Abstract:

Title: IMPROVED POLYMERS AND METHODS FOR OPHTHALMIC APPLICATIONS

A61F 2/16 (2006.01) A61L 27/14 (2006.01)
A61F 2/14 (2006.01) A61L 27/50 (2006.01)

International Application Number:
PCT/US2013/027710

International Filing Date:
26 February 2013 (26.02.2013)

Filing Language:
English

Publication Language:
English

Priority Data:
13/41 1,836 5 March 2012 (05.03.2012) US

Applicant: KEY MEDICAL TECHNOLOGIES, INC, [US/US]; 2110 Omega Road, Suite F, San Ramon, CA 94583 (US).

Inventor: Khalid MENTAK, [US/US]; 714 Jadecrest Court, San Ramon, CA 94582 (US).

Agent: FRENCHICK, Grady, J; Whyte Hirschboeck Dudek S.C., 33 East Main Street, Suite 300, P.O. Box 1379, Madison, WI 53701-1379 (US).

Published:
— with declaration under Article 17(2)(a); without abstract; title not checked by the International Searching Authority

Title: IMPROVED POLYMERS AND METHODS FOR OPHTHALMIC APPLICATIONS

Abstract:
IMPROVED POLYMERS AND METHODS
FOR OPHTHALMIC APPLICATIONS

FIELD OF INVENTION

[0001] The present invention relates to novel materials particularly useful for ophthalmic applications and methods for making and using the same. More particularly, the present invention relates to relatively soft, optically transparent, foldable, high refractive index materials particularly suited for use in the production of intraocular lenses, contact lenses, and other ocular implants and to methods for manufacturing and using the same.

BACKGROUND OF THE INVENTION

[0002] Since the 1940's optical devices in the form of intraocular lenses (IOLs) have been utilized as replacements for diseased or damaged natural ocular lenses. In most cases, an intraocular lens is implanted within an eye at the time of surgically removing the diseased or damaged natural lens, such as for example, in the case of cataracts. For decades, the preferred material for fabricating such intraocular lenses was poly(methyl methacrylate) (PMMA), which is a rigid, glassy polymer.

[0003] Softer, more flexible IOLs have gained in popularity in recent years due to their ability to be compressed, folded, rolled or otherwise deformed. Such softer IOLs may be deformed prior to insertion thereof through an incision in the cornea of an eye. Following insertion of the IOL in an eye, the IOL returns to its original, pre-folded shape due to the memory characteristics of the soft material. Softer, more flexible IOLs as just described may be implanted into an eye through an incision that is less than 4.0 mm i.e., much smaller than the 5.5 to 8.0 mm incision necessary to implant more rigid IOLs such as those made from PMMA. A larger incision is necessary for more rigid IOLs because the lens must be inserted through an incision in the cornea slightly larger than the diameter of the inflexible IOL optic portion. Accordingly, more rigid IOLs have become less popular in the market since larger incisions have occasionally been found to be associated with an increased incidence of postoperative complications, such as induced astigmatism.
With recent advances in small-incision cataract surgery, increased emphasis has been placed on developing soft, foldable polymer materials suitable for use in artificial IOLs. In general, these materials fall into one of three categories: hydrogels, silicones and low glass transition temperature acrylics.

A further recent advance in IOL implantation is the use of IOL injectors to implant the IOL in the eye. Cf., US 2007/0060925 "Preloaded IOLS Injector and Methods" to Pynson; US 2005/0222578 "IOL Injector" to Vaquero; and US 7,988,701 "Preloaded IOL Injector" to Vaquero et al.; each of which are incorporated by reference herein in their entitrees. Unfortunately injector implantation of an IOL generally proceeds more smoothly (i.e., with fewer surgical difficulties) the more rigid and thus generally the more handleable, the IOL.

