a2 United States Patent

Sullivan

US010972735B2

US 10,972,735 B2
Apr. 6,2021

(10) Patent No.:
45) Date of Patent:

(54) USE OF CHROMA QUANTIZATION
PARAMETER OFFSETS IN DEBLOCKING

(71) Applicant: Microsoft Technology Licensing, LLC,
Redmond, WA (US)

(72) Inventor: Gary J. Sullivan, Bellevue, WA (US)

(73) Assignee: Microsoft Technology Licensing, LLC,
Redmond, WA (US)

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 16/833,215

(22) Filed: Mar. 27, 2020

(65) Prior Publication Data
US 2020/0228803 Al Jul. 16, 2020

Related U.S. Application Data

(63) Continuation of application No. 16/387,857, filed on
Apr. 18, 2019, now Pat. No. 10,652,542, which is a

(Continued)
(51) Imt.CL
HO4N 19/172 (2014.01)
HO4N 19/117 (2014.01)
(Continued)
(52) US. CL
CPC ... HO4N 19/124 (2014.11); HO4N 19/117

(2014.11); HO4N 19/126 (2014.11); HO4N
19/15 (2014.11); HO4N 19/172 (2014.11);
HO4N 19/174 (2014.11); HO4N 19/186
(2014.11); HO4N 19/70 (2014.11);

(Continued)

(58) Field of Classification Search
CPC ... HO4N 19/124; HO4N 19/117, HO4N 19/126
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,227,901 B2* 6/2007 Jochccccoveurne HO4N 19/159
375/240.26
8,005,151 B2* 8/2011 Joch ...ccoevvviiecinns HO4N 19/14
375/240.29

(Continued)

OTHER PUBLICATIONS

Notice of Allowance dated May 21, 2020, from Korean Patent
Application No. 10-2014-7036979, 3 pp.

(Continued)

Primary Examiner — Irfan Habib

(74) Attorney, Agent, or Firm — Klarquist Sparkman,
LLP

(57) ABSTRACT

Innovations in use of chroma quantization parameter (“QP”)
offsets when determining a control parameter for deblock
filtering. For example, as part of encoding, an encoder sets
a picture-level chroma QP offset and slice-level chroma QP
offset for encoding of a slice of a picture. The encoder also
performs deblock filtering of at least part of the slice, where
derivation of a control parameter considers only the picture-
level chroma QP offset. The encoder outputs at least part of
a bitstream including the encoded content. As part of decod-
ing, a corresponding decoder sets a picture-level chroma QP
offset and a slice-level chroma QP offset for decoding of a
slice of a picture, but derivation of a control parameter for
deblock filtering considers only the picture-level chroma QP
offset.

20 Claims, 7 Drawing Sheets

Receive at least part ofa [~ 910
bitstream including
encoded content.

!

During decoding, set a [~ 920

picture-level chroma QP
offset and a slice-level
chroma QP offset for
decoding a slice of a picture.

I

During decoding, perform [~ 9%

deblock filtering of part
of the slice, where
derivation of a control
parameter considers the
picture-level chroma QP
offset but not the slice-level
chroma QP offset.

US 10,972,735 B2
Page 2

(60)

(1)

(52)

(56)

Related U.S. Application Data

continuation of application No. 16/126,176, filed on
Sep. 10, 2018, now Pat. No. 10,313,670, which is a
continuation of application No. 15/685,278, filed on
Aug. 24, 2017, now Pat. No. 10,097,832, which is a
continuation of application No. 15/410,924, filed on
Jan. 20, 2017, now Pat. No. 9,781,421, which is a
continuation of application No. 13/732,369, filed on
Dec. 31, 2012, now Pat. No. 9,591,302.

Provisional application No. 61/667,381, filed on Jul.
2,2012, provisional application No. 61/707,948, filed
on Sep. 29, 2012.

Int. CL.
HO4N 19/186 (2014.01)
HO4N 19/124 (2014.01)
HO04N 19/70 (2014.01)
HO4N 19/126 (2014.01)
HO4N 19/174 (2014.01)
HO04N 19/86 (2014.01)
HO4N 19/15 (2014.01)
HO4N 19/176 (2014.01)
HO4N 19/184 (2014.01)
U.S. CL
CPC HO4N 19/86 (2014.11); HO4N 19/176
(2014.11); HO4N 19/184 (2014.11)
References Cited
U.S. PATENT DOCUMENTS
8,189,677 B2* 5/2012 Auyeung HO4N 19/61
375/240.24
8,199,823 B2* 6/2012 Auyeung HO04N 19/186
375/240.15
8,948,242 B2* 2/2015 Kimcccoveenrrnne. HO04N 19/124
375/240
8,958,472 B2* 2/2015 Kungccccc.. HO04N 19/146
375/240
8,976,857 B2* 3/2015 Rosen HO04N 19/124
375/240
9,294,766 B2* 3/2016 Tourapis HO4N 19/13
9,363,509 B2* 6/2016 ... HO4N 19/105
9414,054 B2* 8/2016 ... HO4N 19/174
9,485,502 B2* 11/2016 ... HO4N 19/186
9,485,521 B2* 11/2016 Limccooonrnne.. HO4N 19/61

9,591,302
9,609,362
9,674,531
9,749,632
9,781,421
9,807,410
9,843,812
9,948,954
9,967,578
2006/0098734
2008/0317377

2013/0094572

2013/0101024

2013/0101025

2013/0188693

2013/0259141

2013/0329785
2014/0211848
2015/0071345
2015/0078447
2015/0350687
2016/0057419
2020/0092557

2020/0260084
2020/0288127

B2 *
B2 *
B2 *
B2 *
B2 *
B2 *
B2 *
B2 *
B2 *
Al*
Al*

Al*

Al*

Al*

Al*

Al*

Al*
Al*
Al*
Al*
Al*
Al*
Al

Al*
Al*

3/2017
3/2017
6/2017
82017
10/2017
10/2017
12/2017
4/2018
5/2018
5/2006
12/2008

4/2013

4/2013

4/2013

7/2013

10/2013

12/2013
7/2014
3/2015
3/2015

12/2015
2/2016
3/2020

8/2020
9/2020

Sullivan HO4N 19/186
Samuelsson HO4N 19/176
Gameicoeoevnnen. HO4N 19/12
Lim HO4N 19/122
Sullivan ... HO4N 19/174
Chou HO4N 19/139
Auyeung HO4N 19/50
Lim HO4N 19/61
Sato . .. HO4N 19/124
Cho HO4N 19/423
375/240.03

Saigo e HO4N 19/136
382/274

Van der AUWeracooceecvennnne.

HO4N 19/126
375/240.03

HO4N 19/186
375/240.03

HO4N 19/157

375/240.03
XU i HO4N 19/126
375/240.03
Van der AUWeracooceecvennnne.

HO4N 19/117

375/240.29
Lim i, HO4N 19/13
375/240.03
HSU v, HO4N 19/14
375/240.02
Tourapis HO4N 19/86
375/240.03
Gameiooooun. HO4N 19/136
375/240.12
Zhai .o, HO4N 19/186
375/240.25
Francois HO4N 19/124
375/240.03

Sullivan et al.
Kim
Tourapis

HO4N 19/196
HO4N 19/44

OTHER PUBLICATIONS

Notice of Allowance dated Jul. 16, 2020, from Korean Patent
Application No. 10-2014-7036987, 3 pp.

Notice of Preliminary Rejection dated Aug. 24, 2020, from Korean
Patent Application No. 10-2020-7023553, 4 pp.

* cited by examiner

U.S. Patent Apr. 6, 2021 Sheet 1 of 7 US 10,972,735 B2

— e —— —————— —— ——— — — —]
computing environment 100 communication @
130 connection(s) 170
4) N[.)
centra graphics or input device(s) 150
unit 110 unit 115
J O\

output device(s) 160

4 N/)
memory 120 | | memory 125

] |
| I
I processing co-processing I

I
| |
I I
I

storage 140

software 180 implementing one or more innovations for
using chroma QP offsets in deblock filtering

Figure 2a 201
RTC tool 210 RTC tool 210
encoder 220 <_> ‘ <:> encoder 220
decoder 270 decoder 270

202 playback tool 214

Figure 2b

decoder 270

encoding tool 212 :
playback tool 214
encoder 220

decoder 270

US 10,972,735 B2

Sheet 2 of 7

Apr. 6,2021

U.S. Patent

e

0L¢ Bale BlEp 7{€ UOTjRIIIO UT
papoo Areroduo) a9 10 OOININ 1€¢ (s)swreny
— 1 e e e — — —— ——— 90INOS
e < r 0t ¢ Iopooua —— O
— 4 } 1010998
_ 1€ (s)ouwrey
_ papoo
1L erep _ T 69¢ (s)omesy @wmﬁ
popod | /_\ (3o1) papooap
v 90INOS
08¢
1poo 0S¢ Joje[nuIa N \ \
ssooo1d Surpoosp
[UUet> 15¢ uoe | | e9¢
owrery
papooap

!

S~ [euueyd

0¢

¢ 2Ingr1

A\

9¢

-

d

19¢

e

09¢ eoI1e o3eI0)S
Arowowr Arerodtus)
owIeI] Papooap

0Z¢ ®are 93e10)s ATOWOW
Areiodwa) swely 90IN0S

11¢ (s)owrey
DINOS

Surame

I

US 10,972,735 B2

Sheet 3 of 7

Apr. 6, 2021

U.S. Patent

COrC—0 e ——— — 4. ||||||||||||||||||||||||| _

69t (s)awrey

(Jo1) papoosp

0cy Bale B1BD 7€ UOTjRULIOJUT
popoo Areiodwio} 1a9 10 OJNIN
I ,
 — T M m.v
I (s)ourery
I papos
1ZY e1ep |
opoo I
pap - N
0ty
I9p0o3p 0S 10poo3p

[ouueyd

01y
~—— [oUuRYD

AN
AN

—

ISy ug
owreIy

pPapooap

AR\

(€14

e

9y

A\

19v

\

091 BoIe 93810]S
Arourour Arerodurg)
owieI] papoosp

08%y
3 I195uanbas

ndino

18% indino
9q 01

owrel] 1xau

o6t
UOTJRUTISIP

ndino

US 10,972,735 B2

Sheet 4 of 7

Apr. 6, 2021

U.S. Patent

S0G aurely
JUSIIND
S1S 0€S T0jes 01S
—~~ UonEULIo UL -uadwos | I0JBWITISD
uonow uonjowt uonow
Sp¢ [enpisar * A
086 I9poo 0LS 095 1%
065 1°3Nq |- -I0Jsuen} ~— GES
< { Adomus 1oznuenb TS (s)omrexn
c6S BIED Adouanbay 90UQIoJoI ~
popoous
9LS 99¢ "uen TS o1 0cs
1azrjuenb Kouanbaiy | Yo0o[qop =P (S)o10}S
9SIoAUT 9SIoAUI door-ur owexy
yred 1o3u]
vd enu
Wed enu] 9LS 996 "uen
1azrjuenb Kouanbaiy
9SIoAUT 9SIoAUI w
SJNJSI
$6¢ BIED §0¢ ourely m * rmm
papoous JUSIIND
m 096 Iow f
086 I9poo 0LS
065 1°3Nq |« Adonus Iaznuenb ~lojsuel) 1<g
: Kouanbaiy

US 10,972,735 B2

Sheet 5 of 7

Apr. 6, 2021

U.S. Patent

089 0L9 099 ‘uen
069 19N f==fpr] 10p00OD |feeePpp| 10ZNJUBND] AOUOTNIDOIY
Adonua 9SIoAUT 9SIoAUI
$69 ®BI1Bp S19
papooud mww m?““w MMH S09 surely
pAonL Pa1oNISU09I
0€9 Iojes
-todwiod fp— L —t— o — — —>
uonow w
$£9 ouwEy _
pajorpaxd _
579 (s)oureq 029 019 1Ny 809 193
90UIaJoI1 (s)o10)s |eg—— 3[00[Q3p le YOO[QIP |
owexy doot-ur -001d-1sod
A
yred 1o3u]
yred enu
089 0L9 099 ‘uen
069 19N f——eppe] 10p00OD |jfpr] I10ZNJUEBND] AOUOTIDOIY
Adonus OSIoAUT OSIoAUIL J
$09 swely
569 BIEp Po1oNISU0IAX
papoous

9 AIN3T]

U.S. Patent Apr. 6, 2021 Sheet 6 of 7 US 10,972,735 B2

Figure 7a 701
pic_parameter_set_rbsp() { Descriptor
cb_qp offset se(v)
cr_qp offset se(v)
slicelevel chroma qp_flag u(l)
}

Figure 7b 102

slice_header() { Descriptor
slice qp delta se(v)
if (slicelevel chroma_qp_flag) {
slice_qp_delta_cb se(v)
slice_qp_delta_cr se(v)

H

U.S. Patent

Apr. 6, 2021

Figure 8 800

During encoding, set a
picture-level chroma QP
offset and a slice-level
chroma QP offset for
encoding a slice of a picture.

