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LEARNING-BASED POINT CLOUD COMPRESSION VIA UNFOLDING
OF 3D POINT CLOUDS

TECHNICAL FIELD

[1] The present embodiments generally relate to a method and an apparatus for point cloud

compression and processing.

BACKGROUND

[2] The Point Cloud (PC) data format is a universal data format across several business
domains, e.g., from autonomous driving, robotics, augmented reality/virtual reality (AR/VR), civil
engineering, computer graphics, to the animation/movie industry. 3D LiDAR (Light Detection
and Ranging) sensors have been deployed in self-driving cars, and affordable LiDAR sensors are
released from Velodyne Velabit, Apple iPad Pro 2020 and Intel RealSense LiDAR camera L515.
With advances in sensing technologies, 3D point cloud data becomes more practical than ever and

is expected to be an ultimate enabler in the applications discussed herein.
SUMMARY

[3] According to an embodiment, a method for decoding point cloud data is provided,
comprising: accessing a data array with samples on a regular grid, wherein each sample in said
data array indicates a position of a point in a point cloud; and reconstructing said point cloud
responsive to said data array. The data array may be decoded by a decoder associated with a neural
network-based autoencoder, or an image or video decoder. In addition, a codeword that provides
an initial representation of said point cloud may be decoded, wherein said point cloud is

reconstructed further responsive to said codeword.

[4] According to another embodiment, a method for encoding point cloud data is provided,
comprising: generating a codeword, by a first neural network-based module, which provides a
representation of an input point cloud associated with said point cloud data; reconstructing a first
point cloud, by a second neural network-based module, based on said codeword and a grid; and
generating a data array with samples on said grid, wherein each sample in said data array indicates

a position of a point in said input point cloud, based on said reconstructed first point cloud, said
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grid, and said input point cloud. The data array or codeword may be compressed. The data array
can be encoded by an encoder associated with a neural network-based autoencoder, or an image

or video encoder.

[5] According to another embodiment, an apparatus for decoding point cloud data is presented,
comprising one or more processors, wherein said one or more processors are configured to access
a data array with samples on a regular grid, wherein each sample in said data array indicates a
position of a point in a point cloud; and reconstruct said point cloud responsive to said data array.
The data array may be decoded by a decoder associated with a neural network-based autoencoder,
or an image or video decoder. In addition, a codeword that provides an initial representation of
said point cloud may be decoded, wherein said point cloud is reconstructed further responsive to
said codeword. The apparatus may further include at least one memory coupled to said said more

Or more processors.

[6] According to another embodiment, an apparatus for encoding point cloud data is presented,
comprising one or more processors, wherein said one or more processors are configured to
generate a codeword, by a first neural network-based module, which provides a representation of
an input point cloud associated with said point cloud data; reconstruct a first point cloud, by a
second neural network-based module, based on said codeword and a grid; and generate a data array
with samples on said grid, wherein each sample in said data array indicates a position of a point in
said input point cloud, based on said reconstructed first point cloud, said grid, and said input point
cloud. The data array or codeword may be compressed. The data array can be encoded by an

encoder associated with a neural network-based autoencoder, or an image or video encoder.

[7] One or more embodiments also provide a computer program comprising instructions which
when executed by one or more processors cause the one or more processors to perform the
encoding method or decoding method according to any of the embodiments described above. One
or more of the present embodiments also provide a computer readable storage medium having
stored thereon instructions for encoding or decoding point cloud data according to the methods

described above.

[8] One or more embodiments also provide a computer readable storage medium having stored

thereon a bitstream generated according to the methods described above. One or more
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embodiments also provide a method and apparatus for transmitting or receiving the bitstream

generated according to the methods described above.

BRIEF DESCRIPTION OF THE DRAWINGS

[9] FIG. 1 illustrates a block diagram of a system within which aspects of the present

embodiments may be implemented.

[10] FIG. 2 illustrates a block diagram of the FoldingNet.

[11] FIG. 3 illustrates a block diagram of the UnfoldingOperator, according to an embodiment.
[12] FIG. 4 illustrates a block diagram of the TearingTransform.

[13] FIG. 5 illustrates an example of network architecture design for the PN module, according

to an embodiment.

[14] FIG. 6 illustrates an example of network architecture design for the FN module, according

to an embodiment.
[15] FIG. 7 illustrates a proposed diagram for the UF module, according to an embodiment.

[16] FIG. 8 illustrates a block diagram for the differential UnfoldingOperator, according to an

embodiment.

[17] FIG. 9 illustrates a block diagram of the UF module in differential UnfoldingOperator,

according to an embodiment.

[18] FIG. 10 illustrates a block diagram of point cloud reconstruction for the differential

UnfoldingOperator, according to an embodiment.

[19] FIG. 11 illustrates a block diagram of the proposed UnfoldingCompression, according to

an embodiment.

[20] FIG. 12 illustrates a block diagram of the proposed differential UnfoldingCompression,

according to an embodiment.

[21] FIG. 13 illustrates a block diagram of the proposed UnfoldingCompression for machine,

according to an embodiment.

[22] FIG. 14 illustrates a block diagram of the proposed differential UnfoldingCompression for

machine, according to an embodiment.
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DETAILED DESCRIPTION

[23] FIG. 1 illustrates a block diagram of an example of a system in which various aspects and
embodiments can be implemented. System 100 may be embodied as a device including the various
components described below and is configured to perform one or more of the aspects described in
this application. Examples of such devices, include, but are not limited to, various electronic
devices such as personal computers, laptop computers, smartphones, tablet computers, digital
multimedia set top boxes, digital television receivers, personal video recording systems, connected
home appliances, and servers. Elements of system 100, singly or in combination, may be
embodied in a single integrated circuit, multiple ICs, and/or discrete components. For example,
in at least one embodiment, the processing and encoder/decoder elements of system 100 are
distributed across multiple ICs and/or discrete components. In various embodiments, the system
100 is communicatively coupled to other systems, or to other electronic devices, via, for example,
a communications bus or through dedicated input and/or output ports. In various embodiments,

the system 100 is configured to implement one or more of the aspects described in this application.