Thus, for surgical purposes a more rigid lens is suggested. Usually this means a less than fully hydrated polymer lens is injected. As is well known, post-implantation hydration of an IOL changes, sometimes unpredictably, the refractive index (RI) of the lens. This subjects the physician and the injectable IOL implantation to uncertainty as to the surgical outcome. This invention in one aspect reduces or eliminates that uncertainty of surgical outcome in the context of a post-implantation hydratable or hydrating IOL polymer, particularly where implantation is accomplished using an IOL injector.

In general, high water content hydrogel materials have relatively low refractive indices, making them less desirable than other materials with respect to incision size. Low refractive index materials require a thicker IOL optic portion to achieve a given refractive power. Silicone materials may have a higher refractive index than high-water content hydrogels, but tend to unfold too rapidly after being placed in the eye in a folded position. A too rapid unfolding of a folded lens can potentially damage the corneal endothelium and/or rupture the natural lens capsule and associated zonules. Low glass transition temperature acrylic materials are desirable because they typically have a high refractive index and unfold more slowly and more controllably than silicone materials when inserted into e.g., the lens capsule. Unfortunately, low glass transition temperature acrylic materials, which contain little or no water initially, may absorb pockets of water, in vivo, causing light reflections or "ghostenings". Furthermore, it is difficult to achieve ideal folding and unfolding characteristics due to the temperature sensitivity of acrylic polymer memory.
U.S. Pat. No. 5,480,950 issued Jan. 2, 1996 teaches of high refractive index hydrogel materials having a hydrated equilibrium water content ("EWC") of at least 57% for use in the manufacture of IOLs. The high refractive index hydrogel materials are cross-linked polymers prepared from mixtures of N-vinylpyrrolidone, 4-vinylpyrimidine and a vinyl pyridine having equilibrium water contents up to 90% and refractive indexes of 1.560 to 1.594 in the dry state. The IOLs as described are not implanted in a hydrated state. Rather, the IOLs are implanted in a dry, folded and elongated state and hydrated in situ. The refractive indexes in the hydrated state as used in the eye are not provided. U.S. Patent Application Publication 2002/0049290 relates to high refractive index (RI) ophthalmic hydrogel materials

U.S. Pat. No. 5,693,095 issued Dec. 2, 1997 teaches of high refractive index, low water content IOL materials. The materials taught in this particular patent are acrylic materials having an elongation of at least 150%. IOLs manufactured from a material having such elongation characteristics will not crack, tear or split when folded. However, such low water content acrylic materials have been found to be less biocompatible than other materials when manufactured into and used as IOL devices.

In the past decade, hydrophobic polymers have been used in IOL manufacturing with some success. The ophthalmic community has accepted this type of polymer as having good physical properties and acceptable biocompatibility in ocular environments. However, current IOLs made from conventional hydrophobic polymers sometimes suffer from poor optical stability in ocular fluids (e.g. glistenings, optical artifacts) and low refractive indices. The formation of unwanted particles and deposits in the bulk of hydrophobic polymers is attributed to uncontrolled water sorption and subsequent phase separation. Conventional homopolymers currently used to produce copolymers with high RIs (>1.51) absorb varying amounts of water in a sporadic fashion, creating phase separation, haze, and glistenings.

Currently, there are no foldable, high RI IOL polymers that resist the formation of glistenings and deposits. Compositions known to resist formation of glistenings require hydration prior to implantation. This limits foldability, incision size, and preloading packaging, which quickly becoming the method of choice for packaging IOLs. More importantly, there are no IOLs made with polymers with EWC having a value of in the range of about 3% to about 15% by weight. Not wishing to be bound by
any theory, it is believed, however that this family of polymers is more resistive to
glistenings. In this invention, compositions and method to manufacture glistening-free
IOLs with EWC of 5-15% are provided.

SUMMARY OF THE INVENTION

[0012] The present invention is a new family of high RI polymers particularly
suitable for, but not limited to, foldable IOL applications. Materials of this invention are
optically stable in ocular fluids and resist the formation of unwanted optical artifacts. The
unusual properties of the copolymers of this invention are achieved by incorporating a
hydrophilic polymer within a very hydrophobic polymer matrix that allows the copolymer
to have a specific EWC in the range of about 3% to about 15% by weight, preferably in
the range of about 4% to about 10% by weight. In addition, the limited amount of water
that is absorbed is well distributed and well dispersed within the matrix, preventing
macrophase separation noted in prior art compositions. The result is an optically clear
material with stable optical properties.