~ 810

;

During encoding, perform
deblock filtering of part
of the slice, where
derivation of a control
parameter considers the
picture-level chroma QP
offset but not the slice-level
chroma QP offset.

~ 820

;

Output at least part of a
bitstream including the
encoded content.

~ 830

Sheet 7 of 7

US 10,972,735 B2

Figure 9 900

Receive at least part of a
bitstream including
encoded content.

~ 910

;

During decoding, set a
picture-level chroma QP
offset and a slice-level
chroma QP offset for
decoding a slice of a picture.

~ 920

;

During decoding, perform
deblock filtering of part
of the slice, where
derivation of a control
parameter considers the
picture-level chroma QP
offset but not the slice-level
chroma QP offset.

~ 930

US 10,972,735 B2

1

USE OF CHROMA QUANTIZATION
PARAMETER OFFSETS IN DEBLOCKING

CROSS REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. patent applica-
tion Ser. No. 16/387,857, filed Apr. 18, 2019, which is a
continuation of U.S. patent application Ser. No. 16/126,176,
filed Sep. 10, 2018, now U.S. Pat. No. 10,313,670, which is
a continuation of U.S. patent application Ser. No. 15/685,
278, filed Aug. 24, 2017, now U.S. Pat. No. 10,097,832,
which is a continuation of U.S. patent application Ser. No.
15/410,924, filed Jan. 20, 2017, now U.S. Pat. No. 9,781,
421, which is a continuation of U.S. patent application Ser.
No. 13/732,369, filed Dec. 31, 2012, now U.S. Pat. No.
9,591,302, the disclosure of which is hereby incorporated by
reference. U.S. patent application Ser. No. 13/732,369
claims the benefit of U.S. Provisional Patent Application No.
61/667,381, filed Jul. 2, 2012, the disclosure of which is
hereby incorporated by reference. U.S. patent application
Ser. No. 13/732,369 also claims the benefit of U.S. Provi-
sional Patent Application No. 61/707,948, filed Sep. 29,
2012, the disclosure of which is hereby incorporated by
reference.

BACKGROUND

Engineers use compression (also called source coding or
source encoding) to reduce the bit rate of digital video.
Compression decreases the cost of storing and transmitting
video information by converting the information into a
lower bit rate form. Decompression (also called decoding)
reconstructs a version of the original information from the
compressed form. A “codec” is an encoder/decoder system.

Over the last two decades, various video codec standards
have been adopted, including the H.261, H.262 (MPEG-2 or
ISO/IEC 13818-2), H.263 and H.264 (AVC or ISO/IEC
14496-10) standards and the MPEG-1 (ISO/IEC 11172-2),
MPEG-4 Visual (ISO/IEC 14496-2) and SMPTE 421M
standards. More recently, the HEVC standard is under
development. A video codec standard typically defines
options for the syntax of an encoded video bitstream,
detailing parameters in the bitstream when particular fea-
tures are used in encoding and decoding. In many cases, a
video codec standard also provides details about the decod-
ing operations a decoder should perform to achieve correct
results in decoding. Aside from codec standards, various
proprietary codec formats define other options for the syntax
of an encoded video bitstream and corresponding decoding
operations.

One type of parameter in a bitstream is a quantization
parameter (“QP”). During encoding, an encoder sets values
of QP to adjust quality and bitrate. In general, for a lower
value of QP, the quality of the encoded video is higher but
more bits are consumed. On the other hand, for a higher
value of QP, the quality of the encoded video is lower and
fewer bits are consumed. A decoder uses QP values when
reconstructing video content from the encoded video.

Avideo source such as a camera, animation output, screen
capture module, etc. typically provides video that is con-
verted to a format such as a YUV format. A YUV format
includes a luma (or Y) component with sample values
representing brightness values as well as multiple chroma
components with sample values representing color differ-
ence values. The precise definitions of the color difference
values (and conversion operations to/from YUV color space

10

15

20

25

30

35

40

45

50

55

60

65

2

to another color space such as RGB) depend on implemen-
tation. In general, a luma/chroma color space can be any
color space with a luma (or luminance) component and one
or more chroma (or chrominance) components, including
YUV, Y'UV, YIQ, Y'IQ and YDbDr as well as variations
such as YCbCr and YCoCg, where the Y term represents a
luma component and the other terms represent chroma
components.

For some codec standards and formats, an encoder can set
different values of QP for a luma component and chroma
components. In this way, the encoder can control how
quantization is performed for different color components,
and thereby regulate quality and bitrate between compo-
nents. Prior approaches to controlling and using QP values
for chroma components have various shortcomings, how-
ever, including a lack of fine-grained control in high QP
situations, and failure to provide an appropriate level of
responsiveness in other decoding operations.

SUMMARY

In summary, the detailed description presents innovations
in control and use of chroma quantization parameter (“QP”)
values that depend on luma QP values. More generally, the
innovations relate to control and use of QP values for a
secondary color component (e.g., a chroma component) that
depend on QP values for a primary color component (e.g., a
luma component).

For example, a video encoder encodes video with mul-
tiple color components for which values of QP vary accord-
ing to a relationship between a primary component and at
least one secondary component. The encoding includes
deblock filtering during which derivation of a control param-
eter (to control the deblock filtering) is based at least in part
on a chroma QP offset. The chroma QP offset indicates a
difference from a luma QP value, which is signaled else-
where. A picture-level chroma QP offset can be used to
specify a difference for chroma QP value that applies for a
picture. A slice-level chroma QP offset can be used to
specify a difference for chroma QP value that applies for a
slice, which is part of a picture, in addition to a picture-level
chroma QP offset. When the control parameter for deblock
filtering is derived, the chroma QP offset that is considered
can be specified with a only picture-level chroma QP offset
to simplify implementation of the adaptive deblock filtering,
even when a combination of picture-level and slice-level
chroma QP offsets has been used for rate control purposes,
and such slice-level chroma QP offsets are available to an
encoder and decoder. The encoder outputs at least part of a
bitstream or bitstream portion including the encoded video,
potentially including both picture-level chroma QP offsets
and slice-level chroma QP offsets.

As another example, an image or video encoder encodes
image or video content for which values of QP vary accord-
ing to a relationship between a luma component and chroma
components. As part of the encoding, the encoder sets a
picture-level chroma QP offset and a slice-level chroma QP
offset for encoding of a slice of a picture. The encoder also
performs deblock filtering of at least part of the slice, where
derivation of a control parameter for the deblock filtering of
the part of the slice considers the picture-level chroma QP
offset but not the slice-level chroma QP offset. The encoder
then outputs at least part of a bitstream including the
encoded content.

Or, a video decoder receives at least part of a bitstream or
bitstream portion including encoded video with multiple
color components for which values of QP vary according to

US 10,972,735 B2

3

a relationship between a primary component and at least one
secondary component. The bitstream or bitstream portion
potentially includes both picture-level chroma QP offsets
and slice-level chroma QP offsets. The decoder decodes the
encoded video. The decoding includes deblock filtering
during which derivation of a control parameter is based at
least in part on a chroma QP offset. The chroma QP offset
that is considered can be specified with only a picture-level
chroma QP offset to simplify implementation of the adaptive
deblock filtering, even when a combination of picture-level
and slice-level chroma QP offsets has been used for rate
control, and such slice-level chroma QP offsets are available
to the decoder.

As another example, an image or video decoder receives
at least part of a bitstream including encoded image or video
content, and decodes content for which values of QP vary
according to a relationship between a luma component and
chroma components. As part of the decoding, the decoder
sets a picture-level chroma QP offset and a slice-level
chroma QP offset for decoding of a slice of a picture. The
decoder also performs deblock filtering of at least part of the
slice, where derivation of a control parameter for the
deblock filtering of the part of the slice considers the
picture-level chroma QP offset but not the slice-level chroma
QP offset.

The encoding or decoding can be implemented as part of
a method, as part of a computing device adapted to perform
the method or as part of a tangible computer-readable media
storing computer-executable instructions for causing a com-
puting device to perform the method.

The foregoing and other objects, features, and advantages
of the invention will become more apparent from the fol-
lowing detailed description, which proceeds with reference
to the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of an example computing system in
which some described embodiments can be implemented.

FIGS. 2a and 2b are diagrams of example network
environments in which some described embodiments can be
implemented.

FIG. 3 is a diagram of an example encoder system in
conjunction with which some described embodiments can be
implemented.

FIG. 4 is a diagram of an example decoder system in
conjunction with which some described embodiments can be
implemented.

FIG. 5 is a diagram illustrating an example video encoder
in conjunction with which some described embodiments can
be implemented.

FIG. 6 is a diagram illustrating an example video decoder
in conjunction with which some described embodiments can
be implemented.

FIG. 7a is a table illustrating a new flag slicelevel_chro-
ma_gp_{lag in picture parameter set RBSP syntax, and FIG.
7b is a table illustrating new values slice_qp_delta_cb and
slice_qp_delta_cr in slice header syntax.

FIG. 8 is a flowchart illustrating a generalized technique
for using chroma QP offsets to control deblock filtering
during encoding.

FIG. 9 is a flowchart illustrating a generalized technique
for using chroma QP offsets to control deblock filtering
during decoding.

DETAILED DESCRIPTION

For compression of video content and other image content
that uses a multi-component color space representation, an

35

40

45

65

4

important aspect of the design is control of the granularity of
the quantization for each of the color components. Such
control is typically achieved by establishing a scaling rela-
tionship between the quantization step size(s) associated
with one color component (often called the primary com-
ponent) and other color component (often called a secondary
component). Typically, the primary component is a luma
component, and the secondary component(s) are chroma
component(s).

For example, in the ITU-T H.264 standard, the relation-
ship between QP for a luma component and chroma com-
ponents is determined according to a value of QP, a look-up
table and an encoder-controlled offset, sometimes together
with a quantization scaling matrix for establishing fre-
quency-specific scaling factors. There are some disadvan-
tages to existing designs for this aspect of coding control for
QP. For example, the maximum value of QP for chroma
components in H.264 (indicating coarsest quantization for
chroma) is limited to a value that is substantially smaller
than the maximum value of QP supported for the luma
component (indicating coarsest quantization for luma). This
can cause an excess quantity of bits to be used to encode the
chroma components of the video content, when the coarse-
ness of quantization is limited by the maximum value of QP
for chroma, which results in fewer bits being used to encode
the luma component of the video content and can cause a
reduction in overall quality.

The detailed description presents various approaches to
controlling the granularity of quantization of secondary
components in relation to that of the primary component. In
many cases, these approaches alleviate the shortcomings of
the prior approaches. In particular, the detailed description
presents innovations for use of chroma QP values having an
extended range.

For example, the described approaches include use of an
extended size for the lookup table that may be used to
establish the relationship between the primary and second-
ary color components. As another example, the functional
relationship in QP values established by such a lookup table
can alternatively be provided through the use of simple
mathematical operations. Additional innovative aspects of
control of QP values in video coding and decoding are also
described. The described techniques may be applied to
additional applications other than video coding/decoding,
such as still-image coding/decoding, medical scan content
coding/decoding, multispectral imagery content coding/de-
coding, etc. Although operations described herein are in
places described as being performed by an encoder (e.g.,
video encoder) or decoder (e.g., video decoder), in many
cases the operations can alternatively be performed by
another type of media processing tool.

Some of the innovations described herein are illustrated
with reference to syntax elements and operations specific to
the HEVC standard. For example, reference is made to the
draft version JCTVC-11003 of the HEVC standard—High
efficiency video coding (“HEVC”) text specification draft
77, ICTVC-11003_d5, 9” meeting, Geneva, April 2012. The
innovations described herein can also be implemented for
other standards or formats.

Some of the innovations described herein are illustrated
with reference to syntax elements and operations for color
components in a YCbCr format. The innovations described
herein can also be implemented for other luma/chroma
formats such as Y'UV, YIQ, Y'IQ and YDbDr as well as
variations such as YCoCg. Examples for Cb and Cr com-
ponents should be understood as applying equally when

US 10,972,735 B2

5

chroma components are U and V, I and Q, Db and Dr, Co and
Cg, or chroma components in another format.

More generally, various alternatives to the examples
described herein are possible. For example, some of the
methods described herein can be altered by changing the
ordering of the method acts described, by splitting, repeat-
ing, or omitting certain method acts, etc. The various aspects
of the disclosed technology can be used in combination or
separately. Different embodiments use one or more of the
described innovations. Some of the innovations described
herein address one or more of the problems noted in the
background. Typically, a given technique/tool does not solve
all such problems.

1. Example Computing Systems.

FIG. 1 illustrates a generalized example of a suitable
computing system (100) in which several of the described
innovations may be implemented. The computing system
(100) is not intended to suggest any limitation as to scope of
use or functionality, as the innovations may be implemented
in diverse general-purpose or special-purpose computing
systems.