[24] The system 100 includes at least one processor 110 configured to execute instructions
loaded therein for implementing, for example, the various aspects described in this application.
Processor 110 may include embedded memory, input output interface, and various other circuitries
as known in the art. The system 100 includes at least one memory 120 (e.g., a volatile memory
device, and/or a non-volatile memory device). System 100 includes a storage device 140, which
may include non-volatile memory and/or volatile memory, including, but not limited to, EEPROM,
ROM, PROM, RAM, DRAM, SRAM, flash, magnetic disk drive, and/or optical disk drive. The
storage device 140 may include an internal storage device, an attached storage device, and/or a

network accessible storage device, as non-limiting examples.

[25] System 100 includes an encoder/decoder module 130 configured, for example, to process
data to provide an encoded video or decoded video, and the encoder/decoder module 130 may
include its own processor and memory. The encoder/decoder module 130 represents module(s)
that may be included in a device to perform the encoding and/or decoding functions. Asis known,
a device may include one or both of the encoding and decoding modules. Additionally,
encoder/decoder module 130 may be implemented as a separate element of system 100 or may be

incorporated within processor 110 as a combination of hardware and software as known to those
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skilled in the art.

[26] Program code to be loaded onto processor 110 or encoder/decoder 130 to perform the
various aspects described in this application may be stored in storage device 140 and subsequently
loaded onto memory 120 for execution by processor 110. In accordance with various embodiments,
one or more of processor 110, memory 120, storage device 140, and encoder/decoder module 130
may store one or more of various items during the performance of the processes described in this
application. Such stored items may include, but are not limited to, the input video, the decoded
video or portions of the decoded video, the bitstream, matrices, variables, and intermediate or final

results from the processing of equations, formulas, operations, and operational logic.

[27] In several embodiments, memory inside of the processor 110 and/or the encoder/decoder
module 130 is used to store instructions and to provide working memory for processing that is
needed during encoding or decoding. In other embodiments, however, a memory external to the
processing device (for example, the processing device may be either the processor 110 or the
encoder/decoder module 130) is used for one or more of these functions. The external memory
may be the memory 120 and/or the storage device 140, for example, a dynamic volatile memory
and/or a non-volatile flash memory. In several embodiments, an external non-volatile flash
memory is used to store the operating system of a television. In at least one embodiment, a fast
external dynamic volatile memory such as a RAM is used as working memory for video coding

and decoding operations, such as for MPEG-2, HEVC, or VVC.

[28] The input to the elements of system 100 may be provided through various input devices as
indicated in block 105. Such input devices include, but are not limited to, (i) an RF portion that
receives an RF signal transmitted, for example, over the air by a broadcaster, (i1) a Composite input

terminal, (iii) a USB input terminal, and/or (iv) an HDMI input terminal.

[29] In various embodiments, the input devices of block 105 have associated respective input
processing elements as known in the art. For example, the RF portion may be associated with
elements suitable for (i) selecting a desired frequency (also referred to as selecting a signal, or
band-limiting a signal to a band of frequencies), (ii) down converting the selected signal, (ii1) band-
limiting again to a narrower band of frequencies to select (for example) a signal frequency band
which may be referred to as a channel in certain embodiments, (iv) demodulating the down

converted and band-limited signal, (v) performing error correction, and (vi) demultiplexing to
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select the desired stream of data packets. The RF portion of various embodiments includes one or
more elements to perform these functions, for example, frequency selectors, signal selectors, band-
limiters, channel selectors, filters, downconverters, demodulators, error correctors, and
demultiplexers. The RF portion may include a tuner that performs various of these functions,
including, for example, down converting the received signal to a lower frequency (for example, an
intermediate frequency or a near-baseband frequency) or to baseband. In one set-top box
embodiment, the RF portion and its associated input processing element receives an RF signal
transmitted over a wired (for example, cable) medium, and performs frequency selection by
filtering, down converting, and filtering again to a desired frequency band. Various embodiments
rearrange the order of the above-described (and other) elements, remove some of these elements,
and/or add other elements performing similar or different functions. Adding elements may include
inserting elements in between existing elements, for example, inserting amplifiers and an analog-

to-digital converter. In various embodiments, the RF portion includes an antenna.

[30] Additionally, the USB and/or HDMI terminals may include respective interface processors
for connecting system 100 to other electronic devices across USB and/or HDMI connections. It
is to be understood that various aspects of input processing, for example, Reed-Solomon error
correction, may be implemented, for example, within a separate input processing IC or within
processor 110 as necessary. Similarly, aspects of USB or HDMI interface processing may be
implemented within separate interface ICs or within processor 110 as necessary. The demodulated,
error corrected, and demultiplexed stream is provided to various processing elements, including,
for example, processor 110, and encoder/decoder 130 operating in combination with the memory

and storage elements to process the datastream as necessary for presentation on an output device.

[31] Various elements of system 100 may be provided within an integrated housing, Within the
integrated housing, the various elements may be interconnected and transmit data therebetween
using suitable connection arrangement 115, for example, an internal bus as known in the art,

including the 12C bus, wiring, and printed circuit boards.

[32] The system 100 includes communication interface 150 that enables communication with
other devices via communication channel 190. The communication interface 150 may include,
but is not limited to, a transceiver configured to transmit and to receive data over communication

channel 190. The communication interface 150 may include, but is not limited to, a modem or
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network card and the communication channel 190 may be implemented, for example, within a

wired and/or a wireless medium.

[33] Data is streamed to the system 100, in various embodiments, using a Wi-Fi network such
as IEEE 802. 11. The Wi-Fi signal of these embodiments is received over the communications
channel 190 and the communications interface 150 which are adapted for Wi-Fi communications.
The communications channel 190 of these embodiments is typically connected to an access point
or router that provides access to outside networks including the Internet for allowing streaming
applications and other over-the-top communications. Other embodiments provide streamed data
to the system 100 using a set-top box that delivers the data over the HDMI connection of the input
block 105. Still other embodiments provide streamed data to the system 100 using the RF

connection of the input block 105.

