wo 2014/036540 A2 |11 N0FV0 000 00 O A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/036540 A2

6 March 2014 (06.03.2014) WIPOI|PCT
(51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
GO6F 15/167 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
. e] DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(21) International Application Number: HN, HR, HU, ID, IL. IN, IS, JP, KE, KG, KN, KP, KR,
PCT/US2013/057752 KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(22) International Filing Date: MG» MK, MN» MW, MX» MY» MZ» NA» NG» NI, NO» NZ»
31 August 2013 (31.08.2013) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
.) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
(25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
(26) Publication Language: English ZW.
(30) Priority Data: (84) Designated States (uniess otherwise indicated, for every
13/601.118 31 August 2012 (31082012) Us kind Of regional protection available): ARIPO (BW, GH,
’ GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
(71) Applicant: YUME, INC. [US/US]; 1204 Middlefield UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
Road, Redwood City, CA 94063 (US). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(72) Tnventors: SHAVER, Matthew, D.; 40640 High St, E/{Eé El\iKF IMFTR’NGLB’I\I%R’PIiRﬁUﬁ(I)E’RIS’ EE L; ;“II(J é‘l\\i
#517, Fremont, CA 94538 (US). GUPTA, Sachin; 34220 > i s o e A Pt e ey
Tempest Terr, Fremont, CA 94555 (US) TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
> > ’ KM, ML, MR, NE, SN, TD, TG).
(74) Agent: HICKMAN, Paul, L.; Technology & Intellectual Published:
Property Strategies, Group PC, 960 San Antonio Road, v ’
Suite 200, Palo Alto, CA 94303 (US). — without international search report and to be republished
ipt of that t (Rule 48.2
(81) Designated States (unless otherwise indicated, for every upon receipt of that report (Rule @)

kind of national protection available). AE, AG, AL, AM,

(54) Title: NETWORK SERVICE SYSTEM AND METHOD WITH OFF-HEAP CACHING

12

10

R i
AS1
>
N> 14
AS2
. y
18 st
A ¥ Y f/
> 20
26 B AS3 LB
cs2 «—> DB
ROUTER Asa [ROUTER o
]]
2 K o
o
o
24 b &3]
ASN
e
[— AN |
16 Flg. 1

(57) Abstract: A method for providing data over a network using an application server having off- heap caching includes receiving
at an application server coupled to a network a request for requested data, using an key index stored on the application server to loc-
ate where the requested data is stored in off-heap memory of the application server, retrieving the requested data from the off-heap
memory of the application server, and resolving the request.

5

10

15

20

WO 2014/036540 PCT/US2013/057752

Description

Title

NETWORK SERVICE SYSTEM AND METHOD WITH OFF-HEAP CACHING

Field

This invention relates generally to computerized systems for managing physical

memory in a real-time environment.

Background

Electronic commerce, often known as “e-commerce”, includes the buying and selling
of products or services over electronic systems such as the Internet. The amount of trade
conducted electronically has grown immensely with the widespread adoption of Internet
technology. One particularly explosive area of growth in e-commerce is in the field of

advertising and, in particular, video advertising on the Internet.

Many network service systems supporting Internet functionality (*web network
service systems”), including those involving the delivery of video over the Internet, are
implemented with an object-oriented or pseudo object-oriented software platforms such
as the Java® software platform, available from Oracle Corporation. One characteristic of
Java is portability, which means that computer programs written in the Java language
must run similarly on any hﬁrdware/operating-system platform. This is achieved by
compiling the Java language code to an intermediate representation called Java bytecode,
instead of directly to platform-specific machine code. Java bytecode instructions are
analogous to machine code, but are intended to be interpreted by a virtual machine (VM)
written specifically for the host hardware. Standardized libraries provide a generic way to

access host-specific features such as graphics, threading, and networking,

One of the most critical performance issues for web service applications written in
Java is garbage collection of data on a portion of virtual memory space known as “the
heap.” To keep the heap from filling up with obsolete objects a process known as

“garbage collection” can be used to remove objects that are no longer being used. The

. -1

10

15

20

25

WO 2014/036540 PCT/US2013/057752

garbage collection operation is associated with an “overhead”, which is a period of time
where other processes must be put on hold. Java objects which exist on the heap for a
very short amount of time contribute very little to overhead during garbage collection.
Objects which exist long enough on the heap to get moved into an “old generation space”

have a high overhead during garbage collection.