With reference to FIG. 1, the computing system (100)
includes one or more processing units (110, 115) and
memory (120, 125). In FIG. 1, this most basic configuration
(130) is included within a dashed line. The processing units
(110, 115) execute computer-executable instructions. A pro-
cessing unit can be a general-purpose central processing unit
(CPU), processor in an application-specific integrated circuit
(ASIC) or any other type of processor. In a multi-processing
system, multiple processing units execute computer-execut-
able instructions to increase processing power. For example,
FIG. 1 shows a central processing unit (110) as well as a
graphics processing unit or co-processing unit (115). The
tangible memory (120, 125) may be volatile memory (e.g.,
registers, cache, RAM), non-volatile memory (e.g., ROM,
EEPROM, flash memory, etc.), or some combination of the
two, accessible by the processing unit(s). The memory (120,
125) stores software (180) implementing one or more inno-
vations for using chroma QP offsets in deblock filtering, in
the form of computer-executable instructions suitable for
execution by the processing unit(s).

A computing system may have additional features. For
example, the computing system (100) includes storage
(140), one or more input devices (150), one or more output
devices (160), and one or more communication connections
(170). An interconnection mechanism (not shown) such as a
bus, controller, or network interconnects the components of
the computing system (100). Typically, operating system
software (not shown) provides an operating environment for
other software executing in the computing system (100), and
coordinates activities of the components of the computing
system (100).

The tangible storage (140) may be removable or non-
removable, and includes magnetic disks, magnetic tapes or
cassettes, CD-ROMs, DVDs, or any other medium which
can be used to store information and which can be accessed
within the computing system (100). The storage (140) stores
instructions for the software (180) implementing one or
more innovations for using chroma QP offsets in deblock
filtering.

The input device(s) (150) may be a touch input device
such as a keyboard, mouse, pen, or trackball, a voice input
device, a scanning device, or another device that provides
input to the computing system (100). For video encoding,
the input device(s) (150) may be a camera, video card, TV
tuner card, or similar device that accepts video input in
analog or digital form, or a CD-ROM or CD-RW that reads

20

25

40

45

55

60

6

video samples into the computing system (100). The output
device(s) (160) may be a display, printer, speaker, CD-
writer, or another device that provides output from the
computing system (100).

The communication connection(s) (170) enable commu-
nication over a communication medium to another comput-
ing entity. The communication medium conveys information
such as computer-executable instructions, audio or video
input or output, or other data in a modulated data signal. A
modulated data signal is a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not
limitation, communication media can use an electrical, opti-
cal, RF, or other carrier.

The innovations can be described in the general context of
computer-readable media. Computer-readable media are any
available tangible media that can be accessed within a
computing environment. By way of example, and not limi-
tation, with the computing system (100), computer-readable
media include memory (120, 125), storage (140), and com-
binations of any of the above.

The innovations can be described in the general context of
computer-executable instructions, such as those included in
program modules, being executed in a computing system on
a target real or virtual processor. Generally, program mod-
ules include routines, programs, libraries, objects, classes,
components, data structures, etc. that perform particular
tasks or implement particular abstract data types. The func-
tionality of the program modules may be combined or split
between program modules as desired in various embodi-
ments. Computer-executable instructions for program mod-
ules may be executed within a local or distributed computing
system.

The terms “system” and “device” are used interchange-
ably herein. Unless the context clearly indicates otherwise,
neither term implies any limitation on a type of computing
system or computing device. In general, a computing system
or computing device can be local or distributed, and can
include any combination of special-purpose hardware and/or
general-purpose hardware with software implementing the
functionality described herein.

The disclosed methods can also be implemented using
specialized computing hardware configured to perform any
of the disclosed methods. For example, the disclosed meth-
ods can be implemented by an integrated circuit (e.g., an
application specific integrated circuit (“ASIC”) (such as an
ASIC digital signal process unit (“DSP”), a graphics pro-
cessing unit (“GPU”), or a programmable logic device
(“PLD”), such as a field programmable gate array
(“FPGA™)) specially designed or configured to implement
any of the disclosed methods.

For the sake of presentation, the detailed description uses
terms like “determine” and “use” to describe computer
operations in a computing system. These terms are high-
level abstractions for operations performed by a computer,
and should not be confused with acts performed by a human
being. The actual computer operations corresponding to
these terms vary depending on implementation.

II. Example Network Environments.

FIGS. 2a and 26 show example network environments
(201, 202) that include video encoders (220) and video
decoders (270). The encoders (220) and decoders (270) are
connected over a network (250) using an appropriate com-
munication protocol. The network (250) can include the
Internet or another computer network.

In the network environment (201) shown in FIG. 2a, each
real-time communication (“RTC”) tool (210) includes both

US 10,972,735 B2

7

an encoder (220) and a decoder (270) for bidirectional
communication. A given encoder (220) can produce output
compliant with the SMPTE 421M standard, ISO-IEC
14496-10 standard (also known as H.264 or AVC), HEVC
standard, another standard, or a proprietary format, with a
corresponding decoder (270) accepting encoded data from
the encoder (220). The bidirectional communication can be
part of a video conference, video telephone call, or other
two-party communication scenario. Although the network
environment (201) in FIG. 2a includes two real-time com-
munication tools (210), the network environment (201) can
instead include three or more real-time communication tools
(210) that participate in multi-party communication.

A real-time communication tool (210) manages encoding
by an encoder (220). FIG. 3 shows an example encoder
system (300) that can be included in the real-time commu-
nication tool (210). Alternatively, the real-time communica-
tion tool (210) uses another encoder system. A real-time
communication tool (210) also manages decoding by a
decoder (270). FIG. 4 shows an example decoder system
(400), which can be included in the real-time communica-
tion tool (210). Alternatively, the real-time communication
tool (210) uses another decoder system.

In the network environment (202) shown in FIG. 25, an
encoding tool (212) includes an encoder (220) that encodes
video for delivery to multiple playback tools (214), which
include decoders (270). The unidirectional communication
can be provided for a video surveillance system, web camera
monitoring system, remote desktop conferencing presenta-
tion or other scenario in which video is encoded and sent
from one location to one or more other locations. Although
the network environment (202) in FIG. 26 includes two
playback tools (214), the network environment (202) can
include more or fewer playback tools (214). In general, a
playback tool (214) communicates with the encoding tool
(212) to determine a stream of video for the playback tool
(214) to receive. The playback tool (214) receives the
stream, buffers the received encoded data for an appropriate
period, and begins decoding and playback.

FIG. 3 shows an example encoder system (300) that can
be included in the encoding tool (212). Alternatively, the
encoding tool (212) uses another encoder system. The
encoding tool (212) can also include server-side controller
logic for managing connections with one or more playback
tools (214). FIG. 4 shows an example decoder system (400),
which can be included in the playback tool (214). Alterna-
tively, the playback tool (214) uses another decoder system.
A playback tool (214) can also include client-side controller
logic for managing connections with the encoding tool
(212).

III. Example Encoder Systems.

FIG. 3 is a block diagram of an example encoder system
(300) in conjunction with which some described embodi-
ments may be implemented. The encoder system (300) can
be a general-purpose encoding tool capable of operating in
any of multiple encoding modes such as a low-latency
encoding mode for real-time communication, transcoding
mode, and regular encoding mode for media playback from
a file or stream, or it can be a special-purpose encoding tool
adapted for one such encoding mode. The encoder system
(300) can be implemented as an operating system module, as
part of an application library or as a standalone application.
Overall, the encoder system (300) receives a sequence of
source video frames (311) from a video source (310) and
produces encoded data as output to a channel (390). The
encoded data output to the channel can include syntax

10

15

20

25

30

35

40

45

50

55

60

65

8

elements that indicate QP values set for chroma, such as
picture-level chroma QP offsets and/or slice-level chroma
QP offsets.

The video source (310) can be a camera, tuner card,
storage media, or other digital video source. The video
source (310) produces a sequence of video frames at a frame
rate of, for example, 30 frames per second. As used herein,
the term “frame” generally refers to source, coded or recon-
structed image data. For progressive video, a frame is a
progressive video frame. For interlaced video, in example
embodiments, an interlaced video frame is de-interlaced
prior to encoding. Alternatively, two complementary inter-
laced video fields are encoded as an interlaced video frame
or separate fields. Aside from indicating a progressive video
frame, the term “frame” can indicate a single non-paired
video field, a complementary pair of video fields, a video
object plane that represents a video object at a given time,
or a region of interest in a larger image. The video object
plane or region can be part of a larger image that includes
multiple objects or regions of a scene.

An arriving source frame (311) is stored in a source frame
temporary memory storage area (320) that includes multiple
frame buffer storage areas (321, 322, . . ., 32n). A frame
buffer (321, 322, etc.) holds one source frame in the source
frame storage area (320). After one or more of the source
frames (311) have been stored in frame buffers (321, 322,
etc.), a frame selector (330) periodically selects an indi-
vidual source frame from the source frame storage area
(320). The order in which frames are selected by the frame
selector (330) for input to the encoder (340) may differ from
the order in which the frames are produced by the video
source (310), e.g., a frame may be ahead in order, to
facilitate temporally backward prediction. Before the
encoder (340), the encoder system (300) can include a
pre-processor (not shown) that performs pre-processing
(e.g., filtering) of the selected frame (331) before encoding.
The pre-processing can also include color space conversion
into primary and secondary components for encoding.

The encoder (340) encodes the selected frame (331) to
produce a coded frame (341) and also produces memory
management control operation (“MMCO”) signals (342) or
reference picture set (“RPS”) information. If the current
frame is not the first frame that has been encoded, when
performing its encoding process, the encoder (340) may use
one or more previously encoded/decoded frames (369) that
have been stored in a decoded frame temporary memory
storage area (360). Such stored decoded frames (369) are
used as reference frames for inter-frame prediction of the
content of the current source frame (331). Generally, the
encoder (340) includes multiple encoding modules that
perform encoding tasks such as motion estimation and
compensation, frequency transforms, quantization and
entropy coding. The exact operations performed by the
encoder (340) can vary depending on compression format.
The format of the output encoded data can be a Windows
Media Video format, VC-1 format, MPEG-x format (e.g.,
MPEG-1, MPEG-2, or MPEG-4), H.26x format (e.g.,
H.261, H.262, H.263, H.264), HEVC format or other for-
mat.

For example, within the encoder (340), an inter-coded,
predicted frame is represented in terms of prediction from
reference frames. A motion estimator estimates motion of
blocks or other sets of samples of a source frame (341) with
respect to one or more reference frames (369). When mul-
tiple reference frames are used, the multiple reference
frames can be from different temporal directions or the same
temporal direction. The motion estimator outputs motion

US 10,972,735 B2

9

information such as motion vector information, which is
entropy coded. A motion compensator applies motion vec-
tors to reference frames to determine motion-compensated
prediction values. The encoder determines the differences (if
any) between a block’s motion-compensated prediction val-
ues and corresponding original values. These prediction
residual values are further encoded using a frequency trans-
form, quantization and entropy encoding. The quantization
can use values of chroma QP. For example, the encoder
(340) sets values for luma QP and chroma QP for a picture,
slice and/or other portion of video, and quantizes transform
coeflicients accordingly. Similarly, for intra prediction, the
encoder (340) can determine intra-prediction values for a
block, determine prediction residual values, and encode the
prediction residual values (with a frequency transform,
quantization and entropy encoding). In particular, the
entropy coder of the encoder (340) compresses quantized
transform coeflicient values as well as certain side informa-
tion (e.g., motion vector information, QP values, mode
decisions, parameter choices). Typical entropy coding tech-
niques include Exp-Golomb coding, arithmetic coding, dif-
ferential coding, Huffman coding, run length coding, vari-
able-length-to-variable-length (“V2V”) coding, variable-
length-to-fixed-length (“V2F”) coding, LZ coding,
dictionary coding, probability interval partitioning entropy
coding (“PIPE”), and combinations of the above. The
entropy coder can use different coding techniques for dif-
ferent kinds of information, and can choose from among
multiple code tables within a particular coding technique.

The coded frames (341) and MMCO/RPS information
(342) are processed by a decoding process emulator (350).
The decoding process emulator (350) implements some of
the functionality of a decoder, for example, decoding tasks
to reconstruct reference frames that are used by the encoder
(340) in motion estimation and compensation. The decoding
process emulator (350) uses the MMCO/RPS information
(342) to determine whether a given coded frame (341) needs
to be reconstructed and stored for use as a reference frame
in inter-frame prediction of subsequent frames to be
encoded. If the MMCO/RPS information (342) indicates
that a coded frame (341) needs to be stored, the decoding
process emulator (350) models the decoding process that
would be conducted by a decoder that receives the coded
frame (341) and produces a corresponding decoded frame
(351). In doing so, when the encoder (340) has used decoded
frame(s) (369) that have been stored in the decoded frame
storage area (360), the decoding process emulator (350) also
uses the decoded frame(s) (369) from the storage area (360)
as part of the decoding process.