[34] The system 100 may provide an output signal to various output devices, including a display
165, speakers 175, and other peripheral devices 185. The other peripheral devices 185 include, in
various examples of embodiments, one or more of a stand-alone DVR, a disk player, a stereo
system, a lighting system, and other devices that provide a function based on the output of the
system 100. In various embodiments, control signals are communicated between the system 100
and the display 165, speakers 175, or other peripheral devices 185 using signaling such as AV.
Link, CEC, or other communications protocols that enable device-to-device control with or
without user intervention. The output devices may be communicatively coupled to system 100 via
dedicated connections through respective interfaces 160, 170, and 180. Alternatively, the output
devices may be connected to system 100 using the communications channel 190 via the
communications interface 150. The display 165 and speakers 175 may be integrated in a single
unit with the other components of system 100 in an electronic device, for example, a television.
In various embodiments, the display interface 160 includes a display driver, for example, a timing

controller (T Con) chip.

[35] The display 165 and speaker 175 may alternatively be separate from one or more of the
other components, for example, if the RF portion of input 105 is part of a separate set-top box. In
various embodiments in which the display 165 and speakers 175 are external components, the
output signal may be provided via dedicated output connections, including, for example, HDMI

ports, USB ports, or COMP outputs.
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[36] It is contemplated that point cloud data may consume a large portion of network traffic,
e.g., among connected cars over 5G network, and immersive communications (VR/AR). Efficient
representation formats are necessary for point cloud understanding and communication. In
particular, raw point cloud data need to be properly organized and processed for the purposes of
world modeling and sensing. Compression on raw point clouds is essential when storage and

transmission of the data are required in the related scenarios.

[37] Furthermore, point clouds may represent a sequential scan of the same scene, which
contains multiple moving objects. They are called dynamic point clouds as compared to static
point clouds captured from a static scene or static objects. Dynamic point clouds are typically
organized into frames, with different frames being captured at different times. Dynamic point

clouds may require the processing and compression to be in real-time or with low delay.

[38] The automotive industry and autonomous car are domains in which point clouds may be
used. Autonomous cars should be able to “probe” their environment to make good driving
decisions based on the reality of their immediate surroundings. Typical sensors like LiDARs
produce (dynamic) point clouds that are used by the perception engine. These point clouds are not
intended to be viewed by human eyes and they are typically sparse, not necessarily colored, and
dynamic with a high frequency of capture. They may have other attributes like the reflectance
ratio provided by the LIDAR as this attribute is indicative of the material of the sensed object and

may help in making a decision.

[39] Virtual Reality (VR) and immersive worlds are foreseen by many as the future of 2D flat
video. For VR and immersive worlds, a viewer is immersed in an environment all around the
viewer, as opposed to standard TV where the viewer can only look at the virtual world in front of
the viewer. There are several gradations in the immersivity depending on the freedom of the
viewer in the environment. Point cloud is a good format candidate to distribute VR worlds. The
point cloud for use in VR may be static or dynamic and are typically of average size, for example,

no more than millions of points at a time.

[40] Point clouds may also be used for various purposes such as culture heritage/buildings in
which objects like statues or buildings are scanned in 3D in order to share the spatial configuration
of the object without sending or visiting the object. Also, point clouds may also be used to ensure

preservation of the knowledge of the object in case the object may be destroyed, for instance, a
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temple by an earthquake. Such point clouds are typically static, colored, and huge.

[41] Another use case is in topography and cartography in which using 3D representations,
maps are not limited to the plane and may include the relief. Google Maps is a good example of
3D maps but uses meshes instead of point clouds. Nevertheless, point clouds may be a suitable

data format for 3D maps and such point clouds are typically static, colored, and huge.

[42] World modeling and sensing via point clouds could be a useful technology to allow

machines to gain knowledge about the 3D world around them for the applications discussed herein.

[43] 3D point cloud data are essentially discrete samples on the surfaces of objects or scenes.
To fully represent the real world with point samples, in practice it requires a huge number of points.
For instance, a typical VR immersive scene contains millions of points, while point clouds
typically contain hundreds of millions of points. Therefore, the processing of such large-scale
point clouds is computationally expensive, especially for consumer devices, e.g., smartphone,

tablet, and automotive navigation system, that have limited computational power.

[44] In order to perform processing or inference on a point cloud, efficient storage
methodologies are needed. To store and process an input point cloud with affordable
computational cost, one solution is to down-sample the point cloud first, where the down-sampled
point cloud summarizes the geometry of the input point cloud while having much fewer points.
The down-sampled point cloud is then fed to the subsequent machine task for further consumption.
However, further reduction in storage space can be achieved by converting the raw point cloud
data (original or down-sampled) into a bitstream through entropy coding techniques for lossless
compression. Better entropy models result in a smaller bitstream and hence more efficient
compression. Additionally, the entropy models can also be paired with downstream tasks which

allow the entropy encoder to maintain the task-specific information while compressing.

[45] Inaddition to lossless coding, many scenarios seek lossy coding for significantly improved

compression ratio while maintaining the induced distortion under certain quality levels.

[46] Point cloud compression (PCC) refers to the problem of succinctly representing the surface
manifold of the object(s) contained within a point cloud. Several fronts in regards to point cloud
compression have been explored and can broadly be categorized into the following categories:

PCC in the input domain, PCC in the primitive domain, PCC in the transform domain, and finally
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PCC via entropy coding. PCC in the input domain refers to down-sampling the raw point cloud
by choosing or generating novel key points that are representative of the underlying surface
manifold. Although several learned (deep learning-based) and classical machine learning
techniques exist in this area, many PCCs in the input domain are only suitable for dense point
clouds as the network is restricted to do regular convolution. For PCC in the primitive domain,
key points primitives (regular geometric 2D/3D shapes) are generated that aim to closely follow
the underlying object manifold. PCC in the transform domain refers to the case when the raw
point cloud data is first transformed into another domain via classical methods and then the
transformed representation in the new domain is compressed to obtain more efficient compression.
Though some work can be interpreted as transformation, it is non-trivial to have them been applied
for a compression system. Finally, in the case of PCC via entropy coding, either the raw point
cloud data or another (trivially obtained) representation of the point cloud is entropy coded via

either adaptive learning-based or classical methods.

[47] Generally, the raw point cloud data obtained from sensing modalities contains huge number
of unorganized points that need to be stored efficiently. However, the irregularities and sparsity

of point cloud data make it difficult for compression.