Java uses an automatic garbage collector to manage memory in the object lifecycle.
The programmer determines when objects are created, and the Java runtime is responsible
for recovering the memory once objects are no longer in use. Once no references to an
object remain, the unreachable memory becomes eligible to be freed automatically by the
garbage collector. Something similar to a memory leak may still occur if a programmer's
code holds a reference to an object that is no longer needed, typically when objects that -
are no longer needed are stored in containers that are still in use. If methods for a

nonexistent object are called, a "null pointer exception” is thrown.

Java contains multiple types of garbage collectors. A common garbage collection is
known alternatively as the “Concurrent Mark Sweep Collector” and the “CMS Garbage

Collector.” However, there are also several other garbage collectors that can be used to

manage Java heap memory.

One of the ideas behind Java's automatic memory management model is that
programmers can be spared the burden of having to perform manual memory
management. Unfortunately, with Java, garbage collection may happen at any time.
Ideally, it will occur when a program is idle. However, it is guaranteed to be triggered if
there is insufficient free memory on the heap to allocate a new object, which can cause a

program to stall momentarily. Explicit memory management is not possible in Java.

One of the most critical performance issues for web service applications written in
Java, such as a video delivery system, is garbage collection of data on the heap. Java
objects which exist for a very short amount of time have almost no overhead during
garbage collection. But objects which exist long enough to get moved into the old

generation space have a high overhead during garbage collection. Since garbage

10

WO 2014/036540 PCT/US2013/057752

collection is automatic, critical application programs may be put on hold, preventing the

timely performance of their functions.

For example, in an Internet-based advertising system that delivers video advertising,
an advertisement (“ad™) serving system might be required within 10 to 20 millisecond
decision window such that all of the data needed to make the decision must be cached
within the virtual memory of the application process. If garbage collection is initiated on
the heap memory, the application program will go on hold, and the decision window will

be lost.

These and other limitations of the prior art will become apparent to those of skill in

the art upon a reading of the following descriptions and a study of the several figures of

the drawing.

10

15

20

25

30

WO 2014/036540 PCT/US2013/057752

Summary

In an embodiment, set forth by way of example and not limitation, a network service
system with off-heap caching includes a plurality of application servers, a plurality of
cache servers, and a Jocal area network (LAN) router coupled the application servers to
the cache servers. The plurality of application servers each run an application server
process (ASP) having an ASP virtual memory space with ASP heap memory and ASP
off-heap memory. The plurality of cache servers each run a cache server process (CSP)
having CSP indices and a cache constructor process (CCP) which is in communication
with the CSP process, the CCP process having a CCP virtual memory space with CCP
heap memory and CCP off-heap memory, the CSP process providing access to copies of
CCP buffers stored in the CCP off-heap memory and to the CSP indices. The local area
network (LAN) router coupling the plurality of application servers to the plurality of
cache servers such that an ASP process can store the copies of the CCP buffers in the

ASP off-heap memory and can use the key index to access the ASP buffers.

In an embodiment, set forth by way of example and not limitation, a method for
providing data over a network using an application server having off-heap caching
includes: receiving at an application server coupled to a network a request for requested
data; using an key index stored on the application server to locate where the requested
data is stored in off-heap memory of the application server; retrieving the requested data

from the off-heap memory of the application server; and resolving the request,

In an embodiment, set forth by way of example and not limitation, a method for
providing a network service system with off-heap caching includes: (a) providing a
plurality of application servers each running an application server process (ASP) having
an ASP virtual memory space with ASP heap memory and ASP off-heap memory; (b)
providing a plurality of cache servers each running a cache server process (CSP) having
CSP indices and a cache constructor process (CCP) which is in communication with the
CSP process, the CCP process having a CCP virtual memory space with CCP heap
memory and CCP off-heap memory, the CSP process providing access to copies of CCP
buffers stored in the CCP off-heap memory and to the CSP indices; and (c) providing a

local area network (LAN) router coupling the plurality of application servers to the

-4-

WO 2014/036540 PCT/US2013/057752

plurality of cache servers such that an ASP process can store copies of the CCP buffers in

the ASP off-heap memory and can use the key index to access the ASP buffers.