The decoded frame temporary memory storage area (360)
includes multiple frame buffer storage areas (361,
362, . .., 36mn). The decoding process emulator (350) uses
the MMCO/RPS information (342) to manage the contents
of the storage area (360) in order to identify any frame
buffers (361, 362, etc.) with frames that are no longer needed
by the encoder (340) for use as reference frames. After
modeling the decoding process, the decoding process emu-
lator (350) stores a newly decoded frame (351) in a frame
buffer (361, 362, etc.) that has been identified in this manner.

The coded frames (341) and MMCO/RPS information
(342) are also buffered in a temporary coded data area (370).
The coded data that is aggregated in the coded data area
(370) can contain, as part of the syntax of an elementary
coded video bitstream, syntax elements that indicate QP
values set for chroma, such as picture-level chroma QP
offsets and/or slice-level chroma QP offsets. The coded data
that is aggregated in the coded data area (370) can also

30

40

45

10

include media metadata relating to the coded video data
(e.g., as one or more parameters in one or more supplemen-
tal enhancement information (“SEI”) messages or video
usability information (“VUI”) messages).

The aggregated data (371) from the temporary coded data
area (370) are processed by a channel encoder (380). The
channel encoder (380) can packetize the aggregated data for
transmission as a media stream (e.g., according to a media
container format such as ISO/IEC 14496-12), in which case
the channel encoder (380) can add syntax elements as part
of the syntax of the media transmission stream. Or, the
channel encoder (380) can organize the aggregated data for
storage as a file (e.g., according to a media container format
such as ISO/IEC 14496-12), in which case the channel
encoder (380) can add syntax elements as part of the syntax
of the media storage file. Or, more generally, the channel
encoder (380) can implement one or more media system
multiplexing protocols or transport protocols, in which case
the channel encoder (380) can add syntax elements as part
of the syntax of the protocol(s). The channel encoder (380)
provides output to a channel (390), which represents storage,
a communications connection, or another channel for the
output.

IV. Example Decoder Systems.

FIG. 4 is a block diagram of an example decoder system
(400) in conjunction with which some described embodi-
ments may be implemented. The decoder system (400) can
be a general-purpose decoding tool capable of operating in
any of multiple decoding modes such as a low-latency
decoding mode for real-time communication and regular
decoding mode for media playback from a file or stream, or
it can be a special-purpose decoding tool adapted for one
such decoding mode. The decoder system (400) can be
implemented as an operating system module, as part of an
application library or as a standalone application. Overall,
the decoder system (400) receives coded data from a channel
(410) and produces reconstructed frames as output for an
output destination (490). The coded data can include syntax
elements that indicate QP values set for chroma, such as
picture-level chroma QP offsets and/or slice-level chroma
QP offsets.

The decoder system (400) includes a channel (410),
which can represent storage, a communications connection,
or another channel for coded data as input. The channel
(410) produces coded data that has been channel coded. A
channel decoder (420) can process the coded data. For
example, the channel decoder (420) de-packetizes data that
has been aggregated for transmission as a media stream
(e.g., according to a media container format such as ISO/IEC
14496-12), in which case the channel decoder (420) can
parse syntax elements added as part of the syntax of the
media transmission stream. Or, the channel decoder (420)
separates coded video data that has been aggregated for
storage as a file (e.g., according to a media container format
such as ISO/IEC 14496-12), in which case the channel
decoder (420) can parse syntax elements added as part of the
syntax of the media storage file. Or, more generally, the
channel decoder (420) can implement one or more media
system demultiplexing protocols or transport protocols, in
which case the channel decoder (420) can parse syntax
elements added as part of the syntax of the protocol(s).

The coded data (421) that is output from the channel
decoder (420) is stored in a temporary coded data area (430)
until a sufficient quantity of such data has been received. The
coded data (421) includes coded frames (431) and MMCO/
RPS information (432). The coded data (421) in the coded
data area (430) can contain, as part of the syntax of an

US 10,972,735 B2

11

elementary coded video bitstream, syntax clements that
indicate QP values set for chroma, such as picture-level
chroma QP offsets and/or slice-level chroma QP offsets. The
coded data (421) in the coded data area (430) can also
include media metadata relating to the encoded video data
(e.g., as one or more parameters in one or more SEI
messages or VUI messages). In general, the coded data area
(430) temporarily stores coded data (421) until such coded
data (421) is used by the decoder (450). At that point, coded
data for a coded frame (431) and MMCO/RPS information
(432) are transferred from the coded data area (430) to the
decoder (450). As decoding continues, new coded data is
added to the coded data area (430) and the oldest coded data
remaining in the coded data area (430) is transferred to the
decoder (450).

The decoder (450) periodically decodes a coded frame
(431) to produce a corresponding decoded frame (451). As
appropriate, when performing its decoding process, the
decoder (450) may use one or more previously decoded
frames (469) as reference frames for inter-frame prediction.
The decoder (450) reads such previously decoded frames
(469) from a decoded frame temporary memory storage area
(460). Generally, the decoder (450) includes multiple decod-
ing modules that perform decoding tasks such as entropy
decoding, inverse quantization (which can use values of
chroma QP), inverse frequency transforms and motion com-
pensation. The exact operations performed by the decoder
(450) can vary depending on compression format.

For example, the decoder (450) receives encoded data for
a compressed frame or sequence of frames and produces
output including decoded frame (451). In the decoder (450),
a buffer receives encoded data for a compressed frame and
makes the received encoded data available to an entropy
decoder. The entropy decoder entropy decodes entropy-
coded quantized data as well as entropy-coded side infor-
mation, typically applying the inverse of entropy encoding
performed in the encoder. A motion compensator applies
motion information to one or more reference frames to form
motion-compensated predictions of sub-blocks and/or
blocks (generally, blocks) of the frame being reconstructed.
An intra prediction module can spatially predict sample
values of a current block from neighboring, previously
reconstructed sample values. The decoder (450) also recon-
structs prediction residuals. An inverse quantizer inverse
quantizes entropy-decoded data, potentially using values of
chroma QP. For example, the decoder (450) sets values for
luma QP and chroma QP for a picture, slice and/or other
portion of video based on syntax elements in the bitstream,
and inverse quantizes transform coefficients accordingly. An
inverse frequency transformer converts the quantized, fre-
quency domain data into spatial domain information. For a
predicted frame, the decoder (450) combines reconstructed
prediction residuals with motion-compensated predictions to
form a reconstructed frame. The decoder (450) can similarly
combine prediction residuals with spatial predictions from
intra prediction. A motion compensation loop in the video
decoder (450) includes an adaptive de-blocking filter to
smooth discontinuities across block boundary rows and/or
columns in the decoded frame (451).

The decoded frame temporary memory storage area (460)
includes multiple frame buffer storage areas (461,
462, . . ., 46n). The decoded frame storage area (460) is an
example of a DPB. The decoder (450) uses the MMCO/RPS
information (432) to identify a frame buffer (461, 462, etc.)
in which it can store a decoded frame (451). The decoder
(450) stores the decoded frame (451) in that frame buffer.

10

15

20

25

30

35

40

45

50

55

60

65

12

An output sequencer (480) uses the MMCO/RPS infor-
mation (432) to identify when the next frame to be produced
in output order is available in the decoded frame storage area
(460). When the next frame (481) to be produced in output
order is available in the decoded frame storage arca (460),
it is read by the output sequencer (480) and output to the
output destination (490) (e.g., display). In general, the order
in which frames are output from the decoded frame storage
area (460) by the output sequencer (480) may differ from the
order in which the frames are decoded by the decoder (450).
V. Example Video Encoders

FIG. 5 is a block diagram of a generalized video encoder
(500) in conjunction with which some described embodi-
ments may be implemented. The encoder (500) receives a
sequence of video frames including a current frame (505)
and produces encoded data (595) as output.

The encoder (500) is block-based and uses a block format
that depends on implementation. Blocks may be further
sub-divided at different stages, e.g., at the frequency trans-
form and entropy encoding stages. For example, a frame can
be divided into 64x64 blocks, 32x32 blocks or 16x16
blocks, which can in turn be divided into smaller blocks and
sub-blocks of pixel values for coding and decoding.

The encoder system (500) compresses predicted frames
and intra-coded frames. For the sake of presentation, FIG. 5
shows an “intra path” through the encoder (500) for intra-
frame coding and an “inter path” for inter-frame coding.
Many of the components of the encoder (500) are used for
both intra-frame coding and inter-frame coding. The exact
operations performed by those components can vary
depending on the type of information being compressed.

If the current frame (505) is a predicted frame, a motion
estimator (510) estimates motion of blocks, sub-blocks or
other sets of pixel values of the current frame (505) with
respect to one or more reference frames. The frame store
(520) buffers one or more reconstructed previous frames
(525) for use as reference frames. When multiple reference
frames are used, the multiple reference frames can be from
different temporal directions or the same temporal direction.
The motion estimator (510) outputs as side information
motion information (515) such as differential motion vector
information.

The motion compensator (530) applies reconstructed
motion vectors to the reconstructed reference frame(s) (525)
when forming a motion-compensated current frame (535).
The difference (if any) between a sub-block, block, etc. of
the motion-compensated current frame (535) and corre-
sponding part of the original current frame (505) is the
prediction residual (545) for the sub-block, block, etc.
During later reconstruction of the current frame, recon-
structed prediction residuals are added to the motion-com-
pensated current frame (535) to obtain a reconstructed frame
that is closer to the original current frame (505). In lossy
compression, however, some information is still lost from
the original current frame (505). The intra path can include
an intra prediction module (not shown) that spatially pre-
dicts pixel values of a current block or sub-block from
neighboring, previously reconstructed pixel values.

A frequency transformer (560) converts spatial domain
video information into frequency domain (i.e., spectral,
transform) data. For block-based video frames, the fre-
quency transformer (560) applies a discrete cosine trans-
form, an integer approximation thereof, or another type of
forward block transform to blocks or sub-blocks of pixel
value data or prediction residual data, producing blocks/sub-
blocks of frequency transform coefficients. A quantizer
(570) then quantizes the transform coefficients. For example,

US 10,972,735 B2

13

the quantizer (570) applies non-uniform, scalar quantization
to the frequency domain data with a step size that varies on
a frame-by-frame basis, slice-by-slice basis, block-by-block
basis or other basis. The quantizer (570) can use QP values
for luma components and chroma components that include
chroma QP values, as described in Section VII. For example,
the encoder (500) sets values for luma QP and chroma QP
for a picture, slice and/or other portion of video such as a
coding unit, and quantizes transform coeflicients accord-
ingly.

When a reconstructed version of the current frame is
needed for subsequent motion estimation/compensation, an
inverse quantizer (576) performs inverse quantization on the
quantized frequency coefficient data. The inverse quantizer
(576) can also use chroma QP values. An inverse frequency
transformer (566) performs an inverse frequency transform,
producing blocks/sub-blocks of reconstructed prediction
residuals or pixel values. For a predicted frame, the encoder
(500) combines reconstructed prediction residuals (545)
with motion-compensated predictions (535) to form the
reconstructed frame (505). (Although not shown in FIG. 5,
in the intra path, the encoder (500) can combine prediction
residuals with spatial predictions from intra prediction.) The
frame store (520) buffers the reconstructed current frame for
use in subsequent motion-compensated prediction.

Quantization and other lossy processing can result in
visible lines at boundaries between blocks or sub-blocks of
a frame. Such “blocking artifacts” might occur, for example,
if adjacent blocks in a smoothly changing region of a picture
(such as a sky area) are quantized to different average levels.
To reduce blocking artifacts, an encoder and decoder can use
“deblock™ filtering to smooth boundary discontinuities
between blocks and/or sub-blocks in reference frames. Such
filtering is “in-loop” in that it occurs inside a motion-
compensation loop—the encoder and decoder perform it on
reference frames used later in encoding/decoding. In-loop
deblock filtering is usually enabled during encoding, in
which case a decoder also performs in-loop deblock filtering
for correct decoding. The details of deblock filtering vary
depending on the codec standard or format, and can be quite
complex. Often, the rules of applying deblock filtering can
vary depending on factors such as content/smoothness,
coding mode (e.g., intra or inter), motion vectors for blocks/
sub-blocks on different sides of a boundary, block/sub-block
size, coded/not coded status (e.g., whether transform coef-
ficient information is signaled in the bitstream).

In FIG. 5, a motion compensation loop in the encoder
(500) includes an adaptive in-loop deblock filter (510)
before or after the frame store (520). The decoder (500)
applies in-loop filtering to reconstructed frames to adap-
tively smooth discontinuities across boundaries in the
frames. Section VII describes examples in which deblock
filtering changes depending on value of chroma QP offset.

The entropy coder (580) compresses the output of the
quantizer (570) as well as motion information (515) and
certain side information (e.g., QP values). The entropy coder
(580) provides encoded data (595) to the buffer (590), which
multiplexes the encoded data into an output bitstream. The
encoded data can include syntax elements that indicate QP
values set for chroma, such as picture-level chroma QP
offsets and/or slice-level chroma QP offsets. Section VII
describes examples of such syntax elements.