[48] The present application relates to transform-based PCC, since we propose to organize an
irregular point cloud as a 2D image which can then be compressed with popular transform-based
approaches such as JPEG, MPEG AVC/HEVC/VVC. In one embodiment, based on a neural
network, we unfold an input point cloud onto a regular, organized grid structure to achieve efficient

coding of the point cloud data.
[49] FoldingNet

[50] FoldingNet is an autoencoder developed in the context of high-level computer vision

problems, e.g., classification/segmentation, via unsupervised learning.

[51] FIG. 2 shows a simplified diagram of FoldingNet to highlight the transform (encoder) and
the inverse transform (decoder). Note that we intentionally renamed the encoder/decoder in the

autoencoder as “transform” / “inverse transform” to align the terms to the context of compression.

[52] A 2D grid structure, which is an image based on a pre-defined sampling pattern on a 2D

surface, is introduced into the inverse transform (decoder) of FoldingNet. In one embodiment, it
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is a two-channel image representing 2D coordinates regularly sampled in a square region. In

another embodiment, it consists of coordinates regularly sampled on a 2D sphere.

[53] Given an original point cloud PCo (M points), the transforming module PN (210) generates
a codeword CW in a latent space. Here, a latent space refers to an abstract multi-dimensional
feature space, and the codeword CW is a feature vector representing the point cloud. Typically,

the codeword can provide a high-level description or a rough representation of the point cloud.

[54] Then the module FN (220) performs an inverse transforming process. It takes the 2D grid
as an input in addition to the codeword CW, and endeavors to reconstruct another point cloud PCi
which is close to the input PCo. The 2D grid contains N =W x H grid points, where W and H are
the width and height of the grid image. In FIG. 2, the 2D grid image has a square shape. More
generally, the 2D grid can take other shapes, such as a 2D sphere or 2D rectangle. The grid points
can also be 3D grid points rather than 2D grid points in a 2D image. The FN module (220)
specifically maps each point on the 2D grid to one 3D point in the reconstructed point cloud. The
point cloud output from the FN module, PC1, contains N points, where N is not necessarily equal
to M. Intuitively, the FN module “folds” a pre-defined 2D region to the reconstruction. By
embedding/utilizing a 2D grid structure, FoldingNet is able to reconstruct various point clouds via

an end-to-end training.
[S5] Proposed UnfoldingOperator for Point Clouds

[56] The design of FoldingNet promotes the high-level representability of codeword CW. With
CW alone, it is intractable to reconstruct fine details in a point cloud, i.e., hard to reconstruct each
individual point accurately. Hence, compressing the codeword CW alone from FoldingNet will
not solve the point cloud compression problem where pointwise distortion also matters in addition

to high-level representability.

[57] To address this challenge, the UnfoldingOperator is proposed. The UnfoldingOperator
directly embeds (or unfolds) a raw input point cloud onto a regular image. Compared to the
codeword CW, the image representation from the UnfoldingOperator contains detailed
information of the point cloud. Moreover, since the image data format is dense and organized, it

is more suitable for down-stream processing, such as point cloud compression.

[58] In one embodiment, to unfold the input point cloud, it is proposed to utilize the FN module
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to facilitate a newly proposed UF module as shown in FIG. 3. In particular, the reconstruction PC’
by the FN module (310) is used to establish a mapping to the input PCo, then the UF module (320)
unfolds the input PCo onto the 2D grid (330) based on the identified mapping. With each point in
the UF output, XYZ (340), it now represents the position of a point from the original input, PCo.
It is essentially an organized version of PCo. Note that the point number of XYZ may not be the

same as the point number of PCo.

[539] Specifically, the UF module (320) takes PCo, the reconstruction PC’ and its corresponding
2D grid as inputs. It first matches each point in PC’ to a point in PCo. Suppose point P’ from PC’
is matched with point Po from PCo, then the 3D coordinate of Po is put onto the 2D-grid position
associated with P’ (i.e., the 2D grid position that is mapped to point P’ in the reconstructed point
cloud PC’). In this way, a 3-channel image on the 2D grid, XYZ, is constructed as the unfolding
output. In a more general use case, not only the 3D coordinates but also other point attributes,
such as color, normal, reflectance, etc., are put onto the 2D-grid. In that case, a K-channel image
on the 2D grid (still denoted as XYZ without loss of generality) can be constructed as the unfolding
output. Generally, the unfolding output can be seen as a data array with samples on the 2D grid,
each sample includes K components indicating point attributes, for example, 3D position, color,

normal, and/or reflectance.

[60] Note that the FN module guides the mapping between PCo and PC’ through its output PC’.
It helps the XYZ image to preserve smoothness, i.e., two neighboring points in PCo are likely to

be neighbors in the XYZ image.

[61] The unfolded XYZ image is not only useful for the compression tasks, but also makes it
possible to bring neural network based approaches from image domain to point cloud domain,
because a non-organized point cloud is able to be represented in a three-channel image format. In
particular, many neural network based methods in image domain rely on the pixel arranging format,
that cannot be directly applied for point cloud tasks. However, by virtue of the proposed UF
module, the generated XYZ image can be directly fed into neural networks that process regular

images, e.g., convolutional neural networks (CNNs).

[62] The proposed UnfoldingOperator is related to the TearingTransform (and
TearingCompression) as described in a commonly owned US Provisional Application No.

63/181,270, entitled “Learning-Based Point Cloud Compression Via Tearing Transform”
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(Attorney Docket Number 2021PF00130). TearingTransform (and TearingCompression) also
aims to reconstruct an input point cloud with fine details. A diagram of the TearingTransform is
shown in FIG. 4. [Instead of directly putting the XYZ coordinates onto the 2D-grid,
TearingTransform (or TearingCompression) estimates an UV1 image (430) with a neural network
module TN (420). This image modifies the original point positions on the 2D grid (UVo, 410). It
aims at compensating the errors in the 3D reconstruction by another iteration of the FN module
(440) with UV1 as input. However, when the input point cloud is too complex for the TN module
to output a high-quality UV1image, the TearingTransform fails to provide faithful reconstructions.
In such cases, it is proposed to switch to the UnfoldingOperator instead of running the TN module,
so as to directly put the 3D points in the 2D grid, and to guarantee high-quality point cloud

reconstruction.