An advantage of certain example embodiments is that there is a reduced need for
garbage collection due to the use of off-heap storage, which reduces system overhead and
interruptions to ASP services. These and other advantages, embodiments and features
will become apparent to those of skill in the art upon a reading of the following

descriptions and a study of the several figures of the drawing.

10

15

20

WO 2014/036540 PCT/US2013/057752

Brief Description of the Drawings

Several example embodiments will now be described with reference to the drawings,
wherein like components are provided with like reference numerals. The example
embodiments are intended to illustrate, not limit, concepts disclosed herein. The

drawings include the following figures:

Figure 1 is a block diagram of an example network service system with off-heap

caching;

Figure 2 is a block diagram of an example hardware configuration for servers,
computers and microprocessor controlled apparatus which may form a part of the

example network service system of Fig. 1;

Figure 3 illustrates certain example interactions between an application server (AS)

and a cache server (CS) of the network service system of Fig. 1;

Figure 4 is a flow diagram of an example cache constructor process (CCP) setup

method;

Figure 4A helps illustrate the example cache constructor process (CCP) setup method
of Fig. 4,

Figure 5 is a flow diagram of an example process for updating a cache constructor

process (CSP);

Figure 6 is a flow diagram of an example process for starting-up the application

servers;

Figure 7 is a flow diagram of an example process for updating the application server

process (ASP); and

Figure 8 is a flow diagram of an example application server process (ASP).

10

15

20

25

WO 2014/036540 PCT/US2013/057752

Detailed Description Of Example Embodiments

Fig. I is a block diagram of an example network service system 10 with off-heap
caching. The example network setvice system 10 (which is sometime referred to as “a
data center”) includes a plurality of application servers 12 and a plurality of cache servers
14 which comprise a local area network (LAN) 16 including a LAN router 18. The
example network service system 10 also includes a database server 20 coupled to the
plurality of cache servers 14 and a wide area network (WAN) router 22 coupled to the

plurality of application servers 12.

The plurality of application servers 12 include, in this non-limiting example, N
application serverslASI, AS2, AS3, AS4, ... ASN. The plurality of cache servers 14
include, in this non-limiting example, M cache servers CS 1, CS2, ... CSM. Asis well
known to those of skill in the art, servers such as application servers 12 and cache servers

14 are generally microprocessor-based computer systems designed for network use.

LAN router 18 preferably includes a load balancer (LB) to enhance the efficiency of
the LAN 16. In this example, LAN router 18 couples the plurality of application servers
12 to the plurality of cache servers 18 such that a particular application server can become
associated with a particular cache server. If, for example, application server AS2 is not
yet associated with one of the plurality of cache servers 14, the load balancer LB of router
18 can assign one of the plurality of cache servers 14 based upon load balancing criteria
well known to those of skill in the art. For example, AS2 may be assigned cache server

CS1 to serve as its cache server. Once the relationship is established, AS2 and CS1 can

communicate directly through the router 18.

WAN router 22 also preferably includes a load balancer (LB) to enhance the
efficiency of the communication between the network service system 10 and the WAN
24. In this example, the WAN router 22 is coupled to WAN 24 by a connection 26 to an
Internet Service Provider (ISP) of the WAN 24 and is also couple to each of the plurality

of application servers 12. When a request for data from a new requestor is received over

- connection 26, the load balancer LB of router 22 can assign one of the plurality of

application servers 12 to handle the request based upon load balancing criteria well

10

15

20

25

WO 2014/036540 PCT/US2013/057752

known to those of skill in the art. For example, the new requestor (e.g. a computer or
mobile device communicating via the Internet) can be assigned to application server AS4.
Once the relationship is established, the new requestor and communicate directly with

application server AS4 through router 22.