[0013] It is well understood that such compositions may result in IOLs with dioptic
powers that changes upon implantation in the eye. Another aspect of this invention is to
anticipate empirically the change in dioptic power via measurements of IOL diopter in a
hydrated state prior to drying and sterilization for packaging. Thus, in this further aspect,
the present invention is a method for determining the "after implantation" or post-
implantation refractive index/diopter of an intraocular lens. In this method the lens,
usually but not always an intraocular lens, after manufacture, is in a substantially
dehydrated state so as to be sufficiently handleable to be implanted into the eye through
an incision in the cornea e.g., by means of an IOL injector. That lens after manufacture is
hydrated by e.g., soaking it in saline solution e.g., for 24 hours, at room temperature. The
diopter of the hydrated lens is measured while the polymer of the lens is in a hydration
state similar to the state of hydration it would or will obtain when it is implanted in the
eye. The diopter of the IOL is then measured in its hydrated state outside of the eye. The
lens then is at least partially dehydrated sufficiently to be sterilized and stored in a
substantially dry state to where it is sufficiently handleable to be implanted by means of
e.g., an IOL injector. The implanted IOL then is implanted in the eye using an injector
through a corneal incision. The implanted, partially dehydrated IOL then hydrates within
the eye to where it equilibrates to substantially the same refractive index (and thus
diopter) obtained by measurement while it was hydrated prior to implantation. In this practice of the invention, post-implant hydrated IOL refractive index is obtained with approximately 100% certainty while simultaneously obtaining all the advantages of injector or injector-based IOL implantation processes.

[0014] In one aspect the present invention is a method of determining post-implantation diopter of a lens pre-implantation comprising the steps of:

- providing an intraocular lens (IOL) comprising a polymer for which the rigidity and refractive index is dependent upon its state of hydration;

- exposing the lens before implantation to a hydrating liquid for a sufficient length of time that the polymer of the IOL hydrates to a state of hydration which is substantially similar to the state of hydration the IOL polymer will obtain post-implantation;

- measuring the diopter value of the substantially hydrated lens;

- partially dehydrating the lens to enhance its handling characteristics;

- implanting the partially dehydrated IOL in an eye; and

- permitting the partially dehydrated lens to hydrate in the eye post-implantation to where it obtains the diopter value substantially that of the lens measured pre-implantation.

[0015] This invention relates to novel copolymers particularly adaptable to intraocular lenses ("IOL"), contact lens, and other ophthalmic and optical applications. IOLs made from the materials of this invention have a very high refractive index, and may be machined or molded at around room temperature. IOLs of this invention may be folded and used to replace a defective natural lens of the eye by insertion through a small incision without the need for further processing or hydration. A particular advantage of the materials of this invention is their unusual hybrid character that prevents uncontrolled water sorption.

[0016] Foldable ophthalmic lens materials having controllable, uniform, relatively high water content and unexpectedly high refractive indices particularly suited for use as intraocular lenses (IOLs), or other ophthalmic devices such as but not limited to contact
lenses, keratoprostheses and corneal rings or inlays, are the primary loci of the present invention.

[0017] This invention relates to copolymer compositions comprising limited amounts of a monomer having an aromatic monomer and/or a carbazole and/or naphthyl moiety, carbazole, naphthalene, or a naphthyl group and/or a hydrophobic monomer. Carbazole and or naphthyl moiety monomers are added to the comonomer to increase the refractive index of the comonomer and increase the ability of the copolymer material to block blue light (wavelength up to 475 nm). A monomer having a surface tension generally in the range of 50 dyn/cm or less is used to create a very hydrophobic matrix. A hydrophilic polymer is added to create a hydrophilic phase (in a process described below) for controlled water sorption.

[0018] Accordingly, it is an object of the present invention to provide a biocompatible IOL material having a high refractive index.