[63] The UV image in TearingNet is introduced and updated within the inverse transformer
(decoder). The UV image is defined based on a 2D sampling grid at certain resolution. In one
embodiment, the two channels in the UV image represents coordinates in the 2D space. In another
embodiment, they represent the coordinate offsets with respect to their default positions in the 2D

space.
[64] Network Architecture for the Proposed PN in the UnfoldingOperator

[65] FIG. 5 illustrates an example of the detailed architecture of the PN module, which takes
the input point cloud PCo (510) as input and outputs the (transpose of the) codeword CW (570) in
the latent space. In particular, the input point cloud PCo contains M points, and each point P is
represented by its 3D position (Xp, ¥y, Zp). Additional attributes, such as color or normal, may be
also included in the point cloud data. The PN module is composed of a set of shared MLPs (Multi-
layer Perceptrons, 520). The perceptron is applied independently and in parallel on each 3D point
(numbers in brackets indicate layer sizes). The output of the set of shared MLPs, point features
(530, Mx1024), are aggregated by the global max pooling operation (540), which extracts a global
feature with a length 1024 (550). It is further processed with another set of MLP layers (560),
leading to the output codeword CW with a length 512 (570).

[66] Network Architecture for the Proposed FN in the UnfoldingOperator

[67] FIG. 6 illustrates an example of the detailed design of the FN module, which takes the
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codeword CW and the 2D grid as input and outputs a reconstructed 3D point cloud PC’. Here, the
FN module is composed of two series of shared MLP layers (640, 670). The FN module can be
seen as a 2D-to-3D mapping guided by the codeword, where the N grid points in the 2D grid image
are mapped to the M points on the surface of the reconstructed point cloud. For each reconstructed
point in PC’ mapped from the N grid point, a 3D point from the input point cloud PCo is identified,

e.g., based on a nearest neighbor searching.

[68] The codeword is replicated N times and the resulting Nx512 matrix (610) is concatenated
with an Nx2 matrix (620) that contains the N grid points in the 2D grid. The result of the
concatenation is a matrix of size Nx514 (630), which is fed to the first series of shared MLP layers
(640) to output a matrix of size Nx3 (650). Then the replicated codewords are concatenated to the
Nx3 output (650) to form a matrix of size Nx515 (660), which is fed into the second series of
shared MLP layers (670). The final output PC’ (680) is the reconstructed point cloud represented

by Nx3 matrix, where N is the number of points in the output point cloud PC’.
[69] Proposed UF Module in the UnfoldingOperator

[70] FIG. 7 shows the block diagram of the UF module, according to an embodiment. Note that

it is a deterministic module, without any learnable neural network parameters.

[71] For each point P’ in PC’, a corresponding point Po is first identified, for example, via
nearest neighbor search, using the NN module (710). We note that point P’ corresponds to a 2D
point (0, v’) in the 2D grid as described before for the FN module. In other words, the 2D position
(u’, v’) can be indexed/retrieved via P’. Then the UF module puts the coordinate of Po= (xo, yo,
7o) onto the 2D-grid position (u’, v’) associated with P’, i.e., XYZ(u’, v’, 1) = x0, XYZ (0, V', 2)
=yo, and XYZ (u’, v’, 3) = zo. Performing this operation for each point in PC’ leads to the UF

output, XYZ, which is a 3-channel image.

[72] Inone embodiment, except for the 3D coordinates Po= (o, yo, zo), other features associated
with the 3D point Po, for example, but not limited to, color (RGB), normal vector, and reflectance,
are also put onto the 2D-grid position (u’, v’) to form the XYZ image. For example, XYZ(u’, v’,
4)=R, XYZ({’,v’,5) =G, XYZ(’,v’,6)=B, XYZ({’, v’, 7) =nx, XYZ(’, v’, 8) = ny, XYZ(U’,
v, 9) = nz, and XYZ(u’, v’, 10) = r, where (R, G, B) is the color at Po, (nx, ny, nz) is the normal

vector at Po and r is the reflectance at Po. In this embodiment, the XYZ image contains the 3D
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coordinates as well as other point features, namely, the XYZ image is a K-channel image where

K>3.

[73] In the above, the examples of the PN, FN, and UF modules are described. It should be
noted that these modules can use different network structures or configurations. For example, the
MLP dimensions may be adjusted according to the complexity of practical scenarios, or more sets
of MLPs can be used. Generally, any network structure that meets the input/output requirements

can be used.
[74] Differential UnfoldingOperator

[75] In the previous embodiment, the XYZ image serves as the only representation of PCo. In
this embodiment, an input point cloud is decomposed into codeword CW and another 3-channel
image, denoted as AXYZ. The codeword CW is used to reconstruct a rough shape of the point
cloud, while AXYZ is to represent fine details on top of the rough reconstruction. FIG. 8 shows
the block diagram of this embodiment which we called differential UnfoldingOperator. It is

similar to an encoding/transformation process.

[76] In the differential UnfoldingOperator, the UF module computes the residual between PCo
and PC’ then put the residual on the image AXYZ. Therefore, CW and AXYZ together represent

PCo, and AXYZ is used to compensate the error.

[77] FIG. 9 shows the design of the UF module in differential UnfoldingOperator, according to
an embodiment. Different from the previous embodiment, here the UF module computes (910)
the difference between the matched point Po = (xo, yo, zo) (from PCo) and the query point P’ = (x’,
y’, z’) (from PC’), denoted as (Ax, Ay, Az) = (xo -X’, yo-y’, zo - z’). This residual/difference
vector is put onto the 2D-grid position (u’, v’) associated with P, i.e., AXYZ(u’, v’, 1) = Ax,
AXYZ (v, v’, 2) = Ay, and AXYZ (v, v’, 3) = Az. In this way, a 3-channel residual map on the
2D grid, AXYZ, is constructed as the output of the UF module.