Fig. 2 is a simplified block diagram of a computer and/or server 28 suitable for use
in system 10. By way of non-limiting example, computer 28 includes a
microprocessor 30 coupled to a memory bus 32 and an input/output (I/0) bus 34. A
number of memory and/or other high speed devices may be coupled to memory bus 32
such as the RAM 36, SRAM 38 and VRAM 40. Attached to the /O bus 34 are various
I/0 devices such as mass storage 42, network interface 44 and other [/O 46. As will
be appreciated by those of skill in the art, there are a number of non-transient
computer readable media available to the microprocessor 30 such as the RAM 36,
SRAM 38, VRAM 40 and mass storage 42. The network interface 44 and other /O
46 also may include computer readable media such as registers, caches, buffers, etc.
Mass storage 42 can be of various types including hard disk drives, optical drives and

flash drives, to name a few.

Fig. 3 illustrates certain example transactions between an application server (AS) 12’
of the plurality of application servers 12 and a cache server (CS) 14’ of the plurality of
cache servers 14. As will be appreciated by those of skill in the art, application server 12’
can run a number of concurrent processes and threads. By way of non-limiting example,
application server 12 is shown to be running processes P1, ..., PN as well as an
application server process (ASP) 48. Associated with each of these processes is an
allocated amount of virtual memory space. For example, ASP 48 is associated with a

virtual memory space 50 including heap memory 52 and off-heap memory 54,

As will be appreciated by those of skill in the art, virtual memory space is typically a
contiguous range of virtual memory addresses which are mapped to physical memory that
may or may not be contiguous. Java, for example, automatically allocates the range of
addresses for the heap memory (which is subject to automatic garbage collection) for a

process such as ASP 48 upon initialization. Portions of virtual memory space that are not

10

15

20

25

WO 2014/036540 PCT/US2013/057752

on the heap (“off-heap memory”) are not subject to automatic garbage collection by Java

processes.

It should be noted that the present example is implemented using a Java software
platform which generates heap memory that is subject to automatic garbage collection.
Other examples can be implemented on other than a Java software platform which still
may be subject to automatic garbage collection. Tt will therefore by understood that the
term “heap memory” can be considered to mean “memory subject to automatic garbage
collection” and “off-heap memory” can be considered to mean “memory that is not

subject to automatic garbage collection” for such alternative examples.

As it will also be appreciated by those of skill in the art, cache server 14° can run a
number of concurrent processes and threads. By way of non-limiting example, cache
server 14” is shown to be running a cache server process (CSP) 56 having a virtual
memory space 58 and a cache constructor process (CCP) 60 having a virtual memory
space 62 with a heap memory 64 and an off-heap memory 66, The CSP 56 and CCP 60
communicate with each other as indicated at 67. The CSP 56 can be implemented with
standard software cache servers, such as EHCache Cache Server providéd by Terracotta,

Inc. of San Francisco, California.

In this example, application server 12 and cache server 14 communicate using an
HTTP protocol. As will be appreciated by those of skill in the art, HTTP stands for
“Hypertext Transfer Protocol” which is an application protocol for distributed,
collaborative, hypermedia information systems. For example HTTP is the foundation for
data communication for the World Wide Web (WWW) on the Internet. With the HTTP
protocol, ASP 48 may send a request 68 to CSP 56 which can “resolve the request” and
provide a response 70 to the ASP 48. The request can be sent by HTTP path, as will be
appreciated by those of skill in the art. A separate HTTP path provides access various
data structures, lists and data blocks. For example, an HTTP path through the load

balancer of router 18 for the CSP index for the video cache may look something like:

http://loadbaladd/playlistcache/videocache/index

10

15

20

25

30

WO 2014/036540 PCT/US2013/057752

As used herein, a “buffer” is a segment of virtual memory that is receptive to
blocks of data or “data blocks.” Data blocks are typically associated with a particular
data type, such as video data, audio data, etc. A buffer might be of insufficient size to
accommodate a particular data block, in which case multiple buffers may be used to store
the data block. A buffer may also include more than one data block, even of different
types. By way of non-limiting example, various types of data can be stored within the
blocks for a particular data structure, such as the key index. Also, by way of non-limiting
example, the data blocks can be of the same size as the data buffers, although multiple
data blocks and data buffers may be needed to store the data for a particular data