[0019] Another object of the present invention is to provide an IOL material having a high refractive index-and controlled water sorption;

[0020] Still another object of the present invention is to provide a method to allow accurate targeting of the power of the lens in-vivo.

[0021] Still another object of the present invention is to provide an IOL material that is relatively simple to manufacture.

[0022] These and other objectives and advantages of the present invention, some of which are specifically described and others that are not, will become apparent from the detailed description and the claims that follow.

DETAILED DESCRIPTION OF THE INVENTION

[0023] Materials of the present invention with high refractive indexes are desirable to allow manufacturers to manufacture thinner IOLs. A thin IOL or thin IOL optic is critical in enabling a surgeon to minimize incision size. Keeping the surgical incision size to a minimum reduces intraoperative trauma and postoperative complications. A thin IOL is also critical for accommodating certain anatomical locations in the eye such as the anterior chamber and the ciliary sulcus. IOLs may be placed in the anterior chamber for
increasing visual acuity in both aphakic and phakic eyes and placed in the ciliary sulcus for increasing visual acuity in phakic eyes.

[0024] The preferred materials of the present invention have the flexibility required to allow the same to be folded or deformed so that IOLs made therefrom may be introduced into an eye through the smallest possible incision.

[0025] The novel materials of the present invention are copolymers, trimers, tetramers, etc., comprising at least two monomeric components:

[0026] a hydrophobic monomer, and a hydrophobic monomer. A cross linker generally is included as is a UV absorber.

[0027] The compositions comprise multimers including: a first monomer containing an aromatic, carbazole and or naphthyl moiety, the aromatic/carbazole/naphthyl moiety monomer being present in the composition at a concentration of at least 25% and preferably up to about 35-80%.

[0028] The composition further includes a second monomer with a hydrophobic homopolymer, the hydrophobicity being defined as the homopolymer having a surface tension of about 50 dyn/cm or less, the second monomer being present in the copolymer in an amount of at least about 20 weight percent, preferably about 50-60 weight %.

[0029] The composition then includes at least about 10 weight % of a hydrophilic monomer, preferably about 20-30 weight %. The composition then includes a crosslinking monomer, the crosslinking monomer being present at a concentration in the range up to 10 weight percent, preferably of about 1 weight % to about 8 weight %.

[0030] Suitable hydrophilic monomers (i.e., monomers whose homopolymers are hydrophilic in accordance with this invention) include but are not limited to 2-hydroxyethylacrylate, 2-hydroxyethylmethacrylate, acrylamide, N-ornithine acrylamide, N-(2-hydroxypropyl)acrylamide, polyethylene glycol acrylates, polyethylene glycol methacrylates, N-vinyl pyrrolidone, N-phenylacrylamide, dimethylaminopropyl methacrylamide, acrylic acid, benzylmethacrylamide, 4-hydroxybutylmethacrylate, glycerol mono methacrylate, glycerol mono acrylate, 2-sulfoethylmethacrylate, phenoxyethyl acrylate, phenoxy ethyl methacrylate, 2-(2-ethoxyethoxy)ethyl acrylate, 2-
(2-ethoxyethoxy)ethyl methacrylate, furyl acrylate, furfuryl methacrylate, and methylthioethylacrylamide.

[0031] Suitable hydrophobic monomers (i.e., monomers whose homopolymers are hydrophobic in accordance with this invention) include but are not limited to lauryl methacrylate, lauryl acrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, n-decyl acrylate, n-decyl methacrylate, hexyl acrylate, hexyl methacrylate, stearyl acrylate, stearyl methacrylate, isodecyl acrylate, isodecyl methacrylate, isobomyl acrylate, isobomyl methacrylate, vinyl laurate, vinyl stearate, 1-hexadecyl acrylate, 1-hexadecyl methacrylate, n-myristyl acrylate, n-myristyl methacrylate, n-dodecyl methacrylamide, butyl acrylate, n-butyl methacrylate, isoctyl acrylate, isodecyl acrylate, isoctyl methacrylate, and isoradecyl methacrylate.

