
US008290977B2

(12) United States Patent (10) Patent No.: US 8,290,977 B2
Chinchwadkar et al. (45) Date of Patent: Oct. 16, 2012

(54) DATABASE SYSTEM PROVIDING 6,587,855 B1 7/2003 Ellmann et al. 707/10
6,604,100 B1 8/2003 Fernandez et al. 707/3

METHODOLOGY FOR EXECUTION OF 6,622,144 B1 9/2003 Rush TO7 101
FUNCTIONS IN XML QUERIES 6,631,379 B2 10/2003 Cox TO7/100

6,631,519 B1 10/2003 Nicholson et al. 717/169
(75) Inventors: Gajanan S. Chinchwadkar, Fremont, 6,635,089 B1 10/2003 Burkett et al. T15,513

CA (US); Anupam Singh, Dublin, CA 6,636,845 B2 10/2003 Chau et al. .. 707/1
• Ca 6,643,633 B2 11/2003 Chau et al. .. 707/1

S. ASA Spitfire. A 6,799,184 B2 9/2004 Bhatt et al. TO7,102
(US); Phil Shaw, Huntington Beach, 7,016,910 B2 * 3/2006 Egilsson et al. 707/101
(US) 7,120,645 B2 * 10/2006 Manikutty et al. 707/102

2004/0003341 A1 1/2004 alSafadi et al. 715,500
(73) Assignee: Sybase Inc., Dublin, CA (US) 2004, OO60.007 A1* 3, 2004 Gottlob et al. . T15,513

2005, OO60647 A1* 3, 2005 Doan et al. T15,514
c - r - 2005/0187947 A1* 8/2005 Wortendyke et al. 707/100

(*) Notice: Subject to any site the still 2005/0228768 A1* 10/2005 Thusoo et al. 707/1
patent 1s extended or adjusted under 2005/0228792 A1* 10/2005 Chandrasekaran et al. 707/9
U.S.C. 154(b) by 1242 days. 2006/0074930 A1* 4/2006 Hsu et al. 7O7/1OO

* cited b (21) Appl. No.: 10/904,055 c1ted by examiner
Primary Examiner — Amy Ng
(74) Attorney, Agent, or Firm — Sterne, Kessler, Goldstein
and Fox PL.L.C.

(22) Filed: Oct. 21, 2004

(65) Prior Publication Data

US 2006/O1 OO989 A1 May 11, 2006 (57) ABSTRACT

A database system providing methodology for execution of
functions in queries requesting data from markup language
documents is described. In one embodiment, for example, a

(51) Int. Cl.
G06F 7700 (2006.01)

(52) U.S. Cl. 707/778 method is described for executing a function in a query
(58) Field of Classification Search 707/4, 101, requesting data from a markup language document stored in

707/778 a database, the markup language document organized hierar
See application file for complete search history. chically into nodes, the method comprises steps of receiving

the query requesting data from the markup language docu
ment, the query including a function to be executed during
execution of the query; determining nodes of the markup
language document satisfying the query; deriving values of

TO7/10 the nodes of the markup language document; and executing

(56) References Cited

U.S. PATENT DOCUMENTS

6,356,906 B1 3/2002 Lippert et al. ...
6,397.219 B2 5, 2002 Mills TO7/10
6,466,940 B1 10/2002 Mills ... 707/102 the function with the derived values and the nodes of the
6,480,860 B1 1 1/2002 Monday 707/02 markup language document.
6,510,434 B1 1/2003 Anderson et al. 707/100
6,549,922 B1 4/2003 Srivastava et al. 707,205 90 Claims, 11 Drawing Sheets

500

-10
SCL (UERYENGINE

21 820

XML ENGINE

XMLQUERYNGIN 630

XPATHPARSR 831 -> OPTIMIZER 833

FUNCTION OPERATOR
EXCUTIONNGINE 837

835 NOTO ATOMC -
WALUE OP 839

NODEOSS42 NODE WALUES44

ENHANCED PATH PROCESSOR 650

w
STORELAYERS60

PATH INDEX 662 WALUENDEX 664

LINKNOEX sesa AA 688

U.S. Patent Oct. 16, 2012 Sheet 2 of 11 US 8,290,977 B2

2OO

2O1a 201b. 2O1C 201C

APPLICATION APPLICATION BROWSER APPLICATION 2O1
PROGRAM 1 PROGRAM 2 PROGRAM PROGRAMN

OPERATING SYSTEM
(e.g., WINDOWS 9X/NT/2000/XP, SOLARIS, UNIX, LINUX, MAC OS, OR LIKE)

GRAPHICAL
USER INTERFACE

21O

DEVICE DRIVERS
(e.g., WINSOCK)

BIOS
(MICROCODE)

DISPLAY MONITOR
NETWORK INTERFACE
COMM PORT
KEYBOARD
MODEM
MOUSE
DISKS
PRINTER

FIG. 2

US 8,290,977 B2

005

U.S. Patent

U.S. Patent Oct. 16, 2012 Sheet 4 of 11 US 8,290,977 B2

400
4O1

bOOKStOre

4O2 41 O

411
403 405 413

4O6 408 414 416

404 - 4O7 4.09

412 415 417

-value -value -value

"TrentOn'' "Mary" "Bob"

"National" 'Joe' "Bob"

FIG. 4

U.S. Patent Oct. 16, 2012 Sheet 5 of 11 US 8,290,977 B2

500

51O
/1

SOL OUERY ENGINE

52O

XML ENGINE

XML QUERY ENGINE 530

XPATH PARSER 531 -o- OPTIMIZER 533

EXECUTION ENGINE 535

PATH PROCESSOR 550

STORE LAYER 560

PATH INDEX 562 VALUE INDEX 564

LINK INDEX 566 DATA 568

FIG. 5

U.S. Patent Oct. 16, 2012 Sheet 6 of 11 US 8,290,977 B2

60
610

SOL OUERY ENGINE

/1 62O

XML ENGINE

XML QUERY ENGINE 630

XPATH PARSER 631 -b OPTIMIZER 633

FUNCTION OPERATOR

EXECUTION ENGINE 637
635 NODE TO ATOMIC

VALUE OP 639

Z
NODE IDS 642 NODE ID + VALUE 644

/

ENHANCED PATH PROCESSOR 65O

STORE LAYER 66O

PATH INDEX 662 VALUE INDEX 664

LINK INDEX 666 DATA 668

FIG. 6

U.S. Patent Oct. 16, 2012 Sheet 7 of 11 US 8,290,977 B2

BEGIN

PARSE AND NORMALIZE QUERY (PARSER/NORMALIZER). IDENTIFY
POSSIBLE SIMPLE PATH EXPRESSIONS IN QUERY. (COMPLER/

OPTIMIZER)

701

702

GENERATE EXECUTION PLAN (OPERATOR TREE), ADD PHYSICAL
FUNCTION OPERATOR AT POINT WHERE LOGICAL FUNCTION
OPERATOR LIES INQUERY TREE. (COMPILER/OPTIMIZER)

703

INSERT Node ToVa OPERATOR BETWEEN EACH FUNCTION OPERATOR
AND SUB-PLAN BELOW IT EXCEPT IN THE EVENT THE SUB-PLAN

STARTS WITH ANOTHER FUNCTION OPERATOR. Node.TOVal OPERATOR
CREATES NOdeVa OBJECTS ASSOCATING TRANSIENT VALUES AND
NODE IDS OBTAINED FROM SIMPLE SCANS. (COMPILER/OPTIMIZER)

704
/1

SUB-PLANS RETURN NODE IDS FOR IDENTIFIED XPATH EXPRESSIONS
(BASED ON REQUEST GENERATED BY EXECUTION ENGINE AND

SATISFIED BY PATH PROCESSOR).
(EXECUTION ENGINE)

705

MEMBER FUNCTION getvalue() OF Nodeval API GETS NODE IDS FROM
EACH CHILD OPERATOR AND CREATES DERIVED VALUE. WHEN MORE
THAN ONE NODE ID IS RETURNED BY CHILD OPERATOR. THEIR VALUES

ARE AGGREGATED. (EXECUTION ENGINE)

STATE TRANSTION MACHINE OF FUNCTION OPERATOR
SYNCHRONIZES CHILD NOde TOAtom Wa OPERATORS AND CREATES A

STRINGLIST. IT ALSO INVOKES FUNCTION DRIVER WITH THE
STRINGLIST AS ANARGUMENT. (EXECUTION ENGINE)

TO
FIG 7B

FIG. 7A

U.S. Patent Oct. 16, 2012 Sheet 8 of 11 US 8,290,977 B2

FROM
FIG 7A

y /1 707
FUNCTION DRIVEREVALUATES FUNCTION ON SUPPLIED STRINGLIST
AND RETURNS RESULTS TO FUNCTION OPERATOR. (EXECUTION

ENGINE)

/1 708
FUNCTION OPERATOR CREATES NEW Node Val OBJECT FOR

TRANSIENT VALUE (I.E., RESULTS OF EVALUATION OF FUNCTION ON
STRINGLIST BY FUNCTION DRIVER) AND PASSES IT TO ITS PARENT

OPERATOR. (EXECUTION ENGINE)

709
/1

IF FUNCTION OPERATOR IS NOT TOP-MOST OPERATOR IT PASSES ON
Nodeval OBJECT TO HIGHER-LEVELOPERATOR. (EXECUTION ENGINE)

-710
OTHERWISE, IF FUNCTION OPERATOR IS TOP-MOST OPERATOR IT
RETURNS RESULTS (E.G., TO SQL QUERY ENGINE, WHICH INTURN

SENDS RESULTS TO CLIENT (USER)). (EXECUTION ENGINE)

FIG. 7B

U.S. Patent Oct. 16, 2012 Sheet 9 of 11 US 8,290,977 B2

801 8

807

START

acquire0uterContext
806

FNSTATE ACQUIRED
CONSTANTS

805

FNSTATE EXHAUSTED

804

FNSTATE EXHAUSTED

O

acquire0onstants
(START)

808

FNSTATE ACQUIRED
CUR SC

8O3
Y

FNSTATE ALL CONSTANTS 825

Exhausted
(END) 809

816

FNSTATE CONSUMED
810 814

FNSTATE LOCKSTEP computefunction

812

FNSTATE ACQUIRED 811
ALLVALUES

acquireAllValues

FNSTATE EXHAUSTED

FIG. 8

U.S. Patent Oct. 16, 2012 Sheet 10 of 11 US 8,290,977 B2

901
/1

FNSTATE ALL CONSTANTS

FunctionOp:Concat

903 905

FIG 9A

911

FNSTATE NO CONSTANTS

FunctionOp:Concat

912

913 914

FIG. 9B

U.S. Patent Oct. 16, 2012 Sheet 11 of 11 US 8,290,977 B2

1 OOO

1OO1

bookstore

1OO2 1005 1008 - 1O11

10O3 1 OO6 1009 1012

1004 1OO7 1010 1013

FIG 10

US 8,290,977 B2
1.

DATABASE SYSTEMPROVIDING
METHODOLOGY FOR EXECUTION OF

FUNCTIONS IN XML QUERIES

COPYRIGHT STATEMENT

A portion of the disclosure of this patent document con
tains material which is Subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc
tion by anyone of the patent document or the patent disclosure
as it appears in the Patent and Trademark Office patent file or
records, but otherwise reserves all copyright rights whatso
eVe.

APPENDIX DATA

Computer Program Listing Appendix under Sec. 1.52(e):
This application includes a transmittal under 37 C.F.R. Sec.
1.52(e) of a Computer Program Listing Appendix. The
Appendix, which comprises text file(s) that are IBM-PC
machine and Microsoft Windows Operating System compat
ible, includes the below-listed file(s). All of the material dis
closed in the Computer Program Listing Appendix can be
found at the U.S. Patent and Trademark Office archives and is
hereby incorporated by reference into the present application.

Object Description: SourceCode.txt, size: 30,585 Bytes,
created: 10/19/2004 2:22 PM; Object ID: File No. 1: Object
Contents: Source code.

BACKGROUND OF INVENTION

1. Field of the Invention
The present invention relates generally to data processing

environments and, more particularly, to a database system
providing methodology for execution of functions in queries
requesting data from markup language documents.

2. Description of the Background Art
Computers are very powerful tools for storing and provid

ing access to vast amounts of information. Computer data
bases are a common mechanism for storing information on
computer systems while providing easy access to users. A
typical database is an organized collection of related infor
mation stored as “records' having “fields” of information. As
an example, a database of employees may have a record for
each employee where each record contains fields designating
specifics about the employee. Such as name, home address,
salary, and the like.

Between the actual physical database itself (i.e., the data
actually stored on a storage device) and the users of the
system, a database management system or DBMS is typically
provided as a software cushion or layer. In essence, the
DBMS shields the database user from knowing or even caring
about the underlying hardware-level details. Typically, all
requests from users for access to the data are processed by the
DBMS. For example, information may be added or removed
from data files, information retrieved from or updated in such
files, and so forth, all without user knowledge of the under
lying system implementation. In this manner, the DBMS
provides users with a conceptual view of the database that is
removed from the hardware level. The general construction
and operation of database management systems is well
known in the art. See e.g., Date, C., “An Introduction to
Database Systems, Seventh Edition’, Part I (especially,
Chapters 1-4), Addison Wesley, 2000.

In recent years, applications running on database systems
frequently provide for business-to-business or business-to
consumer interaction via the Internet between the organiza

10

15

25

30

35

40

45

50

55

60

65

2
tion hosting the application and its business partners and
customers. Today, many organizations receive and transmit
considerable quantities of information to business partners
and customers through the Internet. A considerable portion of
the information received or exchanged is in Extensible
Markup Language or “XML format. XML is a pared-down
version of SGML (Standard Generalized Markup Language),
designed especially for Web documents, which allows
designers to create their own customized tags, enabling the
definition, transmission, validation, and interpretation of data
between applications and between organizations. For further
description of XML, see e.g., “Extensible Markup Language
(XML) 1.0 (Second Edition, Oct. 6, 2000) a recommended
specification from the W3C, the disclosure of which is hereby
incorporated by reference. A copy of this specification is
available via the Internet (e.g., currently at www.w3.org/TR/
2000/REC-xml-2000 1006). Many organizations utilize
XML to exchange data with other remote users over the
Internet.

Given the increasing use of XML in recent years, many
organizations now have considerable quantities of data in
XML format, including Web documents, newspaper articles,
product catalogs, purchase orders, invoices, and product
plans. As a result, these organizations need to be able to
efficiently store, maintain, and use this XML information in
an efficient manner. However, this XML data is not in a
format that can be easily stored and searched in current data
base systems. Most XML data is sent and stored in plain text
format. This data is not formatted in tables and rows like
information stored in a relational DBMS. To search this semi
structured data, users typically utilize keyword searches simi
lar to those utilized by many current Internet search engines.
These keyword searches are resource-intensive and are not as
efficient as relational DBMS searches of structured data.