[78] Similar to the XYZ image representation, the AXYZ can also include more information.
Generally, the differential unfolding output can be seen as a data array with samples on the 2D
grid, each sample includes K components where the first three components contain Ax, Ay and Az
(the residual of the 3D positions), and the rest components include other attributes, for example,

the RGB color, the normal vector and the reflectance.
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[79] FIG. 10 shows the process to reconstruct (decode or inverse transform) the point cloud
from CW and AXYZ, according to an embodiment. First, the FN module (1020) takes a codeword
CW (1010) and 2D grid (1040) as inputs and reconstruct a rough shape PC’. Then by adding (1030)
the residual map AXYZ (1050) to PC’, the reconstruction PC1 is obtained. Note that this step adds

together each point in PC’ and the corresponding residual vector in the AXYZ image.
[80] Proposed Compression Framework: UnfoldingCompression

[81] Inthis embodiment, itis proposed to apply the UnfoldingOperator in a learning-based point
cloud compression system. The overall diagram of the proposed UnfoldingCompression is shown
in FIG. 11. Comparing to the UnfoldingOperator that has a single output XYZ,

UnfoldingCompression in addition compresses (1110) the XYZ image into a bitstream.

[82] In one embodiment, the compression of the XYZ image can be based on state-of-the-art
image/video compression methods, e.g., JPEG, MPEG AVC/HEVC/VVC. As described before,
the information indicative of point positions ({X, Y, Z} or {AX, AY, AZ}) may be arranged into
a 3-channel image with each position-indicative parameter carried on one of the three channels.
Quantization (1110) is performed before compression, for example, in order to convert the floating
numbers in the XYZ image to a data format used by the 2D video encoder. Also, without any
adjustments, both the XYZ image and the AXYZ image may have negative values, we can
normalize them and make their dynamic range fall into a pre-defined interval before sending them
to the codec. In one embodiment, we first compute the minimum and the maximum values of each
channel of the XYZ (or AXYZ) image, denoted by mink and maxk where k ranges from 1 to K.
Then we normalize each channel of the XYZ image to the range, for example, [0, 255], before
feeding it to the codec. In this case, the minimum and the maximum values mink and maxk of each
channel need to be sent as metadata to facilitate the decoding. Note that the minimum and the

maximum values may be floating point numbers and can take negative values.

[83] In another embodiment, the compression can be neural network-based methods, such as a
variational autoencoder based on a factorized prior model or a scale hyperprior model, which
approximates the quantization operation by adding uniform noise. It generates a differentiable
bitrate Rxyz for end-to-end training. Since the neighboring samples in the XYZ or AXYZ images
usually represent neighboring points in the original point cloud, usually there is strong correlation

between neighboring samples. Thus, we anticipate that the XYZ and the AXYZ images would be
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coded efficiently with (unmodified) standard image and video codecs.

[84] On the decoder side, provided a bitstream of the XYZ image as input, the XYZ image is
decoded (1120). The reconstruction PCi is simply the 3D points on the XYZ image. In another
embodiment where metadata is also received, the reconstruction also relies on the received
metadata. For example, when the minimum and the maximum values mink and maxk of each
channel is received on the decoder side, they are used to have each channel of the reconstruction

PC. scaled back to their original range of values.

[85] In another embodiment, the differential UnfoldingOperator is applied for PCC, as shown
in FIG. 12, which we called differential UnfoldingCompression. In this embodiment, both the
(quantized) latent code CW’ and the 3-channel image AXYZ need to be encoded as bitstreams.
Note that a quantization process (Qcw, 1210) is applied on the codeword CW to obtain quantized
coded word CW’ before it is fed to the FN module during encoding. In one example, CW’ =
rounding(CW / QS), where QS is a selected quantization step. One of the motivations for the
quantization is to have the input to the FN module be the same in both the encoding and the

decoding stages.

[86] In this embodiment, the compression (1230) of the AXYZ image can be similarly done as
the XYZ image in UnfoldingCompression (FIG. 11). When neural network-based methods are
applied, it generates a differentiable bitrate Raxyz for end-to-end training. The compression (1220)
of codeword CW can also be a neural network-based module, such as a variational autoencoder

based on a factorized prior model. It outputs a differentiable bitrate Rcw for end-to-end training.

[87] Provided bitstreams on the codeword CW’ and AXYZ image as inputs, the decoder first
reconstructs (1240, 1250) CW’ and AXYZ from the coded symbols, then fed CW’ to the FN
module (1260), which takes input of both codeword CW and 2D grid to reconstruct a preliminary
point cloud PC’. Then the residual AXYZ is added (1270) back to PC’ to obtain the reconstruction
PCi. Note that the decoder uses decompression methods that correspond to the compression

methods used to generate the codeword CW and grid.

[88] In the example FIG. 12, there are separate bitstreams for the codeword and the AXYZ

image. It should be noted that these bitstreams may be multiplexed into a single bitstream.

[89] Working with TearingTransform or TearingCompression
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[90] In this embodiment, it is proposed to apply the UnfoldingOperator with the
TearingTransform to form a point cloud reconstruction system. In general, the TearingTransform
works well when the points of input point clouds exhibit a fairly regular distribution. However, if
the input point clouds are too sparse for the TN module in the TearingTransform (FIG. 4), then the
TearingTransform may fail to produce faithful point cloud reconstruction. For example, if the
Chamfer distance between the preliminary reconstruction PC’ and the original input PCo is larger
than some pre-defined threshold, it implies that the raw input PCo is a difficult one, e.g., it is very
noisy or it is from a novel domain that the neural network modules PN, FN and TN have not seen
during training. In this case, we switch to UnfoldingTransform rather than using
TearingTransform. In this case, instead of running the TN and the second FN in TearingTransform
(FIG. 4), we switch to the UF module of the UnfoldingOperator (FIG. 3), which directly puts the

original 3D points in the 2D grid and guarantees accurate reconstructions.

[91] With the same rationale, it is proposed to apply the UnfoldingCompression with the
TearingCompression to form a point cloud compression system.  Specifically, when
TearingCompression fails to produce high-quality decoded point cloud due to the failure of the TN

module, the system switches to the proposed UF module to guarantee accurate reconstructions.
[92] Training Methods
[93] Training Methods for UnfoldingOperator

[94] The UnfoldingOperator in FIG. 3 can be trained in a self-supervised manner. In one
embodiment, it consists two steps to obtain the UnfoldingOperator. In the first step, a FoldingNet
consisting of the PN module and the FN module (FIG. 2) is trained. A loss function is defined
based on an error metric between input point cloud PCo and output point cloud PC, e.g., Chamfer
distance (CD), or earth mover’s distance (EMD). In the second step, the pre-trained parameters of
the PN and FN modules are loaded into the UnfoldingOperator. Since the UF module in the
UnfoldingOperator is to unfold the input point cloud according to the FN output PC’ and it does
not contain any learnable parameters, the UnfoldingOperator does not require additional fine-

tuning in this second step. For differential UnfoldingOperator, the training method is the same.
[95] Training Methods for UnfoldingCompression

[96] The training method of UnfoldingOperator could be extended as follows to train
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UnfoldingCompression in FIG. 11. Comparing to UnfoldingOperator, UnfoldingCompression has
an extra head that outputs bitstream in addition to output the point cloud. Hence, we extend the

two-stage strategy for UnfoldingCompression as follows.

[97] In the first stage, a FoldingNet (PN and FN) is first trained in the same way described

earlier. In the second stage, end-to-end training on UnfoldingCompression will be conducted. The

PN and FN modules are initialized with the parameters learned from the first stage. Then a rate-

distortion loss is used for training. Specifically, the reconstruction quality, measured by CD or

EMBD between PCo and PC, is regularized by the bitrate of the XYZ bitstream, as shown below:
loss = dpc,pc, + ARxyz

where dpc, pc, 18 the reconstruction metric, and Ryy is the bitrate of the XYZ image, while 4 is

the coefficient to trade-off the rate Ryyz and distortion metric dpc, pc, .

[98] For differential UnfoldingCompression, an additional bitstream for the latent code CW is
needed. Then the training loss becomes:
loss = dpc,pc, + ARpxyz + HRcw

where Ry, 1s the CW bitstream, and p is an additional coefficient to balance its importance.
[99] Coding for Machine

[100] Often a compressed point cloud is not solely to be viewed by human eyes, but also for
machine-oriented tasks, e.g., classification or segmentation. In such scenarios, our proposal is

further extended for performing machine tasks.

[101] The diagram of applying UnfoldingCompression for machine tasks is presented in FIG. 13.
In this case, the decoded XYZ image, i.e., XYZ’, serves as the representation of the decoded point
cloud PCi. Hence, the XYZ’ image can be fed to a downstream task, like classification (1310).
This additional head provides an extra supervision for a tradeoff between the performance of

coding and classification.

[102] The proposed differential UnfoldingCompression can also be extended for machine tasks,
as shown in FIG. 14. In this scenario, the decoded latent code CW’ serves the role as the high-
level description of the point cloud in addition to reconstructing a preliminary point cloud. On the
other hand, the AXYZ image is still concerned on the fine details in the point cloud. Such dual

roles of the codeword CW allow a tradeoff between the need of human perception and machine
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tasks. For example, the codeword CW may be fed to a downstream task, like classification (1410)
as shown in FIG. 14. Similarly, this additional head provides an extra supervision for a tradeoff

between coding and classification.
[103] Block-based PCC

[104] In the above embodiments, the input point cloud to be encoded is a full point cloud frame.
In another embodiment, it is proposed to first partition full point cloud frames into smaller point
cloud blocks. Then the point cloud blocks are fed to the proposed UnfoldingOperator or
UnfoldingCompression as inputs to limit the complexity required to process the input point clouds.
In an embodiment, to compress the XYZ (or AXYZ) images of the small point cloud blocks with
state-of-the-art image/video compression methods, e.g., JPEG, MPEG AVC/HEVC/VVC, the
XYZ (or AXYZ) images are tiled into a large image. The tiling can be based on the Morton order
of the associated 3D block, or another pre-defined order. The tiling can also be arranged to make
the induced large image more friendly to the downstream image/video codec, e.g., by minimizing
the differences across neighboring image blocks. If a dynamic point cloud is fed to the system,
then we get a sequence of tiled XYZ (or AXYZ) images which can be coded with existing video

codecs.

[105] Various numeric values are used in the present application. The specific values are for

example purposes and the aspects described are not limited to these specific values.

[106] The implementations and aspects described herein may be implemented in, for example, a
method or a process, an apparatus, a software program, a data stream, or a signal. Even if only
discussed in the context of a single form of implementation (for example, discussed only as a
method), the implementation of features discussed may also be implemented in other forms (for
example, an apparatus or program). An apparatus may be implemented in, for example,
appropriate hardware, software, and firmware. The methods may be implemented in, for example,
an apparatus, for example, a processor, which refers to processing devices in general, including,
for example, a computer, a microprocessor, an integrated circuit, or a programmable logic device.
Processors also include communication devices, for example, computers, cell phones,
portable/personal digital assistants (“PDAs”), and other devices that facilitate communication of

information between end-users.
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[107] Reference to “one embodiment” or “an embodiment” or “one implementation” or “an
implementation”, as well as other variations thereof, means that a particular feature, structure,
characteristic, and so forth described in connection with the embodiment is included in at least one
embodiment. Thus, the appearances of the phrase “in one embodiment” or “in an embodiment”
or “in one implementation” or “in an implementation”, as well any other variations, appearing in

various places throughout this application are not necessarily all referring to the same embodiment.

[108] Additionally, this application may refer to “determining” various pieces of information.
Determining the information may include one or more of, for example, estimating the information,

calculating the information, predicting the information, or retrieving the information from memory.

[109] Further, this application may refer to “accessing” various pieces of information. Accessing
the information may include one or more of, for example, receiving the information, retrieving the
information (for example, from memory), storing the information, moving the information,
copying the information, calculating the information, determining the information, predicting the

information, or estimating the information.

[110] Additionally, this application may refer to “receiving” various pieces of information.
Receiving is, as with “accessing”, intended to be a broad term. Receiving the information may
include one or more of, for example, accessing the information, or retrieving the information (for
example, from memory). Further, “receiving” is typically involved, in one way or another, during
operations, for example, storing the information, processing the information, transmitting the
information, moving the information, copying the information, erasing the information, calculating
the information, determining the information, predicting the information, or estimating the

information.