structure. -

Fig. 4 is a flow diagram of an example cache constructor process (CCP) setup
method 72. Fig. 4A helps illustrate the example method 72 of Fig. 4A. In this example,
method 72 starts at 74 and, in an operation 76, N buffers 77 are created in non-garbage
collected (e.g. “off-heap”) memory space. Next, in an operation 78, a buffer list 79 is
created in garbage collected (e.g. “on heap™) memory space with pointers to the N buffers
77. In an operation 80, a free pool buffer list 81 is created with pointers to free buffers of
the N buffers 77 (which would be ail of them on startup). Next, in an operation 82, data
blocks are stored in buffers which correspond to “L.” data structures 83. In an operation
84, L data lists are created with pointers to the allocated buffers of the N buffers 77. An
operation 86 writes data blocks to the cache server process (CSP) and an operation 88
writes the index for the data blocks to the CSP. Next, in an operation 90, a message is
sent to an application server (using, for example, a JMS protocol) to alert the application
server that the off-heap cache has changed and providing the address of the CSP and
CCP. As will be appreciated by those of skill in the art, the IMS protocol refers to the
“Java Message Service” protocol for sending message between two or more clients (e.g.

computers, servers, etc.). The method 72 ends at 92,

Fig. 5 is a flow diagram of an example process 94 for updating a cache constructor
process (CSP). Process 94 starts at 96 and, in an operation 98, it is determined if there is
an update to the data in the data blocks of the buffers stored in off-heap memory. If so,
an operation 100 creates a new list for the data structure. Optionally, in an operation 102,

it can be determined if the number of buffers in the free pool has fallen below a threshold

-10-

10

15

20

25

30

WO 2014/036540 PCT/US2013/057752

“t”. For example, if the number of buffers N= 1000, and if the threshold t = 200, a
message may be sent to an operator that the number of free buffers is getting low if the
number of buffers in the free pool is less than 200. Next, in an operation 104, buffers are
requested from the free pool and pointers to those buffers are put into the new list. In an
operation 106, the buffers as populated with the new data blocks and the old buffers (with
the obsolete date) is de-allocated to the free buffer pool in an operation 108. The old key
list is then destroyed in an operation 110, and the index file is read from the CSP in an
operation 112. Next, in an operation 114, the data block is written to the CSP and, in an
operation 116, the index file is updated. Finally, in an operation 118, a message is sent
(e.g. using JMS) for that specific cache type that it has been updated and the address of
the CSP and CCP are provided. The process 94 ends at 120.

It will be appreciated that the process 94 operates by creating a new set of data
blocks and a new CSP index before destroying the old data blocks and old index. For
example, if the old data is in a set of buffers “A”, a new set of buffers “B” is provided
with the new data blocks and a new CSP index is made to the data blocks in the B buffers.
In this example embodiment, the writing of the “B” set of buffers and the overwriting of
the old CSP index with the new CSP index causes a switch to the new data as an atomic
operation. Once complete, the A buffers are returned to the free buffer pool and the old

CSP index is allowed to be garbage collected.

Figure 6 is a flow diagram of an example process 122 for starting-up the
application servers 12. Preferably, the application servers 12 are not started up until after
the cache server 14 have been started up. Process 122 starts at 124 and, in an operation
126, N buffers are created in non-garbage collected (e.g. heap memory) space. Next, in
an operation 128, a buffer list is created with pointers to N buffers and, in an operation
130, a free pool buffer list is created with pointers to free buffers (which should be all of
them on start-up). Next, in an operation 132 a counter “i” is initialized and, in an
operation 134, the counter i is incremented by one. A decision operation 136 determines
if the counter i is less than or equal to “L”, the number of data types. If so, an operation
138 requests the index and stores data blocks from the CSP into the heap memory of the
ASP for each data structure(i} as well as creating a list(i} for the data structure(i). For

example, one type of data structure is a video data structure. Next, in an operation 140, N