Organizations with data in XML format also typically have
other enterprise data stored in a structured format in database
management systems. Increasingly, database system users
are demanding that database systems provide the ability to
access and use both structured data stored in these databases
as well as XML and other unstructured or semi-structured
data. In addition, users desire flexible tools and facilities for
performing searches of this data.
One of the key roles of a database management system

(DBMS) is to retrieve data stored in a database based on
specified selection criterion. This typically involves retriev
ing data in response to a query that is specified in a query
language. One particular need is for a solution that will enable
efficient searches of information in XML documents. For
instance, it would be desirable to have an XML version of
SQL (Structured Query Language) that would enable a user to
easily retrieve all nodes of type X that have descendants of
type Y from an XML document.
One current solution used in XML-based applications to

query the contents of an XML document is XPath. The XPath
query language is commonly used in Extensible Stylesheet
Language Transformations (XSLT) to locate and to apply
XSLT templates to specific nodes in an XML document.
XPath queries are also commonly used to locate and to pro
cess nodes in an XML document that match a specified cri
teria. XPath provides basic facilities for manipulation of
strings, numbers and booleans. It uses a compact, non-XML
syntax to facilitate use of XPath within URIs and XML
attribute values. XPath operates on the abstract, logical struc
ture of an XML document, rather than its surface syntax.
XPath gets its name from its use of a path notation as in URLs
for navigating through the hierarchical structure of an XML
document. For further description of XPath, see e.g., “XML

US 8,290,977 B2
3

Path Language (XPath) Version 1.0 (Nov. 16, 1999), a rec
ommended specification from the W3C, the disclosure of
which is hereby incorporated by reference. A copy of this
specification is available via the Internet (e.g., currently at
www.w3.c.org/TR/xpath).

Although XPath provides a mechanism for locating nodes
in an XML document that match specified criteria, problems
remain in the processing of queries written in the XPath query
language in current database systems. One particular problem
is that data in XML documents is typically spread in various
places throughout the document. For example, in an XML
document containing records of books in a bookstore, the
names of authors in the book will typically not be consoli
dated in one location, but rather will be spread throughout the
document. Accordingly, performing a search to find a particu
lar author name may require traversing paths of the XML
document structure to locate nodes containing the author
name and then comparing the author name at a given node to
the desired valued.

Another problem is that the data in an XML document may
be in different forms. For instance, one publisher of books
may use all upper-case letters for author names (e.g.,
"JOHN), while another publisher uses a “first-letter capital
ized' style (e.g., “John'). If a user wants to find all the books
in which the author's first name is John, this query needs a
union of the results of a first search performed for authors
with first-name="JOHN and a second search with first
name="John'. However, a case-free comparison may be pos
sible using string functions such as “tolower() or
“toupper()'. The use of functions such as tolower() and
toupper() make it possible to perform string comparisons
more efficiently. Recently, efforts have been initiated to pro
vide for use of certain built-in functions within XPath queries.
A set of functions for use within path-based queries (e.g.,
XPath queries) has been proposed in “XQuery 1.0 and XPath
2.0Functions and Operators', a WorldWideWeb Consortium
(W3C) Working Draft dated Jul. 23, 2004, the disclosure of
which is hereby incorporated by reference. A copy of this
document is available via the Internet (e.g., currently at
www.w3.org/TR/xpath-functions/). However, database solu
tions currently do not include mechanisms for using functions
such as the above-described string functions in XPath que
ries. Some current DBMS solutions provide the ability to
store XML data in a database system and to retrieve this data
using XPath queries. However, these solutions currently do
not support inclusion of these types of functions in XPath
queries.
What is needed is a database system with built-in support

for functions in queries (e.g., XPath queries) requesting data
in XML format. The solution should enable a function to be
included anywhere within a query expression. The Solution
should also enable information to be consolidated from vari
ous portions of an XML document as a query is executed. The
present invention provides a solution for these and other
needs.

SUMMARY OF INVENTION

A database system providing methodology for execution of
functions in queries requesting data from markup language
documents is described. In one embodiment, for example, a
method of the present invention is described for executing a
function in a query requesting data from a markup language
document stored in a database, the markup language docu
ment organized hierarchically into nodes, the method com
prises steps of receiving the query requesting data from the
markup language document, the query including a function to

10

15

25

30

35

40

45

50

55

60

65

4
be executed during execution of the query; determining nodes
of the markup language document satisfying the query; deriv
ing values of the nodes of the markup language document;
and executing the function with the derived values and the
nodes of the markup language document.

In another embodiment, for example, a system of the
present invention for executing a function included in a query
requesting data from a markup language document stored in
a database, the markup language document organized hierar
chically into nodes is described that comprises: a compiler
module for generating a plan for identifying nodes of the
markup language document satisfying the query; and an
execution module for executing the plan to identify nodes of
the markup language document satisfying the query, obtain
ing values corresponding to identified nodes of the markup
language document, associating the values with the identified
nodes, and executing the function included in the query with
the values and identified nodes.

In yet another embodiment, for example, in a database
system, a method of the present invention is described for
executing a function in a query requesting data from an
Extensible Markup Language (XML) document, the method
comprises steps of receiving the query requesting data from
an XML document, the query including a function to be
executed on data from an XML document which includes a
plurality of hierarchically arranged elements; determining
elements of the XML document satisfying the query: obtain
ing values of the elements of the XML document; associating
the values with elements of the XML document; and execut
ing the function with the values and associated elements.

In another embodiment, for example, in a database system,
a method of the present invention is described for executing a
function included in a query requesting data from an XML
document organized hierarchically into nodes, the method
comprises steps of generating an execution plan for obtain
ing data requested by the query from an XML document, the
execution plan including an operator for performing the func
tion included in the query; inserting an operator for obtaining
values corresponding to nodes of the XML document into the
execution plan; identifying nodes of the XML document sat
isfying the query based on the execution plan; deriving values
from identified nodes of the XML document using the opera
tor for obtaining values; and invoking the operator for per
forming the function with the values derived from the iden
tified nodes of the XML document.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a very general block diagram of a computer
system (e.g., an IBM-compatible system) in which software
implemented processes of the present invention may be
embodied.

FIG. 2 is a block diagram of a software system for control
ling the operation of the computer system.

FIG. 3 illustrates the general structure of a client/server
database system suitable for implementing the present inven
tion.

FIG. 4 is a block diagram illustrating a tree representation
of an XML document.

FIG. 5 is a block diagram illustrating an environment in
which the present invention may be implemented.

FIG. 6 is a block diagram illustrating the modification of
the XML, Engine of FIG. 5 to incorporate the system and
methodology of the present invention.

FIGS. 7A-B comprise a single flowchart illustrating the
method steps of operation of the present invention in handling
a query.

US 8,290,977 B2
5

FIG. 8 is a flow diagram illustrating state transition for the
Function Operator.

FIGS. 9A-B are block diagrams illustrating state transition
in an acquire(Constants() routine of the Function Operator.

FIG. 10 is a high-level block diagram illustrating acquisi
tion of a current search context.

DETAILED DESCRIPTION

Glossary
The following definitions are offered for purposes of illus

tration, not limitation, in order to assist with understanding
the discussion that follows.
HTML: HTML stands for HyperText Markup Language,

the authoring language used to create documents on the
WorldWideWeb. HTML defines the structure and layout of a
Web document by using a variety of tags and attributes. For
further description of HTML, see e.g., “HTML 4.01 Specifi
cation', a World Wide Web consortium recommendation
dated Dec. 24, 1999, the disclosure of which is hereby incor
porated by reference. A copy of this specification is available
via the Internet (e.g., currently at www.w3.org/TR/REC
html40).

Node: In the context of a markup language document (e.g.,
an XML document), a node corresponds to an element or
value in the markup language document. Unlike conventional
data in a database (e.g., relational database) which is main
tained in a flat structure, information in a markup language
document (e.g., XML document) can be represented as a tree
structure. The tree structure of an XML document is gener
ated by transforming each element or value in the XML
document into a node in the tree.

Path scan: A path scan returns identifiers of all the nodes
that follow a given XPath. In the system of the present inven
tion, a path scan invokes services of a store layer.

Physical query operator (operator): One step in an execu
tion plan is called an operator. Since it is in the plan (i.e.,
interpretable by the execution engine) it is called the “physi
cal operator.

Query: A request for information from a database. A data
base query is typically written in a database query language,
which is a language enabling database users to interactively
formulate requests and generate reports. One of the best
known query languages is the Structured Query Language
(SQL).

Query engine: A query engine is a significant component of
a DBMS, which in the currently preferred embodiment of the
present invention is comprised of the following Sub-compo
nents: a parser, a normalization engine, an optimizer/com
piler, and an execution engine. The parser converts query text
to a query tree and imposes syntactic correctness. The nor
malization engine enforces semantic correctness by validat
ing the correctness of information in the query. It also trans
forms the query into an operator tree or query that is in a form
which facilitates processing by other Sub-components of the
query engine. An optimizer chooses the best among various
alternative plans for executing a query. A compiler generates
another structure that enumerates the specific execution steps
in the appropriate order of execution. In this document the
XML engine optimizer and compiler are together referred to
as the optimizer, unless otherwise indicated. The last sub
component of the query engine is the execution engine which
is a virtual machine within a DBMS that interprets the “plan
language'. The execution engine executes all the Sub-com
mands necessary to execute the query and return results.

Query plan: A query plan (execution plan or “plan”) is an
in-memory data-structure which contains the specific steps

10

15

25

30

35

40

45

50

55

60

65

6
(operations) and order of execution for a given query. A query
plan is written in a language that the execution engine under
stands.
Query processing: All phases of query evaluation parsing,

normalization, optimization/compilation, execution, and
result generation together are termed as "query processing.
The life of a query includes all of these phases.
Query tree: A query tree is an in-memory data-structure

which represents a query. Initially, it is a mirror of “query
text in the form of an in-memory data-structure. It includes
the same information as in the user query.

Relational database: A relational database is a collection of
data items organized as a set of formally-described tables
from which data can be accessed or reassembled in many
different ways without having to reorganize the database
tables. The relational database was invented by E. F. Codd at
IBM in 1970. A relational database employs a set of tables
containing data fitted into predefined categories. Each table
(which is sometimes called a relation) contains one or more
data categories in columns. The standard user and application
program interface to a relational database is the structured
query language (SQL), defined below.
SQL: SQL stands for Structured Query Language. The

original version called SEQUEL (structured English query
language) was designed by IBM in the 1970s. SQL-92 (or
SQL/92) is the formal standard for SQL as set out in a docu
ment published by the American National Standards Institute
in 1992; see e.g., “Information Technology—Database lan
guages—SQL', published by the American National Stan
dards Institute as American National Standard ANSI/ISO/
IEC 9075: 1992, the disclosure of which is hereby
incorporated by reference. SQL-92 was superseded by SQL
99 (or SQL3) in 1999; see e.g., “Information Technology—
Database Languages—SQL, Parts 1-5’ published by the
American National Standards Institute as American National
Standard INCITS/ISO/IEC 9075-(1-5)-1999 (formerly
ANSI/ISO/IEC 9075-(1-5) 1999), the disclosure of which is
hereby incorporated by reference.

Storage layer: A storage layer is a component of a DBMS
which provides services to the query engine Such as running
a scan and extracting data from disk to in-memory buffers,
storing data from in-memory buffers to disk, and so forth.
URL: URL is an abbreviation of Uniform Resource Loca

tor, the global address of documents and other resources on
the World Wide Web. The first part of the address indicates
what protocol to use, and the second part specifies the IP
address or the domain name where the resource is located.
XML: XML stands for Extensible Markup Language, a

specification developed by the World WideWeb Consortium
(W3C). XML is a pared-down version of the Standard Gen
eralized Markup Language (SGML), a system for organizing
and tagging elements of a document. XML is designed espe
cially for Web documents. It allows designers to create their
own customized tags, enabling the definition, transmission,
validation, and interpretation of data between applications
and between organizations. For further description of XML,
see e.g., “Extensible Markup Language (XML) 1.0 (Third
Edition), (Feb. 4, 2004) a recommended specification from
the W3C, the disclosure of which is hereby incorporated by
reference. A copy of this specification is available via the
Internet (e.g., currently at www.w3.org/TR/2000/REC-xml
20040204).

XPath: XPath is a query language for querying data in
XML documents. The XPath query language is commonly
used in Extensible Stylesheet Language Transformations
(XSLT) to locate and to apply XSLT templates to specific
nodes in an XML document. XPath queries are also com

US 8,290,977 B2
7

monly used to locate and to process nodes in an XML docu
ment that match a specified criteria. XPath provides basic
facilities for manipulation of strings, numbers, and booleans.
It uses a compact, non-XML syntax to facilitate use of XPath
within URIs and XML attribute values. XPath operates on the
abstract, logical structure of an XML document, rather than
its surface syntax. XPath gets its name from its use of a path
notation as in URLS for navigating through the hierarchical
structure of an XML document. For further description of
XPath, see e.g., "XML Path Language (XPath) Version 1.0
(Nov. 16, 1999), a recommended specification from the W3C,
the disclosure of which is hereby incorporated by reference. A
copy of this specification is available via the Internet (e.g.,
currently at www.w3.c.org/TR/xpath).
Introduction

Referring to the figures, exemplary embodiments of the
invention will now be described. The following description
will focus on the presently preferred embodiment of the
present invention, which is implemented in desktop and/or
server Software (e.g., driver, application, or the like) operating
in an Internet-connected environment running under an oper
ating system, such as the Microsoft Windows operating sys
tem. The present invention, however, is not limited to any one
particular application or any particular environment. Instead,
those skilled in the art will find that the system and methods
of the present invention may be advantageously embodied on
a variety of different platforms, including Macintosh, Linux,
Solaris, UNIX, FreeBSD, and the like. Therefore, the descrip
tion of the exemplary embodiments that follows is for pur
poses of illustration and not limitation. The exemplary
embodiments are primarily described with reference to block
diagrams or flowcharts. As to the flowcharts, each block
within the flowcharts represents both a method step and an
apparatus element for performing the method step. Depend
ing upon the implementation, the corresponding apparatus
element may be configured in hardware, Software, firmware,
or combinations thereof.
Computer-Based Implementation

Basic System Hardware (e.g., For Desktop and Server
Computers)
The present invention may be implemented on a conven

tional or general-purpose computer system, Such as an IBM
compatible personal computer (PC) or server computer. FIG.
1 is a very general block diagram of a computer system (e.g.,
an IBM-compatible system) in which software-implemented
processes of the present invention may be embodied. As
shown, system 100 comprises a central processing unit(s)
(CPU) or processor(s) 101 coupled to a random-access
memory (RAM) 102, a read-only memory (ROM) 103, a
keyboard 106, a printer 107, a pointing device 108, a display
or video adapter 104 connected to a display device 105, a
removable (mass) storage device 115 (e.g., floppy disk, CD
ROM, CD-R, CD-RW, DVD, or the like), a fixed (mass)
storage device 116 (e.g., hard disk), a communication
(COMM) port(s) or interface(s) 110, a modem 112, and a
network interface card (NIC) or controller 111 (e.g., Ether
net). Although not shown separately, a real time system clock
is included with the system 100, in a conventional manner.
CPU 101 comprises a processor of the Intel Pentium family

of microprocessors. However, any other Suitable processor
may be utilized for implementing the present invention. The
CPU 101 communicates with other components of the system
via a bi-directional system bus (including any necessary
input/output (I/O) controller circuitry and other “glue” logic).
The bus, which includes address lines for addressing system
memory, provides data transfer between and among the Vari
ous components. Description of Pentium-class microproces

10

15

25

30

35

40

45

50

55

60

65

8
sors and their instruction set, bus architecture, and control
lines is available from Intel Corporation of Santa Clara, Calif.
Random-access memory 102 serves as the working memory
for the CPU 101. In a typical configuration, RAM of sixty
four megabytes or more is employed. More or less memory
may be used without departing from the scope of the present
invention. The read-only memory (ROM) 103 contains the
basic input/output system code (BIOS)—a set of low-level
routines in the ROM that application programs and the oper
ating systems can use to interact with the hardware, including
reading characters from the keyboard, outputting characters
to printers, and so forth.
Mass storage devices 115, 116 provide persistent storage

on fixed and removable media, such as magnetic, optical or
magnetic-optical storage systems, flash memory, or any other
available mass storage technology. The mass storage may be
shared on a network, or it may be a dedicated mass storage. As
shown in FIG. 1, fixed storage 116 stores a body of program
and data for directing operation of the computer system,
including an operating System, user application programs,
driver and other support files, as well as other data files of all
sorts. Typically, the fixed storage 116 serves as the main hard
disk for the system.