A controller (not shown) receives inputs from various
modules of the encoder. The controller evaluates interme-
diate results during encoding, for example, setting QP values
and performing rate-distortion analysis. The controller
works with other modules to set and change coding param-

10

15

20

25

30

35

40

45

50

55

60

65

14

eters during encoding. In particular, the controller can vary
QP values and other control parameters to control quanti-
zation of luma components and chroma components during
encoding.

In some implementations, the controller can set a picture-
level luma QP value, slice-level luma QP value or coding-
unit-level luma QP value during encoding so as to control
quantization at the picture level, slice level or coding unit
level within a slice. For a given slice, the luma QP value can
be set to the picture-level luma QP or a slice-level luma QP,
which will be represented in the bitstream with the picture-
level luma QP plus a slice-level luma QP offset. Or, the
controller can set a luma QP value for a given coding unit
within the slice. In this case, a coding-unit-level luma QP
offset is signaled in the bitstream, along with a slice-level
luma QP offset and the picture-level luma QP value, to
indicate the coding-unit-level luma QP value. Thus, different
slices within a picture can have different luma QP values
specified, and different coding units within a slice can have
different luma QP values specified. The controller can also
set a picture-level chroma QP value or slice-level chroma
QP value, as indicated in the bitstream with one or more
chroma QP offsets. A chroma QP offset does not directly
specify the chroma QP value, but rather is used in a
derivation process (as described in section VII) to determine
the chroma QP value. The controller can also specify a
quantization scaling matrix to establish frequency-specific
scaling factors for coefficients of a luma component and/or
chroma component.

A QP value controls the coarseness of the quantization of
the luma and chroma transform coefficients. For example, a
QP value may control a scaling factor known as a quanti-
zation step size (“QSS”) according to a defined relationship.
For example, the QP value is signaled in the bitstream as QP
minus 26, and the QSS is S*2@7® or approximately
S*2(@F/%) wwhere S is a scaling factor such as a fixed-value
constant, a transform-specific scaling factor or a frequency-
specific scaling factor. In some implementations, an integer-
based formula indicates a QSS that approximates S*2(27®),
In this relationship, a high value of QP signifies a high (i.e.,
coarse) QSS, and a low value of QP indicates a low (i.e.,
fine) QSS. Alternatively, QP can be inversely related to QSS.
For example, a QP value is signaled in the bitstream as 25
minus QP, and the QSS is S*2(C1-€9Y9 or approximately
S#(GL-2PVO T this example, the same QSS values can
effectively be signaled, but a high value of QP signifies a low
QSS, and a low value of QP signifies a high QSS. More
generally, the innovations described herein can be applied
for various relationships between QP and QSS, including the
relationships described above as well as relationships in
which the QP is a parameter such as the parameter called
QUANT in the H.263 standard, and relationships in which
the QP is a parameter such as the parameter called quantiser
scale in the H.262 standard.

In general, the controller can set luma QP and chroma QP
for a picture, slice or other portion of video, and then
evaluate results of encoding of the content (e.g., quantizing
transform coefficients and/or entropy coding the quantized
transform coefficients) in terms of quality and/or bitrate. If
the results are satisfactory, the controller can select the luma
QP and chroma QP that were set. Otherwise, the controller
can adjust the luma QP and/or chroma QP. For example, if
the quality of encoded chroma content is too high relative to
the quality of encoded luma content, the controller can
adjust QP to increase chroma QSS and/or decrease luma
QSS to balance quality between luma and chroma compo-
nents while also considering overall targets for rate and/or

US 10,972,735 B2

15

quality. Or, if the quality of encoded chroma content is too
low relative to the quality of encoded luma content, the
controller can adjust QP to decrease chroma QSS and/or
increase luma QSS to balance quality between luma and
chroma components while also considering overall targets
for rate and/or quality. The setting and adjustment of luma
QP and chroma QP can be repeated on a picture-by-picture
basis, slice-by-slice basis or some other basis.

Depending on implementation and the type of compres-
sion desired, modules of the encoder can be added, omitted,
split into multiple modules, combined with other modules,
and/or replaced with like modules. In alternative embodi-
ments, encoders with different modules and/or other con-
figurations of modules perform one or more of the described
techniques. Specific embodiments of encoders typically use
a variation or supplemented version of the encoder (500).
The relationships shown between modules within the
encoder (500) indicate general flows of information in the
encoder; other relationships are not shown for the sake of
simplicity.

V1. Example Video Decoders

FIG. 6 is a block diagram of a generalized decoder (600)
in conjunction with which several described embodiments
may be implemented. The decoder (600) receives encoded
data (695) for a compressed frame or sequence of frames and
produces output including a reconstructed frame (605). For
the sake of presentation, FIG. 6 shows an “intra path”
through the decoder (600) for intra-frame decoding and an
“inter path” for inter-frame decoding. Many of the compo-
nents of the decoder (600) are used for both intra-frame
decoding and inter-frame decoding. The exact operations
performed by those components can vary depending on the
type of information being decompressed.

A buffer (690) receives encoded data (695) for a com-
pressed frame and makes the received encoded data avail-
able to the parser/entropy decoder (680). The encoded data
can include syntax elements that indicate QP values set for
chroma, such as picture-level chroma QP offsets and/or
slice-level chroma QP offsets. Section VII describes
examples of such syntax elements. The parser/entropy
decoder (680) entropy decodes entropy-coded quantized
data as well as entropy-coded side information, typically
applying the inverse of entropy encoding performed in the
encoder.

A motion compensator (630) applies motion information
(615) to one or more reference frames (625) to form motion-
compensated predictions (635) of sub-blocks and/or blocks
of the frame (605) being reconstructed. The frame store
(620) stores one or more previously reconstructed frames for
use as reference frames.

The intra path can include an intra prediction module (not
shown) that spatially predicts pixel values of a current block
or sub-block from neighboring, previously reconstructed
pixel values. In the inter path, the decoder (600) reconstructs
prediction residuals. An inverse quantizer (670) inverse
quantizes entropy-decoded data, potentially using values of
chroma QP. For example, the decoder (600) sets values for
luma QP and chroma QP for a picture, slice and/or other
portion of video such as a coding unit, based on syntax
elements in the bitstream, and the inverse quantizer (670)
inverse quantizes transform coeflicients accordingly.

In some implementations, the decoder can set a picture-
level luma QP value, slice-level luma QP value or coding-
unit-level luma QP value during decoding, as indicated by
syntax elements in the bitstream, including a picture-level
luma QP value, a slice-level luma QP offset (if present) and
coding-unit-level luma QP offset (if present). Different slices

20

40

45

50

16

within a picture can have different luma QP values specified,
and different coding units within a slice can have different
luma QP values specified. The decoder also sets a picture-
level chroma QP value or slice-level chroma QP value, as
indicated in the bitstream with one or more chroma QP
offsets. The decoder can also use a quantization scaling
matrix to establish frequency-specific scaling factors for
coeflicients of a luma component and/or chroma component.
A QP value represents a quantization step size (“QSS”)
according to a defined relationship, as described above.

An inverse frequency transformer (660) converts the
reconstructed frequency domain data into spatial domain
information. For example, the inverse frequency transformer
(660) applies an inverse block transform to frequency trans-
form coefficients, producing pixel value data or prediction
residual data. The inverse frequency transform can be an
inverse discrete cosine transform, an integer approximation
thereof, or another type of inverse frequency transform.

For a predicted frame, the decoder (600) combines recon-
structed prediction residuals (645) with motion-compen-
sated predictions (635) to form the reconstructed frame
(605). (Although not shown in FIG. 6, in the intra path, the
decoder (600) can combine prediction residuals with spatial
predictions from intra prediction.) A motion compensation
loop in the decoder (600) includes an adaptive in-loop
deblock filter (610) before or after the frame store (620). The
decoder (600) applies in-loop filtering to reconstructed
frames to adaptively smooth discontinuities across bound-
aries in the frames. The details of deblock filtering during
decoding (e.g., rules that depend on factors such as content/
smoothness, coding mode, motion vectors for blocks/sub-
blocks on different sides of a boundary, block/sub-block
size, coded/not coded status, etc.) typically mirror the details
of deblock filtering during encoding.

In FIG. 6, the decoder (600) also includes a post-process-
ing deblock filter (608). The post-processing deblock filter
(608) optionally smoothes discontinuities in reconstructed
frames. Other filtering (such as de-ring filtering) can also be
applied as part of the post-processing filtering.

Depending on implementation and the type of decom-
pression desired, modules of the decoder can be added,
omitted, split into multiple modules, combined with other
modules, and/or replaced with like modules. In alternative
embodiments, decoders with different modules and/or other
configurations of modules perform one or more of the
described techniques. Specific embodiments of decoders
typically use a variation or supplemented version of the
decoder (600). The relationships shown between modules
within the decoder (600) indicate general flows of informa-
tion in the decoder; other relationships are not shown for the
sake of simplicity.

VII. Control and Use of Extended-Range Chroma QP Values

This section presents various innovations for controlling
and using chroma QP values.

In the HEVC design in JCTVC-11003, the QP for chroma
is limited to the range [0, 39] for a bit-depth of 8. In contrast,
the QP for luma can vary in the range [0, 51] for a bit-depth
of 8. The range is increased appropriately for higher bit-
depths for both luma and chroma. With this design, the QP
value used for chroma saturates at a much smaller value
compared to the QP value used for luma. That is, the highest
QP value (and highest QSS) used for chroma is much
smaller than the highest QP value (and highest QSS) used
for luma. This restriction can cause problems for rate control
in low bit-rate applications, when an excessive (inefficient,
unwarranted) amount of bits is allocated to encoding of

US 10,972,735 B2

17

chroma components relative to luma components. Also, the
design may not be well-suited for a wide variety of color
formats.

In particular, according to the HEVC design in JCTVC-
11003, the QPs used for chroma components Cb and Cr (that
is, QP, and QP_,) are derived from the QP used for luma
component (QP,) as follows. The values of QP, and QP
are equal to the value of QP as specified in Table 1 based
on a lookup for the intermediate QP index qP,. Table 1

specifies QP as a function of gP,.
TABLE 1
QP as a function of qP; in JCTVC-11003
aP; QPc
<30 =qP,
30 29
31 30
32 31
33 32
34 32
35 33
36 34
37 34
38 35
39 35
40 36
41 36
42 37
43 37
44 37
45 38
46 38
47 38
48 39
49 39
50 39
51 39

The intermediate QP index qP, can be qP,., (for Cb
chroma component) or qP;,. (Cr chroma component). It is
derived as:

qP,=Clip3(-QpBdOffset -,51,0Py+ch_qp_offset),
or

qP;,=Clip3(-QOpBdOffset 51, 0P y+cr_gp_offset),

where Clip3 is a function defined as follows. Clip3(x, v, z)
is X when 7z<x, is y when z>y, and is z otherwise. The values
cb qp offset and cr gp offset are picture-level chroma QP
offset values that can be signaled in a picture parameter set
(“PPS™). QPy is a QP value for luma. QpBdOffset. is a
chroma QP range offset that depends on chroma bit depth
(increasing for higher bit depths). Example values for QpB-
dOffset. are 0, 6, 12, 18, 24 and 36, where
QpBdOffset .~6*bit_depth_chroma_minus8, and
bit_depth_chroma_minus8 is in the range of 0 to 6, inclu-
sive, for bit depths of 8 to 14 bits per sample.

In the HEVC design in JCTVC-11003, a further adjust-
ment to QPs for luma and chroma can occur based on bit
depth. This type of adjustment is also an aspect of the
innovations described below. That is, such adjustments for
bit depth can also be made for the innovations described
below. For the purpose of clarity, the equations representing
this adjustment in the HEVC design in JCTVC-11003 are:

QP'y=0P+0pBdOffsety,
OP'c,=0P ,+QpBdOffset -, and

OP'(,=0P ¢, +QpBdOfiset .

10

15

20

25

30

35

40

45

50

55

60

65

18

Thus, the overall process of deriving a chroma QP value
(e.g., QP', or QP',) is to: (1) determine an intermediate QP
index qP; (e.g., qP;c, or qP;-,) from the luma QP value
(QP5) and picture-level chroma QP offset (e.g., cb_qp_offset
or cr_qp_offset), (2) determine a value QP (e.g., QP, or
QP_,) through a table look-up operation, and (3) adjust the
value of QP by QpBdOffset,..

A. New Approaches to Expressing QP for Chroma

Various innovations described herein extend the QP range
of chroma to match QP range of luma. Some innovations
described herein modify the process of deriving QP, and
QP from QP;, compared to the HEVC design in JCTVC-
11003.

For the new approaches described in this section, the
overall process of deriving a chroma QP value (e.g., QP',
or QP'.,) is as follows. First, an intermediate QP index qP,
(e.g., qP;cp Or qP;c,) is determined from a luma QP value
(QP;) and chroma QP offset. The chroma QP offset accounts
for picture-level chroma QP offsets, and it may also account
for slice-level chroma QP offset in some new approaches.
Next, a value QP (e.g., QP,, or QP_,) is determined
through a table look-up operation or other mapping opera-
tion. Then, the value of QP is adjusted by QpBdOffset,..