-11-

10

15

20

25

WO 2014/036540 PCT/US2013/057752

blocks are allocated for the N data types that were read by operation 138 and data is
copied from the heap to fill out the list(i) for the data structure (i). Finally, the heap index
is read off of heap memory for each data structure in an operation 142, The loop
comprising operation 138, 140 and 142 is repeated L times, after which the process 122

ends at 144,

Fig. 7 is a flow diagram of an example process 146 for updating the application
server processes (ASP). The process 146 starts at 148 and, in a decision operation 150, it
is determined whether an update has been received from the CSP. If S0, an operation 152
constructs a data path to the CSP index from the ASP and the CSP index is read in an
operation 154, Next, in an operation 156, a new list is created for the data structure and,
in an operation 158, new data blocks are stored from the CSP into the heap memory of the
ASP. Operation 160 allocated the same number of buffers from the free buffer pool and
operation 162 copies data blocks into the buffers and fills out the new data list. Next, in
an operation 164, on-heap blocks are released for garbage collection and, in an operation
166, the key index is read into heap memory. Old buffers are returned to the frec pool in
an operation 168 and the old list is de-referenced so that it is subject to garbage collection

in operation 170. The process 146 ends at 172.

Fig. 8 is a flow diagram of an example process 174 for the application server
process (ASP). Process 174 starts at 176 and, in a decision operation 178, it is
determined if a request for data has been received. If so, an operation 180 uses the key
index to locate where data is stored in the off-heap buffers (e.g. using a key provided by
the request). Next, in an operation 182, data is retrieved from the off-heap buffer and, in
an operation 184, the request is resolved. In the case of a TCP/IP request, this usually

results in a response including the requested data.

It should be noted that in some of the examples as set forth herein, the key index
resides in heap memory where it is subject to garbage collection. However, the overhead
associated with this structure is far less than if the data blocks were also residing in heap
memory. In other embodiments, the key index resides in off-heap memory. In such

embodiments, the HTTP request for the key index that resides in heap memory is

-12-

10

15

20

25

WO 2014/036540 PCT/US2013/057752

redirected to an off-heap process (such as one implemented in the C programming

language) implements the key index in off-heap memory.

Although various embodiments have been described using specific terms and
devices, such description is for illustrative purposes only. The words used are words of
description rather than of limitation. It is to be understood that changes and variations

may be made by those of ordinary skill in the art without departing from the spirit or the

~ scope of any embodiments described herein. In addition, it should be understood that

aspects of various other embodiments may be interchanged either in whole or in part. It
is therefore intended that the claims herein and hereafter presented be interpreted in

accordance with their true spirit and scope and without limitation or estoppel.

-13-

10

15

20

25

WO 2014/036540 PCT/US2013/057752

WHAT IS CLAIMED IS:

CLAIMS

1. A network service system with off-heap caching comprising:

a plurality of application servers each running an application server process (ASP)

having an ASP virtual memory space with ASP heap memory and ASP off-heap memory;

a plurality of cache servers each running a cache server process (CSP) having CSP
indices and a cache constructor process (CCP) which is in communication with said CSP
process, said CCP process having a CCP virtual memory space with CCP heap memory
and CCP off-heap memory, said CSP process providing access to copies of CCP buifers

stored in said CCP off-heap memory and to said CSP indices; and

a local area network (LAN) router coupling said plurality of application servers to
said plurality of cache servers such that an ASP process can store said copies of CCP
buifers in said ASP off-heap memory and can use said key index to access said ASP

buffers.

2. A network service system with off-heap caching as recited in claim 1
wherein said LAN router includes a load balancer to provide an initial introduction
between an application server of said plurality of application servers and a cache server of

said plurality of cache servers.

3. A network service system with off-heap caching as recited in claim 2
further comprising a database server coupled to said plurality of cache server which can

provide data to be stored in said CCP off-heap memory.

4, A network service system with off-heap caching as recited in claim 3
further comprising a wide area network (WAN) router coupling said plurality of

application servers to a WAN.

-14-

10

15

20

25

WO 2014/036540 PCT/US2013/057752

5. A network service system with off-heap caching as recited in claim 4
wherein said WAN router includes a load balancer to provide an initial introduction to an

application server of said plurality of application servers.

6. A network service system with off-heap caching as recited in claim 5

wherein said WAN operates with an HTTP protocol.

7. A network service system with off-heap caching as recited in claim 6

wherein said WAN is the Internet.

8. A network service system with off-heap caching as recited in claim 7

wherein said LAN operates with an HTTP protocol.

9. A network service system with off-heap caching as recited in claim 8

wherein said ASP and said CSP communicate with a request and a response.