[0032] Suitable crosslinkers include for example but are not limited to ethylene glycol dimethacrylate (EGDMDA), diethylene glycol dimethacrylate, triethylene glycol dimethacrylate and poly(ethylene glycol) dimethacrylate wherein ethylene glycol dimethacrylate is preferred. Suitable initiators include for example but are not limited to azobis(isobutynitrite), 2,2'-azobisis(2,4-dimethylvaleronitride), 2,2'-azobis (methylbutyromitrile), 1,1'-azobis (cyanocyclo-hexane), di-t-butyl peroxide, dicumyl peroxide, t-butylcumyl peroxide, 2,5-dimethyl-2,5-bis(2-ethylhexanoyl peroxhexane, t-butyl peroxyneodecanate, t-butyl peroxy 2-ethylhexanoate, di(4-t-butyl cyclohexyl) peroxycarboxonate, t-butyl peroxypropionate, decaonyl peroxide, lauroyl peroxide, benzoyl peroxide, 2,4-pentandione peroxide, di(n-propyl) peroxycarboxonate, 2-amyl peroxyneodecanate and t-butyl peroxyacetate wherein 2,2'-azobis(isobutynitrite) is preferred. Suitable ultraviolet light absorbers include for example but are not limited to beta-(4-benzotriazoyl-3-hydroxyphenoxo) ethyl acrylate, 4-(2-acryloxyethoxy)-2-hydroxybenzophenone, 4-methacryloyloxy-2-hydroxybenzophenone, 2-(2'-methacryloxy-5'-methylphenyl) benzotriazole, 2-(2'-hydroxy-5'-methacryoxyethylphenyl)-2H-benzo triazole, 2-[3'-tert-Butyl-2'-hydroxy-5'-(3''-methacryloyloxypropyl)phenyl]-5-chloro benzotriazole, 2-(3'-tert-Butyl-5'-[3''-dimethyl-vinysilpropoxy]-2'-hydroxy phenyl]-5-methoxybenzotriazole, 2-(3'-Allyl-2'-hydroxy-5'-methylphenyl) benzotriazole, 2-[3'-tert-Butyl-2'-hydroxy-5'-(3 " methacryloyloxypropoxy) phenyl]-5 methoxybenzotriazole, and 2-[3'-tert-Butyl-2'-hydroxy-5'-(3 "methacryloyloxypropoxy) phenyl]-5 methoxybenzotriazole.
phenyl]-5-chlorobenzotriazole wherein beta-(4-benzotriazoyl-3-hydroxyphen- oxy)ethyl acrylate is the preferred ultraviolet light absorber.

[0033] A UV absorber optionally may be added to the copolymer compositions. A novel, preferred, UV/blue light absorber, i.e., vinyl anthracene, may be added to the copolymer compositions. Conventional UV absorbers such as a vinyl benzophenone or a vinyl benzotriazole also may be used.

[0034] Table 1

<table>
<thead>
<tr>
<th>Example</th>
<th>Monomer</th>
<th>Concentration</th>
<th>RI</th>
<th>% EWC</th>
<th>Tg °C</th>
<th>ΔD upon hydration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PEA</td>
<td>70</td>
<td>1.5341</td>
<td>7</td>
<td>2</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>HEA</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGDM</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PEMA</td>
<td>67</td>
<td>1.5401</td>
<td>6</td>
<td>12</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>HEA</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGDM</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PEA</td>
<td>67</td>
<td>1.5441</td>
<td>8</td>
<td>16</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>HEMA</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGDM</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BA</td>
<td>70</td>
<td>1.5241</td>
<td>9</td>
<td>10</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HEA</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGDM</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>POEA</td>
<td>70</td>
<td>1.5201</td>
<td>10</td>
<td>19</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HEMA</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGDM</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>BMA</td>
<td>60</td>
<td>1.5312</td>
<td>8</td>
<td>18</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>HEA</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LM</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGDM</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>VC</td>
<td>27</td>
<td>1.5213</td>
<td>6</td>
<td>10</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>HEA</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LM</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGDM</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>VC</td>
<td>30</td>
<td>1.5422</td>
<td>14</td>
<td>7</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>EHA</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEA</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGDM</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0035] 0.3% by weight of MEB was used in all copolymer compositions.