OP',=0P,+QpBdOffset -, or

OP'¢,=0P ,+QOpBdOffset .

The final stage can be skipped when QpBdOfiset. is zero.
Again, example values for QpBdOffset are 0, 6, 12, 18, 24
and 36.

1. New Approach 1

In new approach 1, the values of QP -, and QP_., are equal
to the value of QP as specified in Table 2, depending on the
value of the index qP;.

TABLE 2

QP as a function of qP; in new approach 1

aP; QPc
<30 =qP;
30 29
31 30
32 31
33 32
34 32
35 33
36 34
37 34
38 35
39 35
40 36
41 36
42 37
43 37
44 38
45 38
46 39
47 39
48 40
49 40
50 41
51 41
52 42
53 42
54 43
55 43
56 44
57 44
58 45
59 45
60 46
61 46

US 10,972,735 B2

19
TABLE 2-continued

QP as a function of qP; in new approach 1

62 47
63 47
64 48
65 48
66 49
67 49
68 50
69 50
70 51
71 51

Compared to Table 1, Table 2 is extended from 51 to 71
for the index gqP;. Also, compared to Table 1, the chroma QP
value QP is different for values of index qP, above 43. The
index qP; (for qP,-, or qP,.,) is derived as follows. In these
equations the upper limit is 71 instead of 51.

qP;,=Clip3(-OpBdOffset -,71,0Py+cb_qp_offset)

qP;,=Clip3(-OpBdOffset,71,0Py+cr_gp_offset)

The relationship between QP and qP, can be specified as
a table for every value of the index qP,. Alternatively, a table
containing only 5 entries is needed, and the remaining part
can be implemented using logic represented as follows, in
which “>>" denotes an arithmetic right shift of an integer
represented in two’s complement arithmetic:

if (qP;<30)
QPc=qP;

else if (qP; >= 30 && qP; <=34)
determine QP from table

else
QPc =33+ ((qP; - 34) >>1)

2. New Approach 2

In new approach 2, the values of QP ., and QP are equal
to the value of QP as specified in Table 3, depending on the
value of the index qP;.

TABLE 3

QP as a function of gP; in new approach 2

aP; QPc

<30 =qP,
30 29
31 30
32 31
33 32
34 32
35 33
36 34
37 34
38 35
39 35
40 36
41 36
42 37
43 37

>43 =qP,- 6

Compared to Table 1, the chroma QP value QP is
different for values of index qP, above 43. The index qP; (for
qP;c;, or qP,,) is derived as follows. In these equations the

10

15

20

25

30

35

40

45

50

55

60

20

upper limit is 57 instead of 51, which effectively extends
Table 3 up to gP=57.

qP;,=Clip3(-OpBdOffset~,57,0Py+cb_gp_offset)

qP;,=Clip3(-OpBdOffset,57,0Py+cr_gp_offset)

The relationship between QP . and qP; can be specified as
a table for every value of the index qP,. Alternatively, a table
containing only 5 entries is needed, and the remaining part
can be implemented using logic represented as follows:

if (gP,<30)
QP =qP;
else if (qP; >=30 && qP; <=34)
determine QP from table
else if (qP; > 34 && qP; <44)
QPc =33 + ((qP; - 34) > 1)
else
QPc=qP,-6

3. New Approach 3

In new approach 3, the values of QP -, and QP_., are equal
to the value of QP as specified in Table 4, depending on the
value of the index qP;.

TABLE 4

QP as a function of gPI in new approach 3

aPs QPC
<30 =qP;
30 29
31 30
32 31
33 32
34 33
35 33
36 34
37 34
38 35
39 35
40 36
41 36
42 37
43 37
44 38
45 38
46 39
47 39
48 40
49 40
50 41
51 41
52 42
53 42
54 43
55 43
56 44
57 44
58 45
59 45
60 46
61 46
62 47
63 47
64 43
65 43
66 49
67 49
68 50
69 50
70 51
71 51

Compared to Table 1, Table 4 is extended from 51 to 71
for the index gqP;. Also, compared to Table 1, the chroma QP

US 10,972,735 B2

21

value QP is different when the index qP; is 34 and for
values of index qP; above 43. The index gP; (for qP,, or
qP,.,) is derived as follows. In these equations the upper
limit is 71 instead of 51.

qP,=Clip3(-QpBdOffset -, 71,0Py+ch_qp_offset)

qP;,=Clip3(-OpBdOffset,71,0Py+cr_gp_offset)

The relationship between QP and qP, can be specified as
a table for every value of the index qP;. Alternatively, the
relationship can be specified as a piece-wise linear function
and be implemented using logic represented as follows:

if (gP;<30)
QPc=qP;

else if (qP; >= 30 && qP; <=34)
QPc=qP; -1

else
QPc =33+ ((qP; - 34) >>1)

4. New Approach 4

In new approach 4, the values of QP ., and QP are equal
to the value of QP as specified in Table 5, depending on the
value of the index qP;.

TABLE 5

QP as a function of gP; in new approach 4

aP; QPc

<30 =qP;
30 29
31 30
32 31
33 32
34 33
35 33
36 34
37 34
38 35
39 35
40 36
41 36
42 37
43 37

>43 =qP,- 6

Compared to Table 1, the chroma QP value QP is
different when qP=34 and for values of index qP; above 43.
The index qP; (for qP,., or gP;.,) is derived as follows. In
these equations the upper limit is 57 instead of 51, which
effectively extends Table 5 up to qP,=57.

qP,=Clip3(-QpBdOffset »,57,0Py+ch_qp_offset)

qP;,=Clip3(-QOpBdOffset,57,0Py+cr_gp_offset)

The relationship between QP and qP, can be specified as
a table for every value of the index qP;. Alternatively, the
relationship can be specified as a piece-wise linear function
and be implemented using logic represented as follows:

if (gP;<30)
QPc = qP;
else if (qP; >= 30 && qP; <=34)
QPc=qP, -1
else if (qP; > 34 && qP;<44)
QP-=33+((qP;-34)>>1)
else
QPc=qP,-6

10

15

20

25

30

35

40

45

50

55

60

65

22

5. New Approach 5

New approach 5 combines new approach 3 with the use
of slice-level chroma QP offsets. The use of slice-level
chroma QP offsets can be enabled/disabled using a flag
signaled in the sequence parameter set (“SPS”), PPS or other
higher level syntax structure. New approach 5 is otherwise
identical to new approach 3 except that the values for the
index qP; are derived as follows:

qP;»=Clip3(-QpBdOftset ., 71,0Py+ch_gp_offset+
slice_qp_delta_ch)

qP;,=Clip3(-QOpBdOffset,71,0Py+cr_gp_offset+
slice_gp_delta_cr)

The variables slice_qp_delta_cb and slice_qp_delta_cr are
slice-level chroma QP offset values for Cb and Cr compo-
nents, respectively, that can be signaled in a slice header.

6. New Approach 6

Similarly, new approach 6 combines new approach 4 with
the use of slice-level chroma QP offsets. The use of slice-
level chroma QP offsets can be enabled/disabled using a flag
signaled in the SPS, PPS or other higher level syntax
structure. New approach 6 is otherwise identical to new
approach 4 except that the values for the index qP; are
derived as follows:

qP;,=Clip3(-OpBdOffset~,57,0P y+cb_gp_offset+
slice_qp_delta_ch)

qP;,=Clip3(-QpBdOffset ~,57,0P y+cr_qp_offset+
slice_gp_delta_cr)

7. Advantages of New Approaches

For each new approach in this section, the table for
determining QP as a function of qP; is effectively extended
to enable reaching higher values of chroma QP (indicating
higher values of QSS for chroma, according to example
relationships between QP and QSS). In particular, the tables
are effectively extended such that the maximum possible
value of QP for chroma is now 51 instead of 39 (in
JCTVC-11003). This allows for more aggressive (i.e.,
coarse) quantization for chroma components in high QP
scenarios, which reduces bitrate for the chroma components.
The saved bits can instead be used for luma components, so
as to improve the overall quality. Also, for each new
approach, the table can be implemented using simple for-
mulas/logic as described above.

New approaches 2, 4 and 6 have the following additional
advantages.

First, the difference between quantization step sizes rep-
resented by QP value for luma and the corresponding QP
value for chroma is prevented from becoming too extreme,
especially for QP values at the high end of the extended
table. Typically, a quantization step size (“QSS”) depends on
QP value according to defined relation (e.g., roughly loga-
rithmic relation; in some implementations, approximately
QSS=297'®_such that QSS is directly proportional to QP in
the exponent of the relation). When default values are used
for chroma QP offsets (that is, offsets are set to 0), the ratio
of QSS represented by QP index (derived from QP for luma)
to QSS for chroma can be as large as 4 in the HEVC design
in JCTVC-11003 (e.g., roughly 28 versus 2% for luma QP
of 51 and chroma QP of 39). In new approaches 2, 4 and 6,
in contrast, the ratio is at most 2 (e.g., roughly 2% versus
27 for luma QP of 51 and chroma QP of 45). Limiting the
ratio for QSS can help prevent excessive bit usage for
chroma components when quantization is intended to be
coarse.

US 10,972,735 B2

23

Second, for the ratio of change in QP for luma to change
in QP for chroma, a slope of 1 is enabled at high QP (high
QSS) operation. For high QP conditions (when qP; is >43),
a change of +1 for luma QP results in a change of +1 for
chroma QP, or a change of -1 for luma QP results in a
change of -1 for chroma QP. This helps an encoding
controller maintain the balance between luma and chroma
when changing QP values (e.g., during rate control to adjust
overall quality versus bitrate). For this range of QP values,
the ratio between luma and chroma quantization step sizes
remains constant, which facilitates fine-grained control of
bitrate without unexpected changes to the balance between
luma and chroma.

Third, in some implementations (for which QP is qP,~6
at high QP operation), a fixed chroma QP offset of 6 can be
used to achieve equal QSSs for luma and chroma at high QP
(high QSS) operation. In some cases, an encoder may desire
to code all planes using the same QSS (which is made
possible when QP,=QP_). In the design in JCTVC-11003,
this means that the chroma QP offset may need to be
adjusted depending on the QP, since the relationship
between QP,- and QP has a variable difference (see Table
1). In contrast, in new approaches 2, 4 and 6, for values of
qP; greater than 43, QP ~qP,~-6. So the difference between
qP; and QP is held at 6 for this range, and a fixed chroma
QP offset of 6 can achieve the goal (QP,=QP.).

Fourth, the chroma QP offset needed to achieve a desired
relative relationship (between the QSS for luma and chroma)
is much smaller than in JCTVC-11003. For example, in
JCTVC-11003, if the encoder wants to use a QP of 39 for
both luma and chroma, the necessary chroma QP offset is 12.
This value for offset becomes even larger if Table 1 is simply
extended at the same slope seen at the end. In new
approaches 2, 4 and 6, however, the same relative relation-
ship can be achieved using a much smaller offset of 6.

Fifth, the extended range for chroma QP values does not
significantly impact rate-distortion performance for com-
mon usage conditions with low and mid-range QP values
(for fine quantization and mid-range quantization), since the
modifications in the new approaches mostly apply outside
the range of QP values used in the common usage condi-
tions. At the same time, however, for high QP (high QSS)
situations, there are benefits in terms of rate-distortion
performance and encoder flexibility to using extended range
for chroma QP. For typical high QP situations, the loss in
chroma quality (from coarser quantization, saved bits, etc.
using extended range chroma QP) is more than offset by gain
in luma quality.

Any of the new approaches for expressing QP for chroma
as a function of QP for luma can be used in conjunction with
a quantization scaling matrix for establishing frequency-
specific scaling factors for coefficients of a luma component
and/or chroma component.

B. Constraints on Values of Chroma QP Offsets

Constraints on the values of chroma QP offsets are useful
in example implementations such as those of new
approaches 1-6 in order to limit huge quality differences
between luma and chroma. In particular, the range of -12 to
12 is effective in example implementations for chroma QP
offset. (In the H.264/AVC standard, a chroma QP offset is
similarly limited to the range —12 to 12, inclusive.) This
range has useful properties. For example, for new approach
4 at high QPs, since a chroma QP offset of 6 represents the
case where luma QP is equal to the chroma QP, the offset of
12 represents the counter-point to an offset of 0. At both
these chroma QP offsets (i.e., offsets of 0 and 12), the larger
QSS is exactly 2x the smaller QSS (e.g., QSS of 2°° for

20

25

35

40

45

55

24

chroma QP of 57 is 2x the QSS of 2% for chroma QP of 51,
which is 2x the QSS of 27 for chroma QP of 45), for
example relationships between QP and QSS.

