 2, 3 together in the machine direction (MD); wherein each lagging material engagement member 2, 3 is structured to engage a seaming area 13 of the lagging material 10 such that when the elongate members 2, 3 are drawn together, the lagging material is stretched into a seamable position to be installed on the drum. In one embodiment, the method includes operating a plurality of tensioning members 8a, 8b, 8c positioned proximate to each of the engagement members as described herein. While the apparatus can be configured to have any number of tensioning devices 8a, 8b, 8c in the embodiment where the tensioning device is three threaded bolts or screws, an operator or operating mechanism could tighten the nuts 9a, 9b, 9c, on each of the screws such that the elongate members 2, 3 pull the opposing ends 11, 12 of the lagging material 10 together into a seaming position.

In an embodiment where the tensioning member 8 is a come-along winch (not shown), the come-along winch 8 can be positioned such that a pair of hooks from the winch engages transversely through the holes 6a and 7b such that the winch can be operated to pull the opposing elongate members 2, 3 at that position. For example, as block 300 first engages the come-along winch to bring the ends of the lagging material into the seaming position, which may be sufficient to bring the whole seam 16 into the seaming position, in which case the method moves directly to seaming at 400. Or, as another alternative, the winch can be similarly engaged in turns at holes 6a and 7a, 6b and 7b and again at 6c and 7c respectively. An operator or operating mechanism could place and operate the winch at each location 6a, 7a, 6b, 7b, 6c, 7c such that the elongate members 2, 3 pull the opposing ends 11, 12 of the lagging material 10 together into a seaming position.

At block 400, once all three screws have been tightened or the tensioning member otherwise operated such that the seam 16 is in the seaming position, the lagging material 10 can be seamed on the drum 25 as for example, with a pin or pintle.

It will thus be seen that the objects set forth above, among those made apparent from the preceding description, are efficiently attained and, because certain changes may be made in carrying out the above method and in the construction(s) set forth without departing from the spirit and scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.

What is claimed is:
1. An apparatus comprising:
 - at least two opposed elongate members, each elongate member being structured to be placed longitudinally along the cross-machine direction (CD) of a drum or drive roll surface over opposing sides of a seaming area of a lagging material for installation of the lagging material on the drum;
 - a plurality of lagging material engagement members attached to each opposed elongate member; and
 - a tensioning member operably engaged with the opposed elongate members for drawing the opposed elongate members together in the machine direction;
 wherein each lagging material engagement member is structured to engage the lagging material such that when the elongate members are drawn together, the lagging material is stretched into a seamable position to be installed on the drum surface.

2. The apparatus of claim 1, wherein the elongate member comprises:
 - a base portion and an upright portion.
3. The apparatus of claim 2, wherein the each elongate member comprises an angle iron.
4. The apparatus of claim 1, wherein the plurality of lagging material engagement members comprise:
 - a plurality of hook elements attached to each elongate member.
5. The apparatus of claim 1, wherein the plurality of lagging material engagement members further comprise:
at least three lagging material engagement devices attached to each opposed elongate member.

6. The apparatus of claim 3, the apparatus further comprising:
the elongate member further comprising an angle iron; and
the plurality of hook elements are each attached to the angle iron.

7. The apparatus of claim 6, wherein the plurality of lagging material engagement members further comprise:
at least three hook elements attached to each angle iron.

8. The apparatus of claim 7, wherein the apparatus comprises:
a plurality of tensioning members positioned proximate to each of the hooks.

9. The apparatus of claim 8, wherein the tensioning member comprises:
a screw device.

10. The apparatus of claim 1, wherein the tensioning member comprises:
a plurality of tensioning members.

11. The apparatus of claim 10, wherein the tensioning members are positioned proximate to the lagging material engagement members.

12. The apparatus of claim 1, wherein the tensioning member comprises:
a screw device.

13. The apparatus of claim 1, wherein the tensioning member comprises:
a winch and a cone along.

14. The apparatus of claim 1, wherein the apparatus comprises:
the lagging material engagement members are being spaced at substantially regular intervals along the cross-machine direction (CD).