10. A network service system with off-heap caching as recited in claim 9

wherein said key index is stored in said ASP heap memory,

1. A method for providing data over a network using an application server
having off-heap caching comprising:

receiving at an application server coupled to a network a request for requested
data;

using an key index stored on said application server to locate where said requested

data is stored in off-heap memory of said application server;

retrieving said requested data from said off-heap memory of said application

server; and

-15-

10

15

20

25

WO 2014/036540 PCT/US2013/057752

resolving the request.

12. A method for providing data over a network using an application server
having off-heap caching as recited in claim 11 wherein said network is the Internet and
wherein said request comprises a TCP/IP protocol request and wherein resolving said

request comprises a TCP/IP protocol response.

13. A method for providing data over a network using an application server
having off-heap caching as recited in claim 12 wherein said application server includes an
application server process (ASP) having an ASP virtual memory space with a heap

memory subject to automatic garbage collection and said off-heap memory.

14. A method for providing data over a network using an application server
having off-heap caching as recited in claim 13 wherein said key index is stored in said

heap memory.

15. A method for providing data over a network using an application server
having off-heap caching as recited in claim 13 wherein said key index is stored in said

ofi-heap memory.

16. A method for providing a network service system with off-heap caching
comprising:

providing a plurality of application servers each running an application server
process (ASP) having an ASP virtual memory space with ASP heap memory and ASP

off-heap memory;

providing a plurality of cache servers each running a cache server process (CSP)
having CSP indices and a cache constructor process (CCP) which is in communication

with said CSP process, said CCP process having a CCP virtual memory space with CCP

-16-

10

15

20

25

WO 2014/036540 PCT/US2013/057752

heap memory and CCP off-heap memory, said CSP process providing access to copies of

CCP buffers stored in said CCP off-heap memory and to said CSP indices; and

providing a local area network (LAN) router coupling said plurality of application
servers to said plurality of cache servers such that an ASP process can store said copies
CCP buffers in said ASP off-heap memory and can use said key index to access said ASP

bufiers.

17. A method for providing a network service system with off-heap caching as

recited in claim 16 further comprising:
providing a database server this is coupled to said plurality of cache servers; and

developing said CCP buffers using said database server.

18. A method for providing a network service system with off-heap caching as
recited in claim 17 further comprising sending an update message to said plurality of

application servers when there has been a change to said CCP buffers.

19. A method for providing a network service system with off-heap caching as
recited in claim 18 wherein an ASP updates its off-heap memory to reflect the change to

said CCP buffers.

20. A method for providing a network service system with off-heap caching as
recited in claim 19 wherein said key index is updated to reflect the change to the CCP

buffers.

-17-

WO 2014/036540 PCT/US2013/057752

Sheet 1/8

20

Fig. 1

:

CSM

e o~
T Y g | o000

/10
———
€—
L »
a3
.
>
—>

LB

ROUTER

>
>
—>

——
fe
I‘\

ASN

000

12
AS1
AS2
AS3
AS54

SRR B N
I L
> =
\ 5
o
't

> ~ |«

3 (Y

24

PCT/US2013/057752

WO 2014/036540

Sheet 2/8

Z ‘b4

o

S
-

N ywomuan
)

N aovsors sovi

dr

4>

WVHA

WWVYS

~

I

WYY

PCT/US2013/057752

WO 2014/036540

Sheet 3/8

£ b4
dny
09 95 1S3ndD3y By
OEERIIPOEONO
\ —
L9 ISNOJSTY
) |)
o dvaH cod dVaIH o
Y O
\ll\\ \l...\\
” : E : _||_ _’_ 3 : _H_ :
47 e L
o WA 8s X3aNI 05
(SD) YIAHIS IHOVD (SV) YIAYIS NOLYOITddY
Fl Zl