In the case of new approaches 1 to 4, the constraints on
values of chroma QP offsets can be imposed on cb_qp_offset
and cr_gp_offset. For new approaches 5 and 6, the con-
straints on values of chroma QP offsets can be imposed on
the values (cb_gp_offset+slice_qp_delta_cb) and
(cr_gp_offset+slice_qp_delta_cr). Alternatively, for new
approaches 5 and 6, the constraints on values of chroma QP
offsets can be imposed on individual values for cb_qp_oft-
set, slice_qp_delta eh, cr_qp_offset and slice_qp_delta_cr.

C. Syntax and Semantics of Values for Slice-level Chroma
QP Offsets

In new approaches 5 and 6, bitstream syntax and seman-
tics support the signaling of slice-level chroma QP offsets.
Slice-level chroma QP offsets provide the encoder with
greater ability to precisely control the chroma QP for dif-
ferent regions within a picture. FIG. 7a shows a new flag
slicelevel_chroma_gp_flag in PPS RBSP syntax, and FIG.
7b shows new values slice_qp_delta_cb and slice_qp_del-
ta_cr in slice header syntax, for example implementations.
The entropy-coded values slice_qp_delta_cb and
slice_qp_delta_cr are conditionally present in a slice header
depending on the value of slicelevel_chroma_qp_{flag in the
applicable PPS. Thus, when slice-level chroma QP offsets
are not used, slice-level syntax overhead is avoided. In the
PPS syntax fragment (701) shown in FIG. 7a, the values
cb_qp_offset and cr_qp_offset specify a base offset used in
obtaining QP., and QP,, respectively, as specified above.
The value slicelevel_chroma_qp_flag equal to 1 specifies
that syntax elements slice_qp_delta_cb and slice_qp_del-
ta_cr are present in the associated slice headers. Otherwise,
the syntax elements slice_qp_delta_cb and slice_qp_del-
ta_cr are not present in the associated slice headers.

In a slice header (as shown in the syntax fragment (702)
in FIG. 7b), slice_qp_delta specifies the initial value of QP
to be used for all the coding blocks in the slice until modified
by the value of cu_qp_delta in the coding unit layer. The
initial QP, quantization parameter for the slice is computed
as

SliceQPy=26+pic_init_gp_minus26+slice_gp_delta

The value of slice_qp_delta is limited such that SliceQP, is
in the range of -QpBdOffset, to +51, inclusive.

The wvalues slice_qp_delta_cb and slice_qp_delta_cr
specify a delta offset used in obtaining QP., and QP
respectively, as specified for new approaches 5 and 6. When
not present, the value of these syntax elements is inferred to
be 0.

D. First Set of Approaches to Modified Deblock Filtering
for Chroma

In the HEVC design in JCTVC-11003, the filter “strength”
(to parameter) used while deblocking a block edge of a
chroma component is determined using a value QP.. The
variable QP is determined as specified in Table 1 using an
index qP; that is derived as:

qPF((QPo+QPp+1)>>1),

where QP and QP represent the luma QP values for the
blocks present on either side of the edge. The general idea
is to adjust the filter strength based on the QP values used to
quantize the samples around the edge. This approach to
determining qP, for chroma deblock filtering is inefficient
when chroma QP offsets (cb_qp_offset and cr_qp_offset) are
not equal to zero. For different, non-zero values of chroma

US 10,972,735 B2

25

QP offsets, the QP used for chroma components would be
different, but the filter strength remains the same.

In some example implementations, the effect of chroma
QP offsets is taken into account when determining qP, for
chroma deblock filtering. In these implementations, index
qP; is derived as:

gP=Clip3(0,51,(((QPo+OPp+1)>>1)+cqp_offset)),

where cqp_offset represents cb_qp_offset and cr_qp_offset
for components Cb and Cr, respectively. In these example
implementations, the derivation of the index qP, for chroma
deblock filtering accounts for the effects of chroma QP
offsets, but otherwise is based upon the way qP, is derived
in JCTVC-11003 when expressing QP for chroma as a
function of QP for luma.

In other example implementations, when one of the new
approaches described above for ways of expressing QP for
chroma as a function of QP for luma is adopted, the index
qP; for deblock filtering can be derived as:

qP=Clip3(0,0P,,.,(((QP g +QPp+1)>>1)+cqp_off-
set),
where QP,,.. and cqp_offset are dependent on the new
approach used. For new approaches 1, 3 and 5, for example,
QP,,.. is equal to 71. For new approaches 2, 4 and 6, for
example, QP,, . is equal to 57. For new approaches 1 to 4,
cqp_offset represents cb_qp_offset and cr_qp_offset for
components Cb and Cr, respectively. For new approaches 5
and 6, cqp_offset represents (cb_qp_offset+slice_qp_del-
ta_cb) and (cr_qp_offset+slice_qp_delta_cr) for components
Cb and Cr, respectively. More generally, when the value of
the index gP; is derived for deblock filtering, (QP,+QPp+
1)>>1 replaces QPy, and a chroma QP offset is considered.

The way that the variable qP; is used in deblock filtering
depends on implementation. For example, the variable qP;, is
then used to determine a variable QP as specified in table
5, above. Another variable Q is derived as:

O=Clip3(0,53,0P +2*(bS—1)+(slice_tc_
offset_div2<<1)),

where bS is a boundary filtering strength set depending on
coding mode (intra or inter), presence of non-zero transform
coeflicients in a block, motion vector values and/or other
factors, where slice_tc_offset_div2 is the value of the syntax
element slice_tc_offset_div2 for the slice that contains a first
sample on the side of an edge to be filtered. The value of the
variable t' is then determined based on the mapping of Q to
t.' shown in the following table.

TABLE 6

t~ as a function of Q

o
O

O 0~y W= O o

OO O OO OO OO0 OO0 OO

15

20

40

45

50

55

60

65

26
TABLE 6-continued

t~ as a function of Q

Io)
oy

w
=
V01U U ERDWWWWRINR RSSO O

Finally, the control parameter t. is derived as: t~t*(1<<
(BitDepthC-8)).

E. Second Set of Approaches to Modified Deblock Fil-
tering for Chroma

In the HEVC design in JCTVC-KO0030, the filter
“strength” (t- parameter) used while deblocking a block
edge of a chroma component is determined using a value
QP.. The variable QP is determined as specified in Table
1 using an index qP, that is derived as:

qPF((QPo+QPp+1)>>1),

where QP and QP represent the luma QP values for the
blocks present on either side of the edge. The general idea
is to adjust the filter strength based on the QP values used to
quantize the samples around the edge. This approach to
determining qP; makes sense when the chroma QP offsets
(that s, pic_cb_qp_offset+slice_cb_qp_offset and
pic_cr_qp_offset+slice_cr_qp_offset) are equal to zero; this
approach to determining qP, does not make sense, however,
when the chroma QP offsets are not equal to zero. For
different, non-zero values of chroma QP offsets, the QP used
for chroma components would be different, but the filter
strength would remain the same. Thus, the deblock filtering
design described in JCTVC-K0030 does not provide com-
ponent-specific customization of the strength of the deblock-
ing filter process.

This section describes approaches that take into account
the effects of chroma QP offsets when determining the
parameter t.. for controlling the deblock filtering of chroma
components. These approaches help properly reflect the

US 10,972,735 B2

27

actual QP used for chroma when non-zero QP offsets are
used. In some example implementations, the effect of
chroma QP offsets is taken into account when determining
qP; for chroma deblock filtering.

This may involve storing the chroma QP values on a
coding tree unit (“CTU”) basis. In many cases, the impact on
computational complexity of storing chroma QP values for
this purpose is relatively small and, in any case, the impact
on complexity is typically outweighed by the benefits of
adaptive deblock filtering that accounts for actual chroma
QP values.

If, however, the impact on computational complexity is
considered to be prohibitive, other approaches can be used
that offer a compromise between added storage cost and
reactivity to changes in chroma QP values. In compromise
approaches, deblock filtering can account for picture-level
chroma QP offsets without accounting for slice-level QP
offsets (or other fine-grained chroma QP offsets within a
picture). Although such compromise approaches ignore
some information about chroma QP offsets that is available
to the encoder and decoder, and signaled in the bitstream,
they eliminate the requirement for buffering of actual
chroma QP values, while still providing better performance
than the current scheme of completely ignoring the chroma
QP values in the deblocking filter process.

In one example approach (a non-compromise approach),
the effects of chroma QP offsets at the picture-level as well
as the effects of chroma QP offsets at slice-level are taken
into account. The modified equation is as follows:

gP=Clip3(0,57,(((QPo+OPp+1)>>1)+cqp_offset)),

where cqp_ofiset represents pic_cb_qp_offset+
slice_cb_qp_offset for Cb, and cqp_offset represents
pic_cr_qp_offset+slice_cr_qp_offset for Cr.

In another example approach (also a non-compromise
approach), the effects of chroma QP offsets at both the
picture-level and the slice-level are still taken into account.
Unlike the previous approach, however, the clipping opera-
tion is avoided as a simplification. The modified equation is
as follows:

qP~(((QP g+ QPp+1)>>1)+cqp_offset),

where cqp_offset still represents pic_cb_qp_offset+
slice_cb_qp_offset for Cb, and cqp_offset still represents
pic_cr_qp_offset+slice_cr_qp_offset for Cr.

In another example approach (a compromise approach),
the effects of chroma QP offsets specified only at the
picture-level are taken into account. That is, even if slice-
level chroma QP offsets were used and signaled in the
bitstream (or other fine-grained chroma QP offsets within a
picture were used and signaled in the bitstream), such
slice-level/finer-grained offsets are not considered as part of
controlling deblock filtering. This compromise approach is
simpler than considering chroma QP offsets at both the
picture-level and slice-level, and it may have lower memory
requirements. The modified equation is as follows:

qPFClip3(0,57,(QPg+QPp+1)>>1)+cqp_oflset)),

where cqp_offset represents pic_cb_qp_offset for Cb, and
cqp_offset represents pic_cr_qp_offset for Cr.

In yet another example approach (also a compromise
approach), the effects of chroma QP offsets specified only at
the picture-level are taken into account. Again, this is
simpler, and may have lower memory requirements, than
considering chroma QP offsets at both the picture-level and
slice-level (or other fine-grained chroma QP offsets within a

10

15

20

25

30

35

40

45

50

55

60

65

28

picture). The clipping operation is avoided as a further
simplification. The modified equation is as follows:

gP~(((QPo+QOPp+1)>>1)+cqp_offset),

where cqp_offset represents pic_cb_qp_offset for Cb, and
cqp_offset represents pic_cr_qp_offset for Cr.

While the first two approaches (non-compromise
approaches) in this section are capable of accounting for
both picture-level chroma QP offsets and slice-level chroma
QP offsets, the second two approaches (compromise
approaches) are simplifications that account only for chroma
QP offsets specified at the picture-level (but not chroma QP
offsets specified at the slice level). With the two compromise
approaches, for the operation of the deblocking filter, the
chroma QP values or offsets do not need to be stored on a
slice basis or CTU basis. Instead, only the picture-level
offsets (2 per picture) are stored.

An encoder can still use slice-level chroma QP offsets
(and/or other fine-grained chroma QP offsets) for the pur-
pose of rate control. Even in such situations, considering
only picture-level chroma QP offsets may be adequate for
adjusting the strength of deblock filtering. In many sce-
narios, chroma planes are considered to be of equal or
greater importance than luma planes (where chroma QP
offsets need to be non-zero to match the chroma QP to luma
QP). As such, picture-level chroma QP offsets typically have
more of an impact (than slice-level chroma QP offsets) when
considered for the purpose of controlling how to deblock
filter chroma components. Some encoders may use only
picture-level chroma QP offsets, and not slice-level chroma
QP offsets, for rate control. Thus, even if available slice-
level chroma QP offsets (or other available fine-grained
chroma QP offsets) are not considered in controlling deblock
filtering, there are advantages to considering picture-level
chroma QP offsets.

The way that the variable qP; is used in deblock filtering
depends on implementation. For example, the variable qP;, is
derived as:

qP~((QP g+ QPp+1)>>1)+cQpPicOffset,

where the variable cQpPicOffset provides an adjustment for
the value of picture-level QP offset for the Cb or Cr
component of a picture, but avoids the need to vary the
amount of adjustment within the picture by not including an
adjustment for the value of slice-level QP offset for the Cb
or Cr component. The variable qP, is then used to determine
a variable QP. as specified in Table 5, above. Another
variable Q is then derived from QP as:

O=Clip3(0,53,0P +2*(bS—1)+(slice_tc_offset
div2<<1)),

where bS is a boundary filtering strength set depending on
coding mode (intra or inter), presence of non-zero transform
coeflicients in a block, motion vector values and/or other
factors, where slice_tc_offset div2 is the value of the syntax
element slice_tc_offset div2 for the slice that contains a first
sample on the side of an edge to be filtered. The value of the
variable t,' is then determined based on the mapping of Q to
t' shown in Table 6. Finally, the control parameter t. is
derived as: t~t. *(1<<(BitDepthC-8)).

FIG. 8 shows a generalized technique (800) for using
chroma QP offsets to control deblock filtering during encod-
ing. A video encoder such as one described above with
reference to FIG. 5 or other image or video encoder per-
forms the technique (800).

