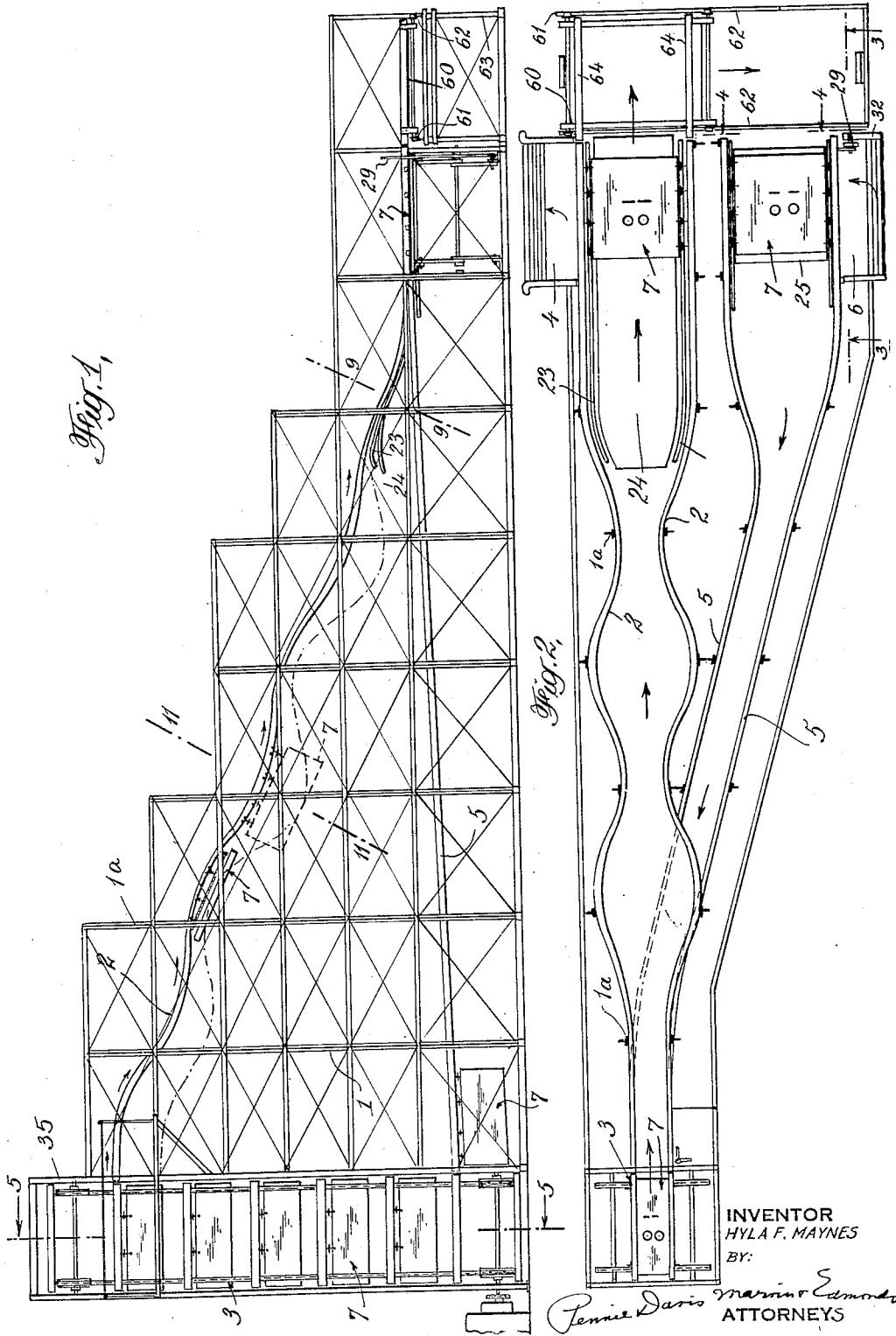


March 1, 1932.