PEA: 2-phenylethyl acrylate
PEMA: 2-phenylethyl methacrylate
POEA: Phenoxyethyl acrylate
BA: Benzyl acrylate
BMA: Benzyl methacrylate
VC: vinyl carbazole
EHA: 2-ethylhexylacrylate
LM: Lauryl methacrylate
HEMA; Hyroxyethylmethacrylate
HEA; Hydroxyethylacrylate
EGDM: ethylene glycol dimethacrylates
MEB: 2-(2'-Methacryloxy-5'methylphenyl)benzotriazole

General Preparation Steps for Polymers of Table 1, Example 1-8

[0036] The comonomers listed above were mixed in a glass flask using a magnetic stir bar for at least 30 minutes followed by sonication for the times indicated, and then stirring again for another 30 minutes.

[0037] We found that sonicating for about 30 minutes at a power setting of 100% on a Branson 5510 provides optically clear materials with adequate optical and physical properties. The monomer solution is degassed with argon and poured in 6 in. x 6 in. molds made from glass plates separated by a silicone gasket. The molds were kept at 60°C for 6 hours and then post-cured in vacuo at 100°C for 12 hours.

[0038] The resulting copolymers are rigid enough to be machined at around room temperature. A unique aspect of the present invention is that the refractive index of these materials is so high that lenses are made thin enough to be folded without further processing or hydration.

[0039] IOLs are machined from the copolymers to exact dioplers. The IOLs are hydrated in distilled water for 3 hours at 50°C and the diopter measured again in a hydrated state. The value obtained is the actual power of the lens that should be used for labeling purposes.

[0040] Alternatively, a mathematical formula relating the diopter of a dry lens to that of the same lens hydrated may be developed from data such as that discussed below and used to label the IOLs.

Empirical Estimation of In-vivo Lens Diopter

[0041] Unlike conventional hydrogel where lens hydration results into a significant decrease in diopter due to a decrease of RI of the polymer upon absorbing water, the lenses of the present invention exhibit a relatively modest change in diopter upon hydration due to the small amount of water absorbed and a counterbalancing effect of the lens swelling and concomitant steepening of the radius of curvature. Lenses were lathe
cut from sheets made from polymer compositions made according to the procedure described previously. Ten (10) lenses were selected for each composition. Table 2 below shows the diopter of 20 D lenses made from polymer examples 1-8 before and after hydration:

Table 2

<table>
<thead>
<tr>
<th>Example</th>
<th>RI</th>
<th>% EWC</th>
<th>Diopter before hydration (D)</th>
<th>SD*</th>
<th>Diopter after hydration (D)</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5341</td>
<td>7</td>
<td>20.0</td>
<td>0.1</td>
<td>20.6</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>1.5401</td>
<td>6</td>
<td>20.0</td>
<td>0.2</td>
<td>20.6</td>
<td>0.3</td>
</tr>
<tr>
<td>3</td>
<td>1.5441</td>
<td>8</td>
<td>20.0</td>
<td>0.1</td>
<td>20.8</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>1.5241</td>
<td>9</td>
<td>20.0</td>
<td>0.1</td>
<td>21.0</td>
<td>0.2</td>
</tr>
<tr>
<td>5</td>
<td>1.5201</td>
<td>10</td>
<td>20.0</td>
<td>0.2</td>
<td>21.0</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>1.5312</td>
<td>8</td>
<td>20.0</td>
<td>0.2</td>
<td>20.8</td>
<td>0.3</td>
</tr>
<tr>
<td>7</td>
<td>1.5213</td>
<td>6</td>
<td>20.0</td>
<td>0.2</td>
<td>20.5</td>
<td>0.2</td>
</tr>
<tr>
<td>8</td>
<td>1.5422</td>
<td>14</td>
<td>20.0</td>
<td>0.2</td>
<td>20.8</td>
<td>0.3</td>
</tr>
</tbody>
</table>