The encoder encodes image or video content for which
values of QP vary according to a relationship between a

US 10,972,735 B2

29

luma component and chroma components. As part of the
encoding, the encoder sets (810) a picture-level chroma QP
offset and a slice-level chroma QP offset for encoding of a
slice of a picture. The encoder quantizes transform coeffi-
cients for one or more portions of the slice as regulated by
chroma QP, which is indicated by the picture-level chroma
QP offset and the slice-level chroma QP offset. The encoder
can adjust the picture-level chroma QP offset and/or the
slice-level chroma QP offset during encoding for purposes of
rate control, and the encoder can set different slice-level
chroma QP offsets for different slices of the picture. The
encoder stores the picture-level chroma offset for use in
deblock filtering, but the encoder need not store slice-level
chroma QP offsets for use in deblock filtering.

The encoder also performs (820) deblock filtering of at
least part of the slice that was encoded with the picture-level
chroma QP offset and the slice-level chroma QP offset. For
the deblock filtering, the encoder derives a control parameter
considering the picture-level chroma QP offset but not the
slice-level chroma QP offset. For example, the control
parameter depends on a variable qP, derived as:

qPF(((QP g+ QP p+1)>>1)+cqp_ofiset),

where the variables QP and QP represent luma QP values
for blocks on either side of an edge in the part of the slice
on which deblock filtering is performed, and where the
variable cqp_offset represents the picture-level chroma QP
offset (but not the slice-level chroma QP offset). The picture-
level chroma QP offset can be separately signaled for two
different chroma components of the picture (e.g., for Cb and
Cr), such that values of the variable qP; and control param-
eter are separately computed for the two different chroma
components.

The encoder outputs (830) at least part of a bitstream
including the encoded content. The bitstream can include
one or more syntax elements that indicate the picture-level
chroma QP offset for the picture and one or more syntax
elements that indicate the slice-level chroma QP offset for
the slice. A picture-level chroma QP offset can be separately
signaled in the bitstream for each different chroma compo-
nent of the picture, or different chroma components of the
picture can use the same picture-level chroma QP offset
signaled in the bitstream. A slice-level chroma QP offset can
be separately signaled in the bitstream for each different
chroma component of the slice, or different chroma com-
ponents of the slice can use the same slice-level chroma QP
offset signaled in the bitstream.

FIG. 9 shows a generalized technique (900) for using
chroma QP offsets to control deblock filtering during decod-
ing. A video decoder such as one described above with
reference to FIG. 6 or other image or video decoder per-
forms the technique (900).

The decoder receives (910) at least part of a bitstream
including encoded image or video content. For the image or
video content, values of QP vary according to a relationship
between a luma component and chroma components. For
example, the bitstream includes one or more syntax ele-
ments that indicate the picture-level chroma QP offset for a
picture and one or more syntax elements that indicate the
slice-level chroma QP offset for a slice in the picture. A
picture-level chroma QP offset can be separately signaled in
the bitstream for each different chroma component of the
picture, or different chroma components of the picture can
use the same picture-level chroma QP offset signaled in the
bitstream. A slice-level chroma QP offset can be separately
signaled in the bitstream for each different chroma compo-

10

15

20

25

30

35

40

45

50

55

60

65

30

nent of the slice, or different chroma components of the slice
can use the same slice-level chroma QP offset signaled in the
bitstream.

The decoder decodes the encoded content. As part of the
decoding, the decoder sets (920) a picture-level chroma QP
offset and a slice-level chroma QP offset for decoding of a
slice of a picture. The decoder inverse quantizes transform
coeflicients for one or more portions of the slice as regulated
by chroma QP, which is indicated by the picture-level
chroma QP offset and the slice-level chroma QP offset. The
decoder can set different slice-level chroma QP offsets for
different slices of the picture. The decoder stores the picture-
level chroma offset for use in deblock filtering, but the
decoder need not store slice-level chroma QP offsets for use
in deblock filtering.

The decoder also performs (930) deblock filtering of at
least part of the slice that was encoded with the picture-level
chroma QP offset and the slice-level chroma QP offset. For
the deblock filtering, the decoder derives a control parameter
considering the picture-level chroma QP offset but not the
slice-level chroma QP offset. For example, the control
parameter depends on a variable qP, derived as:

qPF(((QP+QP p+1)>>1)+cqp_ofiset),

where the variables QP and QP represent luma QP values
for blocks on either side of an edge in the part of the slice
on which deblock filtering is performed, and where the
variable cqp_offset represents the picture-level chroma QP
offset (but not the slice-level chroma QP offset). The picture-
level chroma QP offset can be separately signaled for two
different chroma components of the picture (e.g., for Cb and
Cr), such that different values of the variable qP, and control
parameter are separately computed for the two different
chroma components.

F. Alternatives

For the sake of illustration, the detailed description
includes various examples with specific names for some
parameters and variables. The innovations described herein
are not limited to implementations with parameters or vari-
ables having such names. Instead, the innovations described
herein can be implemented with various types of parameters
and variables.

For instance, some of the examples described herein
include the parameters slicelevel_chroma_qgp_flag,
cb_qp_offset, cr_qp_offset, slice_qgp_delta_cb and
slice_qp_delta_cr. In the version of the HEVC standard in
JCTVC-K1003, slicelevel_chroma_qp_flag is relabeled
pic_slice_chroma_qp_offsets_present_flag but has essen-
tially the same meaning. The picture-level chroma QP
offsets are called pic_cb_qp_offset and pic_cr_qp_offset,
instead of cb_qp_offset and cr_qp_offset. Slice-level chroma
QP offsets are called slice_cb_qp_offset and
slice_cr_qp_offset, as opposed to slice_qp_delta_cb and
slice_qp_delta_cr. The examples described herein also apply
for the parameters as relabeled.

In some examples described herein, a QP value is signaled
in the bitstream as QP minus 26, and the QSS is $*2(@7/®)
or roughly S*2979 where S is a scaling factor such as a
fixed-value constant, a transform-specific scaling factor or a
frequency-specific scaling factor. In this relationship, a high
value of QP signifies a high (i.e., coarse) QSS, and a low
value of QP indicates a low (i.e., fine) QSS. Alternatively,
QP can be inversely related to QSS. For example, a QP value
is signaled in the bitstream as 25 minus QP, and the QSS is
S#(B1-EPYO) or approximately S¥2C1CHY9 In this
example, the same QSS values can effectively be signaled,
but a high value of QP signifies a low QSS, and a low value

US 10,972,735 B2

31

of QP signifies a high QSS. More generally, the innovations
described herein can be applied for various relationships
between QP and QSS, including the relationships described
above as well as relationships in which the QP is a parameter
such as the parameter called QUANT in the H.263 standard,
and relationships in which the QP is a parameter such as the
parameter called quantiser scale in the H.262 standard.

In view of the many possible embodiments to which the
principles of the disclosed invention may be applied, it
should be recognized that the illustrated embodiments are
only preferred examples of the invention and should not be
taken as limiting the scope of the invention. Rather, the
scope of the invention is defined by the following claims. I
therefore claim as my invention all that comes within the
scope and spirit of these claims.

I claim:

1. In a computing system, a method comprising:

encoding a picture, thereby producing encoded data,

wherein the encoded data includes one or more syntax

elements that indicate a picture-level chroma quantiza-

tion parameter (QP) offset for the picture and further

includes one or more syntax elements that indicate a

slice-level chroma QP offset for a slice of the picture,

and wherein the encoding includes:

quantizing transform coefficients for one or more por-
tions of the slice;

reconstructing at least part of the slice, including
inverse quantizing the transform coefficients for the
one or more portions of the slice; and

performing deblock filtering on the at least part of the
slice, including deriving a control parameter for the
deblock filtering using the picture-level chroma QP
offset but not the slice-level chroma QP offset,
wherein the deriving the control parameter includes
(a) setting a first variable by adding the picture-level
chroma QP offset and an average of luma QP values
for blocks on either side of an edge in the at least part
of the slice, and (b) using the first variable to
determine a second variable for the deriving the
control parameter; and

outputting the encoded data as part of a bitstream.

2. The method of claim 1, wherein the deriving the control
parameter further includes determining the average, wherein
the determining the average includes adding the luma QP
values for the blocks on either side of the edge and further
includes right shifting by 1 bit.

3. The method of claim 1, further comprising:

storing the picture-level chroma QP offset, after discard-

ing the slice-level chroma QP offset, for use in the
deriving the control parameter.

4. The method of claim 1, wherein, according to bitstream
syntax, the slice-level chroma QP offset is separately sig-
naled for two chroma components for the slice.

5. The method of claim 1, wherein, according to bitstream
syntax, the picture-level chroma QP offset is separately
signaled for two chroma components for the picture.

6. The method of claim 5, wherein the control parameter
is derived separately for the two chroma components for the
deblock filtering.

7. The method of claim 1, wherein bitstream syntax
permits signaling of different slice-level chroma QP offsets
for different slices of the picture.

8. A computing device that includes one or more process-
ing units and memory, wherein the computing device imple-
ments a video decoder configured to perform operations
comprising:

10

15

20

30

35

40

45

50

55

65

32

receiving encoded data in at least part of a bitstream,
wherein the encoded data includes one or more syntax
elements that indicate a picture-level chroma quantiza-
tion parameter (QP) offset for a picture and further
includes one or more syntax elements that indicate a
slice-level chroma QP offset for a slice of the picture;
and

decoding the encoded data, including, as part of recon-

structing at least part of the slice:

using the picture-level chroma QP offset and the slice-
level chroma QP offset to regulate inverse quantiza-
tion, according to a chroma QP, of transform coef-
ficients for one or more portions of the slice, and

performing deblock filtering on the at least part of the
slice, including deriving a control parameter for the
deblock filtering using the picture-level chroma QP
offset but not the slice-level chroma QP offset,
wherein the deriving the control parameter includes
(a) setting a first variable by adding the picture-level
chroma QP offset and an average of luma QP values
for blocks on either side of an edge in the at least part
of the slice, and (b) using the first variable to
determine a second variable for the deriving the
control parameter.

9. The computing device of claim 8, wherein the deriving
the control parameter further includes determining the aver-
age, and wherein the determining the average includes
adding the luma QP values for the blocks on either side of
the edge and further includes right shifting by 1 bit.

10. The computing device of claim 8, wherein the decod-
ing further comprises:

storing the picture-level chroma QP offset after the

inverse quantization, for use in the deriving the control
parameter for the deblock filtering; and

discarding the slice-level chroma QP offset after the

inverse quantization.

11. The computing device of claim 8, wherein, according
to bitstream syntax, the slice-level chroma QP offset is
separately signaled for two chroma components for the slice.

12. The computing device of claim 8, wherein, according
to bitstream syntax, the picture-level chroma QP offset is
separately signaled for two chroma components for the
picture.

13. The computing device of claim 12, wherein the
control parameter is derived separately for the two chroma
components for the deblock filtering.

14. The computing device of claim 8, wherein bitstream
syntax permits signaling of different slice-level chroma QP
offsets for different slices of the picture.

15. A non-volatile memory or storage device having
stored thereon encoded data in at least part of a bitstream,
wherein the encoded data includes one or more syntax
elements that indicate a picture-level chroma quantization
parameter (QP) offset for a picture and further includes one
or more syntax elements that indicate a slice-level chroma
QP offset for a slice of the picture, the encoded data being
organized to facilitate decoding by operations that include,
as part of reconstructing at least part of the slice:

using the picture-level chroma QP offset and the slice-

level chroma QP offset to regulate inverse quantization,
according to a chroma QP, of transform coefficients for
one or more portions of the slice, and

performing deblock filtering on the at least part of the

slice, including deriving a control parameter for the
deblock filtering using the picture-level chroma QP
offset but not the slice-level chroma QP offset, wherein
the deriving the control parameter includes (a) setting

US 10,972,735 B2

33

a first variable by adding the picture-level chroma QP
offset and an average of luma QP values for blocks on
either side of an edge in the at least part of the slice, and
(b) using the first variable to determine a second
variable for the deriving the control parameter.

16. The non-volatile memory or storage device of claim
15, wherein the deriving the control parameter further
includes determining the average, and wherein the deter-
mining the average includes adding the luma QP values for
the blocks on either side of the edge and further includes
right shifting by 1 bit.

17. The non-volatile memory or storage device of claim
15, wherein, according to bitstream syntax, the slice-level
chroma QP offset is separately signaled for two chroma
components for the slice.

18. The non-volatile memory or storage device of claim
15, wherein, according to bitstream syntax, the picture-level
chroma QP offset is separately signaled for two chroma
components for the picture.

19. The non-volatile memory or storage device of claim
18, wherein the control parameter is derived separately for
the two chroma components for the deblock filtering.

20. The non-volatile memory or storage device of claim
15, wherein bitstream syntax permits signaling of different
slice-level chroma QP offsets for different slices of the
picture.

10

15

20

25

34