H. F. MAYNES

1,847,250

AMUSEMENT RIDE

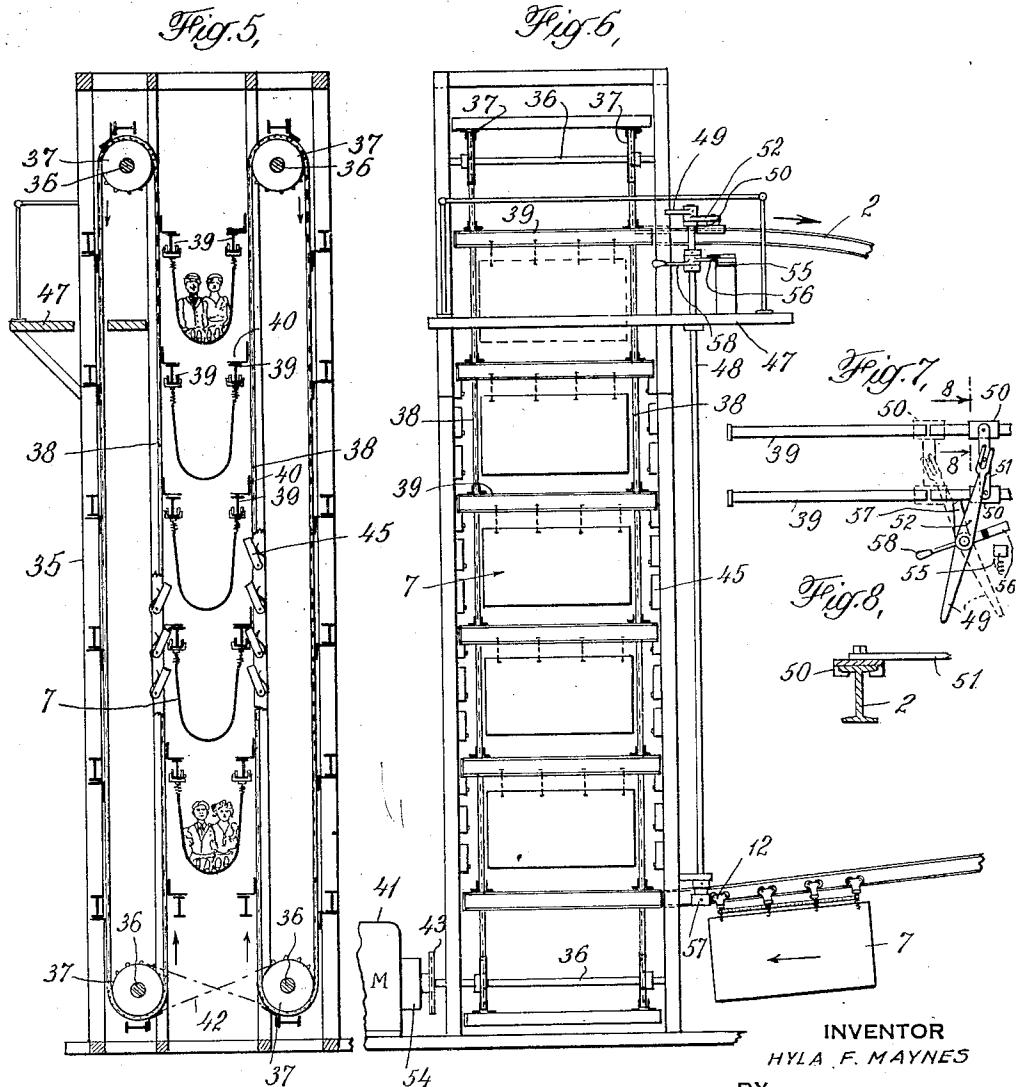
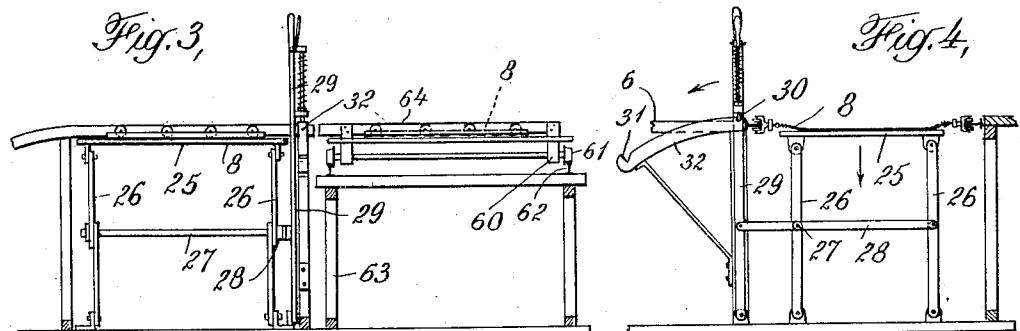
Filed March 5, 1931

3 Sheets-Sheet 1

INVENTOR
HYLA F. MAYNES
BY:

Penne Davis Marino Edmonds
ATTORNEYS

March 1, 1932.