In basic operation, program logic (including that which
implements methodology of the present invention described
below) is loaded from the removable storage 115 or fixed
storage 116 into the main (RAM) memory 102, for execution
by the CPU 101. During operation of the program logic, the
system 100 accepts user input from a keyboard 106 and
pointing device 108, as well as speech-based input from a
voice recognition system (not shown). The keyboard 106
permits selection of application programs, entry of keyboard
based input or data, and selection and manipulation of indi
vidual data objects displayed on the screen or display device
105. Likewise, the pointing device 108, such as a mouse, track
ball, pen device, or the like, permits selection and manipula
tion of objects on the display device. In this manner, these
input devices Support manual user input for any process run
ning on the system.
The computer system 100 displays text and/or graphic

images and other data on the display device 105. The video
adapter 104, which is interposed between the display 105 and
the systems bus, drives the display device 105. The video
adapter 104, which includes video memory accessible to the
CPU 101, provides circuitry that converts pixel data stored in
the video memory to a raster signal suitable for use by a
cathode ray tube (CRT) raster or liquid crystal display (LCD)
monitor. A hard copy of the displayed information, or other
information within the system 100, may be obtained from the
printer 107, or other output device. Printer 107 may include,
for instance, an HP Laserjet printer (available from Hewlett
Packard of Palo Alto, Calif.), for creating hardcopy images of
output of the system.
The system itself communicates with other devices (e.g.,

other computers) via the network interface card (NIC) 111
connected to a network (e.g., Ethernet network, Bluetooth
wireless network, or the like), and/or modem 112 (e.g., 56K
baud, ISDN, DSL, or cable modem), examples of which are
available from 3Com of Santa Clara, Calif. The system 100
may also communicate with local occasionally-connected
devices (e.g., serial cable-linked devices) via the communi
cation (COMM) interface 110, which may include a RS-232
serial port, a Universal Serial Bus (USB) interface, or the like.
Devices that will be commonly connected locally to the inter
face 110 include laptop computers, handheld organizers,
digital cameras, and the like.

US 8,290,977 B2
9

IBM-compatible personal computers and server comput
ers are available from a variety of vendors. Representative
vendors include Dell Computers of Round Rock, Tex.,
Hewlett-Packard of Palo Alto, Calif., and IBM of Armonk,
N.Y. Other suitable computers include Apple-compatible
computers (e.g., Macintosh), which are available from Apple
Computer of Cupertino, Calif., and Sun Solaris workstations,
which are available from Sun Microsystems of Mountain
View, Calif.

Basic System Software
FIG. 2 is a block diagram of a software system for control

ling the operation of the computer system 100. As shown, a
computer software system 200 is provided for directing the
operation of the computer system 100. Software system 200,
which is stored in system memory (RAM) 102 and on fixed
storage (e.g., hard disk) 116, includes a kernel or operating
system (OS) 210. The OS 210 manages low-level aspects of
computer operation, including managing execution of pro
cesses, memory allocation, file input and output (I/O), and
device I/O. One or more application programs, such as client
application software or “programs' 201 (e.g., 201a, 201b,
201c, 201d) may be “loaded' (i.e., transferred from fixed
storage 116 into memory 102) for execution by the system
100. The applications or other software intended for use on
the computer system 100 may also be stored as a set of
downloadable processor-executable instructions, for
example, for downloading and installation from an Internet
location (e.g., Web server).

Software system 200 includes a graphical user interface
(GUI) 215, for receiving user commands and data in a graphi
cal (e.g., "point-and-click”) fashion. These inputs, in turn,
may be acted upon by the system 100 in accordance with
instructions from operating system 210, and/or client appli
cation module(s) 201. The GUI 215 also serves to display the
results of operation from the OS 210 and application(s) 201,
whereupon the user may supply additional inputs or terminate
the session. Typically, the OS 210 operates in conjunction
with device drivers 220 (e.g., “Winsock' driver Windows
implementation of a TCP/IP stack) and the system BIOS
microcode 230 (i.e., ROM-based microcode), particularly
when interfacing with peripheral devices. OS 210 can be
provided by a conventional operating system, Such as
Microsoft Windows 9x, Microsoft Windows NT, Microsoft
Windows 2000, or Microsoft Windows XP, all available from
Microsoft Corporation of Redmond, Wash. Alternatively, OS
210 can also be an alternative operating system, such as the
previously mentioned operating systems.

Client-Server Database Management System
While the present invention may operate within a single

(standalone) computer (e.g., system 100 of FIG. 1), the
present invention is preferably embodied in a multi-user com
puter system, such as a client/server system. FIG.3 illustrates
the general structure of a client/server database system 300
Suitable for implementing the present invention. As shown,
the system 300 comprises one or more client(s) 310 con
nected to a server 330 via a network 320. Specifically, the
client(s) 310 comprise one or more standalone terminals 311
connected to a database server system 340 using a conven
tional network. In an exemplary embodiment, the terminals
311 may themselves comprise a plurality of standalone work
stations, dumb terminals, or the like, or comprise personal
computers (PCs) such as the above-described system 100.
Typically, such units would operate under a client operating
system, such as a Microsoft (registered trademark) Windows
client operating system (e.g., Microsoft (registered trade
mark) Windows 95/98, Windows 2000, or Windows XP).

10

15

25

30

35

40

45

50

55

60

65

10
The database server system 340, which comprises Sybase

(registered trademark) Adaptive Server (registered trade
mark) Enterprise (available from Sybase, Inc. of Dublin,
Calif.) in an exemplary embodiment, generally operates as an
independent process (i.e., independently of the clients), run
ning under a server operating system such as Microsoft (reg
istered trademark) Windows NT, Windows 2000, or Windows
XP (all from Microsoft Corporation of Redmond, Wash.),
UNIX (Novell), Solaris (Sun), or Linux (Red Hat). The net
work 320 may be any one of a number of conventional net
work systems, including a Local Area Network (LAN) or
Wide Area Network (WAN), as is known in the art (e.g., using
Ethernet, IBM Token Ring, or the like). The network 320
includes functionality for packaging client calls in the well
known Structured Query Language (SQL) together with any
parameter information into a format (of one or more packets)
suitable for transmission to the database server system 340.

Client/server environments, database servers, and net
works are well documented in the technical, trade, and patent
literature. For a discussion of Sybase-branded database serv
ers and client/server environments generally, see, e.g., Nath,
A., “The Guide to SQL Server'. Second Edition, Addison
Wesley Publishing Company, 1995. For a description of
Sybase (registered trademark) Adaptive Server (registered
trademark) Enterprise, see, e.g., “Adaptive Server Enterprise
12.5.1 Collection: (1) Core Documentation Set and (2) Instal
lation and Configuration.” available from Sybase, Inc. of
Dublin, Calif. This product documentation is available via the
Internet (e.g., currently at Sybooks. Sybase.com/as.html). The
disclosures of the foregoing are hereby incorporated by ref
CCC.

In operation, the client(s) 310 store data in, or retrieve data
from, one or more database tables 350, as shown at FIG. 3.
Data in a relational database is stored as a series of tables, also
called relations. Typically resident on the server 330, each
table itself comprises one or more “rows’ or “records'
(tuples) (e.g., row 355 as shown at FIG.3). A typical database
will contain many tables, each of which stores information
about a particular type of entity. A table in a typical relational
database may contain anywhere from a few rows to millions
of rows. A row is divided into fields or columns; each field
represents one particular attribute of the given row. A row
corresponding to an employee record, for example, may
include information about the employee's ID Number, Last
Name and First Initial, Position, Date Hired, Social Security
Number, and Salary. Each of these categories, in turn, repre
sents a database field. In the foregoing employee table, for
example, Position is one field, Date Hired is another, and so
on. With this format, tables are easy for users to understand
and use. Moreover, the flexibility of tables permits a user to
define relationships between various items of data, as needed.
Thus, a typical record includes several categories of informa
tion about an individual person, place, or thing. Each row in a
table is uniquely identified by a record ID (RID), which can be
used as a pointer to a given row.
Most relational databases implement a variant of the Struc

tured Query Language (SQL), which is a language allowing
users and administrators to create, manipulate, and access
data stored in the database. The syntax of SQL is well docu
mented; see, e.g., the above-mentioned "An Introduction to
Database Systems”. SQL statements may be divided into two
categories: data manipulation language (DML), used to read
and write data; and data definition language (DDL), used to
describe data and maintain the database. DML statements are
also called queries. In operation, for example, the clients 310
issue one or more SQL commands to the server 330. SQL
commands may specify, for instance, a query for retrieving

US 8,290,977 B2
11

particular data (i.e., data records meeting the query condition)
from the database table(s) 350. In addition to retrieving the
data from database server table(s) 350, the clients 310 also
have the ability to issue commands to insert new rows of data
records into the table(s), or to update and/or delete existing
records in the table(s).
SQL statements or simply "queries' must be parsed to

determine an access plan (also known as “execution plan” or
"query plan”) to satisfy a given query. In operation, the SQL
statements received from the client(s) 310 (via network 320)
are processed by the engine 360 of the database server system
340. The engine 360 itself comprises a parser 361, a normal
izer 363, a compiler 365, an execution unit 369, and access
methods 370. Specifically, the SQL statements are passed to
the parser 361 which converts the statements into a query
tree—a binary tree data structure which represents the com
ponents of the query in a format selected for the convenience
of the system. In this regard, the parser 361 employs conven
tional parsing methodology (e.g., recursive descent parsing).

The query tree is normalized by the normalizer 363. Nor
malization includes, for example, the elimination of redun
dant data. Additionally, the normalizer 363 performs error
checking, Such as confirming that table names and column
names which appear in the query are valid (e.g., are available
and belong together). Finally, the normalizer 363 can also
look-up any referential integrity constraints which exist and
add those to the query.

After normalization, the query tree is passed to the com
piler 365, which includes an optimizer 366 and a code gen
erator 367. The optimizer 366 is responsible for optimizing
the query tree. The optimizer 366 performs a cost-based
analysis for formulating a query execution plan. The opti
mizer will, for instance, select the join order of tables (e.g.,
when working with more than one table), and will select
relevant indexes (e.g., when indexes are available). The opti
mizer, therefore, performs an analysis of the query and selects
the best execution plan, which in turn results in particular
access methods being invoked during query execution. It is
possible that a given query may be answered by tens of
thousands of access plans with widely varying cost charac
teristics. Therefore, the optimizer must efficiently select an
access plan that is reasonably close to an optimal plan. The
code generator 367 translates the query execution plan
selected by the query optimizer 366 into executable form for
execution by the execution unit 369 using the access methods
370.

All data in a typical relational database system is stored in
pages on a secondary storage device, usually a hard disk.
Typically, these pages may range in size from 1 Kb to 32 Kb.
with the most common page sizes being 2. Kb and 4. Kb. All
input/output operations (I/O) against secondary storage are
done in page-sized units—that is, the entire page is read/
written at once. Pages are also allocated for one purpose at a
time: a database page may be used to store table data or used
for virtual memory, but it will not be used for both. The
memory in which pages that have been read from disk reside
is called the cache or buffer pool.

I/O to and from the disk tends to be the most costly opera
tion in executing a query. This is due to the latency associated
with the physical media, in comparison with the relatively
low latency of main memory (e.g., RAM). Query perfor
mance can thus be increased by reducing the number of I/O
operations that must be completed. This can be done by using
data structures and algorithms that maximize the use of pages
that are known to reside in the cache. Alternatively, it can be
done by being more selective about what pages are loaded
into the cache in the first place. An additional consideration

10

15

25

30

35

40

45

50

55

60

65

12
with respect to I/O is whether it is sequential or random. Due
to the construction of hard disks, sequential I/O is much faster
then random access I/O. Data structures and algorithms
encouraging the use of sequential I/O can realize greater
performance.

For enhancing the storage, retrieval, and processing of data
records, the server 330 maintains one or more database
indexes 345 on the database tables 350. Indexes 345 can be
created on columns or groups of columns in a table. Such an
index allows the page containing rows that match a certain
condition imposed on the index columns to be quickly located
on disk, rather than requiring the engine to scan all pages in a
table to find rows that fulfill some property, thus facilitating
quick access to the data records of interest. Indexes are espe
cially useful when satisfying equality and range predicates in
queries (e.g., a column is greater than or equal to a value) and
“orderby' clauses (e.g., show all results in alphabetical order
by a given column).
A database index allows the records of a table to be orga

nized in many different ways, depending on a particular
user's needs. An index key value is a data quantity composed
of one or more fields from a record which are used to arrange
(logically) the database file records by some desired order
(index expression). Here, the column or columns on which an
index is created form the key for that index. An index may be
constructed as a single disk file storing index key values
together with unique record numbers. The record numbers are
unique pointers to the actual storage location of each record in
the database file.

Indexes are usually implemented as multi-level tree struc
tures, typically maintained as a B-Tree data structure. Point
ers to rows are usually stored in the leaf nodes of the tree, so
an index scan may entail reading several pages before reach
ing the row. In some cases, a leaf node may contain the data
record itself. Depending on the data being indexed and the
nature of the data being stored, a given key may or may not be
intrinsically unique. A key that is not intrinsically unique can
be made unique by appending a RID. This is done for all
non-unique indexes to simplify the code for index access. The
traversal of an index in search of a particular row is called a
probe of the index. The traversal of an index in search of a
group of rows fulfilling some condition is called a scan of the
index. Index scans frequently look for rows fulfilling equality
or inequality conditions; for example, an index scan would be
used to find all rows that begin with the letter A.
The above-described computer hardware and software are

presented for purposes of illustrating the basic underlying
desktop and server computer components that may be
employed for implementing the present invention. For pur
poses of discussion, the following description will present
examples in which it will be assumed that there exists a
'server” (e.g., database server) that communicates with one
or more "clients” (e.g., personal computers such as the above
described system 100). The following discussion also uses
examples of queries requesting information from XML docu
ments stored in a database system; however, the present
invention may also be used in conjunction with documents
written in various other markup languages, including, but not
limited to, cHTML, HTML, and XHTML. The present inven
tion, however, is not limited to any particular environment or
device configuration. In particular, a client/server distinction
is not necessary to the invention, but is used to provide a
framework for discussion. Instead, the present invention may
be implemented in any type of system architecture or pro
cessing environment capable of Supporting the methodolo
gies of the present invention presented in detail below.
Overview of Execution of Functions in XML Queries

US 8,290,977 B2
13

The present invention comprises a system providing meth
odology for execution of functions in queries (e.g., query
expressions in the XPath query language) requesting data
from a markup language (e.g., XML) document. The follow
ing discussion focuses on executing queries requesting infor
mation from an XML document; however the system and
methodology of the present invention may also be used for
obtaining information from other types of markup language
or tag-delimited Sources of information. Accordingly, the
references to XML in the following discussion are used for
purposes of illustration and not limitation. The system and
methodology of the present invention takes into account
important characteristics of existing XML query engines,
including the use of path indexes and document ordering in
path indexes. An important aspect of the present invention is
that it can provide results in sorted order based on the docu
ment ordering, consistent with the requirements of the XPath
standards. The present invention exploits the sorting in a
database system without requiring the data to be sorted sev
eral times, thereby providing a performance advantage when
compared with other database systems. The present invention
also provides improved performance by using a bottom-up
processing approach.