* Standard deviation, of diopter measurement, n=10.
Claims

What is claimed is:

1. A method of determining post-implantation diopter of a lens pre-implantation comprising the steps of:
 providing an intraocular lens (IOL) comprising a polymer for which the rigidity and refractive index is dependent upon its state of hydration;
 exposing the lens before implantation to a hydrating liquid for a sufficient length of time that the polymer of the IOL hydrates to a state of hydration which is substantially similar to the state of hydration the IOL polymer will obtain post-implantation;
 measuring the diopter value of the substantially hydrated lens;
 partially dehydrating the lens to enhance its handling characteristics;
 implanting the partially dehydrated IOL in an eye; and
 permitting the partially dehydrated lens to hydrate in the eye post-implantation to where it obtains title diopter value substantially that of the lens measured pre-implantation.

2. A method according to claim 1 wherein the implanting step is accomplished using an IOL injector means.

3. A method according to claim 1 wherein the IOL polymer has a EWC in the range of about 3% to about 15% by weight.

4. A method according to claim 1 wherein the IOL polymer has a EWC in the range of about 4% to 10% by weight.

5. A method according to claim 3 wherein the implanted IOL exhibits reduced or eliminated glistenings as experienced by the wearer, post-implantation.
6. A method according to claim 4 wherein the implanted IOL exhibits reduced or eliminated glistenings as experienced by the wearer, post-implantation.

7. A method according to claim 1 wherein the polymer comprises:

 a high refractive index monomer comprising an aromatic, carbazole or naphthyl moiety, carbazole, naphthalene or a naphthyl group; a hydrophobic monomer, a hydrophobic monomer, and a crosslinker.

8. The composition of claim 7, wherein said composition further includes an ultraviolet light absorbing material.

9. The composition of claim 7 wherein said composition includes an ultraviolet light absorbing material selected from the group consisting of beta-(4-benzotriazoyl-3-hydroxyphenoxy) ethyl acrylate, 4-(2-acryloxyethoxy)-2-hydroxybenzophenone, 4-methacryloxy-2-hydroxybenzophenone, 2-(2'-methacryloxy-5'-methylphenyl) benzotriazole, 2-(2'-hydroxy-5'-methacryoxy-ethylphenyl)-2H-benzotriazole, 2-[3'-tert-Butyl-2Tiydroxy-5'-(3"-methacyloyloxypropyl) phenyl]-5-chlorobenzotriazole, 2-(3'-tert-Butyl-5'-(3-dimethylvinylsilyp ropoxy)-2'-hydroxyphenyl]-5-methoxybenzotriazole, 2-(3'-Allyl-2'-hydroxy-5'-methylphenyl) benzotriazole, 2-[3'tert-Butyl-2'-hydroxy-5'([3"-methacryloyl- oxypropoxy) phenyl]-5-methoxybenzotriazole and 2-[3'-tert-Butyl-2'-hydr-oxy-5'- (3"-methacyloyloxypropoxy) phenyl]-5-chloro-benzotriazole.

10. A composition of claim 7, wherein the ultralight absorbing material is vinyl anthracene or derivatives therein.
11. A composition of claim 7 wherein the hydrophilic monomer(s) is selected from
the group consisting of 2-hydroxy-ethylacrylate, 2-hydroxyethylmethacylylate,
acrylamide, N-ornithine acrylamide, N-(2-hydroxypropyl)acrylamide,
polyethylene glycol acrylates, polyethylene glycol methacrylates, N-vinyl
pyrolidone, N-phenylacrylamide, dimethylaminopropyl methacrylamide, acrylic
acid, benzylmeth-acrylamide, 4-hydroxybutylmethacrylate, glycerol mono
methacrylate, glycerol monoacrylate, 2-sulfoethylmethacrylate, phenoxyethyl
acrylate, phenoxy- ethyl methacrylate, 2-(2-ethoxyethoxy)ethyl acrylate, 2-(2-
ethoxyethoxy)ethyl methacrylate, furfuryl acrylate, furfuryl methacrylate, and
methylthioethylacrylamide.

12. A composition of claim 7 wherein the hydrophobic monomer(s) is selected from
the group consisting of Lauryl methacrylate, Lauryl acrylate, 2-ethylhexyl
acrylate, 2-ethylhexyl methacrylate, n-decyl acrylate, n-decyl methacrylate, hexyl
acrylate, hexyl methacrylate, stearyl acrylate, stearyl methacrylate, isodecyl
acrylate, isodecyl methacrylate, isobornyl acrylate, isobornyl methacrylate, vinyl
laurate, vinyl stearate, 1-hexadecyl acrylate, 1-hexadecyl methacrylate, n-myristyl
acrylate, n-myristyl methacrylate, n-dodecyl methacrylamide, butyl acrylate, n-
butyl methacrylate, isoctyl acrylate, isotridecyl acrylate, isoctyl methacrylate,
and isotridecyl methacrylate.
PATENT COOPERATION TREATY

PCT

DECLARATION OF NON-ESTABLISHMENT OF INTERNATIONAL SEARCH REPORT
(PCT Article 17(2)(a), Rules 35ter.(c) and (d) and 39)

Applicant's file reference
KMT-37419-A

INTERNATIONAL FILING

International application No.
PCT/US2013/027710

International filing date (day/month/year)
26 February 2013 (26.02.2013)

Date of mailing (day/month/year)
13 June 2013 (13.06.2013)

(Earliest) Priority date (day/month/year)
05 March 2012 (05.03.2012)

INTERNATIONAL PATENT CLASSIFICATION (IPC) or NATIONAL CLASSIFICATION
A61F 2/16(2006.01)i, A61F 2/14(2006.01)i, A61L 27/14(2006.01)i, A61L 27/50(2006.01)i

Applicant
KEY MEDICAL TECHNOLOGIES, INC. et al

This International Searching Authority hereby declares, according to Article 17(2)(a), that no international search report will be established on the international application for the reasons indicated below.

1. ☒ The subject matter of the international application relates to:
 a. ☐ scientific theories.
 b. ☐ mathematical theories.
 c. ☐ plant varieties.
 d. ☐ animal varieties.
 e. ☒ essentially biological processes for the production of plants and animals, other than microbiological processes and the products of such processes.
 f. ☐ schemes, rules or methods of doing business.
 g. ☐ schemes, rules or methods of performing purely mental acts.
 h. ☐ schemes, rules or methods of playing games.
 i. ☒ methods for treatment of the human body by surgery or therapy.
 j. ☒ methods for treatment of the animal body by surgery or therapy.
 k. ☒ diagnostic methods practised on the human or animal body.
 l. ☐ mere presentation of information.
 m. ☐ computer programs for which this International Searching Authority is not equipped to search prior art.

2. ☐ The failure of the following parts of the international application to comply with prescribed requirements prevents a meaningful search from being carried out:
 ☐ the description
 ☐ claims
 ☐ the drawings

3. ☒ A meaningful search could not be carried out without the sequence listing; the applicant did not, within the prescribed time limit:
 ☐ furnish a sequence listing on paper complying with the standard provided for in Annex C of the Administrative Instructions, and such listing was not available to the International Searching Authority in a form and manner acceptable to it.
 ☐ furnish a sequence listing in electronic form complying with the standard provided for in Annex C of the Administrative Instructions, and such listing was not available to the International Searching Authority in a form and manner acceptable to it.
 ☐ pay the required late furnishing fee for the furnishing of a sequence listing in response to an invitation under Rule 35ter.(a) or (b)

4. Further comments:

Name and mailing address of ISA/KR
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701, Republic of Korea
Facsimile No. 82-42-472-7140

Authorized officer
HAN, In Ho

Telephone No. 82-42-481-3362

Form PCT/ISA/203 (July 2009)