发明名称
对于集为 Gold 序列的 Kasami 大集合序列的 FHT 快速相关检测方法

摘要
本发明公布了一种对子集为 Gold 序列的 Kasami 大集合序列的 FHT (Fast Hadamard Transform) 快速相关检测方法，适用于低电平检测条件下使用扩频技术的无线通信系统的多目标相位检测方法。该方法在维度 K = 0, 1, ..., q - 2 时，计算接收信号与 Gold-Kasami 大集合序列的互相关函数：先固定两个维度，使用一个 m 序列构成 Walsh-Hadamard 矩阵，做 FHT 得到二维相位值，然后分别对两个维度取所有可能值得到所有二维相位值，重排二维相位值得到三维相位值，最后确定峰值所在的三个维度的值；当 K = q - 1 时采用 Kasami 小集合序列的 FHT 快速相关检测方法。本方法中使用的 FHT 算法，只包含加法运算，没有乘法运算，因而极大地减少了运算量。
1. 一种对子集为 Gold 序列的 Kasami 大集合序列的 FHT 快速相关检测方法，其特征在于：当维度 $k = 0, 1, \ldots, q - 2$ 时，计算 $\{r(n)\}$ 与 $\{a_{k,k}(n)\}$ —— Gold-Kasami 大集合序列码的互相关函数 $C(k, k'; \tau)$ 采用的相关步骤如下：

步骤 (1)：先固定两个维度，使用组成 Gold-Kasami 大集合序列的一个 m 序列构成 Walsh-Hadamard 矩阵，FHT 得到一维相关值；

步骤 (2)：将步骤 1 中固设定的两个维度中的一个维度取所有可能值，重复步骤 (1)，得到二维相关值；

步骤 (3)：将步骤 1 中固设定的两个维度中的另一个维度取所有可能值，重复步骤 (1)，得到所有的二维相关值，将所有二维相关值重排得到三维相关值，确定三维相关值峰值所在的三个维度的取值，峰值所在的三个维度的取值确定了在伽罗瓦域 GF(q) 中的 Gold-Kasami 大集合序列的码字组成及其码相位。

当维度 $k = q - 1$ 时，$\{a_{k,k}(n)\}$ 即变成 Gold-Kasami 小序列集合，这时计算 $\{r(n)\}$ 和 $\{a_{k,k}(n)\}$ 的互相关函数 $C(k, k'; \tau)$ 采用 Kasami 小集合序列的 FHT 快速相关检测方法，其中 $\{r(n)\}$ 是接收信号，$\{a_{k,k}(n)\}$ 是 Gold-Kasami 大集合序列码； $C(k, k'; \tau)$ 是互相关函数。

2. 根据权利要求 1 所述的关于子集为 Gold 序列的 Kasami 大集合序列的 FHT 快速相关检测方法，其特征在于：$\{r(n)\}$ 与 $\{a_{k,k}(n)\}$ —— Gold-Kasami 大集合序列码的互相关函数 $C(k, k'; \tau)$ 可以表示为 $(q = 2^n)$:

$$C(k, k'; \tau) = \sum_{n=0}^{q-2} r^*(n)a_{k,k}(n+\tau_{q-1}) =$$

$$\left\{\begin{array}{ll}
\sum_{n=0}^{q-2} r^*(n)u(n+\tau_{q-1})v(n+\tau-k_{q-1}), k = 0, 1, \ldots, q - 2, k' = 0, 1, \ldots, \sqrt{q} - 2 & \\
\sum_{n=0}^{q-2} r^*(n)u(n+\tau_{q-1})v(n+\tau-k_{q-1}), k = 0, 1, \ldots, q - 2, k' = \sqrt{q} - 1 & \\
\sum_{n=0}^{q-2} r^*(n)u(n+\tau_{q-1})w(n+\tau-k_{q-1}), k = q - 1, k' = 0, 1, \ldots, \sqrt{q} - 2 & \\
\sum_{n=0}^{q-2} r^*(n)u(n+\tau_{q-1}), k = q - 1, k' = \sqrt{q} - 1 & \\
\end{array}\right.$$
类，共7种。

在以上权利要求中：Gold-Kasami 大集合序列是在伽罗瓦域 GF(q) 中，
$q = p^n, p = 2$，当 $n \equiv 2 \mod 4$ 时的 Kasami 大集合序列。$q - 1$ 为 Gold-Kasami 大集合序列
码的码长，n 为码长的阶数；m 序列即最大移位寄存器序列；k, k' 和 τ 是 Gold-Kasami
大集合序列码字组成及其码相位的三个维度；$\{r(n)\}$ 为接收信号；$r^*(n)$ 表示 $r(n)$ 的共轭；
$\{a_{k,\tau}(n)\}$ 为 Gold-Kasami 大集合序列码；u 是周期为 $2^n - 1$ 的 m 序列；v 是对序列 u 每 2^{n^2+1}
+1 比特抽取 1 比特组成的周期为 $2^n - 1$ 的 m 序列；w 是对序列 u 每 $2^{n^2} + 1$ 比特抽取 1
比特组成的周期为 $2^{n^2} - 1$ 的 m 序列。
对子集为 Gold 序列的 Kasami 大集合序列的 FHT 快速相关检测方法

技术领域

本发明涉及一种对子集为 Gold 序列的 Kasami 大集合序列的 FHT（Fast Hadamard Transform）快速相关检测方法，是一种适用于极低谱密度条件下使用扩频技术的无线通信系统的多目标相位检测方法，属于移动通信中的同步技术领域。