The present invention addresses a number of challenges in
executing a query including a function for obtaining data
from an XML document. The following discussion will illus
trate some of these challenges and introduce the manner in
which these challenges are addressed by the system and
methodology of the present invention. Consider, for instance,
the following path-based query expression requesting infor
mation from an XML document stored in a database system:
/bookstore/book/tolower(author//*). Also assume that the
information is requested from the simple XML document
shown below. The nodes of the following example XML
document are numbered (from node 1 to node 6) for clarity of
presentation:

1<bookstores
2<book

3<title> First Course in Algebra <title>
4<authors

5<name>War Iname>
6<fname>Alison<ffname>

<author
<book
<bookstore

The above query requests a lower-case value of all the text
stored at any depth in the XML document from an author
node of a book. A naive approach for obtaining this informa
tion involves the following steps:

Step 1. (Traversal) Paths of the XML document are tra
versed to find a book in a bookstore and locate the author of
the book. The entire subtree of an author is then traversed. In
the above example, the subtree starting from the author node
contains nodes 4, 5, and 6.

Step 2. (Argument marshalling) The tolower() function
can accept only string-values and not the node ids. Accord
ingly, all of the nodes in the Subtree need to be aggregated by
concatenating string values of each node in the Subtree. In this
case the aggregation result is “WarAlison”. It should be noted
that this aggregation result is a transient value created from
persistent nodes 5 and 6. This transient value is associated
with author node 4. Thus, providing the values of arguments
to a function (e.g., the tolower() function) requires Substan

10

15

25

30

35

40

45

50

55

60

65

14
tial processing. In the following discussion, the steps of tra
Versal and argument marshalling are referred to together as
“aggregation.

Step 3. (Function invocation) The aggregated value (e.g.,
“WarAlison') obtained as a result of the above steps (step 1
and 2) is passed to the tolower() function.

Step 4. (Return Values) The output of the tolower() func
tion will be a string. This string needs to flow through the
query engine so that it gets returned to the client that Submit
ted the query. It should be noted that the output of the function
is a transient value that is derived from the transient value
generated above at step 2.

Step 5. (Outer Context) The output of the tolower() func
tion is specific to the book (e.g., the book represented above at
node 2 with the title “First Course in Algebra’ as shown at
node 3). For other books, the value generated (output) by the
tolower() function will typically be different (i.e., as other
books will have different authors). Hence, when the transient
value output by the function flows in the query engine, this
transient value needs to be associated with the correct book.
In other words, the identifier for the correct book (e.g., the
book represented at node 2 of the above XML document)
should be associated with the result, rather than continuing to
associate the result with the author node as provided above at
step 2. The present invention addresses the challenge of return
values and their correlation to outer context through a mecha
nism referred to as “transient value association'.
The process of argument marshalling and handling of the

aggregation boundary is particularly important when an n-ary
function Such as concat() takes more than one argument. In
Such cases, each argument needs to be generated correctly
based on its association to the outer path. For example, con
sider the following XPath query: /bookstore/book/concat(au
thor/lname, “... author/fname). In this case, there are three
arguments to the concat() function. The second argument is a
constant literal (“..”). The first and third arguments (author/
lname and author/fname) need to be evaluated for each book.
Thus a book is an aggregation boundary for arguments 1 and
3. The next level of complexity is introduced when the
concat() function looks at these three arguments together. To
generate correct results, the system must ensure that the
author/lname and author/fname received by the concat()
function at any point correspond to the same book. Thus, the
concept of an aggregation boundary plays a significant role
with n-ary functions such as this concat() function.
The present invention includes software machinery that

can handle a mixture of user Supplied literal values, transient
values generated during query processing, and persistent
node ids. It also enables transient values generated during
query processing to be associated with persistent nodes
through node ids (i.e., through a “Node Val API as hereinaf
ter described).
The system and methodology of the present invention pro

vides for aggregation of XPath expressions using a
“NodeTo AtomValue” (or node to atomic value) operator. In
addition, a state-transition machine (automata) is provided
that facilitates Synchronization of aggregated XPath expres
sions, transient values, and literals (Function Operator). The
Function Operator includes software machinery that can
handle complex expressions, including gracefully handling
(synchronizing) empty transient values and/or empty results
of XPath expressions. The present invention allows transient
values in each place where an existing node id based API can
be present in the query engine. This approach exploits the
property of document ordering in path indexes and avoids
sorting in the query engine. Before describing the methodol
ogy of the present invention in more detail, an environment in

US 8,290,977 B2
15

which the present invention may be implemented and some
examples of queries requesting retrieval of data in XML
format will first be described.

Tree Representation of Sample XML Document
XML is a widely accepted model for representing data. In

recent years, XML has become pervasive bothin representing
stored data and communicating data over a network. The
following discussion illustrates the operations of the present
invention using several examples of an XML document
including books in a bookstore. A simple example of an XML
document is as follows:

<bookstore
<book

<title>Trenton</title>
<author

<fname>Mary--fname>
<name>Bob<name>

<author
<book
<book

<title>National</title>
<author

<fname>Joe<ffname>
<name>Bob<name>

<author
<book
<bookstore

Unlike conventional data in a relational database which is
maintained in a flat structure, information in an XML docu
ment is usually maintained in a tree structure. FIG. 4 is a block
diagram illustrating a tree representation of the above XML
document. As shown at FIG. 4, each element or value in the
XML document has been converted to a node in the tree.
These nodes are numbered in a pre-determined manner. The
number corresponding to each node is called a “node id” of
the element or tree node. This concept of node id is important
in XML query processing. As shown, nodes of the tree
include a bookstore 401, a first book 402, and a second book
410. Children nodes of book 402 provide access to additional
information regarding each book, including title 403, and
author 405, including author first name (fname) 406 and
author last name (Iname) 408. Book 410 similarly has asso
ciated children nodes 411, 413, 414, and 416. As shown, the
title, first name (fname), and last name (lname) nodes of each
book have associated data values.
As previously described, XPath is a query language for

querying data in XML documents. An example of an XPath
query for requesting data in the above example XML docu
ment is as follows:
/bookstore/book/title
An example of a SQL version of the above XPath query

that can be used in the currently preferred embodiment of the
system of the present invention is as follows:
(select Xmlextract(/bookstore/book/title, Xmlcol) from

bookstoretable}
The above XPath query would return the following answer

based on the example XML document shown above:
Answer: <title> Trenton </title><title> National</title>

Another example of an XPath query is:
/bookstore/book title=Trenton/author/lname
A SQL version of this query is as follows:

(select Xmlextract(/bookstore/book title=Trenton/au
thor/ilname, Xmlcol) from bookstoretable}
As shown, the above SQL query specifies the path from

which data is to be selected (in the form select Xmlextract
(path)) as well as the column name (Xmlcol) and table (book

5

10

15

25

30

35

40

45

50

55

60

65

16
storetable). Also, in the above query the “I” operator (or
“square bracket' operator) provides for filtering out books
based on comparing the title of the book to Trenton. This
operator corresponds to a “where' clause in a SQL query. The
last name of the author of such books is then projected. The
above query would return the following answer based on the
example XML document shown above:
Answer: <lname> Bob </lname>

Motivating Examples of XPath Functions
Although the present invention provides Support for a vari

ety of different functions, four representative functions are
used in this document for purposes of illustrating the opera
tion of the present invention. It should be understood that
these functions are provided for purposes of illustration and
not limitation and that the system and methodology of the
present invention may also be used with a number of other
functions. The four functions described in the following
examples are as follows: (1) tolower(); (2) toupper(); (3)
normalize-space(); and (4) concat(). These functions allow a
broader class of XPath queries when an XML document
schema is unknown, and particularly when the contents of
text fields have a mix of lower/upper cases with arbitrarily
interspersed white-spaces.

For instance, the tolower() and toupper() functions may be
used in the situation described above of books in a bookstore
in which one publisher uses all upper-case letters for author
names and another publisher uses a “first-letter capitalized
style. A user looking to find all the books in which the author's
first name is John (or JOHN) can use string functions such as
tolower() or toupper() to perform a case-free comparison as
provided in the following two XPath queries:
/bookstore/booktolower(author/first-name)=john
/bookstore/booktoupper(author/first-name)="JOHN
The function normalize-space() allows users to run a

broader set of queries where the number of white-spaces in
the text is unknown. For instance, if one publisher chooses to
write a title of a book as: “FLUID MECHANICS', and
another publisher chooses to write it as:
“FLUID MECHANICS,
the following query will eliminate the unnecessary white
spaces and new line. This function compares the characters in
the title of the books:
/bookstore/book normalize-space(title)=FLUID
MECHANICS
A more general version of this query takes into account the

possibility of case-sensitivity of the titles as per the publish
er's choice:

/bookstore/booktoupper(normalize-space(title))=
FLUID MECHANICS).
Such a general query is not possible for documents with

unknown structures and styles without the use of the func
tions normalize-space() and toupper().
The ability provided by the present invention to use func

tions in queries also allows a user to concatenate multiple
strings and produce desired output. For example, a user may
use the following example query:

/bookstore/book/author/concat(last-name, “... first-name).
System Components

Implementation Environment
FIG. 5 is a block diagram illustrating an environment 500

in which the present invention may be implemented. The
environment 500 includes an SQL Query Engine 510 and an
XML. Engine 520. The XML. Engine 520 provides mecha
nisms for storage and retrieval of information in the XML
format. As shown at FIG. 5, the XML, Engine 520 includes as
core components an XML Query Engine 530, a Path Proces
sor 550, and a Store Layer 560.

US 8,290,977 B2
17

The XML. Engine 520 includes parse time functionality
that transforms each XML document into a collection of
bytes that can be stored in a database or file system. Further
more, a streaming interface over this data is defined to provide
fast, random access to the structures within it. The streaming
interface includes a fast access structure, which is a flexible
interface that enables free movement amongst, and efficient
access to the underlying XML data. The XML, Engine 520
also has query execution-time functionality for retrieving
data in response to queries.
One role of the XML. Engine 520 is to transform an XML

document for storage in a database. The XML, Engine 520
transforms an XML document by analyzing the document as
a tree. An XML document can be viewed as a graph where: (1)
each element is a node; (2) the text or value (e.g., the value
“Mary' as the first name of an author) associated with an
element is a leaf node; (3) each attribute (e.g.,
Style=textbook) is a leaf node; (4) each node is labeled
uniquely; and (5) all nodes are labeled in the order they occur
in the Source document.

During the transformation process, each node is labeled
uniquely by assigning an integer to each node in a monotoni
cally increasing order. This integer is referred to as object ID
or OID. During this process, each element of the source
document is visited in turn and each element is numbered
based upon the order it occurs in the document. An object is
created by the XML, Engine 520 which contains data from the
transformed document together with auxiliary structures to
aid in faster access to the data. During the transformation
process, each element of an XML document is treated as a
node or leaf (i.e., terminal node) and these nodes and leaves
are annotated to provide faster access to data. The structure of
the tree itself is derived from the structure of the source
document.
As shown at FIG. 5, a path index 562, a value index 564, a

linkindex 566, and data 568 are maintained by the store layer
560 of the XML. Engine 520. The link index 566 stores link
age information about the parent-child relationship of nodes.
This linkage information enables the Source document to be
recomposed when required. The path index 562 stores hier
archical information about particular items of data in the
order that these items occur in the source document. The
value index564 stores values for a given pathin a sorted order
to enable more efficient searches. The data 568 represents
data that is associated with particular nodes. For further
description of an environment in which the present invention
may be implemented, see e.g., commonly-owned U.S. Pat.
No. 6,799,184 titled “Relational Database System Providing
XML Query Support”.
XML data is stored in the database system in an image

column in a parsed format, or in the text, or in image columns
as "raw XML. In a parsed format, it contains a path index
562, linkindex566, and value index564. The Store Layer 560
of the XML, Engine 520 converts the text representation of
these indexes and data 568 into an internal representation
which is efficient for storage. The Store Layer 560 is also
responsible for converting the representation to its textual
form when the Path Processor 550 (path processing layer)
requests a certain piece of information during query process
1ng.
As shown at FIG. 5, an XPath query may be transmitted to

the XML. Engine 520 by the SQL Query Engine 510. For
instance, a user may Submit the following SQL query request
ing information from the database:
(select Xmlextract(/bookstore/book title=Trenton/au

thor/ilname, Xmlcol) from bookstoretable}

10

15

25

30

35

40

45

50

55

60

65

18
From the above query, the SQL Query Engine 510 extracts

the following XPath portion of the above expression and
sends it to the XML Query Engine 530:
/bookstore/book title=Trenton/author/ilname
The XPath portion of the query is handled by the XML

Query Engine 530, which includes query execution-time
functionality for retrieving data in response to queries. The
XML Query Engine 530 includes an XPath parser 531, an
optimizer 533, and an execution engine 535. Within the XML
Query Engine 530, the XPath parser 531 parses the XPath
portion of the query received from the SQL Query Engine 510
and converts it into a query tree representation. The XPath
parser 531 includes a normalization module (not separately
shown at FIG. 5) for normalization of the XPath expression.
The query tree representation generated by the XPath parser
531 is then sent to the optimizer 533 which generates a physi
cal query plan (execution plan) for execution of the query. The
query plan is then provided to the execution engine 535 which
interprets the query plan and executes it with the Support of
the store layer 560. It should be noted that although the
original query Submitted by the user appears to only include
a single path, execution of the query plan may break this
expression into multiple paths. For instance, a first path may
try to extract all the titles while another path may extract the
last names, and so on and so forth.
The Path Processor 550 serves as an interface between the

XML Query Engine 530 and the Store Layer 560. The Path
Processor 560 is an abstract API which accepts path requests
from the XML Query Engine 530 and returns back node ids
(corresponding to persisted nodes of the XML document).
The Path Processor 550 invokes services of the Store Layer
560 to identify the nodes that satisfy the query expression
(e.g., XPath expression) and returns an instance of an abstract
object named “Dompp'. This Dompp object is returned back
to the query layer (i.e., XML Query Engine 530).
The XML Query Engine 530 uses various services of the

Dompp Such as getValue() and/or compare() to compute the
results of the query. However, the XML Query Engine 530 is
not aware of the node ids stored in Dompp. In other words,
Dompp acts as a medium to carry node ids through various
components of the system. It should be noted that prior to the
present invention, Dompp did not include a mechanism for
carrying or associating a value with nodes. Rather, its
getValue() service materialized a node in memory by retriev
ing the node's value from persistent storage. As a result, prior
to the present invention, the engine included no mechanism to
store or carry a transient (derived) value which might be
computed from a persistent value. The following section
describes how the above system is improved to implement the
methodology of the present invention. The enhancements
provided by the present invention include extending Dompp
(SYB Dompp) to carry both node ids and transient values.