15. The apparatus of claim 1, wherein each lagging material engagement member is positioned to engage the seaming area at corresponding openings on the lagging material.

16. The apparatus of claim 15, wherein each lagging material engagement member comprises a hook positioned to engage the seaming area at a corresponding opening on the lagging material.

17. The apparatus of claim 16, wherein the hooks are spaced at substantially regular intervals along the cross-machine direction (CD).

18. The apparatus of claim 17, wherein at least one interval between the hooks is spaced at a different distance from a second interval between the hooks, the differential being configured such that it substantially maintains the regularity of the intervals.

19. The apparatus of claim 18, wherein the differential is configured to create an offset from a tensioning member.

20. The apparatus of claim 1, wherein each lagging material engagement member is substantially laterally paired on one cross machine direction (CD) edge of the lagging material in the machine direction (MD) with an opposing lagging material engagement member on the other cross machine direction (CD) edge of the lagging material on the opposing elongate member.

21. An on-machine seammable lagging material for use on a cylindrical pulley or drum for an industrial machine, the lagging material comprising:
a substrate;
a first coating on a drum-contact inner surface of the lagging;
wherein the coating increases the Coefficient of Friction of the lagging material when the lagging material is installed onto the drum such that no additional adhesive is required.

22. The lagging material of claim 21, wherein the coating comprises an elastomeric coating made from a thermoplastic or thermostet material.

23. The lagging material of claim 22, wherein the coating includes an elastomer selected from the group of a polyurethane, a rubber, silicone, and other known elastomeric materials.

24. The lagging material of claim 21, wherein the lagging material comprises:
a seaming area for seaming opposing ends of the lagging material when brought together; and
a plurality of openings spaced along the cross-machine direction (CD) of the seaming area on each of the opposing ends of the lagging material, the openings configured to receive engagement members of an installation apparatus when the lagging material is placed around a drum.

25. The lagging material of claim 24, wherein each opening is substantially laterally paired in the machine direction (MD) with an opposing opening on the opposing end of the lagging material.

26. The lagging material of claim 21, wherein the lagging material is configured to be a lagging for a drive drum in a corrugator machine for the manufacture of corrugated packaging board.

27. The lagging material of claim 21, wherein the drum contact surface coating increases the Coefficient of Friction of the lagging material when the lagging material is installed onto the drum such that no additional adhesive is required.

28. The lagging material of claim 21, wherein the lagging material comprises:
a second coating on the opposite outer surface of the substrate.

29. The lagging material of claim 28, wherein the first and second coatings are the same material.

30. The lagging material of claim 28, wherein the first and second coatings are different materials.

31. The lagging material of claim 28, wherein the average static Coefficient of Friction when static is Ks = 2.81 and the average dynamic Coefficient of Friction (CoF) is Kd = 2.44 for the coated belt and the paper board it is pulling.

32. The lagging material of claim 21, wherein the average static Coefficient of Friction (CoF) is Ks = 1.58 and the average dynamic Coefficient of Friction is about Kd = 1.41 for a steel drum.

33. The lagging material of claim 21, wherein the lagging material substrate comprises at least one layer selected from the group of woven or non-woven fibers and/or yarn or spiral links.

34. The lagging material of claim 33, wherein the substrate fibers and/or yarns are selected from the group of: natural fibers and/or yarns and synthetic fibers and/or yarns.

35. The lagging material of claim 33, wherein substrate the comprises:
at least two layers.

36. The substrate of claim 35, wherein the substrate comprises:
a woven substrate layer;
a fiberous batt material layer.

37. The lagging material of claim 21, wherein the uncoated lagging material includes a weight of from about 6.3 oz/ft2
(1.9 kg/m²) to about 10.5 oz/ft² (3.2 kg/m²) and a caliper (thickness) of from about 0.162 inches (4.1 mm) to about 0.270 inches (6.9 mm).

38. The lagging material of claim 37, wherein the uncoated lagging material includes a weight of approximately 7 oz/ft² (2.1 kg/m²) and a caliper (thickness) of approximately 0.180 inches (4.6 mm).