背景技术

在极低谱密度条件下的扩频无线通信中，例如深空通信、全球导航卫星系统（GNSS）、军事通信和无线传感器网络等领域，他们的主要特点是利用长 PN 码的良好的相关特性来实现扩频通信。对长 PN 码的快速捕获是极低谱密度扩频无线通信系统的一项关键技术，目前较广为人知的 PN 码有最大移位寄存器序列（或简称为 m 序列）、戈尔德（Gold）序列、Kasami 序列等等。

常规实现极长 PN 码快速捕获的方法有时域并行相关法和 FFT（Fast Fourier Transform）频域相关法。

时域并行相关法的运算量极大，复杂度和成本极高：对于一个长度为 p 的 PN 码，运算量是 p^2 量级的乘法和加法；对于 K 个长度为 p 的 PN 码，运算量是 Kp^2 量级的乘法和加法。

FFT 频域相关法具有方便快捷、易于实现 PN 码相位的并行搜索和载波频偏的并行搜索等优点，使 K 个长度为 p 的 PN 码快速相关的运算量降低为 $Kp\log p$ 量级的复数乘法和加法，成为国内外研究长 PN 码快速捕获的热点。不过，FFT 频域相关法存在以下问题：1）FFT 进行复数乘法运算多，对于长 PN 码频域相关，FFT 运算中存在很小数值的复权值，导致复数乘法的比特位数多，运算复杂度很高；其实现需要采用昂贵的高精度高速 AD（模数转换）器件。2）FFT 相关算法必须使用 IFFT，使 PN 码捕获最终回到时域以确定 PN 码相位，这也增加了运算量。3）受当前 DSP 器件限制，FFT 核长度已成为进一步提高搜索速度的瓶颈。

发明内容
技术问题：本发明针对背景技术中传统的相关检测方法计算复杂度高的缺点而提出一种不包含乘法运算的对子集为 Gold 序列的 Kasami 大集合序列的 FHT 快速相关检测方法。

技术方案：本发明为实现上述目的，采用如下技术方案：

本发明所提出的对子集为 Gold 序列的 Kasami 大集合序列的 FHT 快速相关检测方法。当维度 \(k = 0, 1, \ldots, q - 2 \) 时，计算 \(\{ r(n) \} \) 与 \(\{ a_{k,k}(n) \} \) 的互相关函数 \(C(k, k'; r) \) 采用的相关步骤如下：

步骤 (1)：先固定两个维度，使用组成 Gold-Kasami 大集合序列的一个 \(m \) 序列构成 Walsh-Hadamard 矩阵，FHT 得到一维相关值；

步骤 (2)：将步骤 1 中固定的两个维度中的一个维度取所有可能值，重复步骤 (1)，得到二维相关值；

步骤 (3)：将步骤 1 中固定的两个维度中的另一个维度取所有可能值，重复步骤 (1)，得到所有的二维相关值，将所有二维相关值重排得到三维相关值，确定三维相关值峰值所在的三个维度的取值，峰值所在的三个维度的取值确定了在伽罗瓦域 \(GF(q) \) 中的 Gold-Kasami 大集合序列的码字组成及其码相位。

当维度 \(k = q - 1 \) 时，\(\{ a_{k,k}(n) \} \) 即变成 Gold-Kasami 小序列集合，这时计算 \(\{ r(n) \} \) 和 \(\{ a_{k,k}(n) \} \) 的互相关函数 \(C(k, k'; r) \) 采用 Kasami 小集合序列的 FHT 快速相关检测方法。

其中：Gold-Kasami 大集合序列即是在伽罗瓦域 \(GF(q) \) 中，\(q = p^n, p = 2 \)，当 \(n \equiv 2 \mod 4 \) 时的 Kasami 大集合序列，\(q - 1 \) 为 Gold-Kasami 大集合序列码的码长，\(n \) 为码长的阶数；\(m \) 序列即最大位移寄存器序列；\(k, k' \) 和 \(\tau \) 是 Gold-Kasami 大集合序列码字组成及其码相位的三个维度；\(\{ r(n) \} \) 为接收信号；\(r'(n) \) 表示 \(r(n) \) 的共轭；\(\{ a_{k,k}(n) \} \) 为 Gold-Kasami 大集合序列码；\(u \) 是周期为 \(2^n - 1 \) 的 \(m \) 序列，\(v \) 是对序列 \(u \) 每 \(2^{n+1} + 1 \) 比特抽取 1 比特组成的周期为 \(2^n - 1 \) 的 \(m \) 序列，\(w \) 是对序列 \(u \) 每 \(2^n + 1 \) 比特抽取 1 比特组成的周期为 \(2^{n+1} - 1 \) 的 \(m \) 序列。

有益效果：通过本发明提出的算法，可以用 FHT（Fast Hadamard Transform）快速相关检测出伽罗瓦域 \(GF(q) \) 中 Gold-Kasami 大集合序列的码字组成及其初始码相位。由于 FHT 中不包含乘法运算，只有加法运算，因此相对于用 FFT 进行相关检测的算法能大大降低时间复杂度，提高捕获速度。

根据一次 \(q = 2^n \) 点的 FFT 需要 \((q/2)\log_2 q \) 次复数乘法和 \(q \log_2 q \) 复数加法，一次复数乘
法需要三次实数乘法和三次实数加法，一次复数加法需要两次实数加法；Gold-Kasami
大集合序列由三个不同的 \(m\) 序列组成，用 FFT 频域相关法检测出码字组成及其码相位，
将乘法运算折算成加法运算，折算方法为：\(q\) 点 FFT 中使用的乘法折算成 \(\log_2 q\) 次加法，
具体效果如下：

用 FFT 频域相关法检测出码字组成及其码相位所需的实数加法运算量为：

\[
3(q-1)(\sqrt{q} - 1)q \log_2 q + (q-1)(\sqrt{q} - 1)q(7 \log_2 q + 3);
\]