Enhancements to XML. Engine
FIG. 6 is a block diagram illustrating the modification of

the XML, Engine of FIG. 5 to incorporate the system and
methodology of the present invention. As shown, the envi
ronment 600 includes an SQL Query Engine 610, and an
XML, Engine 620. The components of the XML, Engine 620
include an XML Query Engine 630, an Enhanced Path Pro
cessor 650, and a Store Layer 660. The XML Query Engine
630 includes an XPath parser 631, an optimizer 633, and an
execution engine 635. Of particular interest, the execution
engine 635 of the XML Query Engine 630 also includes as
new components a Function Operator 637 and a Node to
Atomic Value Operator (sometimes referred to herein as
NodeTo AtomValue operator) 639 which implement method
ology of the present invention. These components and their

US 8,290,977 B2
19

operations are described below. In addition, the Enhanced
Path Processor 650 includes extensions (i.e., a Node Val API)
which provide for handling transient values as well as node
ids. The Store Layer 660 includes the path Index 662, value
index 664, link index 666, and data 668. Various other com
ponents of the XML, Engine 620 are also enhanced to support
methodology of the present invention, although these
enhancements are not separately shown at FIG. 6.
The present invention introduces a mechanism for query

execution based on an aggregation of values that result into
transient values which are not stored on the persistent storage
themselves. The XML. Engine 620 of the present invention
allows not only for the flow of “node ids' as illustrated at 642
at FIG. 6, but also for the association ofnodeids with transient
values as illustrated at 644. This enables the execution engine
635 to handle not only these node ids, but also to deal directly
with values. This provides improved efficiency, as it is more
efficient in many instances to deal with directly with values.
The ability to deal with values also enables a larger set of
operations (e.g., functions) to be performed during execution
of the query.
The present invention provides functionality enabling node

ids to be associated with values. This association is imple
mented using abstract objects that are consistent with the
objects used to transmit node ids from one operator to
another. Hence, the new abstract objects seamlessly fit into
the hierarchy of the existing operators and also allow values to
flow inside the XML. Engine 620. This is represented at FIG.
6 by the flow of a node id and value 644 from the Enhanced
Path Processor 650 to the Node to Atomic Value Operator
639, the Function Operator 637, and the other operators in the
execution engine 635 of the XML Query Engine 630. It
should be noted that although FIG. 6 refers to this as a nodeid
and a value 644, in operation a plurality of node ids may be
associated with a value.
The ability to handle values enables the Function Operator

637 to perform various operations on these values, such as the
tolower(), toupper(), concat(), and normalize-space() func
tions described above. The Node to Atomic Value Operator
639 serves to convert or provide an atomic value for a given
node. The Node to Atomic Value Operator 639 is also able to
handle paths and perform aggregation on those paths. The
Node to Atomic Value Operator 639 provides inputs to the
Function Operator 637 in appropriate format enabling the
Function Operator 637 to perform operations on these inputs.

Aggregation of Values
The following example XPath query will be used to illus

trate the concept of aggregated values:
/bookstore/booktolower(author//*)=joebob

In the above query, there are two different sets of derived
(or transient) values. The first derived value is the aggregation
of first-name/last-name values to be fed into the function
tolower(). The tolower() function is invoked for every book
under bookstore. The arguments are marshaled by gathering
all the elements under the authorelement for the current book
and then concatenating the text nodes of all the child ele
ments. This argument is the first derived value.

Referring to FIG. 4 which illustrates a block diagram of an
XML document tree, the handling of aggregated transient
values will next be described. The above expression provides
for the tolower() function to be invoked twice: once for node
402 and once for node 410 as shown at FIG. 4. When
tolower() is invoked with node 402, the value of the argument
is Mary Bob. This is the concatenation of all the text values
(i.e., node ids {407, 409) for all the nodes that follow the
path “author//*” (i.e., node ids {406, 408}) under node 402.
When tolower() is invoked with node 410, the value of the
argument is Joe

10

15

25

30

35

40

45

50

55

60

65

20
Bob'. This argument is the concatenation of all the text values
(i.e., node ids {415, 417) for all the nodes that follow the
path “author//* (i.e., node ids {414, 416) under node 410.
The second set of derived (or transient) values is the result

of the tolower() function. (It should be noted that the terms
"derived values” and “transient values” are used interchange
ably in this discussion). This set of derived values is used in
the comparison operation. For example, for the XML docu
ment tree shown in FIG. 4, the tolower() function is also
invoked for node 402 and for node 410. When tolower() is
invoked with node 402, the return value is mary bob. When
tolower() is invoked with node 410, the return value of
tolower() is joe bob. These derived values are then com
pared with the value specified in the query (e.g., joe bob).

Aggregation Boundaries
Aggregation boundaries play an important role in the new

physical query plan operator (FunctionOpas represented by
Function Operator 637 at FIG. 6) in the present invention. The
design of the Function Operator (FunctionOp) is challenging
because the Function Operator has to marshal its arguments at
the correct boundaries as defined by the outer path context.
The challenge increases in a high performance engine (e.g.,
the XML. Engine used in the currently preferred embodiment
of the present invention) where top down access is discour
aged and node ids are generally accessed through a path index
for faster access.
The notion of aggregation boundaries can by explained by

example. Consider the following example query:
/bookstore/booktolower(author//*)=joebob

In this query, there are only two access paths that can be
accessed using the fast indexes: “/bookstore/book” and
"/bookstore/book/author//*'. These path scans return the
result in a flat form (i.e., the nodes in “/bookstore/book” have
no association with "/bookstore/book/author// unless the
query engine implements an intelligent algorithm to derive
these relationships). Not only does the Function Operator
need to keep track of the parent-descendant association
between individual nodes in the two sets, but it also needs to
identify the nodes that share the same ancestor to the same
parent in the set of nodes for the descendants.

For example, if this query is run using the high perfor
mance indexes like path indexes against the document shown
in the XML document tree in FIG.4, the first step is to get the
nodes that follow the path “/bookstore/book” which is the
result {402, 410}. The second step is to get the nodes that
follow the path “/bookstore/book/author//*” which gives the
result {406, 408, 414, 416}. But a Function Operator cannot
work over these sets directly.
When a Function Operator is invoked, it has to make sure

that the first argument is an aggregation over the aggregation
boundary defined by nodeid 402 (i.e., it has to aggregate only
{406,408 as shown at FIG. 4). The argument for the second
invocation has to be over the aggregation boundary defined by
node id 410 (i.e., it has to aggregate only 414, 416). The
present invention enables the information about the author of
each book (e.g., the books represented by nodes 402 and 410
as shown at FIG. 4) to be aggregated separately for each book
node. These aggregated values may then be operated on by
functions. The manner in which transient values are gener
ated, aggregated, and operated on by functions is described
below.

Transient Values and their Associations
Existing XML query engines generally allow the flow of

only node ids from one operator to another; the concept of
transient values was not Supported. Transient values are val
ues generated during marshalling of arguments and as results
of a Function Operator. The present invention provides a new

US 8,290,977 B2
21

physical query plan operator (i.e., a NodeTo AtomValue
operator) which is responsible for individual argument mar
shalling. It creates an abstract object called NodeVal from the
node ids obtained from the lower level physical operators in
the query plan. The NodeTo AtomValue operator mainly asso
ciates the node ids to a value which is derived either from a
single incoming node, or aggregated from multiple incoming
nodes.

For example, consider the query from the prior example:
/bookstore/booktolower(author//*)=joebob

In this query the result of the tolower function is used to
filter the “book' nodes. With the high performance, bottom
up evaluation strategy used by the present invention, a tran
sient value needs to be associated with a node (e.g., a “book')
that is stored on disk. The solution to this problem is an
association of transient values to the aggregation boundary
nodes in the XML document tree. Referring again to FIG. 4,
the values mary bob and joe bob are associated with the
book at node 402 and the book at node 410, respectively. A
query engine does not have the luxury of changing on-disk
data for a read-only query. Therefore, the present invention
incorporates the notion of derived value nodes that are repre
sented by the object NodeVal and constructed at execution
time by the NodeTo AtomValue operator. The constructed
NodeVal object is like any other node object in the system that
has an identity (e.g., node 402 as shown at FIG. 4), but with
additional transient value information (e.g., mary bob).

There are several complexities in properly handling
derived (transient) values that are addressed by the present
invention. These issues will be briefly discussed before
describing the mechanisms provided by the present invention
for addressing them.
One issue concerns missing "aggregate boundaries’. Con

sider, for example, the following query which requests the
concatenation of an author's first name and last name:
/bookstore/book/author/concat(last-name, “... first-name)

The above query may be run against a document in which
for a particular book record an author may not be present at
all, such as illustrated by the following example:

<bookstore
<book

<title>Trenton</title>
<author

<fname>Mary--fname>
<name>Bob<name>

<author
<book
<book

<title>National</title>
<editor-name>Joe Bob-I editor-name>

<book
<bookstore

Another issue involves sorted transient values. The output
of the functions is expected to follow document ordering as
provided in the XML standards specification. For example,
consider the following XPath query expression:
/bookstore/book/title/tolower()

The correct answer that should be returned to provide the
results in the proper ordering is: “trenton national” because
“trenton' is found earlier in the document than “national.”
A third problem concerns aggregating complex XPath

expressions. Instead of strings or element-names as argu
ments to functions, a user may write complex XPath expres

10

15

25

30

35

40

45

50

55

60

65

22
sions. For instance, consider the following query in which the
intended output is the lower case last name of the author
whose first name is “John':
/bookstore/tolower(book/author first-name="John'/last

name).
Another concern involves user-supplied transient values. A

user may simply Supply a literal string as an argument, for
example:
/bookstore/book/author/tolower(SMITH).

Aggregation over nested functions also needs to be
addressed. An argument to a function may be an output of
another function. For example, the following query provides
for the output of a normalize-spacefunction to be converted to
upper case by a toupper() function:
/bookstore/booktoupper(normalize-space(title))=FLUID
MECHANICS).
Additionally, aggregation over mixed expressions needs to

be considered. Forn-ary functions arguments could be mixed,
Such as:
/bookstore/book/author/concat(“FIRST NAME:”, first

name, “LASTNAME:”, toupper(last-name))”.
Finally, aggregation and empty values should be

addressed. Some of the XPath expressions in arguments may
return empty values. For instance, a document may contain a
book that does not have a last name (lname) element for an
author, but does have a first name (fname) element. In Such a
case the missing value is considered an empty value, and
functions need to be able to generate correct results in this
circumstance. For example, assume an XML document as
follows:

<bookstore
<book

<title>National</title>
<author-Kfname>Joe<ffname><author

<book
<book

<title>Trenton<title>
<author

<fname>Mary--fname>
<name>Bob</name>

<author
<book
<bookstore

Consider the following example query against the above
XML document which requests both last name and first name
of authors with a semicolon separating one author from
another:
/bookstore/book/concat(author/lname,

s")
Based on the above XML document, the correct answer for

this query is “Bob Mary; Joe: which provides the first name
and last name of the first author (Bob Mary) and only the first
name of the second author (Joe) whom is only identified in the
XML document by first name. Incorrect answers that may
result from not properly handling empty values (e.g., the last
name of the second author) would include “Bob Joe: Mary;”
or “Bob Joe: Bob Mary;”. The present invention provides the
ability to identify these type of situations and generate correct
results in response to these more complex types of queries.
Detailed Operation
The following description presents method steps that may

be implemented using processor-executable instructions, for
directing operation of a device under processor control. The
processor-executable instructions may be stored on a com
puter-readable medium, such as CD, DVD, flash memory, or

&g 99 , author/fname,

US 8,290,977 B2
23

the like. The processor-executable instructions may also be
stored as a set of downloadable processor-executable instruc
tions, for example, for downloading and installation from an
Internet location (e.g., Web server).
The following will describe the operations of the present

invention in handling an example query. For purposes of this
discussion, the following example query is used:
/bookstore/book/concat(author/lname, “ . author/fname,

..")
FIGS. 7A-B comprise a single flowchart 700 illustrating

the method steps of operation of the present invention in
handling a query. The above example query expression
including a concat() function may, for instance, be received
by the XML Query Engine of the present invention from an
SQL Query Engine. (Note that the SQL Query Engine may
already have extracted this XPath query from an SQL query).
At step 701, the query is parsed and normalized and the
possible simple path expressions in the query are identified by
the compiler/optimizer (i.e., the compiler/optimizer of the
XML Query Engine). In this case there are three simple path
expressions in this example query which are as follows:
"/bookstore/book: "(bookstore/book/author/lname'; and
"/bookstore/book/authorffname'.
At step 702, the execution plan (operator tree) is generated

by the compiler/optimizer. During the generation of the
execution plan, a physical function operator is added to the
operator tree at the point where the logical function operator
lies in the query tree. For example, in this case a Function
Operator is added to the execution plan in the place of
concat() in the query tree.

At step 703, a NodeToVal operator is inserted between
each Function Operator and the sub-plan below it by the
compiler/optimizer except in the event that the sub-plan
below it starts with another function operator. In the simplest
case, the NodeToVal operator is inserted between a Function
Operator and a simple scan operator below it. The NodeToVal
operator creates NodeVal objects that associate transient (or
derived) values and the node ids obtained from the simple
scans. The NodeToVal operator not only consolidates infor
mation, but also tracks where the information came from (i.e.,
the branch of the tree from which the information originated).
These NodeVal objects are allowed to flow through the sys
tem in the same manner as other objects (e.g., Dompp objects)
of the system. This allows the two types of search contexts to
be seamlessly mixed by the execution engine.

At step 704, the sub-plan below NodeToVal operator
returns node ids for identified XPath expressions (i.e., based
on the request generated by the execution engine and satisfied
by the path processor). Recall that the example query
included the following three simple path expressions: “/book
store/book: "bookstore/book/author/lname'; and "/book
store/book/authorffname'. The node ids for these three
simple path expressions are requested by the execution
engine and satisfied by the Path Processor.

At step 705, the member function getValue() of the Node
Val API gets node ids from each child operator (child node)
and creates a derived value (derivedValue). When more than
one node id is returned by child operator, their values are
aggregated. At step 706, after the values are obtained from all
the child NodeTo AtomVal operators, the state transition
machine of the function operator synchronizes all the child
NodeTo AtomVal operators and creates a stringlist. It also
invokes a function driver with the stringlist as an argument. At
step 707, the function driver evaluates the function (e.g., the
concat() function) on the Supplied Stringlist and returns
results to the Function Operator. In the currently preferred

10

15

25

30

35

40

45

50

55

60

65

24
embodiment, these steps are performed in the execution
engine of the XML Query Engine.
At step 708, the Function Operator creates a new NodeVal

object for the transient value (i.e., results of evaluation of the
stringlist by the function driver) and passes it on to its parent
operator. If the Function Operator is not the top-most operator
it passes on the NodeVal object to a higher-level operator at
step 709. For instance, if a query includes nested functions,
the output of one Function Operator may go to another Func
tion Operator. Otherwise, if the parent operator is the top
most operator, the parent operator returns the results (e.g., to
the SQL Query Engine) at step 710. For example, in queries
such as “/bookstore/book/title/tolower(), the top-most
operator is the tolower() Function Operator that returns the
results. The results are typically sent by the XML Query
Engine to the SQL Query Engine. The SQL Engine may, in
turn, send the results to a client (user). In typical operation,
results generated by the XML Query Engine are sent to the
SQL Query Engine which eventually sends them to the client
(e.g., in response to an SQL query originally Submitted by the
client).

Class Definitions
Certain data structures and methods used in the currently

preferred embodiment of the present invention will next be
described to illustrate the operations of the present invention
in greater detail.

Class NodeVal: Enumerations:

1: fi
2: Property is set by the context which creates NodeVal object. It
remains unchanged throughout the life of the object.

4: enum NodeValObjectProperty

6: NODEVAL CONSTANT VALUE = 0,
7: NODEVAL TRANSIENT VALUE
8:

Class NodeVal: Member variables:

1: NodeValObjectProperty property;
2:
3. *
4: For HETERO TRANSIENT VALUE, each transient value is also
associated with the persistent SybDom node. The following two fields
always contain equal number of entries, i.e., n values imply in nodes in
the treeNodeSet.

6: Dompp treeNodeSet:
7: StringList* transientVals:
8:
9: fs
10: If the property is NODEVAL CONSTANT VALUE, the above two
fields are empty and the following field contains user-supplied literal
constant.
11 : */
12: XMLSTRING constValue:

Class NodeVal: Member functions:

1: bool isEmpty() const;
2:
3: int size() const;
4:
5: constXMLSTRING getValue() const;
6:

US 8,290,977 B2
25 26

-continued -continued

7: bool compare(constXSearchContext& inputSc, 10: XQE FUNC CONCAT,
8: const XtreeCompOp& compareOp 11: XQE FUNC NORMALIZESPACE,
9:) const; 12: XQE FUNC STRINGJOIN
10: 5 13: };
11: resultXml (WriteContext& result); 14:

15: *
16: Mode of an operator is a static property of the operator. It is set

Class NodeToValOp: Enumerations at the creation time of the operator.
17: */

10 18: enum XqeFunctionOpMode
19: {
20: XQE FNMODE INITIAL=0,

3. un NodeToValOpMode 21: XQE FNMODE RELATIVE,
3. is 22: XQE FNMODE TOPLEVEL

23: .
4: ** Mode must be set by the constructor of the operator. 24: }:
5: * 15

25: *

g NSBE ENS X,G, 3. 9. the other hand state changes throughout life of the operator.
MODE SECONDARY 28: enum FunctionOpState

29: {
life 30: FNSTATE INITIAL = 0,
12:* States of t 20 31: FNSTATE OPENED,
is in inity used to validate th 32: FNSTATE ACQUIRED CONSTANTS,
1...NET 33: FNSTATE NO CONSTANTS,
is. , C p 34: FNSTATE ALL CONSTANTS,

35: FNSTATE ACQUIRED CUR SC,
s m NodeToValOpState 36: FNSTATE EXHAUSTED,

25 37: FNSTATE LOCKSTEP,
18: STATE INITIAL = 0, 38: FNSTATE ACQUIRED ALLVALUES,
19: STATE OPENED, 39: FNSTATE CONSUMED
20: STATE ACQUIRED, 40. FNSTATE CLOSED.
21: STATE CONSUMED, 41: * s

3. SELENES TED, 42: * Following two states are interim states.
30 43: * used only in function acquireCurSc().

24: }; 44: */
45: FNSTATE NO SC YET,
46: FNSTATE GOT INTERIM SC

Class NodeToValOp: Member variables: 47: End interim states */
48: };

35 49:
50: enum FinChState

1: NodeToValOpState state; 51: {
2: NodeToValOpMode mode: 52: FNCHILD STATE OPEN = 0,

53: FNCHILD STATE CONSTANT,
54: FNCHILD STATE ACQUIRED,

Class NodeToValOp: Member functions: 40 55: FNCHILD STATE CONSUMED,
56: FNCHILD STATE READY,
57: FNCHILD STATE WAIT,
58: FNCHILD STATE EXHAUSTED

1: void open (ExecutionContext &ec); 59: };
2:
3. * 45
4: Semantics of next is little involved. It checks if the child node is
a groupop. If it is it simply gets the primary and secondary of
child and sets primary and secondary dompp's in NodeVal object. Then
it iterates over secondary result-set to get and concatenate value of

Class FunctionOp: Member variables:

each of them for the ValueSet field of NodeVal object. If the child 1: FunctionOpState state;
is anything else than a group it sets the primary dompp and gets 50 2: XqeFunctionOpMode mode;
value of this dompp to be set in ValueSet. 3: XqeFnOp fnop:
5: */ 4: int numChildren:
6: bool next(ExecutionContext& ec); 5: XMLSTRING: constantBuf:

6: F.C.State chState:
7:XSearchContext currentSc:

Class FunctionOp: Enumerations: 55 8: StringList finInputStrLst;

Class FunctionOp: Member functions:
1: enum XqeFnOp

3. *
4: WARNING: 60 1/
5: Disastrous results should be expected if two functions get the same 2: Following is the list of functions that mutate the state of this

integer value. When adding new functions make a new entry here. The operator. As they are mutators, they are defined as private members.
order of entries should be identical to enum XtreeFnOp. 3. *

7: XQE FUNC INVALIDFN = 0, 5: *
8: XQE FUNC TOLOWER, 65 6: * Buffer the values provided by all constant children.
9: XQE FUNC TOUPPER, 7: */

US 8,290,977 B2
27

-continued

8: void acquireConstants(Execution.Context& ec);
9:

10: fs
11: Find out the search context that will be processed in the current
iteration.
12: */
13: void acquireCurSc(ExecutionContext& ec):
14:
15: *
16: ** Lock the children in READY or WAIT states
17: */
18: void lockStep(ExecutionContext& ec);
19:
20: fi
21: ** Lock the children in READY or WAIT states
22: *
23: void lockStep(ExecutionContext& ec);
24:
25: fi
26: ** Extract values from all constants and locked children.
27: *
28: void acquireAllValues(ExecutionContext& ec):
29:
30: f:
31: * * Should operate on afn InStrLst.
32: */
33: XMLSTRING eval Function();

New Components and the Node Val API
The following discussion describes three components or

aspects of the present invention in greater detail. These
include the NodeTo AtomVal operator, the Function Operator,
and the change to the path processor layer to add an abstract
NodeVal API. It should be noted, however, that in order to
implement these components, other portions of the system of
the present invention were also extended to Support these
three components. Accordingly, it should be understood that
the following description of these components is for purposes
of illustrating the methodology of the present invention in
further detail and not for purposes of limitation.
NodeTo AtomVal Operator
Much of the functionality of the NodeTo AtomVal operator

is embedded in the next() operator. Thus, the following
discussion of the next() operator explains many of the details
about the NodeTo AtomVal operator. In the currently pre
ferred embodiment, the next() operator has two modes: (1)
MODE PRIMARY, and (2) MODE SECONDARY. In
MODE PRIMARY a child may have only a primary result,
for instance the child is a simple scan. The following is an
example document:

<bookstore
<book

<title>National</title>
<author-Kfname>Joe<ffname><author

<book
<book

<title>Trenton<title>
<author
<fname>Mary--fname>
<name>Bob</name>

<author
<book
<bookstore

The following example illustrates the simple mode
MODE PRIMARY. For the query: “/bookstore/book/title/
tolower(), the path “/bookstore/book/title' is scanned. On
each next() call to the path scan one of the titles is returned.

10

15

25

30

35

40

45

50

55

60

65

28
Hence, on each next() call of NodeToValOp only one value is
handled and associated with the node id of the corresponding
title.
In MODE SECONDARY, when the child is a group opera

tor it may have one primary result and all its children as a
secondary result. Consider the example document below:

<bookstore
<book

<title>National<title>
<authors<fname>Joe Harder-Sifname><authors

</book
<book

<title>Trenton</title>
<authors-Tom Black authors
<authors Joe Bob-Sauthor

</book
</bookstore

In the query: “/bookstore/book/tolower(author), the ele
ment author is present as argument to the function
tolower(). This means that for each book all authors should be
returned and passed as argument to the String function. The
standard tolower() function, as provided in the XPath func
tions and operators standard (XQuery 1.0 and XPath 2.0
Functions and Operators', above), can take only one string
argument at a time. Here, the function tolower() operates in
the context of book. A set of result author is a secondary
result returned by the underlying operator. In order to meet
the requirement on the argument of the tolower() function,
values of all the authors are concatenated. This query dictates
that for each primary, all the secondaries are aggregated, the
abstract object is built with a single node id and the aggre
gated value, and it is passed on to the higher-level operator in
the query plan.
The following pseudocode steps explain these operations

of the next() interface of the NodeToValue operator:

1: bool
2: NodeToValOp:next(ExecutionContext& ec)
3: {
4:
5: Step 1: If state is STATE OPENED

or state == STATE CONSUMED, get
result set and set the state to STATE ACQUIRED
or STATE EXHAUSTED.
6:
7: Step 2: If state is STATE ACQUIRED,
8:
9: Step 2.1: If mode is MODE PRIMARY,

save the value of primary result
in member variable, derivedVal.
10: derived Val = childResult->getValue();
11:
12: Step 2.2: If mode is MODE SECONDARY,
append values of all the secondary nodes to member
variable derivedVal.
13:
14: Step 2.3: Create a new instance of NodeVal object with
derivedVal as input and NODEVAL TRANSIENT VALUE as its
property. It also contains the node id of the primary node
associated with the derivedVal. Set the newly created instance
of NodeVal object as a result of this operator.
15: }

It should be noted that NodeToValOp is a unique operator
in that none of the childResult search contexts is passed as-is
to the calling operators. Instead, a newly created NodeVal
search context is sent to the calling operator.

US 8,290,977 B2
29

Function Operator
In the currently preferred embodiment of the present inven

tion, the Function Operator is implemented as a derived class
which is based on NaryOp. As previously described, XPath
queries with functions pose a number of challenges. Existing 5
Solutions that attempted to deal with these challenges typi
cally used a number of different ad-hoc design approaches.
However, these approaches impose restrictive limitations on
the execution of functions. The present invention provides a
Solution to this problem by implementing a Function Opera- 10
tor including complex state-transition machinery (or
automata). Importantly, the Function Operator provides the
association or “link between aggregate boundaries and
aggregate values.
The Function Operator of the present invention not only 15

goes through its own transitions but it also deals with the
additional complexity introduced by the n-arity of functions.
The n-arity of functions introduces a need for another nested
state machine, which manages states of n-children of this
operator. A Function Operator has one state' of its own and 20
in “chStates' for the children (i.e., search contexts it has
obtained from its children).

FIG. 8 is a flow diagram 800 illustrating state transition for
the Function Operator. The state transitions of the Function
Operator can be described as illustrated in the flow diagram 25
800 and the following discussion. Initially the state of a func
tion is FNSTATE OPEN. The next() call to the operator
starts in the function acquire(Constants(). As shown at FIG.
8, the termination of the state transitions of the Function
Operator is marked as END (Exhausted as provided at 825). 30
The open() operator: a) opens all the children; b) sets the

state=FNSTATE OPEN; and c) for each child i, sets chState
Li FNCHILD STATE OPEN. The initial state of the opera
tor (state) at the START 801 is FNSTATE OPEN. This
means that the function has not yet consumed any value. 35
The next() call to the operator starts in the function

acquireConstants() as shown at 802 at FIG.8. The acquire
Constants() function buffers values of constant children in
constantBuf and marks corresponding chStatei as
FNCHILD STATE CONSTANT. As shown, the operator 40
state may be exhausted (state=FNSTATE EXHAUSTED at
804) in the event that the function has no valid arguments. If
this is the case, the function returns false and proceeds to the
END (Exhausted) 825.

If all children are constants, the State is changed to 45
FNSTATE ALL CONSTANTS as shown at 803 and pro
ceeds to computeFunction 814 as shown at FIG.8. In other
words, a number of steps are skipped in the next() interface in
the event all children (i.e., all arguments to the function) are
constants. If all of the arguments to the function are constants, 50
the function can simply be evaluated as provided at com
puteFunction 814. When the evaluation is complete, the
operator state is marked to FNSTATE EXHAUSTED as pro
vided at 815. The function then terminates as shown at FIG. 8
by proceeding to the END (Exhausted) 825. The above is an 55
optimization so as to avoid unnecessary steps when all argu
ments to a function are constants.
The most typical situation is that some constants are found

by the acquire(Constants() function when it is called as shown
at 802. In this event, the state is marked to FNSTATE AC- 60
QUIRED CONSTANTS (as shown at 806) and proceeds to
acquireCuterContext 807 (which is also referred to as acquire
current search context or “acquire Cur SC).

FIGS. 9A-B are block diagrams illustrating state transition
in an acquire(Constants() routine of the Function Operator. 65
FIG. 9A depicts the query: Xmlextract(/a/b/concat(“Joe”.
“Boy”, “School”)), with an XML document:

30
“<a><c>Fun Day-/c></ad'. As shown, the children
of the concat function operator 902 are all constants (“Joe”
903, “Boy” 904, “School 905). This leads to the state
FNSTATE ALL CONSTANTS 901 as shown at FIG.9A.

Alternatively, the query may be as follows: Xmlextract(/a/
b/concat(c,d)), with an XML document as follows:
“<a><c>Fun Day</c><dd</d>in California!</ad'.
As shown at FIG. 9B, the children of the concat function
operator 912 are elements c913, d914. This leads to state
FNSTATE NO CONSTANTS 911 since there are non
empty elements specified in the query.

Another example is the following query: xmlextract(/a/b/
concat(c,d)), with an XML document “Kadkb>in Califor
nia.</ad'. This leads to the FNSTATE EXHAUSTED
state, since there are no constants or the XML document does
not have matching element entries.
Assuming that as a result of the acquireconstants() rou

tine the operator state is marked to FNSTATE ACQUIRED
CONSTANTS (as illustrated at 806 at FIG. 8), the call to
acquire(OuterContext (acquire Cur SC() at 807) acquires
the current search context that should be processed in the
present iteration. For example, the Function Operator may
have multiple children: one corresponding to author first
name, one corresponding to author last name, and so forth. All
of these arguments or children (e.g., author names) are
received in streams, and each of them needs to be associated
with a given aggregation boundary (e.g., a particular book).
For instance, in the query: /a/b/concat(c1 c2, ... cn), the outer
context of concat is fa/b. When c? children are concatenated
all of them must be children of the same b (e.g., the same book
using the example of books in a bookstore). The system
determines the first “b element (e.g., the first book) in docu
ment order that represents /a/b. It is not aware of any node
identifiers.

FIG. 10 is a high-level block diagram illustrating acquisi
tion of a current search context. This high-level block dia
gram 1000 illustrates why the current search context is
acquired. Assume that an XML document for a bookstore is
structured as shown at FIG. 10 and includes nodes 1001
1013. If the query “/bookstore/book/concat(author/lname,
fname)' is run, the result should not be a concatenation of
nodes 1004 and 1010 as these nodes relate to two different
books (i.e., book 1002 and book 1008).

Since constants have been acquired, for all other children
the next result needs to be obtained. If any child has no more
results, its chStatei is marked to FNCHILD STATE EX
HAUSTED. The state of the function operator is marked as
state=FNSTATE ACQUIRED CUR SC.

After the call to acquire Cur SC as shown at 807, if the
operator State is exhausted
(state=FNSTATE EXHAUSTED as shown at 805 at FIG.
8), it returns false and proceeds to Exhausted (END) 825. It
should be noted that this code is executed only once during
the life of the operator. All subsequent calls return as provided
above.
On the other hand, f

state=FNSTATE ACQUIRED CUR SC as illustrated at
808 after the call to acquire Cur Sc, the lockStep() func
tion is called as provided at 809. At the point at which the
lockStep() function is applied, the current context b (e.g., a
particular book) has already been established. Each non-con
stant child is examined. If it belongs to the current context
(e.g., relates to the particular book) its state is marked as
chState i=FNCHILD STATE READY, and if it does not
(e.g., relates to a different book) it is marked chStatei=FN
CHILD STATE WAIT. If the child was already waiting from
a previous iteration it is checked to determine if it is now

US 8,290,977 B2
31

ready. If all the children are in FNCHILD STATE EX
HAUSTED state, the state of the function operator (state) is
marked as FNSTATE EXHAUSTED. Otherwise, it is
marked State=FNSTATE LOCKSTEP.

If the State is FNSTATE LOCKSTEP as shown at 810
after the call to lockStep(), an accquireAll Values() function
is called as provided at 811. At this point all constants are in
place and children are marked as either ready, waiting, or
exhausted. The acquireAllValues() function assembles val
ues of all constants and ready children in Fn InputStrLst. All
the ready children (i.e., those with
chState-FNCHILD STATE READY) are marked as
FNCHILD STATE CONSUMED. The state of the operator
is marked state=FNSTATE ACQUIRED ALLVALUES as
provided at 812 at FIG. 8. The function is ready to be com
puted.

If the state of the operator (State) is equal to
FNSTATE ALLVALUES after values are acquired, a com
puteFunction() (also referred to as evalFunction) is called as
provided at 814 to compute results of the Function Operator.
The evalFunction() invokes the driver from function utilities
with Fn InputStrLst. The outgoing search context is set. If the
incoming state is FNSTATE ACQUIRED ALLVALUES,
then state=FNSTATE CONSUMED. Otherwise if
state=FNSTATE EXHAUSTED return true. As shown, if
the state is equal to FNSTATE CONSUMED as shown at
816 at FIG. 8, the Function Operator may proceed to acquire
OuterContext 807 (e.g., to go to the next book in the book
store). When the function has evaluated all of the books, the
state of the Function Operator (state) transitions to
exhausted (FNSTATE EXHAUSTED) as shown at 815 and
the function ends as provided at 825 at FIG. 8.

Enhancement to Path Processor Layer: NodeVal Object
The present invention also includes an enhancement to the

path processor layer to include support for Node Val objects.
An abstract interface, “SearchContext', provides for encap
Sulating a set of node ids generated by the Store Layer during
scans. The SearchContext provides basic services to utilize
these node ids, such as adding a new node to the existing set,
getting a Subset of node ids specified by start and end node ids,
testing for emptiness, size (i.e., number of tree nodes in the
search context), getValue() of a singleton search context,
comparing two search contexts with a given relational opera
tor, and materializing result XML.

The SearchContext is materialized as a class Dompp. The
present invention extends Dompp by adding a NodeVal API
which provides support for NodeVal objects. In addition to
the above-described functionality of Dompp the NodeVal
API allows creation of search contexts that carry value strings
to the higher-level operators. For string functions new opera
tors generate string results. These strings are also associated
with the path context in which they were computed. The
present invention provides a solution to the need to represent
values and associated node ids. A NodeVal object supports
the functionality based upon the properties set at its creation
time. Two of these properties are referred to as NODEVAL
CONSTANT VALUE and NODEVAL TRAN
SIENT VALUE. The former property is used when a user
supplied literal is stored in the Node Val object.
NodeVal object constructors accept either a store or a

search context as an argument as shown in the following two
constructors. The first constructor is as follows:

1: NodeVal:NodeVal(
2: XStoreContext&storeContext,
3: XMLSTRING& str,
4: NodeValObjectProperty property
5:)

5

10

15

25

30

35

40

45

50

55

60

65

-continued

6: :transientVals(new StringList)
7: { property(property)
8:
9: treeNodeSet = new Dompp(storeContext.getSybStore(), SC OID);

10:
11: if property == NODEVAL CONSTANT VALUE)
12: {
13: this->constValue = str;
14:
15: else NODEVAL TRANSIENT VALUE
16: {
17: this->transientVals->push back(str);
18:

19: }

The second constructor is as follow:

1: NodeVal:NodeVal(
2: XSearchContext& sc,
3: XMLSTRING& str,
4: NodeValObjectProperty property
5:)
6 :transientVals(new StringList)
7: { property(property)
8:
9: Dompp* dompp:

10:
11: f:
12: * Extract the underlying Dompp, if screpresents

NodeVal object.
13: */
14: if(&sc)->getSearchContextType() ==XPP NODEVAL

OBJECT)
15: {
16: dompp = ((NodeVal object *) &sc)->treeNodeSet:
17:
18: else if(&sc)->getSearchContextType() == XPP DOMPP)
19: {
2O: dompp = (Dompp *) ≻
21:
22:
23: treeNodeSet = new Dompp(*(dompp));
24:
25: if property == NODEVAL CONSTANT VALUE)
26: {
27: this->constValue = str;
28:
29: else NODEVAL TRANSIENT VALUE
30: {
31: this->transientVals->push back(str);
32:

33: }

The merge() interface of the NodeVal object checks if the
incoming search context is of type NODEVAL. If it is of this
type, its underlying dompp is extracted, its value is added to
this, and the node sets merged.
A SearchContext of the NodeVal object type is returned

only when the result of the query is a set of strings. In all other
cases the result is Dompp. The semantics of certain functions
in the Dompp (Path Processor layer) are described below in
more detail.
NodeVal object::is Empty(): If this object contains a user

supplied constant value the return is always false. Even the
presence of an empty constant means that the search context
is not empty. However, if this object contains a transient value
(i.e., property=NODEVAL TRANSIENT VALUE) the
object may have Zero or one transient value. If there is one
value then there must be one node associated with it. The is
Empty() routine of the underlying Dompp is invoked to
verify whether it does or does not have any node.
NodeVal object::size(): When this object contains a tran

sient value there is always an associated Dompp node. The

US 8,290,977 B2
33

size of this object is simply the number of nodes (or transient
values) multiplied by two. When the object contains a con
stant value the size of a Node Val object with
property=NODEVAL CONSTANT is always unity since it
represents only one (user-supplied) constant literal.

NodeVal::getValue(): Conceptually this function makes a
major deviation from Dompp. In Dompp this function
extracts the persistent value of the node (i.e., a concatenation
of all the text children of a node). In a NodeVal object it
returns a value depending upon its property. In the case of
constants there is only one string that needs to be returned. For
example:

1: if this-> property == NODEVAL CONSTANT VALUE)
2: {
3: str = constValue:
4:

In the case of transient values there could be more than one
value in the stringlist transientVals, consequently in the
present invention it returns all these transient values as a
single string as shown below.

1: if this-> property == NODEVAL TRANSIENT VALUE)

StringIterator iter;
for (iter = transientVals->begin();

iter = transientVals->end();
iter++)

3
4
5
6:

8 strappend(*iter);

1: return (str);

NodeVal::compare(const XSearchContext& inputSc,
const XtreeCompOp& compareop) const: This routine com
pares the input SearchContext (inputSc) with this->Search
Context according to the comparison operator"compareop'.
as illustrated below.

: ASSERT(this-> property == NODEVAL TRANSIENT VALUE):
: if(&inputSc)->getSearchContextType() == NODEVAL)
: {

retVal = this->treeNodeSet->compare(
*(((NodeVal object *)&(inputSc))->treeNodeSet),
compareOp
);

: }
9: else if(&inputSc)->getSearchContextType() == DOMPP)

10: {
11:

12: }
13: return retVal:

retVal = this->treeNodeSet->compare(inputSc, compareOp);

Interaction Among Components
The following discussion will describe the interaction of

components of the present invention in handling sample
query received by the XML, Engine. This discussion uses the
following query as an example:
select Xmlextract(“/a/b/tolower(c)), with the following
XML document: “-a-California Street-be-San
Francisco<c-CA3/c-3/b) </ac-”.
An execution plan generated in the currently preferred

embodiment of the present invention based on the above
query is as follows:

10

15

25

30

35

40

45

50

55

60

65

34

FUNCTION OPERATOR: Ox7b858710
FUNCTION NAME: TOLOWER
PROJECTION in 3

NODE TO ATOMVALUE OPERATION
MODE SECONDARY mode...PROJECTION in 8

GROUP OPERATOR: Ox7b8S9090
PRIMARY in 6
SECONDARY in 7
LH Result in 5
RH Result in 4

SCAN OPERATOR: Ox7b858CSO
SCAN OPERATION on afb
PROJECTION in S

SCAN OPERATOR: Ox7b858aCO
SCAN OPERATION on abic
PROJECTION in 4

The process of handling the above query commences with
the parsing of the query by the XPath parser. The XPath parser
converts the XPath portion of the query /a/b/tolower(c) into a
tree form for in-memory representation. This tree (query tree)
is simply an “as is representation of the query in the engine.

Next, a normalization component goes through the query
tree and raises exceptions if there are any semantic ambigu
ities. It outputs a normalized query tree. This normalized tree
then passes through the optimizer, which generates a set of
operators called eithera query plan or execution plan (“plan’)
based on the normalized query tree. All the operators in the
execution plan are connected to each other hierarchically
such that the results of the lower-level operator are fed as
input to the higher-level operator. As an example, in the
execution plan shown above the output (o?p) of the "GROUP
operator is fed to the node to atomic value (Node to Atom
Value) operator. The “GROUP is also called a “child” of the
Node to Atom Value operator. The GROUP operator has two
children. Both of these children are simple path scans (a/b
and fa/b/c). Path scans simply produce node ids and pass them
to the GROUP operator as Dompp instances. The GROUP
operator performs some operations and passes its results on to
the Node to Atom Value operator.
As the execution plan shows, the Node to Atom Value

operator is in MODE SECONDARY mode. This means that
this node to atomic value operator aggregates values of all the
c’s in each band passes the aggregated value with the node id
of b to the Function Operator. The Function Operator simply
extracts values of all the arguments and constructs a stringlist.
This stringlist is later passed to a function driver or a function
utility, which actually evaluates the function on the values in
the stringlist. The result of the query is simply ca.

Examples of Typical Queries and their Plans
To further illustrate the operations of the present invention,

the following will describe several typical queries and the
execution plans generated based on these queries. The output
of the queries for a given XML document will also be
described.
Query 1: select Xmlextract("/a/b/c/tolower(), with the

following XML document: “Kad-California Street.
San
Francisco-c-CA3/c-3/b) <facs’.
Query 1 output: ca
Query 1 plan:

FUNCTION OPERATOR: Ox7b8Oe470
FUNCTION NAME: TOLOWER
PROJECTION in 4

35
-continued

NODE TO ATOMVALUE OPERATION
PROJECTION in 6 MODE PRIMARY mode.

SCAN OPERATOR: Ox7b80e,7bO
SCAN OPERATION on abic
PROJECTION in S

US 8,290,977 B2

Query 2: select Xmlextract(/a/b/tolower(c), with the fol- 10 INVALID OPERATION

lowing XML document: “Kad-California Street.
San
Francisco<c-CA3/c-3/b) <facs’.

Query 2 output: ca
Query 2 plan:

FUNCTION OPERATOR: Ox7b858710
FUNCTION NAME: TOLOWER
PROJECTION in 3

NODE TO ATOMVALUE OPERATION

Query 4: select Xmlextract("/a/b/concat(c1 c2), with the
following XML document: “Kad-California Street.
San

36
-continued

SCAN OPERATOR: Ox7b78ea10
SCAN OPERATION on afb
PROJECTION in 6

SCAN OPERATOR: Ox7b78e8SO
SCAN OPERATION on abic
PROJECTION in S

Francisco-c1-CA3/c1><c2>USA</c2) </ad’.
15 Query 4 output: CAUSA

Query 4 plan:

FUNCTION OPERATOR: Ox7b76390
2O FUNCTION NAME: CONCAT

PROJECTION in 3

MODE SECONDARY mode.PROJECTION in 8

GROUP OPERATOR: Ox7b8S9090
PRIMARY in 6
SECONDARY in 7
LH Result in 5
RH Result in 4

SCAN OPERATOR: Ox7b858CSO
SCAN OPERATION on afb
PROJECTION in S

SCAN OPERATOR: Ox7b858a00
SCAN OPERATION on abic
PROJECTION in 4

25

30

35

Query 3: select Xmlextract(“/a/btolower(c)="ca, with
the following XML document: “-a-California Street-b-San
Francisco<c-CA3/c-3/b) <facs’.

Query 3 output: San Francisco<c-CA-/c>
Query 3 plan:

GROUP OPERATOR: Ox7b78f)O
PRIMARY in 12
SECONDARY in 13
LH Result in 11
RH Result in 10

SCAN OPERATOR: Ox7b78e190
SCAN OPERATION on afb
PROJECTION in 11

COMPARISON OPERATOR: Ox7b78e710
OPERATOR is =
RHS is ca.
LH in 4
PROJECTION in 10

FUNCTION OPERATOR: Ox7b78e4O
FUNCTION NAME: TOLOWER
PROJECTION in 4

NODE TO ATOMVALUE OPERATION
MODE SECONDARY mode.

GROUP OPERATOR: Ox7b78eeSO
PRIMARY in 7
SECONDARY in 8
LH Result in 6
RH Result in 5

40

45

50
Query 5: select Xmlextract(“/a/b/concat(c1, 96%%, c2).

with the following XML document:
Street-be-San Francisco<c1-CA3/c1><c2-USA-/c2) </

NODE TO ATOMVALUE OPERATION
MODE SECONDARY mode.PROJECTION in 8

GROUP OPERATOR: Ox7b 7610
PRIMARY in 6
SECONDARY in 7
LH Result in 5
RH Result in 4

SCAN OPERATOR: Ox7b768O
SCAN OPERATION on afb
PROJECTION in S

SCAN OPERATOR: Ox7b76710
SCAN OPERATION on ab?c1
PROJECTION in 4

NODE TO ATOMVALUE OPERATION
MODE SECONDARY mode.PROJECTION in 13

GROUP OPERATOR: Ox7b77610
PRIMARY in 11
SECONDARY in 12
LH Result in 10
RH Result in 9

SCAN OPERATOR: Ox7b7710
SCAN OPERATION on afb
PROJECTION in 10

SCAN OPERATOR: Ox7b77010
SCAN OPERATION on abic2
PROJECTION in 9

l Output: OO/O Query 5 put: CA%%% USA
Query 5 plan:

FUNCTION OPERATOR: Ox7b81eSSO
FUNCTION NAME: CONCAT

60

PROJECTION in 9

65

PROJECTION in 3

NODE TO ATOMVALUE OPERATION
MODE SECONDARY mode.PROJECTION in 8

GROUP OPERATOR: Ox7b81eedO
PRIMARY in 6
SECONDARY in 7

''<ac-California

US 8,290,977 B2
37

-continued

LH Result in 5
RH Result in 4

SCAN OPERATOR: Ox7b81 eaCO
SCAN OPERATION on afb
PROJECTION in S

SCAN OPERATOR: Ox7b81 e8O
SCAN OPERATION on ab?c1
PROJECTION in 4

CONSTANT OPERATION
Walue:%%%

NODE TO ATOMVALUE OPERATION
MODE SECONDARY mode.PROJECTION in 14

GROUP OPERATOR: Ox7b81f870
PRIMARY in 12
SECONDARY in 13
LH Result in 11
RH Result in 10

SCAN OPERATOR: Ox7b812.30
SCAN OPERATION on afb
PROJECTION in 11

SCAN OPERATOR: Ox7b81.f370
SCAN OPERATION on abic2
PROJECTION in 10

Query 6: select Xmlextract("/a/b/concat(c1, '%%%.
tolower(c2)), with the following XML document:
''<ac-California Street-be-San Francisco<c1 >CA</
c1a Kc2)-USA-/c2).</b)</ad’.

Query 6 output: CA%%% usa
Query 6 plan:

FUNCTION OPERATOR: Ox7b86e.7bO
FUNCTION NAME: CONCAT
PROJECTION in 3

NODE TO ATOMVALUE OPERATION
MODE SECONDARY mode.PROJECTION in 8

GROUP OPERATOR: Ox7b86f130
PRIMARY in 6
SECONDARY in 7
LH Result in 5
RH Result in 4

SCAN OPERATOR: Ox7b86ecif)
SCAN OPERATION on afb
PROJECTION in S

SCAN OPERATOR: Ox7b86eb30
SCAN OPERATION on ab?c1
PROJECTION in 4

CONSTANT OPERATION
Walue:%%%

FUNCTION OPERATOR: Ox7b8621.90
FUNCTION NAME: TOLOWER
PROJECTION in 10

NODE TO ATOMVALUE OPERATION
MODE SECONDARY mode. PROJECTION in 15

GROUP OPERATOR: Ox7b86fe10
PRIMARY in 13
SECONDARY in 14
LH Result in 12
RH Result in 11

10

15

25

30

35

40

45

50

55

60

65

38
-continued

SCAN OPERATOR: Ox7b86f(O
SCAN OPERATION on afb
PROJECTION in 12

SCAN OPERATOR: Ox7b86f310
SCAN OPERATION on abic2
PROJECTION in 11

While the invention is described in some detail with spe
cific reference to a single-preferred embodiment and certain
alternatives, there is no intent to limit the invention to that
particular embodiment or those specific alternatives. For
instance, those skilled in the art will appreciate that modifi
cations may be made to the preferred embodiment without
departing from the teachings of the present invention.

What is claimed is:
1. A method for executing a function in an XPath-based

query requesting data from a markup language document
stored in a database, the markup language document orga
nized hierarchically into nodes, the method comprising:

receiving the XPath-based query requesting data from the
markup language document, the XPath-based query
including an XPath built-in function that operates within
a particular context of the markup language document
during execution of the XPath-based query:

during execution of the XPath-based query:
determining nodes of the markup language document

satisfying the XPath-based query, wherein deter
minina nodes the markup language document satisfy
ing the XPath-based query includes determining node
identifiers,

deriving values of said nodes of the markup language
document, and

executing the XPath built-in function with said derived
values and said nodes of the markup language docu
ment.

2. The method of claim 1, wherein the markup language
comprises Extensible Markup Language (XML).

3. The method of claim 1, wherein the query includes an
XPath-based expression.

4. The method of claim 3, wherein said XPath-based
expression comprises an XPath expression.

5. The method of claim 3, wherein said determining step
includes determining nodes of the markup language docu
ment based, at least in part, on paths in the XPath-based
expression.

6. The method of claim 3, wherein said XPath-based
expression is included in a Structured Query Language (SQL)
query.

7. The method of claim 1, wherein said determining step
includes generating a plan for obtaining data requested by the
query.

8. The method of claim 7, wherein the plan includes opera
tors which are connected hierarchically such that results of a
lower-level operator are input to a higher-level operator.

9. The method of claim 8, wherein the plan includes an
operator representing the function.

10. The method of claim 9, wherein the plan includes an
operator for deriving a value associated with a node of the
markup language document.

11. The method of claim 10, wherein said determining step
includes placing an operator for deriving a value below the
operator representing the function in the plan so as to input
derived values into the function.

US 8,290,977 B2
39

12. The method of claim 10, wherein said deriving step
includes deriving values of said nodes using said operator for
deriving a value.

13. The method of claim 1, wherein said derived values
comprise transient values generated during execution of the
query.

14. The method of claim 1, further comprising: associating
said derived values with nodes of the markup language docu
ment.

15. The method of claim 14, wherein said associating step
includes associating a derived value with one or more nodes
of the markup language document.

16. The method of claim 14, wherein said associating step
includes aggregating derived values of a plurality of nodes
satisfying a portion of the query.

17. The method of claim 16, wherein said aggregating step
includes concatenating String values of said plurality of
nodes.

18. The method of claim 16, wherein said aggregating step
includes synchronizing aggregated derived values with nodes
of the markup language document.

19. The method of claim 18, wherein said aggregating step
includes using a state transition mechanism for synchroniza
tion of aggregation boundaries.

20. The method of claim 19, wherein said state transition
mechanism synchronizes aggregated derived values and user
Supplied literals.

21. The method of claim 19, wherein said state transition
mechanism synchronizes nodes without associated values.

22. The method of claim 16, wherein said associating step
includes marshalling arguments from aggregated derived val
ues at aggregation boundaries for input to the function.

23. The method of claim 22, wherein said executing step
includes invoking the function with arVuments generated
from said aggregated derived values.

24. The method of claim 14, wherein said associating step
includes associating user Supplied literal values, derived val
ues, and nodes of the markup language document.

25. The method of claim 14, wherein said associating step
includes associating values with persistent nodes of the
markup language document based on unique identifiers
assigned to nodes of the markup language document.

26. The method of claim 1, further comprising:
returning results of execution of the function, including

returning results of the XPath built-in function when the
XPath built-in function is a top-most operator.

27. A non-transitory computer-readable medium having
processor-executable instructions for performing the method
of claim 1.

28. The method of claim 1, further comprising:
downloading a set of computer-executable instructions for

performing the method of claim 1.
29. A system for executing a function included in an XPath

based query requesting data from a markup language docu
ment stored in a database, the markup language document
organized hierarchically into nodes, the system comprising:

a computer having at least a processor and a memory;
a compiler module, operating on said computer, for gener

ating a plan for identifying nodes of the markup lan
guage document satisfying the XPath-based query, the
XPath-based query including a an XPath-based built-in
function that operates within a particular context of the
markup language document during execution of the
XPath-based query; and

an execution module, operating on said computer, for
executing the plan to identify nodes of the markup lan
guage document satisfying the XPath-based query,

10

15

25

30

35

40

45

50

55

60

65

40
obtaining values corresponding to identified nodes of
the markup language document, associating said values
with the identified nodes, and executing the XPath
based built-in function included in the XPath-based
query with said values and identified nodes.

30. The system of claim 29, wherein the markup language
comprises Extensible Markup Language (XML).

31. The system of claim 29, wherein the query includes an
XPath query expression.

32. The system of claim 31, wherein said XPath query
expression is included in a Structured Query Language (SQL)
query.

33. The system of claim29, wherein said execution module
aggregates values when multiple nodes satisfy a query
expression.

34. The system of claim33, wherein said execution module
marshals said values at aggregation boundaries.

35. The system of claim34, wherein said execution module
determines aggregation boundaries based on outer path con
text.

36. The system of claim34, wherein said execution module
includes a state transition mechanism for synchronizing
aggregation boundaries.

37. The system of claim 36, wherein said state transition
mechanism Synchronizes aggregation boundaries of a node
without an associated value.

38. The system of claim 36, wherein said state transition
mechanism Synchronizes aggregation boundaries of nodes
from different Subtrees in the markup language document.

39. The system of claim 29, wherein the compiler module
parses the query to create an in-memory representation of the
query in tree form.

40. The system of claim 29, wherein said compiler module
generates an execution plan for execution of the query.

41. The system of claim 40, wherein the execution plan
includes operators which are connected hierarchically Such
that results of a lower-leveloperator are input to a higher-level
operator.

42. The system of claim 41, wherein the execution plan
includes an operator for obtaining a value associated with a
node of the markup language document.

43. The system of claim 42, wherein the execution plan
includes an operator for executing a function included in the
query.

44. The system of claim 29, wherein each node of the
markup language document stored in the database is identi
fied by a unique identifier.

45. The system of claim 29, wherein a node of the markup
language document corresponds to an element of the markup
language document stored in the database.

46. The system of claim29, wherein said execution module
associates a value with one or more nodes of the markup
language document.

47. The system of claim29, wherein said execution module
performs a string function.

48. The system of claim 47, wherein said string function
comprises a selected one or more of a tolower() function, a
toupper() function, a normalize-space() function, and a con
cat() function.

49. The system of claim29, wherein said execution module
aggregates values of a plurality of identified nodes.

50. The system of claim 49, wherein said execution module
synchronizes aggregate values with nodes of the markup lan
guage document.

51. The system of claim 50, wherein said execution module
includes a state transition mechanism for synchronization of
aggregation boundaries.

US 8,290,977 B2
41

52. The system of claim 29, further comprising:
a module for transforming a markup language document

comprising a plurality of elements for storage in a data
base.

53. The system of claim 52, wherein the module for trans
forming assigns a unique identifier to each element of the
markup language document.

54. The system of claim 53, wherein the unique identifier is
based on order each element appears in the markup language
document.

55. The system of claim 29, wherein the execution module
returns results in order in which elements appear in the
markup language document.

56. The system of claim 29, wherein said compiler module
generates a plan for identifying nodes of the markup language
document satisfying the query based on paths in the query.

57. The system of claim 56, wherein said execution module
performs aggregation on said paths.

58. The system of claim29, wherein said execution module
associates said values with user Supplied literal values for
executing the function.

59. The system of claim 29, wherein the execution module
returns results of execution of the function.

60. In a database system, a method for executing an XPath
built-in function in an XPath-based query requesting data
from an Extensible Markup Language (XML) document, the
method comprising:

receiving the XPath-based query requesting data from an
XML document, the XPath-based query including an
XPath built-in function to be executed on data from an
XML document which includes a plurality of hierarchi
cally arranged elements, said XPath built-in function
operating within a particular context of the XML docu
ment during execution of the XPath-based query;

during execution of the XPath-based query:
determining elements of the XML document satisfying

the XPath-based query,
obtaining values of said elements of the XML document,
associating said values with elements of the XML docu

ment, and
executing the XPath built-in function with said values and

associated elements.
61. The method of claim 60, wherein the query includes an

XPath query expression.
62. The method of claim 61, wherein said XPath query

expression is included in a Structured Query Language (SQL)
query.

63. The method of claim 60, wherein said obtaining step
includes aggregating values of a plurality of elements satis
fying a portion of the query.

64. The method of claim 63, wherein said associating step
includes marshalling arguments to the function at aggrega
tion boundaries.

65. The method of claim 64, wherein said aggregation
boundaries are determined based on Outer path context.

66. The method of claim 64, wherein said associating step
includes using a state transition mechanism for synchronizing
aggregation boundaries.

67. The method of claim 66, wherein said state transition
mechanism Synchronizes aggregation boundaries of an ele
ment without an associated value.

68. The method of claim 66, wherein said state transition
mechanism synchronizes aggregation boundaries for ele
ments from different subtrees in the XML document.

69. The method of claim 60, wherein said determining step
includes parsing the query to create an in-memory represen
tation of the query in tree form.

10

15

25

30

35

40

45

50

55

60

65

42
70. The method of claim 60, wherein said determining step

includes generating an execution plan for execution of the
query.

71. The method of claim 70, wherein said execution plan
includes operators connected hierarchically such that results
of a lower-level operator are input to a higher-level operator.

72. The method of claim 70, wherein said execution plan
includes an operator for executing the XPath built-in func
tion.

73. The method of claim 72, wherein said operator for
executing the XPath built-in function performs a string func
tion.

74. The method of claim 73, wherein said string function
comprises one or more of a tolowerO function, a
toupper() function, a normalize-space() function, and a con
cat() function.

75. The method of claim 70, wherein said execution plan
includes an operator for obtaining a value for an element of
the XML document.

76. The method of claim 75, wherein said obtaining step
includes obtaining a value of an element of the XML docu
ment using said operator for obtaining a value.

77. The method of claim 60, wherein said executing step
includes invoking the function operator with said values and
user Supplied literal values.

78. The method of claim 60, further comprising: returning
results of execution of the XPath built-in function.

79. The method of claim 60, further comprising:
downloading a set of computer-executable instructions for

performing the method of claim 60.
80. In a database system, a method for executing an XPath

built-in function included in an XPath-based query request
ing data from an XML document organized hierarchically
into nodes, the method comprising:

generating an execution plan for obtaining data requested
by the XPath-based query from an XML document, the
execution plan including an operator for performing the
XPath built-in function included in the XPath-based
query, said XPath built-in function operating within a
particular context of the XML document during execu
tion of the XPath-based query;

inserting an operator for obtaining values corresponding to
nodes of the XML document into the execution plan;

during execution of the XPath-based query:
identifying nodes of the XML document satisfying the

XPath-based query based on the execution plan,
deriving values from identified nodes of the XML docu
ment using the operator for obtaining values, and

invoking the operator for performing the XPath built-in
function with the values derived from the identified
nodes of the XML document.

81. The method of claim 80, wherein said deriving step
includes aggregating derived values of a plurality of identified
nodes.

82. The method of claim 81, wherein said aggregating step
includes synchronizing aggregation boundaries so as to asso
ciate values with particular nodes of the XML document.

83. The method of claim 82, wherein said aggregating step
includes using a state transition mechanism for synchroniza
tion of aggregation boundaries.

84. The method of claim 83, wherein said state transition
mechanism synchronizes aggregated derived values and user
Supplied literals.

85. The method of claim 80, wherein said inserting step
includes inserting a physical query plan operator for associ
ating derived values with nodes of the XML document.

US 8,290,977 B2
43 44

86. The method of claim 80, wherein said invoking step 89. The method of claim 80, further comprising:
includes invoking the operator for performing the XPath- downloading a set of computer-executable instructions for
based function with user supplied literal values and the values performing the method of claim 80.
derived from identified nodes of the XML document. 90. The method of claim 1, wherein executing the XPath

87. The method of claim 80, wherein said deriving step 5 built-in function with said derived values and said nodes of
includes deriving values associated with persistent nodes of the markup language document further comprises:
the XML document based on unique identifiers assigned to passing said derived values to a higher leveloperator when
nodes of the XML document. the XPath built-in function is not a top-most operator.

88. A non-transitory computer-readable medium having
processor-executable instructions for performing the method
of claim 80. k