39. The lagging material of claim 21, wherein the coated lagging material has only the first coating on the drum contact side, and comprises a weight of from about 10.7 oz/ft² (3.3 kg/m²) to about 17.9 oz/ft² (5.4 kg/m²) and a caliper (thickness) of from about 0.192 inches (4.9 mm) to about 0.320 inches (8.1 mm).

40. The lagging material of claim 39 wherein the coated lagging includes a coated weight of about 11.9 oz/ft² (3.6 kg/m²) and a caliper of about 0.213 inches (5.4 mm).

41. The lagging material of claim 28, wherein the coated lagging material comprises a weight of from about 15.1 oz/ft² (4.6 kg/m²) to about 25.2 oz/ft² (7.7 kg/m²) and a caliper (thickness) of from about 0.221 inches (5.6 mm) to about 0.368 inches (9.3 mm).

42. The lagging material of claim 41 wherein the coated lagging includes a coated weight of about 16.8 oz/ft² (5.1 kg/m²) and a caliper of about 0.245 inches (6.2 mm).

43. An on machine seamable lagging material for use on a cylindrical pulley or drum for an industrial machine, the lagging material comprising:
 a substrate;
 a coating on the drum contact inner surface of the substrate; and
 a seam along the cross-machine direction (CD) of each of the opposing ends of the lagging material for forming a seam for seaming opposing ends of a lagging material when brought together.

44. The lagging material of claim 43, wherein the lagging material comprises:
 a plurality of openings spaced along the cross-machine direction (CD) of a seaming area on each of the opposing ends of the lagging material, the openings configured to receive engagement members of an installation apparatus when the lagging material is placed around a drum/roll circumference.

45. The lagging material of claim 44, wherein the lagging material comprises:
 each opening being substantially laterally paired in the machine direction (MD) with an opposing opening on the opposing end of the lagging material.

46. The lagging material of claim 43, wherein the lagging material is configured to be a lagging for a drive drum in a corrugator machine for the manufacture of corrugated packaging board.

47. The lagging material of claim 43, comprising:
 a first coating on a drum-contact inner surface of the substrate; and wherein the drum contact surface coating increases the Coefficient of Friction of the lagging material when the lagging material is installed onto the drum such that no additional adhesive is required.

48. The lagging material of claim 43, wherein the coating comprises an elastomeric coating made from a thermoplastic or thermoset material.

49. The lagging material of claim 48, wherein the coating includes an elastomer selected from the group of a polyurethane, a rubber, silicone, and other known elastomeric materials.

50. The lagging material of claim 43 comprising:
 a second coating on the belt contact surface of the substrate.

51. The lagging material of claim 43, wherein the average static Coefficient of Friction (CoF) is about Ks=1.58 and the average dynamic Coefficient of Friction is about Kd=1.41 for a steel drum.

52. The lagging material of claim 50, wherein the first and second coatings are the same material.

53. The lagging material of claim 50, wherein the first and second coatings are different materials.

54. The lagging material of claim 43, wherein the substrate comprises at least one layer selected from the group of woven or non-woven fibers and/or yarns or spiral links.

55. The lagging material of claim 48, wherein the lagging material substrate comprises fibers and/or yarns selected from the group of: natural fibers and/or yarns and synthetic fibers and/or yarns.

56. The lagging material of claim 54, wherein the substrate comprises:
 at least two layers,
 the substrate of claim 56, wherein the substrate comprises:
 a woven substrate layer,
 and at least one fiberous butt material layer.

58. The lagging material of claim 43, wherein the uncoated lagging material includes a weight of from about 6.3 oz/ft² (1.9 kg/m²) to about 10.5 oz/ft² (3.2 kg/m²) and a caliper (thickness) of from about 0.162 inches (4.1 mm) to about 0.270 inches (6.9 mm).

59. The lagging material of claim 58, wherein the uncoated lagging material includes a weight of approximately 7 oz/ft² (2.1 kg/m²) and a caliper (thickness) of approximately 0.180 inches (4.6 mm).