用本专利提出的 V-FHT 类和 U-FHT 类算法完成同样的相关检测运算所需的实数加
法运算量为：

\[
2(q-1)(\sqrt{q} - 1)q \log_2 q;
\]

用本专利提出的 W-FHT 类算法完成同样的相关检测运算所需的实数加法运算量为：

\[
2(q-1)^2(\sqrt{q} + 1)\sqrt{q} \log_2 \sqrt{q};
\]

综上，可见本发明提出的用 FHT 快速相关检测出 Gold-Kasami 大集合序列的码字组
成及其初始码相位的算法，相比于 FFT 频域相关法进行相关检测的算法，V-FHT 类和
U-FHT 类能节省 90%以上的运算量，并且节约的运算量随着码长的增加而增大；W-FHT
类仅在码字较短的情况下能节约相当大的运算量。

附图说明

图1是算法 V-FHT(a)的二维计算过程。
图2是算法 V-FHT(a)的相关值三维排列示意图。
图3是算法 V-FHT(b)的二维计算过程。
图4是算法 V-FHT(b)的相关值三维排列示意图。
图5是算法 U-FHT 情况的二维计算过程。
图6是算法 U-FHT 情况从二维到三维的相关值排列示意图。
图7是算法 U-FHT 情况 II 的二维计算过程。
图8是算法 W-FHT(a)的二维计算过程。
图9是算法 W-FHT(a)的相关值三维排列示意图。
图10是算法 W-FHT(b)的二维计算过程。
图11是算法 W-FHT(b)的相关值三维排列示意图。
图12是算法 W-FHT(c)从二维到三维的相关值排列示意图。
图13是本发明的方法流程示意图。

图2、4、6、9、11、12中：k_0 为 k 轴上的任意值；k'_0 为 k' 轴上的任意值。

具体实施方式

文中的字母及符号定义：u, v 和 w 为 m 序列，u 是周期为 $2^n - 1$ 的 m 序列，v 是对序列 u 每 2^{n^2+1} 乘号抽取 1 比特组成周期为 $2^2 - 1$ 的 m 序列，w 是对序列 u 每 2^{n^2+1} 乘号抽取 1 比特组成周期为 $2^{n^2} - 1$ 的 m 序列；$N = q - 1$ 为 Gold-Kasami 大集合序列码的码长；n 为码长的阶数；T 表示向量向左循环移位，其上标表示移位数，下标为长度；$G(u, v)$ 是 Gold 序列；$\{r(n)\}$ 为接收信号；$r^*(t)$ 表示 $r(t)$ 的共轭；$\{a_k, (n)\}$ 是 Gold-Kasami 大集合序列码；$C(k, k', r)$ 是互相关函数；k, k' 和 r 是 Gold-Kasami 大集合序列码字组成及其码相位组成的三个维度，A 为维度 k 与维度 r 的差值，B 为维度 k' 与维度 r 的差值；j 为将向量分解成块的编号，$j = 0, 1, ..., \sqrt{q}$，$q = 2^n$；\oplus 表示取模，其下标为模值；\oplus 为模 2 加法；C_i 为任意值符号；A_0 为 A 轴上的任意值；B_0 为 B 轴上的任意值。

子集为 Gold 序列的 Kasami 大集合序列，即为在伽罗瓦域 $GF(q)$ 中，$q = p^n$，$p = 2$，当 $n \equiv 2 \mod 4$ 时由 3 个 m 序列组成的周期为 $N = 2^n - 1$ 的 Kasami 大集合序列，也称为 Gold-Kasami 大集合序列，可以表述为

$$G(u, v) \cup \bigcup_{i=0}^{2^{n^2}-2} \{T^i w \oplus G(u, v)\}$$

其中，$G(u, v)$ 是由 u, v 两个 m 序列组成的 Gold 码，可以表述为：

$$\{u, u \oplus v, u \oplus Tv, u \oplus T^2 v, ..., u \oplus T^{N-1} v\}$$

根据 Gold-Kasami 大集合序列的定义，$\{r(n)\}$ 与 $\{a_k, (n)\}$ 的互相关函数 $C(k, k', r)$ 可以表示为 $(q = 2^n)$：
\[C(k, k'; \tau) = \sum_{n=0}^{q-2} r^*(n)q_{k'}(n+\tau_{q-1}) = \]
\[\sum_{n=0}^{q-2} r^*(n)u(n+\tau_{q-1})v(n+\tau-k_{q-1})w(n+\tau-k'_{q-1}), k = 0, 1, ..., q-2, k' = 0, 1, ..., \sqrt{q} - 2 \]
\[\sum_{n=0}^{q-2} r^*(n)u(n+\tau_{q-1})v(n+\tau-k_{q-1}), k = 0, 1, ..., q-2, k' = \sqrt{q} - 1 \]
\[\sum_{n=0}^{q-2} r^*(n)u(n+\tau_{q-1})w(n+\tau-k'_{q-1}), k = q-1, k' = 0, 1, ..., \sqrt{q} - 2 \]
\[\sum_{n=0}^{q-2} r^*(n)u(n+\tau_{q-1}), k = q-1, k' = \sqrt{q} - 1 \]

(1)

观察有关函数 \(C(k, k'; \tau)\)有三个变量： \(k, k'\) 和 \(\tau\)，用 FHT (Fast Hadamard Transform) 计算三维相关值时，需要先计算两个变量，使用组成Gold-Kasami大集合序列的一个序列构造Walsh-Hadamard矩阵，FHT得到一维相关值，再求得二维相关值，最后重排得到三维相关值。确定三维相关值峰值所在的三个维度的取值，峰值所在三个维度的取值确定了在伽罗瓦域 \(GF(q)\) 中Gold-Kasami大集合序列的码字组成及其码相关。

观察式 (1)，当 \(k = q - 1\) 时，\(\{a_{k,k}(n)\}\) 即变成 Kasami小序列集合，计算 \(\{r(n)\}\) 和 \(\{a_{k,k}(n)\}\) 的互相关函数 \(C(k, k'; \tau)\) 采用 Kasami小集合序列的 FHT快速相关检测方法。

当 \(k = 0, 1, ..., q - 2\) 时，计算 \(\{r(n)\}\) 与 \(\{a_{k,k}(n)\}\) 的互相关函数 \(C(k, k'; \tau)\) 的 3 类共 7 种算法如下：

V-FHT 类——使用 m 序列 \(v\) 生成 Walsh-Hadamard 矩阵的 FHT快速相关检测方法类

a) 先固定维度 \(k' = 0, 1, ..., \sqrt{q} - 2\) 和维度 \(\tau = 0, 1, ..., q - 2\)，得到一维相关值，再得到 \(k\) 和 \(\tau\) 两个维度的相关值，最后得到 \(k, k'\) 和 \(\tau\) 三个维度的相关值。

令 \(n = n - \tau_{q-1}\)，式 (1) 可得到

\[C(k, k'; \tau) = \sum_{n=0}^{q-2} r^*(n-\tau_{q-1})u(n)v(n-k_{q-1})w(n-k'_{q-1}), \tau = 0, 1, ..., q-2, k = 0, 1, ..., q-2, k' = 0, 1, ..., \sqrt{q} - 2 \]

(2)

使用 m 序列 \(v\) 生成 Walsh-Hadamard 矩阵可得：

\[
\begin{pmatrix}
C_v \\
C(0, k'; \tau) \\
C(q-2, k'; \tau) \\
\vdots \\
C(1, k'; \tau)
\end{pmatrix}
=
\begin{pmatrix}
+1 & +1 & \cdots & +1 \\
+1 & v & & \\
+1 & v & \vdots & \\
+1 & v & \vdots & \vdots \\
+1 & v & \vdots & \vdots
\end{pmatrix}
\begin{pmatrix}
r^*(0-\tau_{q-1})u(0)w(0-k'_{q-1}) \\
r^*(0-\tau_{q-1})u(1)w(1-k'_{q-1}) \\
\vdots \\
r^*(q-2-\tau_{q-1})u(q-2)w(q-2-k'_{q-1})
\end{pmatrix}
\]

(3)

生成方法参见文献[1][2][3]，下同。

使用这种相关方法，计算复杂度为 $(q - 1)(\sqrt{q} - 1)q \log_2 q$.

算法V-FHT(a)的二维的计算过程如图1所示。

算法V-FHT(a)的三维的计算过程如图2所示。

b): 先固定维度 $k' = 0, 1, \ldots, \sqrt{q} - 2$ 和维度 $\tau = 0, 1, \ldots, q - 2$, 得到一维相关值，再得到 k 和 τ 两个维度的相关值，最后得到 k, k' 和 τ 三个维度的相关值:

令 $\tau - k_{q-1} = A(A = 0, 1, 2, \ldots, q - 2)$，即 $k = \tau - A_{q-1}$，式(1)可得到

$$C(\tau - A_{q-1}, k'; \tau) = \sum_{n=0}^{q-2} r^*(n)u(n + A_{q-1})v(n + r - k_{q-1}), \tau = 0, 1, \ldots, q - 2$$

(4)

使用m序列v生成Walsh-Hadamard矩阵可得:

$$
\begin{pmatrix}
C(\tau - 0_{q-1}, k'; \tau) \\
C(\tau - 1_{q-1}, k'; \tau) \\
\vdots \\
C(\tau - q_{q-1}, k'; \tau)
\end{pmatrix}
=
\begin{pmatrix}
+1 & +1 & \ldots & +1 \\
+1 & v & \vdots \\
+1 & v^T & \vdots \\
+1 & v^{T^{q-2}} & \vdots \\
\end{pmatrix}
\begin{pmatrix}
r^*(0)u(0 + r - k_{q-1})w(0 + r - k_{q-1}) \\
r^*(1)u(1 + r - k_{q-1})w(1 + r - k_{q-1}) \\
\vdots \\
r^*(q - 1)u(q - 1 + r - k_{q-1})w(q - 1 + r - k_{q-1})
\end{pmatrix}
$$

(5)

使用这种相关方法，计算复杂度为 $(q - 1)(\sqrt{q} - 1)q \log_2 q$.

算法V-FHT(b)二维的计算过程如图3所示。

当 $k' = \sqrt{q} - 1$ 时，用一次Gold码的FHT得到接收信号 $\{r(n)\}$ 与 $\{a_k, r(n)\}$ 的互相关函数 $C(k, k'; \tau)$。

算法V-FHT(b)三维的计算过程如图4所示。

c): 当维度 k 和维度 k' 均与维度 τ 的差值固定时，即 $\tau - k_{q-1} = A(A = 0, 1, 2, \ldots, q - 2)$

或 $\tau - k'_{q-1} = B(B = 0, 1, 2, \ldots, \sqrt{q} - 2)$，由式(1)可得到

$$C(\tau - A_{q-1}, \tau - B_{q-1}; \tau) = \sum_{n=0}^{q-2} r^*(n)u(n + r_{q-1})v(n + A_{q-1})w(n + B_{q-1}), \tau = 0, 1, \ldots, q - 2$$

(6)
先固定 \(B = 0, 1, 2, \ldots, \sqrt{q} - 2 \) 和维度 \(\tau = 0, 1, \ldots, q - 2 \) 的值，得到一维相关值，再得到 \(k \) 和 \(\tau \) 两个维度的相关值，最后得到 \(k', \tau \) 和 \(\tau \) 三个维度的相关值：

使用 \(m \) 序列 \(v \) 生成 \(\text{Walsh-Hadamard} \) 矩阵可得:

\[
\begin{pmatrix}
C_x \\
C(\tau - 0q^1, \tau - 0q^1: \tau) \\
C(\tau - 1q^1, \tau - 0q^1: \tau) \\
\vdots \\
C(\tau - q^22q^1, \tau - 0q^1: \tau)
\end{pmatrix} =
\begin{pmatrix}
+1 & +1 & \cdots & +1 \\
+1 & v & & \\
+1 & v^T & & \\
+1 & v^T^2 & & \\
\vdots & \vdots & \ddots & \vdots \\
+1 & v^T^{q-1} & & \\
\end{pmatrix}
\begin{pmatrix}
0 \\
r^*(0)u(0 + \tau - 1)w(0 + B_{q-1}) \\
r^*(1)u(1 + \tau - 1)w(1 + B_{q-1}) \\
\vdots \\
r^*(q - 2)u(q - 2 + \tau - 1)w(q - 2 + B_{q-1})
\end{pmatrix}
\tag{7}
\]

使用这种相关方法，计算复杂度为 \((q - 1)(\sqrt{q} - 1)q \log_2 q \)。

当 \(k' = \sqrt{q} - 1 \) 时，用一次 Gold 码的 FHT 得到接收信号 \(\{r(n)\} \) 与 \(\{a_{k', \tau}(n)\} \) 的互相关函数 \(C(k', \tau) \)。

观察发现 (7) 与 (5) 类似，计算 \(k \) 和 \(\tau \) 两个维度的相关值的方法是一样的，只是在第三维相关值的排列上不同。

算法 V-FHT(c) 二维的计算过程如图 3。

算法 V-FHT(c) 三维的相关值排列过程与方法五类似，如图 4，只需要将维度 \(k \) 与维度 \(k' \) 互换即可。

注：以上算法中用序列 \(v \) 生成 \(\text{Walsh-Hadamard} \) 矩阵时，序列 \(v \) 不是对序列 \(u \) 每 \(2^{n/2+1} + 1 \) 比特抽取任 1 比特组成的周期为 \(2^n - 1 \) 的 \(m \) 序列，因为用这种方法生成的 \(m \) 序列组成的矩阵不一定能等效为 \(\text{Walsh-Hadamard} \) 矩阵。

U-FHT 类 —— 使用 \(m \) 序列 \(u \) 生成 \(\text{Walsh-Hadamard} \) 矩阵的 FHT 快速相关检测方法类。

当维度 \(k \) 和维度 \(k' \) 均与维度 \(\tau \) 的差值固定时，即 \(\tau - k = A(A = 0, 1, 2, \ldots, q - 2) \) 或 \(\tau - k' = B(B = 0, 1, 2, \ldots, \sqrt{q} - 2) \)，由式 (1) 可得到

\[
C(\tau - Aq^1, \tau - B_{q^1}: \tau) = \sum_{n=0}^{q^2} r^*(n)u(n + \tau - q^1)v(n + Aq^1)w(n + B_{q^1}), \tau = 0, 1, \ldots, q - 2 \tag{8}
\]

先固定 \(A = 0, 1, \ldots, q - 2 \) 和 \(B = 0, 1, 2, \ldots, \sqrt{q} - 2 \) 的值，得到一维相关值，再得到 \(k \) 和 \(\tau \) 或 \(k' \) 和 \(\tau \) 两个维度的相关值，最后得到 \(k, k' \) 和 \(\tau \) 三个维度的相关值：

使用 \(m \) 序列 \(u \) 生成 \(\text{Walsh-Hadamard} \) 矩阵可得:
\[
\begin{align*}
\begin{pmatrix}
C_x \\
C(0-A_{-q-1}, 0-B_{-q-1}; 0) \\
C(1-A_{-q-1}, 1-B_{-q-1}; 1) \\
\vdots \\
C(q-2-A_{-q-1}, q-2-B_{-q-1}; q-2)
\end{pmatrix}
&=
\begin{pmatrix}
+1 & +1 & \cdots & +1 \\
+1 & u & \vdots & \vdots \\
+1 & uT & \vdots & \vdots \\
+1 & uT^{q-2} & \vdots & \vdots \\
\end{pmatrix}
\begin{pmatrix}
r^*(0)v(0+A_{-q-1})w(0+B_{-q-1}) \\
r^*(1)v(1+A_{-q-1})w(1+B_{-q-1}) \\
\vdots \\
r^*(q-2)v(q-2+A_{-q-1})w(q-2+B_{-q-1})
\end{pmatrix}
\end{align*}
\]

接下来分两种情况:

情况I: 如果先计算维度\(k \) 和维度\(\tau \) 的二维相关值。

算法U-FHT情况I的二维的计算过程如图10所示（方框内是A的值）。

算法U-FHT情况I的三维的相关值排列如图11所示。

情况II: 如果先计算维度\(k' \) 和维度\(\tau \) 的二维相关值。

算法U-FHT情况II的二维的计算过程如图12所示（方框内是B的值）。

算法U-FHT情况II的三维的相关值排列过程与图11类似，之需要将维度\(k \)与维度\(k' \)的互换即可。

使用U-FHT相关方法，计算复杂度为\((q-1)(\sqrt{q}-1)q \log_2 q\)。

当维度\(k' = \sqrt{q} - 1 \)时，用一次Gold码的FHT得到接收信号\(r(n) \)与\(\{a_k, k(n)\} \)的互相关函数\(C(k, k'; \tau) \)。

W-FHT类——使用m序列w生成Walsh-Hadamard矩阵的FHT快速相关检测方法类

a) 先固定维度\(k = 0, 1, \ldots, q-2 \)和维度\(\tau = 0, 1, \ldots, q-2 \)，得到一维相关值，再得到\(k' \)和\(\tau \)两个维度的相关值，最后得到\(k, k' \)和\(\tau \)三个维度的相关值。

令\(n = n - \tau_{q-1} \)，式(1)可得

\[
C(k, k'; \tau) = \sum_{n=0}^{q-2} r^*(n-\tau_{q-1})u(n)v(n-k_{q-1})w(n-k'_{q-1})
\]

\[
\tau = 0, 1, \ldots, q-2, k = 0, 1, \ldots, q-2, k' = 0, 1, \ldots, \sqrt{q} - 2
\]

使用m序列w生成Walsh-Hadamard矩阵可得:

\[
\begin{pmatrix}
C(k, q-1; \tau) \\
C(k, 0; \tau) \\
C(k, q-2; \tau) \\
\vdots \\
C(k, l; \tau)
\end{pmatrix}
=
\begin{pmatrix}
+1 & +1 & \cdots & +1 \\
+1 & w & \vdots & \vdots \\
+1 & wT & \vdots & \vdots \\
+1 & wT^{q-2} & \vdots & \vdots \\
\end{pmatrix}
\begin{pmatrix}
r^*(0-\tau_{q-1})u(0)v(0-k_{q-1}) \\
r^*(1-\tau_{q-1})u(1)v(1-k_{q-1}) \\
\vdots \\
r^*(q-2-\tau_{q-1})u(q-2)v(q-2-k_{q-1})
\end{pmatrix}
\]

考虑到m序列w的周期性，对于某个给定的维度\(\tau \)，将\(q - 1 \)维向量\
\[
\{r^*(n - \ell_{q-1})u(n)v(n-k_{q-1})\}
\]
分割成\(\sqrt{q} + 1 \)块分别进行长度为\(\sqrt{q} \)的FHT变换：
\[
\begin{bmatrix}
C_j(k,\sqrt{q}-1;\tau) \\
C_j(k,0;\tau) \\
C_j(k,\sqrt{q}-2;\tau) \\
\vdots \\
C_j(k,1;\tau)
\end{bmatrix} =
\begin{bmatrix}
+1 & \cdots & +1 & 0 \\
+1 & w & \cdots & \vdots \\
+1 & wT_{\sqrt{q}-1} & \cdots & \vdots \\
+1 & wT_{\sqrt{q}-2} & \cdots & \vdots \\
+1 & \vdots & \cdots & \vdots \\
+1 & wT_{\sqrt{q}-1} & \cdots & \vdots \\
+1 & wT_{\sqrt{q}-2} & \cdots & \vdots \\
\end{bmatrix}
\begin{bmatrix}
\begin{bmatrix}
1 & j(\sqrt{q}-1) & -1 & 0 \\
-1 & j(\sqrt{q}-1) & -1 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
-1 & j(\sqrt{q}-1) & -1 & 0 \\
\end{bmatrix}u(0+j(\sqrt{q}-1))v(0-k+j(\sqrt{q}-1)) \\
\begin{bmatrix}
1 & j(\sqrt{q}-1) & -1 & 0 \\
-1 & j(\sqrt{q}-1) & -1 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
-1 & j(\sqrt{q}-1) & -1 & 0 \\
\end{bmatrix}u(1+j(\sqrt{q}-1))v(1-k+j(\sqrt{q}-1)) \\
\vdots & \vdots & \vdots & \vdots \\
\begin{bmatrix}
1 & j(\sqrt{q}-1) & -1 & 0 \\
-1 & j(\sqrt{q}-1) & -1 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
-1 & j(\sqrt{q}-1) & -1 & 0 \\
\end{bmatrix}u(\sqrt{q}-2+j(\sqrt{q}-1))v(\sqrt{q}-2-k+j(\sqrt{q}-1))
\end{bmatrix}
\]

其中\(j = 0, 1, \ldots, \sqrt{q}\).

然后把\(\sqrt{q}+1\)个变换后的向量累加起来即可得到相关阵\(C(k,k';\tau)\)的第\(\tau\)列，即:

\[
\bar{C}_{k',\tau} = \sum_{j=0}^{\sqrt{q}} \begin{bmatrix}
C_j(k,\sqrt{q}-1;\tau) \\
C_j(k,0;\tau) \\
C_j(k,\sqrt{q}-2;\tau) \\
\vdots \\
C_j(k,1;\tau)
\end{bmatrix}
\]

使用这种方法，计算复杂度为\((q-1)^2(\sqrt{q}+1)\sqrt{q}\log_2\sqrt{q}\)。

算法W-FHT(a)二维的计算过程如图8所示。

算法W-FHT(a)三维的相关值排列如图9所示。

当\(k' = \sqrt{q}-1\)时，用一次Gold码的FHT得到接收信号\(\{r(n)\}\)与\(\{a_{k,k}(n)\}\)的互相关函数\(C(k,k';\tau)\)。

b): 先固定维度\(k = 0, 1, \ldots, q-2\)和维度\(\tau = 0, 1, \ldots, q-2\)，得到一维相关值，再得到\(k'\)和\(\tau\)两个维度的相关值，最后得到\(k, k'\)和\(\tau\)三个维度的相关值.

令\(\tau-k'_{\sqrt{q}-1} = B(b=0,1,2,\ldots,\sqrt{q}-2)\)，即\(k' = \tau-B_{\sqrt{q}-1}\)，式(1)可得到

\[
C(k,\tau-B_{\sqrt{q}-1};\tau) = \sum_{n=0}^{q-2} r^*(n)w(n+\tau_{\sqrt{q}-1})v(n+\tau-k_{\sqrt{q}-1})w(n+B_{\sqrt{q}-1}), \tau = 0,1,\ldots,q-2
\]

使用m序列w生成FHT矩阵得可得:

\[
\bar{C}_{k',\tau} = \sum_{j=0}^{\sqrt{q}} \begin{bmatrix}
C_j(k,\sqrt{q}-1;\tau) \\
C_j(k,0;\tau) \\
C_j(k,\sqrt{q}-2;\tau) \\
\vdots \\
C_j(k,1;\tau)
\end{bmatrix} =
\begin{bmatrix}
+1 & +1 & \cdots & +1 \\
+1 & w & \cdots & \vdots \\
+1 & wT_{\sqrt{q}-1} & \cdots & \vdots \\
+1 & wT_{\sqrt{q}-2} & \cdots & \vdots \\
+1 & \vdots & \cdots & \vdots \\
+1 & wT_{\sqrt{q}-1} & \cdots & \vdots \\
+1 & wT_{\sqrt{q}-2} & \cdots & \vdots \\
\end{bmatrix}
\begin{bmatrix}
\begin{bmatrix}
1 & j(\sqrt{q}-1) & -1 & 0 \\
-1 & j(\sqrt{q}-1) & -1 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
-1 & j(\sqrt{q}-1) & -1 & 0 \\
\end{bmatrix}u(\tau_{\sqrt{q}-1})v(\tau-k_{\sqrt{q}-1}) \\
\begin{bmatrix}
1 & j(\sqrt{q}-1) & -1 & 0 \\
-1 & j(\sqrt{q}-1) & -1 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
-1 & j(\sqrt{q}-1) & -1 & 0 \\
\end{bmatrix}u(1+\tau_{\sqrt{q}-1})v(1+\tau-k_{\sqrt{q}-1}) \\
\vdots & \vdots & \vdots & \vdots \\
\begin{bmatrix}
1 & j(\sqrt{q}-1) & -1 & 0 \\
-1 & j(\sqrt{q}-1) & -1 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
-1 & j(\sqrt{q}-1) & -1 & 0 \\
\end{bmatrix}u(\sqrt{q}-2+\tau_{\sqrt{q}-1})v(\sqrt{q}-2+\tau-k_{\sqrt{q}-1})
\end{bmatrix}
\]

(15)
考虑到m序列w的周期性，对于某个给定的维度τ，将q-1维向量
\[\{ r(n)u(n + \tau - k_q, \tau) \} \] 分割成0块分别进行长度为q的FHT变换:
\[
\begin{bmatrix}
C_0 \\
C_1(k, \tau - k_q, \tau) \\
\vdots \\
C_j(k, \tau - 2k_q, \tau)
\end{bmatrix} =
\begin{bmatrix}
+1 & \cdots & 1 \\
+1 & \cdots & 1 \\
\vdots \\
+1 & \cdots & 1
\end{bmatrix}
\begin{bmatrix}
0 \\
+1 \\
\vdots \\
+1
\end{bmatrix}
\begin{bmatrix}
\begin{bmatrix}
(1 + j(\sqrt{q} - 1))u(\tau + k + j(\sqrt{q} - 1)) \\
(1 + j(\sqrt{q} - 1))u(1 + \tau + k + j(\sqrt{q} - 1)) \\
\vdots \\
(1 + j(\sqrt{q} - 1))u(\sqrt{q} - 2 + \tau + k + j(\sqrt{q} - 1)),
\end{bmatrix}
\end{bmatrix}
\]
(16)

其中j = 0, 1, ..., q.

然后把0个变换后的向量累加起来即可得到相关阵C(k, k', τ)的第τ列，即:
\[
\mathbf{C}_{k, \tau} = \sum_{j=0}^{q} \mathbf{C}_j(k, \tau - jk_q, \tau)
\]
(17)

使用这种相关方法，计算复杂度为(q-1)q+1q log_q q.

算法W-FHT(b)二维的计算过程如图10所示。

算法W-FHT(b)三维的相关值排列如图11所示。

当k' = \sqrt{q} - 1时，用一次Gold码的FHT得到接收信号\{r(n)\}与\{a_{k', k}(n)\}的互相关函数

C(k, k', \tau).

e): 当维度k和维度k'均与维度τ的差值固定时，即τ - k_q - 1 = A(A = 0, 1, 2, ..., q - 2) or τ - k' - 1 = B(B = 0, 1, 2, ..., \sqrt{q} - 2)，由式(1)可得到
\[
C(\tau - A_q, \tau - B_{q_q}, \tau) = \sum_{n=0}^{q^2} r(n)u(n + \tau - q)w(n + A_q - 1, \tau = 0, 1, ..., q - 2
\]
(18)

先固定A = 0, 1, ..., q - 2和维度τ = 0, 1, ..., q - 2的值，得到一维相关值，再得到k'和τ两个维度的相关值，最后得到k, k'和τ三个维度的相关值。

使用m序列w生成Walsh-Hadamard矩阵可得:
$$
\begin{align*}
&\begin{pmatrix}
\begin{pmatrix}
C_{r} \\
C(\tau - A_{q-1}, \tau - q\sqrt{q-1}, \tau)
\end{pmatrix} \\
\begin{pmatrix}
C(\tau - A_{q-1}, \tau - (q - 1)\sqrt{q-1}, \tau)
\end{pmatrix} \\
\vdots \\
\begin{pmatrix}
C(\tau - A_{q-1}, \tau - (q - 2)\sqrt{q-1}, \tau)
\end{pmatrix}
\end{pmatrix} = \\
\begin{pmatrix}
+1 & +1 & \cdots & +1 \\
+1 & w & & \\
+1 & wT & & \\
+1 & wT^{q-2} & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
\end{pmatrix}
\begin{pmatrix}
0 \\
r^{*}(0)u(0 + \tau_{q-1})v(0 + A\sqrt{q-1}) \\
r^{*}(1)u(1 + \tau_{q-1})v(1 + A\sqrt{q-1}) \\
\vdots \\
r^{*}(q - 2)u(q - 2 + \tau_{q-1})v(q - 2 + A\sqrt{q-1})
\end{pmatrix}
\end{align*}
$$

使用这种相关方法，计算复杂度为 \((q - 1)^{2} \sqrt{\sqrt[4]{q + 1}} \sqrt{\log q} \sqrt{q}\).