[111] It is to be appreciated that the use of any of the following “/”, “and/or”, and “at least one
of”, for example, in the cases of “A/B”, “A and/or B” and “at least one of A and B”, is intended to
encompass the selection of the first listed option (A) only, or the selection of the second listed
option (B) only, or the selection of both options (A and B). As a further example, in the cases of
“A, B, and/or C” and “at least one of A, B, and C”, such phrasing is intended to encompass the
selection of the first listed option (A) only, or the selection of the second listed option (B) only, or
the selection of the third listed option (C) only, or the selection of the first and the second listed
options (A and B) only, or the selection of the first and third listed options (A and C) only, or the



10

WO 2022/271602 PCT/US2022/034184

22

selection of the second and third listed options (B and C) only, or the selection of all three options
(A and B and C). This may be extended, as is clear to one of ordinary skill in this and related arts,

for as many items as are listed.

[112] Aswill be evident to one of ordinary skill in the art, implementations may produce a variety
of signals formatted to carry information that may be, for example, stored or transmitted. The
information may include, for example, instructions for performing a method, or data produced by
one of the described implementations. For example, a signal may be formatted to carry the
bitstream of a described embodiment. Such a signal may be formatted, for example, as an
electromagnetic wave (for example, using a radio frequency portion of spectrum) or as a baseband
signal. The formatting may include, for example, encoding a data stream and modulating a carrier
with the encoded data stream. The information that the signal carries may be, for example, analog
or digital information. The signal may be transmitted over a variety of different wired or wireless

links, as is known. The signal may be stored on a processor-readable medium.
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CLAIMS

1. A method for decoding point cloud data, comprising:
accessing a data array with samples on a regular grid, wherein each sample in said data
array indicates a position of a point in a point cloud; and

reconstructing said point cloud responsive to said data array.

2. The method for claim 1, further comprising:
decoding said data array by a decoder associated with a neural network-based autoencoder,

or an image or video decoder.

3. The method for claim 1 or 2, further comprising:
accessing a codeword that provides a representation of said point cloud, wherein said point

cloud is reconstructed further responsive to said codeword.

4. The method of claim 3, wherein each sample in said data array indicates a difference
between a position of a point in said point cloud and a position of a respective point in an initial

version of said reconstructed point cloud.

5. The method of any one of claims 3-4, further comprising:
generating said initial version of said reconstructed point cloud, based on said regular grid
and said codeword, using a neural network-based module, wherein said initial version of said

reconstructed point cloud is added to said data array to reconstruct said point cloud.

6. The method of any one of claims 3-5, wherein said codeword is decoded by a decoder

associated with a neural network-based autoencoder.

7. The method of any one of claims 1-6, wherein each sample in said data array further

indicates one or more of color, normal vector, and reflectance.

8. The method of any one of claims 5-7, wherein said neural network-based module
includes at least a first set of layers and a second set of layers, wherein said first set of layers are
responsive to said codeword and said regular grid, and wherein said second set of layers are

responsive to output of said first set of layers and said codeword.
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9. The method of claim 8, wherein said first set of layers correspond to a first set of shared
Multi-Layer Perceptrons (MLPs) and said second set of layers correspond to a second set of shared

MLPs.

10. The method of any one of claims 3-9, wherein said codeword is a feature vector

representing said point cloud in a latent space.

11. The method of any one of claims 1-10, wherein said regular grid represents 2D

coordinates regularly sampled on a 2D surface.

12. The method of claim 11, wherein said 2D surface is a rectangle, a square region or a

2D sphere.

13. The method of any one of claims 2-12, further comprising:

decoding at least an image or a video by said image or video decoder; and

decoding data indicative of a range of positions of said point cloud data, wherein said
decoded image or video is scaled responsive to said range of positions to reconstruct said point

cloud.

14. A method for encoding point cloud data, comprising:

generating a codeword, by a first neural network-based module, which provides a
representation of an input point cloud associated with said point cloud data;

reconstructing a first point cloud, by a second neural network-based module, based on said
codeword and a grid; and

generating a data array with samples on said grid, wherein each sample in said data array
indicates a position of a point in said input point cloud, based on said reconstructed first point

cloud, said grid, and said input point cloud.

15. The method of claim 14, further comprising compressing said data array.

16. The method of claim 15, wherein said data array is encoded by an encoder associated

with a neural network-based autoencoder, or an image or video encoder.
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17. The method of any one of claims 14-16, further comprising compressing said

codeword.

18. The method of claim 17, wherein said codeword is encoded by an encoder associated

with a neural network-based autoencoder.

19. The method of any one of claims 14-18, further comprising:

identifying a corresponding point, for each point in said reconstructed first point cloud,
from said input point cloud; and

indexing, for each point in said reconstructed first point cloud, a corresponding position in
said grid,

wherein a sample associated with said corresponding position in said grid indicates a

position of said corresponding point of said input point cloud.

20. The method of claim 19, wherein said sample associated with said corresponding
position in said grid indicates a difference between said position of said corresponding point of
said input point cloud and a position of said corresponding point of said reconstructed first point

cloud.

21. The method of any one of claims 14-20, wherein said second neural network-based
module includes at least a first set of layers and a second set of layers, wherein said first set of
fayers are responsive to said codeword and said grid, and wherein said second set of layers are

responsive to output of said first set of layers and said codeword.

22. The method of claim 21, wherein said first set of layers correspond to a first set of

shared MLPs and said second set of layers correspond to a second set of shared MLPs.

23. The method of any one of claims 14-22, wherein said codeword is a feature vector

representing said input point cloud in a latent space.

24. The method of any one of claims 14-23, wherein each sample in said data array further

indicates one or more of color, normal vector, and reflectance.
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25. The method of any one of claims 14-24, wherein said grid represents 2D coordinates

regularly sampled on a 2D surface.

26. The method of claim 25, wherein said 2D surface is a rectangle, a square region or a

5 2D sphere.

27. The method of any one of claims 15-26, further comprising:

compressing data indicative of a range of positions of said point cloud data.

10 28. An apparatus, comprising one or more processors and at least one memory coupled to
said one or more processors, wherein said one or more processors are configured to perform the

method of any of claims 1-27.

29. A signal comprising a bitstream, formed by performing the method of any one of

15 claims 14-27.

30. A computer readable storage medium having stored thereon instructions for encoding

or decoding a point cloud according to the method of any one of claims 1-27.

20
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