WO 2014/036540 PCT/US2013/057752

Sheet 4/8
FIG. 4 74
72 \ @
CREATE N BUFFERS WRITE THE INDEX
_/’ IN NON-GARBAGE FOR THE DATA BLOCKS '\
76 COLLECTED SPACE TO THE CSP 88
CREATE BUFFER SEND MESSAGE TO
/' LIST WITH POINTERS APPLICATION SERVER
78 TO N BUFFERS USINGIMSTHATA 1
SPECIFIC CACHETYPE |\ 90
IS UPDATED AND THE
ADDRESS OF CC/CS
CREATE FREE
" POOL BUFFER
%0 /| LISTWITH POINTERS
TO FREE BUFFERS »
i 92
STORE DATA BLOCKS IN
| BUFFERS WHICH
82 /| CORRESPONDTO L 77
DATA STRUCTURES - =
1{]2]}3] 000N
OFF HEAP
CREATE L DATA ON HEAP
| LISTS WITH POINTERS 2l
/ TO ALLOCATED . BUFFER
84 BUFFERS 79471 ust >
i 3 }83
(o]
| WRITE DATA BLOCKS EREE g
56 y/ TO THE CSP g1 471 BUFFERS 1/

FIG. 4A

WO 2014/036540 PCT/US2013/057752

Sheet 5/8

26
START

UPDATE TO @
DATA IN DATA Ao
BLOCKS
¢ YES 98 ¢ N2
CREATE NEW
LIST FOR DATA B\lf_\gg(ET%AcTép
STRUCTURE
- 100 ¢ N\ 114
YES
SEN
WARNIF:I)\IG FREEtgooz UPDATE INDEX FILE
102 N
¢ NO ¢ \ 116
REQUEST BUFFERS
FROM FREE POOL AND SEND MESSAGE TO
> PUT POINTERS INTO AS USING JMS
NEW LIST - FOR THAT SPECIFIC
< CACHETYPE
¢ 104 IS UPDATED AND THE
ADDRESS OF CCP & CSP
POPULATE BUFFERS
WITH NEW VERSION N
OF DATA 118
~
y e)
DEALLOCATE OLD 120
BUFFERS TO
THE FREE POOL
‘L 108 V\
94
DESTROY OLD
LIST
N 10

FIG. 5

WO 2014/036540

124
START

PCT/US2013/057752

Sheet 6/8

g

CREATE N BUFFERS
IN NON-GARBAGE
COLLECTED SPACE

-

126

v

CREATE BUFFER
LIST WITH POINTERS
TO N-BUFFERS

v

CREATE FREE
POOL BUFFER
LIST WITH POINTERS
TO FREE BUFFERS

140~

122

v

138-/f FOR DATA STRUCTURE (/)

REQUEST INDEX & STORE
DATA BLOCKS FROM CSP
IN HEAP ON ASP.

CREATE LIST (¢)

v

- ALLOCATE N BLOCKS
FOR END DATA READ
ABOVE AND COPY DATA
OFF HEAP

FILL OUT LIST (¢}

v

142_/f READ OF HEAP INDEX

IN HEAP MEMORY
FOR EACH DATA
STRUCTURE

WO 2014/036540 PCT/US2013/057752

Sheet 7/8
148 |
START
REVIEW UPDATE @ RELEASE ON HEAP
MESSAGE FROM BLOCKS FOR GARBAGE
CSP? COLLECTION
¢ 150 ¢ \ 164
TCONSTRUCT PATH READ KEY INDEX
O CSP INDEX FROM INTO HEAP MEMORY
THE ASP
¢ =152 ¢ \ 166
READ OFF HEAP ADD OLD BUFFERS
INDEX FILE TO FREE POOL
- 154 -
¢ NO ¢ \ 168
CREATE NEW LIST DEREFERENCE OLD
FOR THE DATA LIST FOR GARBAGE
STRUCTURE COLLECTION
-~ -
¢ 156 \ 170
STORE NEW DATA
BLOCKS FROM THE CSP
INTO HEAP ON ASP 172
-
¢ \-158
ALLOCATE SAME NUMBER
OF BUFFERS FROM
FREE POOL
¢ \- 160 \
COPY DATA BLOCKS 146
INTO BUFFERS AND
FILLINNEW DATALIST | 44,

FIG. 7

WO 2014/036540

Sheet 8/8

RECEIVE A
REQUEST
FOR DATA?

v

176

O

178

USE KEY INDEX TO LOCATE

WHERE DATA IS STORED
IN OFF-HEAP BUFFER

\ 180

v

RETRIEVE DATA
FROM OFF-HEAP
BUFFER

\182

v

RESOLVE
REQUEST

\ 184

PCT/US2013/057752

174

e

FIG. 8

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - claims
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings

