PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7.

GO6F 9/44 A2

(11) International Publication Number:

(43) International Publication Date:

WO 00/10078

24 February 2000 (24.02.00)

(21) International Application Number: PCT/US99/18347

(22) International Filing Date: 13 August 1999 (13.08.99)

(30) Priority Data:

09/134,559 14 August 1998 (14.08.98) us

(71) Applicant: MICROSOFT CORPORATION [US/US]; One
Microsoft Way, Redmond, WA 98052 (US).

(72) Inventors: RETTIG, Bjorn, C.; 4761 162nd Avenue, N.E.,
Redmond, WA 98052 (US). MILLER, Edward, S.; 11530
N.E. 90th Street, Kirkland, WA 98033 (US). WILSON,
Gregory; 778 Gailen Avenue, Palo Alto, CA 94303 (US).
XU, Shan; Apt. N-7, 13839 N.E. 11th Street, Bellevue, WA
98005 (US).

(74) Agents: BANNER, Pamela, I. et al; Banner & Witcoff,
Ltd., 11th floor, 1001 G Street, N.W., Washington, DC
20001-4597 (US).

(81) Designated States: CN, JP, European patent (AT, BE, CH, CY,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
SE).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: MULTILINGUAL USER INTERFACE FOR AN OPERATING SYSTEM

(57) Abstract

In an operating system, a function to address resources in executable files is modified to redirect calls for resources to language—specific
resources responsively to a user—setting defining a selected language. The language—specific resources are contained in alternate language
modules through a dynamic addressing scheme that allows the alternate language file suite to be expanded without modification to any central
routing facility. The invention provides resource-handling components, the capability for handling multiple-language resources without
requiring any specific directions from the processes requesting the resources. This allows the operating system to provide muitilingual
support while using existing resource and executable binary files without modification. A user is enabled to select a language for the user
interface and the resource loader will automatically redirect calls for resources to the appropriate resources.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
M
CN
CU
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Céte d’'Tvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
Sh
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
™D
TG
TJ
™
TR
TT
UA
UG
us
vz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 00/10078 PCT/US99/18347

MULTILINGUAL USER INTERFACE FOR AN OPERATING SYSTEM

hoical Fi

10

15

20

25

30

The present invention generally relates to operating systems and more
particularly to operating systems that provide an efficient mechanism for

switching the user-interface language.

Background of the Invention

A resource is binary data or non binary data, e.g., a text file. In Windows NT®
and all other O/S of the Windows® family, resources are binary data.
Resource data can reside in the executable file of an application, so the
executable file is a binary file with code and resource data in it. Processes
defined by the code can use the resources in their own binary executable files
or other executable files. Resources used by such processes may also reside in
resource-only files, for example, resource-only dynamic link libraries (DLLs).
A resource may be either standard or user-defined. The data in a standard
resource describes an icon, cursor, menu, dialog box, bitmap, enhanced
metafile, font, accelerator table, message-table entry, string-table entry, or
version. A user-defined resource contains any data required by a specific
application. The resources required by operating system processes may be
handled in various different ways. Many of these resources include words,
symbols, formatting data, etc. that are language-specific. Usually, a particular
language is determined by the operating system installation package chosen by
the user. If the language of the software is English, only the English-language-
specific resources will be installed with the operating system. This is
convenient because of the large quantity of language-specific resources that
would have to be copied on the hard-disk to cover all languages.

Providing a single language for the operating system to support is also
convenient because it allows resources to be efficiently loaded and unloaded
into and from memory as the need arises. Far too many resources exist for all
to reside in memory at all times. To manage the loading and unloading of

resources so that resources do not unnecessarily occupy memory when not

10

15

20

25

30

WO 00/10078 PCT/US99/18347

required, the code that generates the processes requiring the resources and the -
resources peculiar to the process may be incorporated in the same binary files.
When a process is invoked, a binary file containing the code for the process,
and the attendant resources, may be loaded into memory or otherwise made
accessible to the process. When the process is terminated, the resource and
code sections of such a file are unloaded from memory or otherwise made
inaccessible. These binary files can be executable programs, dynamic link
libraries (DLLs), device drivers, etc. If they were bloated with all the
alternative language resources, an excessive amount of memory would be
required.

An example of how one operating system handles such resources is as follows.
First, a resource finder, an operating system function, is employed to create a
handle to the specified resource's info block. A process requiring a resource
sends the finder a resource module handle and the resource name, type, and
optionally, a language ID. The latter specifies a language specific resource in
the resources defined by the resource module handle. The finder returns a
handle to the specified resource's info block and the process can call a resource
loader to place the resource in memory. The process gives the resource handle
and the resource module handle to the resource loader, which places the
resource in memory and returns a handle to the memory block containing the
resource. The resource is then available to the process. The operating system
may then use other devices to free the memory after the process loading it into
memory no longer needs it, is terminated, or if other conditions require it.

The above is only one type of resource access facility in an example operating
system. Other mechanisms may make resources available in other ways, such
as by placing text messages in an output buffer, immediately loading and
returning a handle to resource data in a single function call, etc. The common
feature of these mechanisms is that they find a resource either in memory or in
a disk file or other storage system and make the resource available to the
process that requires it. This may involve loading a file from disk into memory
or just providing access to the resource by providing a handle or some other

device. The file (, device, or channel) containing the resource may be in the

10

15

20

25

30

WO 00/10078 PCT/US99/18347

same file as the code defining the requesting process or another file. The other-
file could contain code or be a resource-only file. A process may not need
explicitly to unload a resource it no longer needs.

With the low cost of disk storage, it may be desirable in some instances for the
same installation of an operating system to provide, transparently to the user,
appropriate resources for a number of languages. This would allow users of
various tongues to share the same computer. The user would log on, select a
desired language, and use the computer, thereafter seeing all resource-based
operating system features in the chosen language. However, for an operating
system built around the above resource management regimes, the options
available to modify the operating system to accommodate selectable languages
appear quite problematic, as discussed below.

To provide multilingual support, one option might be to provide a different set
of binary files for each language. Considering there might be on the order of a
thousand binary files containing language-specific resources in an complex
operating system and that it might be desired to support many different
languages, the number of binary files to be installed would be large indeed. In
addition to the labor required to provide for the selection of a language by the
user, the redundancy in the resulting mass of files would be tremendous
because all language-non-specific resources would be duplicated for each
language supported. Not only would the language-non-specific resource
require duplication, but also all the code sections.

Another option might be to install the operating system binary files anew, each
time a new user requiring a different language logged on. This option is
unattractive because it would take a great deal of time.

Still another option might be to provide the different language-specific
resources in each binary file. This would eliminate the redundancy of the first
option since each binary file would only add language-specific resources.
However, this option would require recoding of each binary file, so it also is
not an elegant option. Something similar to this is currently done on a very
limited basis. Some binary files contain alternate resources, each being

preferred depending on the language or country of the user. The code sections

10

15

20

25

30

WO 00/10078 PCT/US99/18347

of these binary files define processes that address a different resource based on
a "guess" as to the preferred language of resource. This guess is made based on
the settings of some system parameter, for example, which date format has
been selected. So, for example, if a Russian style of date is selected, the
resources tagged as Russian might be loaded.

There is at least one type of operating system that now provides for language
selection on a limited basis. This operating system provides separate text files
for each language. When a process requires a text file resource in a particular
language, the operating system addresses the appropriate file. The user can
select his default language of choice through a system variable.

As mentioned briefly, at least one current operating system (Windows®)
provides some support for the creation of language-specific libraries, for
example text messages. A system variable is defined indicating the locale
(Note, the locale of a system is not a language setting. Locale is a mixture of
language and location) of the operating system installation and this variable
can be used by the applications running on the operating system to format
messages specifically for the current language. This requires, however, that the
process (the application) identify precisely the appropriate language resource
and where it is located. As a model for conversion it would entail extensive
recoding.

None of the prior art operating system regimes offers a model suggesting how
to provide multilingual support by the operating system in a very automatic
way. Also, none suggests means of preserving some of the inherent economies
of binary files with code and resource sections in the same file. The simple
transformations suggested above to provide the desired functionality appear to
be unduly expensive and/or bulky in terms of the redundant data required. Any
conversion that is readily implemented would likely have to be a system that
departs significantly from any of the prior art systems.

Referring to Fig. 1, in a common operation in a prior art operating system, a
binary file 20 is loaded. The binary file 20 contains a code section 10 and a
resource section 30 and may be any file unit of the operating system or one

supplied by a third party. For example, the binary file 20 could be an

10

15

20

25

30

WO 00/10078

executable binary, a dynamic link library (DLL), or a device driver. The
resource section 30 may contain some of the resources used by the code
section, particularly those resources peculiar to the requirements of the
processes generated by the code section 10 and which may be unloaded from
memory when the processes defined in the code section 10 are no longer
required. In other words, the resources 30 are those that may be required by
processes encoded in the code section 10 and once those processes are
terminated, there is no longer any need to maintain the resources contained in
resource section 30 in memory. For example, the binary file 10 could be a core
resource or an application that is supplied with the operating system such as a
stripped-down text editor. For the editor, for example, when the user
terminates the editor program, the resources required by this text editor would
no longer be required. The binary file 20, including code 10 and resources 30,
would be removed from memory. Of course, the code section 10 could use
other resources from other files and may also use other processes as well.
Referring to Fig. 2, resources 85 and the code 55 that uses it may also be
located in separate respective files 25 and 22.. For example, the resource 85
addressed by an application 55 defined in a piece of code 50 may be contained
in a resource-only DLL or a separate file 25 that contains code 70 and
resources 60. The application 55 may reside in a file that also contains
resources 40. Another operating system device may be used to find the file by
resource type and name. The management (loading and unloading) of the
resources may be handled by the resource loader.

Referring to Fig. 3, resources are addressed by a process 110 using a resource
loader 130 and a resource finder 135. The resource loader is an operating
system facility that provides access to a resource datum 125 given a resource
module handle and resource handle. The resource module handle, which
indicates where the resource datum, specified by the resource name, can be
found, is created by the resource finder. The resource name, type, and a
language (the latter is optional) are provided to the resource finder 135 which
returns a resource module handle. If the resource is in a module other than the

one that generated the calling process, the handle of that module must be

PCT/US99/18347

10

15

20

25

30

WO 00/10078

provided to the resource finder as well. The resource type may specify for
example a bitmap, an animated cursor, a font resource, a menu resource, a
string-table entry, etc.

The resource loader loads the specified resource into memory. It requires a
resource module handle and resource handle. The resource module handle is
the module whose executable file contains the resource. The resource handle
identifies the resource to be loaded. The resource loader 130 returns a handle
to the memory block containing the data associated with the resource. The
description shown in Fig. 3 is consistent with either of the situations shown in
Fig. 1 or Fig. 2. Note that examples of the above functions are defined in
documentation relating to the Windows® APIs FindResource and
LoadResource. Note also that the resource may be loaded in a prior operation
as well as part of a call for a resource as described above. For example in the
Windows® operating system, a call to LoadLibrary could result in the loading

of a module into memory.

Referring to Fig. 4, a generalized schematic of how resources may be
addressed in an operating system is shown. A resource handler 230 is used by
a process 210 to obtain access to a resource datum 220. The resource handler
230 may consist of several different devices provided by the operating system,
for example as discussed with reference to Fig. 3. The process identifies the
requested resource to the handler 230 and may tell the handler where the
resource can be found, such as a file name, identifier of a module 250 or some
other information. The resource handler 230 may need to load the resource
220, possibly included in a module 250, into memory or some other means for
making the data accessible 240 providing access to the process 210. The
process 210 is given a handle, address, pointer, etc. to access the resource 220.
The important features of the process described by Fig. 4 are that the process
identifies the resource required and the operating system provides the process
with access to that resource. The resource may reside on a disk, on another
computer connected by a network, provided through a communications port or

any other mechanism for transferring data to a process on a computer. The

PCT/US99/18347

10

15

20

25

30

WO 00/10078

operating system may, as part of the request, transfer the resource to a different
medium, say, for example, from disk to memory, before access to the resource

by the process is possible.

Summary of the Invention

An operating system scheme provides resource-handling components
that provide features for handling multiple-language resources without
requiring any specific directions from the processes requesting the resources.
This allows the operating system to provide multilingual support while using
existing resource and executable binary files without modification of these
elements. That is, a user is enabled to select a language for the user interface
and the resource loader will automatically redirect calls for resources to the
appropriate resources.

Note that throughout the following description, the notion of loading
data into memory is not intended to be construed literally as actually taking
data from a file and putting it into memory. In the operating system context
contemplated by the invention, the actual loading of data into physical
memory is performed by low level operating system functions. Each process
may have a virtual memory space that does not coincide with actual physical
memory. When, in the following discussion, the step of loading and unloading
data from memory is spoken of, it is intended to be interpreted broadly as any
operating system function that makes data accessible to the process.

From the standpoint of the processes requesting resources, the interactions
with operating system devices are the same as for handling resources of a
single language. The operating system resource-handling components for
finding resources and returning them to a requesting process are modified to
dynamically generate a path to an alternate-language resource module. The
generation of the path may be in response to a resource identifier and an
optional module handle provided by the process requesting the resource and
also in response to a system-wide operating user-setting specifying a chosen
language for the user-interface. The path to the alternate-language resource is

used instead of the module handle, if any, supplied by the process.

PCT/US99/18347

WO 00/10078 PCT/US99/18347

By generating the module handle dynamically, the operating system may be
expanded without modifications to any permanent facility to correlate base
module handles (the ones used by the calling process) and the alternate-
language resource modules. Since the look-up table is generated dynamically,
5 it is automatically created for the purpose of saving steps and is never out of
date. When new modules are added to the operating system, alternate language
modules can be added and the algorithm used to generate alternate module
handles without any central data housekeeping. As long as there is no collision
between a new module name and an existing module name, the module and

10 any code using it, or any binary file containing code and resources, may be
added to the operating system without making any centralized changes.

The system automatically loads and frees alternate-language modules as
necessary, and transparently to the user and the processes requesting resources.
Alternate language resources reside in modules (dynamic link libraries or

15 DLLs, as defined in Windows® parlance, in a preferred implementation), each
uniquely specified by a path and module name as:
<module_path>\mui\<language ID>\<module_name>

In other words, the operating system loads an alternate-language resource module
from a language-specific subdirectory of the original module's load path. The path and

20 module name are dynamically generated using the same name as the original module

name supplied by the calling process. The element <language ID> may be some
compact code representing the language. For example, it could be based on ISO 639
language standard abbreviation plus, possibly, a sublanguage designator or a Win32
language id including primary and secondary components.

25 Alternate languages may be requested with varying degrees of specificity.
That is, one may request (French) French, Swiss French, or Canadian French
at one level of specificity or just French at a lower level of specificity. For the
process of generating an alternate language resource module handle to be
robust, the algorithm may involve multiple steps to enable it to reconcile a

30 system-level request for a user-interface language with one degree of
specificity and an availability of alternate language resources provided with

another degree of specificity. Suppose, for example, the user requests Swiss

10

15

20

25

30

WO 00/10078 PCT/US99/18347

French upon logging into the operating system. This specifies a user-variable -
that mandates that for all process able to comply, that Swiss French resources
should be used. The resource loader (or library loader) algorithm that
generates alternate-language resources should be able to deal with situations
where only an approximation to the requested language is available. Suppose
in the above example, that only French and various other primary alternate
languages are available and not specifically Swiss French. It is desirable for
the algorithm to load the French alternate language resource upon a request
rather than to make some other default choice that is not as close to the
system-level mandate indicated in the system user language ID. Thus, multiple
levels of approximation may be defined for the algorithm, for example, as
follows.

First, the algorithm may determine if, in the module path specified by
"<module_path>\" there exists a subdirectory with an identifier equivalent to
the current user language ID, that is, with the name "\mui\<language_ID>\". If
this first test fails, the algorithm may determine if there exists a subdirectory
of "<module_path>\" with an identifier equivalent to the primary language ID
corresponding to the current user language ID, that is, with the name
"\mui\<primary_language ID>\". If no system user language ID is specified,
the algorithm may be able to use a surrogate to resolve a subdirectory, for
example, some preference that suggests the locality of the user such as a
preference as to date or monetary format conventions. Alternatively, a
language-neutral alternate resource module may be invoked. Other steps,
which may be placed in any desired priority, could be the selection of a default
alternate language resource subdirectory, a substitute language where the one
specified by the user language ID is not available but a fair substitute language
spoken in the likely locale is. For example, if Canadian French is requested in
the user language ID, and neither Canadian French nor French are available,
but Canadian English is available, then the latter could be used. The above
process of identifying preferred alternate resources according to a priority
system allows the specificity of alternate language resources to be increased. If

the operating system ships with only primary languages (e.g., English, but no

10

15

20

25

30

WO 00/10078 PCT/US99/18347

- 10 -~

British English, Canadian English, etc.) the user may add more specific
languages later and the user's choice implemented transparently and
automatically.

To speed processing, the mapping obtained by generating each alternate
module path dynamically is preserved in a look-up table. When a calling
process calls the same resource, the alternate resource module may be obtained
from the look-up table instead of generating the path and handle dynamically.
Note that by preserving the result of the dynamic generation of an alternate
resource module ID, the steps of the robust algorithm discussed above do not
have to be repeated each time a request for a resource is made.

In addition, a clean-up table is generated to help the modified resource loader
load and free memory as system requirements permit. The clean up table lists
the loaded alternate resource modules and the processes that requested them.
When, for example, the process requesting a resource is terminated, the
resource module requested by the terminated process may be unloaded from
memory.

Note that the operating system keeps track of resources that are loaded and
unloaded by generating entries in a loader data table. The loader data table
indicates the processes that required the loading of resource modules so that
these modules can be unloaded when the process terminates or as other system
requirements indicate. For modules that are loaded by the applications directly
using, for example in Windows NT, the LoadLibraryEx function, the module's
identity may not be "known" to the resource loader described above. That is,
no loader data table entry is generated. In this case, the facility that loads the
resource module (e.g., LoadLibrary) may inquire as to the existence of an
alternate-language resource and load it instead of the module requested by the
application. If the application or process does use an operating system facility
that does generate a loader data table entry, then the module would not have to
be loaded until a request is made for a resource from the resource loader by the
application or other process.

According to an embodiment, the invention is a method performed by an

operating system. The method redirects a call by a calling process for a first

10

15

20

25

30

WO 00/10078

- 11 -

datum residing in a first binary file. The following steps are performed: storing
in an operating user-setting independently of the calling process, a language
identifier; when a second binary file corresponding to the language identifier
and also to an identifier of either the first datum or the first binary file exists:
(1) dynamically generating a path to the second binary file responsively to the
language identifier and the either the first datum or the first binary file; (2)
storing the path in a look-up table correlating a process module identifier
identifying the first binary file and an alternate module identifier identifying
the second binary file; and (3) making an alternate datum in the second binary
file accessible to the calling process instead of the first datum.

According to another embodiment, the invention is also a method performed
by an operating system. The method redirects a call by a calling process for a
first resource datum residing in a first binary file containing both executable
code defining the calling process and resource data. The calling process is
defined in the code. The method has the following steps: storing in a variable,
independently of the calling process, a language identifier; when a second
binary file corresponding to the language identifier and also to either the first
resource datum or the first binary file exists: (1) dynamically generating a path
to the second binary file responsively to the language identifier and the either
the first resource datum or the first binary file; (2) making an alternate
resource datum in the second binary file accessible to the calling process
instead of the first resource datum.

According to still another embodiment, the invention is a method of adding
multilingual capability to an operating system having functions to address first
resource data in executable binary files. The method includes the following
steps: adding a selectable user-setting for storing a selected language
identifier; adding at least one alternate language resource file containing
resource data each corresponding to a respective one of the first resource data;
and modifying a resource loader to redirect calls for each of the first resource
data to a respective one of the alternate language resource data responsively to

a selected language stored in the selected language identifier.

PCT/US99/18347

10

15

20

25

30

WO 00/10078 PCT/US99/18347

According to an embodiment, the invention is a method performed by an
operating system. The method addresses data responsively to a call by a
calling process for a first datum. The method has the following steps:
determining an existence of an alternate language file corresponding to the
first datum; returning at least one datum from the alternate language file to the
calling process when a result of the step of determining is an indication that
the alternate language file exists; returning the first datum to the calling
process when a result of the step of determining is an indication that the
alternate language file does not exist.

According to an embodiment, the invention is a method performed by an
operating system. The method redirects a call by a calling process for a first
datum residing in a first binary file. The following steps are performed: storing
in an operating system variable independently of the calling process for each
user, a language identifier; responsively to a detection of a second binary file
corresponding to the language identifier and also to an identifier of either the
first datum or the first binary file: (1) dynamically generating a path to the
second binary file responsively to the language identifier and the either the
first datum or the first binary file; (2) storing the path in a look-up table
correlating a process module identifier identifying the first binary file and an
alternate module identifier identifying the second binary file; and (3) making
an alternate datum in the second binary file accessible to the calling process

instead of the first datum.

-of Descrintion of the Drawi

Fig. 1 is a schematic drawing of a binary file containing a code section
that defines a process that calls for a resource in a resource section of the same
binary file.

Fig. 2 is a schematic drawing of two binary files, one of which contains
code and may or may not contain resources, and the other of which contains
resources and may or may not contain code, the code of the first file defining a

process that calls resources in the second file.

10

15

20

25

30

WO 00/10078 PCT/US99/18347

Fig. 3 is a schematic illustration of a resource loader and resource
finder being used by a process to retrieve a resource according one
embodiment of the prior art.

Fig. 4 is a schematic illustration of a resource handler in a generalized
description of a process of retrieving resources by a process on a computer.
Fig. 5, is a schematic illustration of a process of calling for a resource datum
through an operating system in a modification of the prior art process shown in

Fig. 3.

: otion of the Embodi

Referring to Fig. 5, a process of calling for a resource datum through
an operating system in a modification of the prior art process shown in Fig. 3,
is shown. Processes within the resource loader 130 and resource finder 135,
described with reference to Fig. 3, are modified to produce a process as
illustrated in Fig. 5. In overarching terms, the process of Fig. 5 redirects a call
by the process for a particular resource to an alternate-language resource so
that the process receives a resource associated with a selected user-interface
language instead of the default resource for the process. In an embodiment,
loading of alternate resources only "kicks in" if the process did not specify the
language it wants to load. In other words, a process tries to load resources and
doesn't really care about which language. In the prior-art system the resource
loader would return the resources from either the resource section of the
module itself, or from an external module, which the process specified to load
resources from. In the present embodiment of a multilingual user interface
system, the resource loader will load alternate resources if the process didn't
specify a particular language or other particular classification for the resource.
The process requests a memory handle from the resource finder 320 just as in
the prior art embodiment of Fig. 3. However, in this case, the handle is a
handle referring to an alternate language resource, if one is available. The
resource finder tries to identify a resource indicated by a selected user-

interface language ID 335.

10

15

20

25

30

WO 00/10078 PCT/US99/18347

- 14 -

Selected user-interface language ID 335 is a user-setting. The selected user-
interface language ID 335 could be established, for example, by a user logging
in and selecting a language from a list of options. The selected user-interface
language ID 335 is then stored until changed.

A process 310 requests a memory handle for a resource by sending to a
resource finder 320 a resource name and type. If the resource were in a module
other than the one defining the calling process 310, the resource module
handle would also be sent to the resource finder 320. If the module handle is
not sent, the resource finder already has access to the module handle from a
loader data table because the module is the same as the one generating the
process requesting the resource. (As discussed in the background section,
resource finder and resource loader are often used to access resources in the
same binary file as the code generating the requesting process) It is also
possible for the process to request a resource that is language-specific and the
process of satisfying such a request may be outside the steps relating to the
invention and satisfied by prior art methods (See for example a description of
LoadResource described in http://www.microsoft.com/msdn/.) In the latter
case, a language ID may be passed to the resource finder.

The operating system is modified to maintain a table of alternate resource
module handles 323, which have been generated previously by calls to the
resource finder 320. So if another process already requested a resource from
the same module and the module is already correlated to an alternate resource
module, the alternate module handle can be quickly obtained from the
alternate resource module table 323. If there is no entry for the resource, the
operating system generates an alternate module path dynamically.

To dynamically generate an alternate module path, an algorithm 325 is
employed. The algorithm 325 may be based on some assumed organization of
resource files, which indicate whether an alternate language resource file exists
for the specified resource. In the present embodiment, the alternate language
resource files are located in subdirectories of the requested module's path, each

distinguished by a filename correlated uniquely to a language identifier.

10

15

20

25

30

WO 00/10078 PCT/US99/18347

- 15 -

Within each language's subdirectory are stored the alternate language resource -
files, each named after the original module.

<module_path>\mui\<language ID>\<module_name>

In other words, the operating system loads an alternate-language resource
module from a language-specific subdirectory of the original module's load
path. If the original module, for a system that was not multilingual enabled,
was "<path 1>\<filename 1>," the path for the alternate language module
would be "<path 1>\mui\<language ID 1>\<filename 1>" assuming the
language indicated by selected user-interface language ID 335 is "language ID
1."

The organization of the alternate language resources can be done in various
alternative ways. Breaking them down into language-specific modules, each
corresponding to the regular module (the one ordinarily requested in a single-
language operating system) avoids any need for additional memory as would
occur if for each resource module, the resources of the various languages were
combined into a single module.

Given the path structure used to store modules, it is straightforward to
construct a path for an alternate language module corresponding to any
language indicated by the selected user-interface language ID 335 and the
original called-for path and module name. This path is used by the resource
finder 320 to provide a resource handle. The creation of the resource handle is
done in the same way as in the prior art. The difference is that the resource
handle in this instance directs the process to a resource datum 350, which was
identified in a subdirectory of the original module path. In Fig. 5, the resource
datum 350 was in an alternate resource module for "binary file 2" where the
selected user interface language ID was language ID 2.

The path and module name are dynamically generated using the same name as
the original module name supplied by the calling process. The element
<language ID> may be some compact code representing the language. For
example, it could be based on ISO 639 language standard abbreviation plus,
possibly, a sublanguage designator or a Win32 language id including primary

and secondary components.

10

15

20

25

30

WO 00/10078 PCT/US99/18347

In a preferred embodiment of the invention, the algorithm is robust in that it
does much more than simply construct a path assuming there exists an
alternate-language resource for the requested data. Alternate languages may be
requested with varying degrees of specificity. Also, it is possible that no
alternate-language resource may be available or that an alternate resource is
available, the resource being different from the base resource in some respect
other than language. The algorithm and associated processes are robust enough
to deal with and exploit these situations as well as the straightforward scenario
depicted in Fig. 5.

The selected user interface language may be very specific. For example, a user
may request French, Swiss, or Canadian French. The algorithm may involve
multiple steps to enable it to reconcile a system-level request for a user-
interface language with one degree of specificity and an availability of
alternate language resources provided with another degree of specificity. If the
user requests French French upon logging into the operating system, only an
approximation to the requested language may available. To deal with such
situations, the algorithm and associated processes may operate according to a
built-in hierarchy of steps as follows.

First, the algorithm may determine if, in the module path specified by
"<module path>\mui\" there exists a subdirectory with an identifier equivalent
to the current user language ID, that is, with the name "\<language ID>\". If
this first test fails, the algorithm may determine if there exists a subdirectory
of "<module_path>\mui\" with an identifier equivalent to the primary
language ID corresponding to the current user language ID, that is, with the
name "\<primary language ID>\". If no system user language ID is specified,
the algorithm may be able to use a surrogate to resolve a subdirectory, for
example, some preference that suggests the locality of the user such as a
preference as to date or monetary format conventions. Alternatively, a
language-neutral alternate resource module may be invoked. Other steps,
which may be placed in any desired priority, could be the selection of a default
alternate language resource subdirectory, a substitute language where the one

specified by the user language ID is not available but a predefined substitute

10

15

20

25

30

WO 00/10078 PCT/US99/18347

- 17 -

language is often spoken in the likely locale is, for example, if Canadian
French is requested in the user language ID, and English is available. The
above process of identifying preferred alternate resources according to a
priority system allows the specificity of alternate language resources to be
increased. If the operating system ships with only primary languages (€.g.,
English, but no British English, Canadian English, etc.) the user may add more
specific languages later and the user's choice implemented transparently and
automatically.

Note that the above functionality does not interfere with the normal requests
for a resource for a specific language, such as made with the FindResourceEx
function in Windows®. If a specified language ID is provided by the
requesting process, the alternate-language resource scheme above would not
reroute the request to another resource module.

After the algorithm 325 that forms the path has settled on a resource path,
version checks and any other integrity checks can be performed on the
identified file before making it accessible to the requesting process. If, as a
result of the processes described with reference to Fig. 5, the alternate-
language module 370 was newly placed in memory or otherwise made
accessible by the call to resource finder 320, a new entry may be placed in the
alternate resource module table 323. Finally a handle may be returned to the
calling process to allow the process to access the requested resource. The latter
may involve a step to another function, the resource loader 330, to load the
data into memory and provide a handle for the process to use to access the
data.

Note that where Fig. 5 and the attendant discussion indicate that the module is
loaded into memory, this may not need to be done explicitly by the resource
finder or even the resource loader. The only requirement is the appropriate
data is made available to the process. The operating system may handle the
actual movement of data through its I/O and memory management facilities.
The import of what is described above with reference to Fig. 5 is that a request
by a process for a resource, whose guts are different for different languages, is

automatically redirected transparently to the requesting process. The code

10

15

20

WO 00/10078 PCT/US99/18347

- 18 -

defining the process does not need to be modified for the operating system to
be multilingual enabled. Fig. 5 and the attendant discussion describe the
process of redirecting requests for data in the context of resources that are
incorporated in binary files that also contain executable code. The same basic
formula can be expanded to embrace the access of data in resource-only files,
for example, DLLs.

Note that in the above discussion, where a process calls for data to be
loaded into memory or unloaded from memory, such a step should be viewed
in the broader sense of being mapped into the address space of a process. This
is because the operating system facilities for mapped I/O blur the concrete
notions connected with loading data from disk into memory. In other words,
current operating systems make it possible to allow a process to access data on
a disk following steps without necessarily being involved in the explicit steps
of loading data into memory, since this concrete step can be handled
transparently by the operating system's I/O system and virtual memory
management functions.

The above process may map the alternate resource module as a simple
data file into the address space of the calling process. The details underlying
this process are known in the prior art, for example in Windows®, this is done

by code defining an operating system function called LoadLibrary.

10

15

20

25

30

WO 00/10078

- 19 -

CLAIMS
What is claimed is:

1. In an operating system, a method for redirecting a call by a calling
process for a first datum residing in a first binary file, said method comprising
the steps of:

storing in a variable independently of said calling process, a language
identifier;

when a second binary file, corresponding to said language identifier
and also to an identifier of either said first datum or said first binary file, is
found:

dynamically generating a path to said second binary file responsively

to said language identifier and said either said first datum or said first

binary file;

storing said path in a look-up table correlating a process module

identifier identifying said first binary file and an alternate module

identifier identifying said second binary file; and

making an alternate datum in said second binary file accessible to said

calling process instead of said first datum.

2. A method as in claim 1, wherein said step of making includes mapping said
alternate datum into an address space of said calling process.

3. A method as in claim 2, wherein said calling process is defined in a code
portion of said first binary file.

4. A method as in claim 2, wherein said step of dynamically generating
includes generating a path that includes a language-specific subdirectory.

5. A method as in claim 2, wherein said step of making includes generating a
handle to said alternate datum for use by said calling process in accessing said
alternate datum.

6. A method as in claim 2, wherein said second binary file includes both code
and resource data, said alternate datum being at least a portion of said resource

data.

PCT/US99/18347

10

15

20

25

30

WO 00/10078

7. A method as in claim 2, further comprising the step of, when a second
binary file corresponding to said language identifier and also to either said first
datum or said first binary file is not found, making said first datum accessible
to said calling process.

8. A method as in claim 2, wherein said first datum is one of data defining an
icon, a cursor, a menu, a dialog box, a bitmap, an enhanced metafile, a font, an
accelerator table, a message-table entry, a string-table entry, or a version.

9. A method as in claim 1, wherein said step of dynamically generating
includes generating a path that includes a language-specific subdirectory.

10. A method as in claim 9, wherein said step of making includes generating a
handle to said alternate datum for use by said calling process in accessing said
alternate datum.

11. A method as in claim 9, wherein said second binary file includes both code
and resource data, said alternate datum being at least a portion of said resource
data.

12. A method as in claim 9, further comprising the step of, when a second
binary file that corresponds to said language identifier and also to either said
first datum or said first binary file is not found, making said first datum
accessible to said calling process.

13. A method as in claim 9, wherein said first datum is one of data defining an
icon, a cursor, a menu, a dialog box, a bitmap, an enhanced metafile, a font, an
accelerator table, a message-table entry, a string-table entry, or a version.

14. A method as in claim 1, wherein said step of making includes generating a
handle to said alternate datum for use by said calling process in accessing said
alternate datum.

15. A method as in claim 14, wherein said second binary file includes both
code and resource data, said alternate datum being at least a portion of said
resource data.

16. A method as in claim 14, further comprising the step of, when a second
binary file that corresponds to said language identifier and also to either said
first datum or said first binary file is not found, making said first datum

accessible to said calling process.

PCT/US99/18347

10

15

20

25

30

WO 00/10078 PCT/US99/18347

17. A method as in claim 14, wherein said first datum is one of data defining
an icon, a cursor, a menu, a dialog box, a bitmap, an enhanced metafile, a font,
an accelerator table, a message-table entry, a string-table entry, or a version.
18. A method as in claim 1, wherein said second binary file includes both code
and resource data, said alternate datum being at least a portion of said resource
data.

19. A method as in claim 18, further comprising the step of, when a second
binary file that corresponds to said language identifier and also to either said
first datum or said first binary file is not found, making said first datum
accessible to said calling process.

20. A method as in claim 18, wherein said first datum is one of data defining
an icon, a cursor, a menu, a dialog box, a bitmap, an enhanced metafile, a font,
an accelerator table, a message-table entry, a string-table entry, or a version.
21. A method as in claim 1, further comprising the step of, when a second
binary file that does not correspond to said language identifier and also to
either said first datum or said first binary file, making said first datum
accessible to said calling process.

22. A method as in claim 21, wherein said first datum is one of data defining
an icon, a cursor, a menu, a dialog box, a bitmap, an enhanced metafile, a font,
an accelerator table, a message-table entry, a string-table entry, or a version.
23. A method as in claim 1, wherein said first datum is one of data defining an
icon, a cursor, a menu, a dialog box, a bitmap, an enhanced metafile, a font, an
accelerator table, a message-table entry, a string-table entry, or a version.

24. A method as in claim 1, wherein said first datum is a resource datum.

25. A method as in claim 1, wherein said calling process is defined in a code
portion of said first binary file.

26. In an operating system, a method for redirecting a call by a calling
process for a first resource datum residing in a first binary file containing both
executable code defining said calling process and resource data, said calling
process being defined in said code, said method comprising the steps of:

storing in a variable independently of said calling process, a language

identifier;

10

15

20

25

30

WO 00/10078

- 22 -

when a second binary file, corresponding to said language identifier
and also to either said first resource datum or said first binary file, is found:
dynamically generating a path to said second binary file responsively
to said language identifier and said either said first resource datum or
said first binary file;
making an alternate resource datum in said second binary file
accessible to said calling process instead of said first resource datum.
27. A method as in claim 26, wherein said step of making includes mapping
said alternate resource datum into an address space of said calling process.
28. A method as in claim 27, wherein said step of dynamically generating
includes generating a path that includes a language-specific subdirectory.
29. A method as in claim 27, wherein said step of making includes generating
a handle to said alternate resource datum for use by said calling process in
accessing said alternate resource datum.
30. A method as in claim 27, wherein said second binary file includes both
code and resource data.
31. A method as in claim 27, further comprising the step of, when a second
binary file that corresponds to said language identifier and also to either said
first resource datum or said first binary file is not found, making said first
resource datum accessible to said calling process.
32. A method as in claim 27, wherein said first resource datum is one of data
defining an icon, a cursor, a menu, a dialog box, a bitmap, an enhanced
metafile, a font, an accelerator table, a message-table entry, a string-table
entry, or a version.
33. A method as in claim 26, wherein said step of dynamically generating
includes generating a path that includes a language-specific subdirectory.
34. A method as in claim 33, wherein said step of making includes generating
a handle to said alternate resource datum for use by said calling process in
accessing said alternate resource datum.
35. A method as in claim 33, wherein said second binary file includes both

code and resource data.

PCT/US99/18347

10

15

20

25

30

WO 00/10078 PCT/US99/18347

36. A method as in claim 33, further comprising the step of, when a second
binary file that corresponds to said language identifier and also to either said
first resource datum or said first binary file is not found, making said first
resource datum accessible to said calling process.

37. A method as in claim 33, wherein said first resource datum is one of data
defining an icon, a cursor, a menu, a dialog box, a bitmap, an enhanced
metafile, a font, an accelerator table, a message-table entry, a string-table
entry, or a version.

38. A method as in claim 26, wherein said step of making includes generating
a handle to said alternate resource datum for use by said calling process in
accessing said alternate resource datum.

39. A method as in claim 38, wherein said second binary file includes both
code and resource data.

40. A method as in claim 38, further comprising the step of, when a second
binary file that corresponds to said language identifier and also to either said
first resource datum or said first binary file is not found, making said first
resource datum accessible to said calling process.

41. A method as in claim 38, wherein said first resource datum is one of data
defining an icon, a cursor, a menu, a dialog box, a bitmap, an enhanced
metafile, a font, an accelerator table, a message-table entry, a string-table
entry, or a version.

42. A method as in claim 26, wherein said second binary file includes both
code and resource data.

43. A method as in claim 42, further comprising the step of, when a second
binary file that corresponds to said language identifier and also to either said
first resource datum or said first binary file is not found, making said first
resource datum accessible to said calling process.

44..A method as in claim 42, wherein said first resource datum is one of data
defining an icon, a cursor, a menu, a dialog box, a bitmap, an enhanced
metafile, a font, an accelerator table, a message-table entry, a string-table

entry, or a version.

10

15

20

25

30

WO 00/10078 PCT/US99/18347

45. A method as in claim 26, further comprising the step of, when a second
binary file that corresponds to said language identifier and also to either said
first resource datum or said first binary file is not found, making said first
resource datum accessible to said calling process.

46. A method as in claim 45, wherein said first resource datum is one of data
defining an icon, a cursor, a menu, a dialog box, a bitmap, an enhanced
metafile, a font, an accelerator table, a message-table entry, a string-table
entry, or a version.

47. A method as in claim 26, wherein said first resource datum is one of data
defining an icon, a cursor, a menu, a dialog box, a bitmap, an enhanced
metafile, a font, an accelerator table, a message-table entry, a string-table
entry, or a version.

48. A method of adding multilingual capability to an operating system having
functions to address first resource data in executable binary files, the method
comprising the steps of:

adding a selectable user-setting for storing a selected language identifier;
adding at least one alternate language resource file containing resource data
each corresponding to a respective one of said first resource data; and
modifying a resource loader to redirect calls for each of said first resource data
to a respective one of said alternate language resource data responsively to a
selected language stored in said selected language identifier.

49. In an operating system, a method of addressing data responsively to a call
by a calling process for a first datum, comprising the steps of:

determining an existence of an alternate language file corresponding to said
first datum,;

returning at least one datum from said alternate language file to said calling
process when a result of said step of determining is an indication that said
alternate language file exists;

returning said first datum to said calling process when a result of said step of

determining is an indication that said alternate language file does not exist.

WO 00/10078 , PCT/US99/18347
- 25 -

50. In an operating system, a method for redirecting a call by a calling -
process for a first datum residing in a first binary file, said method comprising
the steps of:

storing in a variable independently of said calling process, a language

5 identifier;

responsively to a detection of a second binary file, corresponding to
said language identifier and also to an identifier of either said first datum or
said first binary file:

dynamically generating a path to said second binary file responsively

10 to said language identifier and said either said first datum or said first
binary file;

storing said path in a look-up table correlating a process module

identifier identifying said first binary file and an alternate module

identifier identifying said second binary file; and
15 making an alternate datum in said second binary file accessible to said calling

process instead of said first datum.

WO 00/10078

1/4

1olCode I15

Application
20
Resource module,— 35
Resource datum
Fig. 1 PRIOR ART
o0 Code I 55
Application 22

60 ~_ Resource modulj_ 85 25

Resource datum

Fig. 2

SUBSTITUTE SHEET (RULE 26)

PCT/US99/18347

WO 00/10078 PCT/US99/18347

2/4
Resource
Finder
135
handle to memory block—
(resource mOdUIe)' containing resource
name,type, (lang.)
memory
handle resourcehandle &
module handle

Process

e

110

resource module 145

120
Resource datum o —

cali for data
2 K

Fig. 3 PRIOR ART

SUBSTITUTE SHEET (RULE 26)

WO 00/10078

PCT/US99/18347

3/4

230

Resource
Handler

handle, address, pointer, etc.”
to resource

resource |D 8
(resource module ID)

Process / -Make

accessible

210

accessible
data 240

NS

Resource module
280 220

address data Resource datum

SUBSTITUTE SHEET (RULE 26)

WO 00/10078

Alternate
resource module
table 323

alternate
base module

I
?,‘3,,5"5 handle

base module

name (base »
Resource path) Dynamically form
Finder alternate module
320 alt. module path 325
path
__/Resource
(resource module), handie to_memory block™)) 4o

name, type, (lang.)

PCT/US99/18347

4/4

Select
Language ID
(sys. var.)
335

ining resource
containing 330

memory resource handle &
handle module handle
Process 310
i]
] i
! 1
1 1
[} [}
[})
E :
Lo —[AR, res. module for binary
N file 1 381
apparent -
resource module 145 |callfor | ; —
— | data Vo 1
y to | | Alt. res. module for binary
Resource datum | /-~~~ Co | fle2382
125 i]
‘ I
~ load from file L~ **oe
into memory **0q0
: Lang. ID ’ﬂ' ‘ | o®
tang. ID 3177 |
L D 4 Alt. res. module for binary
) ang. file n 383
Alt. res. module for binary Lang. D n]
file 2, lang. ID 2 370 —
|
Resource datum
350) .
= [Fig. 5
actual call
for data

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