观察发现式 (19) 与 (15) 类似，计算维度 \(k'\) 和维度 \(\tau\) 二维相关值的方法是一样的，只是在第三维相关值的排列上不同。

算法 W-FHT(c) 二维的计算过程如图10。

算法 W-FHT(c) 三维的相关值排列如图12所示。

本发明的方法流程示意图如图13所示。

当 \(k' = \sqrt{q} - 1\) 时，用一次Gold码的HFT得到接收信号 \(\{r(n)\}\) 与 \(\{a_{k, k}(n)\}\) 的互相关函数 \(C(k, k', \tau)\)。

表1是算法类 V-FHT, U-FHT与FFT频域相关法检测Gold-Kasami大集合序列时的运算量比较。

表2是算法类 W-FHT与FFT频域相关法检测Gold-Kasami大集合序列时的运算量比较。

<table>
<thead>
<tr>
<th>表1</th>
<th>FFT 频域相关法</th>
<th>FHT 算法 (V-FHT 类, U-FHT 类)</th>
</tr>
</thead>
<tbody>
<tr>
<td>实数加法运算量</td>
<td>(3(q - 1)(\sqrt{q - 1})q(q + 1)\log_{2}q + 1\log_{2}q + 1\log_{2}q + 3)</td>
<td>(2(q - 1)(\sqrt{q - 1})q\log_{2}q)</td>
</tr>
<tr>
<td>(n = 6, q = 2^{6})</td>
<td>4.8263e6</td>
<td>3.3869e5</td>
</tr>
<tr>
<td>(n = 10, q = 2^{10})</td>
<td>1.3087e10</td>
<td>6.4948e8</td>
</tr>
<tr>
<td>(n = 14, q = 2^{14})</td>
<td>2.4919e13</td>
<td>9.545e11</td>
</tr>
<tr>
<td></td>
<td>FFT 频域相关法</td>
<td>FHT 算法(W-FHT 类)</td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>------------------</td>
</tr>
<tr>
<td>实数加法运算量</td>
<td>$3(q-1)(\sqrt{q-1})q(\log_2 q +1)\log_2 q$</td>
<td>$2(q-1)^2(\sqrt{q}+1)\sqrt{q}\log_2 \sqrt{q}$</td>
</tr>
<tr>
<td>$n = 6, q = 2^6$</td>
<td>4.8263e6</td>
<td>1.7146e6</td>
</tr>
<tr>
<td>$n = 10, q = 2^{10}$</td>
<td>1.3087e10</td>
<td>1.1051e10</td>
</tr>
<tr>
<td>$n=12, q=2^{12}$</td>
<td>2.4919e13</td>
<td>6.2046e13</td>
</tr>
</tbody>
</table>
图 1

图 2
图 5

图 6
<table>
<thead>
<tr>
<th>τ</th>
<th>k</th>
<th>$\sqrt{q-2}$</th>
<th>$\sqrt{q-2}$</th>
<th>$\sqrt{q-1}$</th>
<th>$\sqrt{q-2}$</th>
<th>$\sqrt{q-2}$</th>
<th>$\sqrt{q-2}$</th>
<th>$\sqrt{q-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>$\sqrt{q-2}$</td>
<td>1</td>
<td>$\sqrt{q-2}$</td>
<td>1</td>
<td>$\sqrt{q-2}$</td>
<td>1</td>
<td>$\sqrt{q-2}$</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>$\sqrt{q-2}$</td>
<td>1</td>
<td>0</td>
<td>$\sqrt{q-2}$</td>
<td>1</td>
<td>$\sqrt{q-2}$</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>$\sqrt{q-2}$</td>
<td>1</td>
<td>0</td>
<td>$\sqrt{q-2}$</td>
<td>1</td>
<td>$\sqrt{q-2}$</td>
</tr>
<tr>
<td>$\sqrt{q-2}$</td>
<td>$\sqrt{q-2}$</td>
<td>1</td>
<td>0</td>
<td>$\sqrt{q-2}$</td>
<td>1</td>
<td>0</td>
<td>$\sqrt{q-2}$</td>
<td>1</td>
</tr>
<tr>
<td>$\sqrt{q-1}$</td>
<td>0</td>
<td>$\sqrt{q-2}$</td>
<td>1</td>
<td>$\sqrt{q-2}$</td>
<td>1</td>
<td>0</td>
<td>$\sqrt{q-2}$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>$\sqrt{q-2}$</td>
<td>1</td>
<td>0</td>
<td>$\sqrt{q-2}$</td>
<td>1</td>
<td>$\sqrt{q-2}$</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>$\sqrt{q-2}$</td>
<td>1</td>
<td>0</td>
<td>$\sqrt{q-2}$</td>
<td>1</td>
<td>$\sqrt{q-2}$</td>
</tr>
</tbody>
</table>

图 7
图 8

图 9
图 10

图 11
图 12

开始

先固定两个维度，使用组成Gold-Kasami大集合序列的一个m序列构成Walsh-Hadamard矩阵，FHT得到一维相关值

重复步骤1，得到二维相关值

将所有二维相关值重排得到三维相关值，确定三维相关值峰值所在的三个维度的取值

结束

图 13