60. The lagging material of claim 43, wherein the coated lagging material has only the first coating on the drum contact side, and comprises a weight of from about 10.7 oz/ft² (3.3 kg/m²) to about 17.9 oz/ft² (5.4 kg/m²) and a caliper (thickness) of from about 0.192 inches (4.9 mm) to about 0.320 inches (8.1 mm).

61. The lagging material of claim 60 wherein the coated lagging includes a coated weight of about 11.9 oz/ft² (3.6 kg/m²) and a caliper of about 0.213 inches (5.4 mm).

62. The lagging material of claim 50, wherein the coated lagging material comprises a weight of from about 15.1 oz/ft² (4.6 kg/m²) to about 25.2 oz/ft² (7.7 kg/m²) and a caliper (thickness) of from about 0.221 inches (5.6 mm) to about 0.368 inches (9.3 mm).

63. The lagging material of claim 62 wherein the coated lagging includes a coated weight of about 16.8 oz/ft² (5.1 kg/m²) and a caliper of about 0.245 inches (6.2 mm).

64. A method to install an on machine seamable coated lagging comprising:
 positioning opposing ends of the coated lagging material around a drum for seaming, the coated lagging having a first coating on the drum contact side;
 attaching an installation device to a plurality of openings on each opposing end of the lagging material, the openings configured to receive engagement members of the installation apparatus when the lagging material is placed around a drum;
 bringing the ends of the lagging material into a seaming position with the installation apparatus; and
 seaming the lagging material onto the drum,
whereby the installation of the lagging material on the drum stretches the lagging material onto the drum and the lagging has a Coefficient of Friction such that no additional adhesive is required.

65. The method of claim 64, further comprising:
positioning at least two opposed elongate members longitudinally along the cross-machine direction (CD) of a drum over the opposing sides of a seaming area of the lagging material;
attaching a plurality of lagging material engagement members attached to each opposed elongate members along the cross-machine direction (CD) to the plurality of openings, the openings being correspondingly spaced along the cross-machine direction (CD) of the seaming area on each of the opposing ends of the lagging material; and

bringing the ends of the lagging material together by operating a tensioning member operably engaged with the opposed elongate members for drawing the opposed elongate members together in the machine direction;
wherein each lagging material engagement member is structured to engage a seaming area of the lagging material such that when the elongate members are drawn together, the lagging material is stretched into a seamable position to be installed on the drum.

66. The method of claim 64, further comprising:
attaching at least three of the lagging material engagement devices to at least three of the correspondingly spaced openings to each of the opposing ends of the lagging material.

67. The method of claim 66, wherein the lagging material engagement members further comprise hook elements.

68. The method of claim 64, the method further comprising:
operating a plurality of tensioning members positioned proximate to the engagement members.

69. The method of claim 64, wherein the lagging material engagement members are spaced at substantially regular intervals along the cross-machine direction (CD).

70. The method of claim 67 the method further comprising:
engaging each hook at a corresponding opening on the lagging material.

71. The method of claim 64, the method further comprising:
engaging each lagging material engagement member with the openings on one end of the lagging material, and engaging each lagging material engagement member with the openings laterally positioned in machine direction (MD) on the opposing end of the lagging material.

72. The method of claim 64, the method further comprising:
positioning the tensioning member between each of the engagement members such that the tensioning member can operably engage the engagement members; engaging the tensioning member with at least one opening on each engagement member; and operating the tensioning member.

73. The method of claim 64 wherein the lagging material comprises a second coating on the belt contact side of the lagging, which has a Coefficient of Friction such that there is no slippage between a belt and the drum.

74. The lagging material of claim 28 wherein the lagging material has a Coefficient of Friction such that there is no slippage between a belt and the drum.

75. The lagging material of claim 51 wherein the lagging material has a Coefficient of Friction such that there is no slippage between a belt and the drum.

76. The lagging material of claim 28, wherein the average static Coefficient of Friction (CoF) is Ks=1.58 and the average dynamic Coefficient of Friction is about Kd=1.41 for a steel drum.

77. The lagging material of claim 50, wherein the average static Coefficient of Friction (CoF) is about Ks=1.58 and the average dynamic Coefficient of Friction is about Kd=1.41 for a steel drum.

* * * * *