H. F. MAYNES

1,847,250

AMUSEMENT RIDE

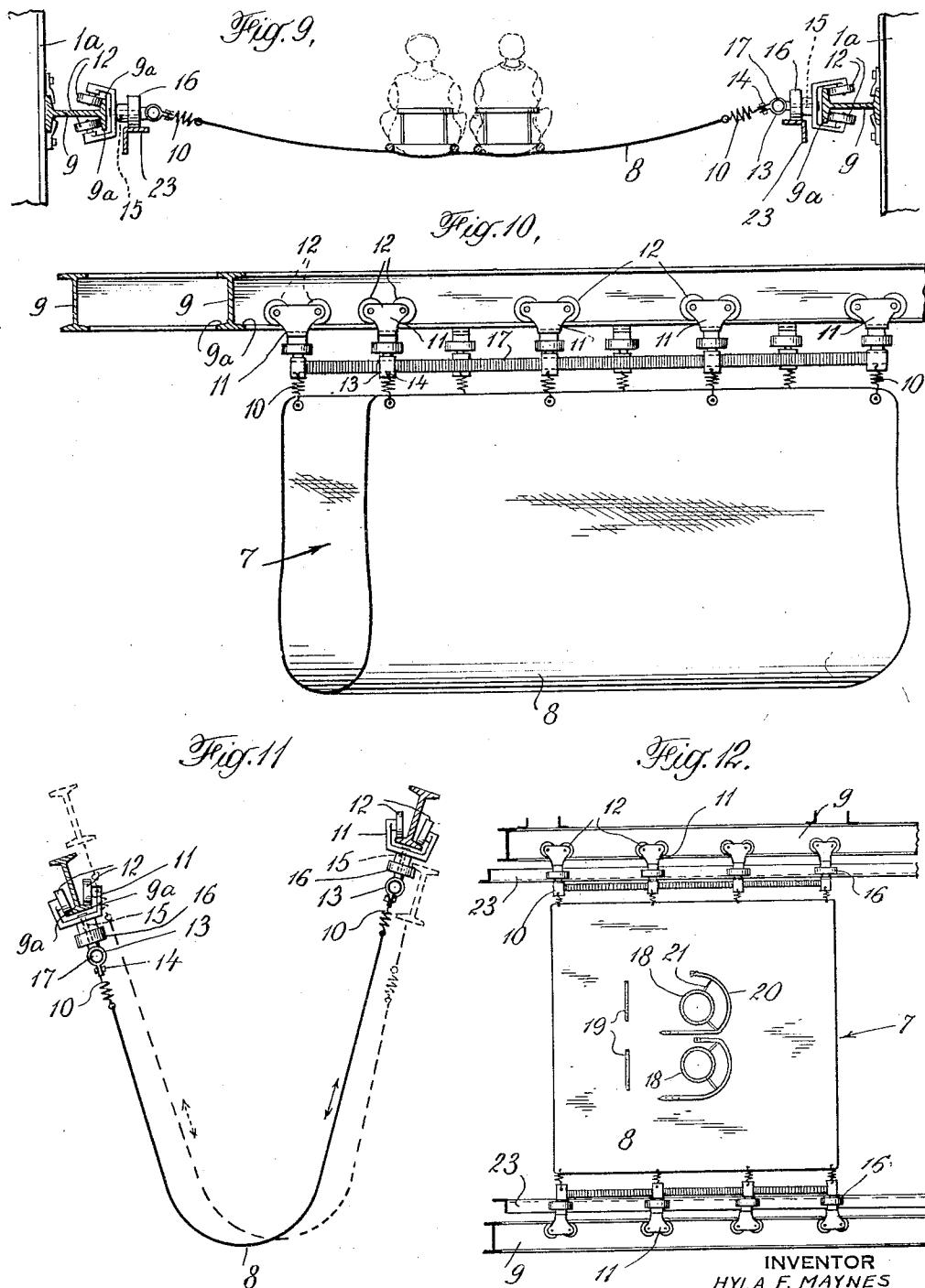
Filed March 5, 1931

3 Sheets-Sheet 2

HYLA F. MAYNES

BY
Pennie, Davis, Marin & Edmonds
ATTORNEYS

March 1, 1932.


H. F. MAYNES

1,847,250

AMUSEMENT RIDE

Filed March 5, 1931

3 Sheets-Sheet 3

INVENTOR
HYLA F. MAYNES
BY
Pennie Davis Marvin Edmonds
ATTORNEYS

UNITED STATES PATENT OFFICE

HYLA F. MAYNES, OF NORTH TONAWANDA, NEW YORK, ASSIGNOR OF ONE-HALF TO
EMMA C. MAYNES, OF NORTH TONAWANDA, NEW YORK

AMUSEMENT RIDE

Application filed March 5, 1931. Serial No. 520,304.

This invention relates to amusement apparatus of the type in which conveyances for passengers travel along a track, and its object is to provide a ride affording new thrills and fun. I attain this object by providing each conveyance with a flexible passenger support made of carpet or other suitable fabric, fastened at its opposite sides to roller carriages which travel along a track the rails of which are curved to approach and recede from each other. Thus as the conveyance moves along this track the passengers seated upon the carpet are alternately raised and lowered and given the sensation of being tossed up and down in a blanket.

The fabric upon which the passengers are seated is preferably resiliently connected to the roller carriages so as to give a springy action to the conveyance and also to relieve the fabric of excessive strains. Safety belts, loosely connected to the conveyance and adapted to be strapped around the waists of the occupants, preclude the possibility of the passengers being accidentally thrown from the conveyance.

In order to impress a motion upon the fabric in addition to and independent of the movement imparted to it by its alternate stretching and sagging, the rails composing the track are undulated in vertical directions so as to define a series of hills and valleys. Depending upon the type of motion it is desired to communicate to the conveyance, the two rails in side elevation may be of corresponding curvature and disposed at the same elevation, in which case an up-and-down motion will be imparted to the conveyance; or the two rails may be of a different curvature so that the hill or valley on one rail does not coincide with the hill or valley on the other rail, in which case one side of the fabric will be raised to a greater extent than its other, resulting in a rocking or rolling motion. Preferably both types of motion will be incorporated in the same ride.

In carrying out the invention it will usually be found advantageous to dispose the track at an inclination to cause the conveyances to be impelled therealong by gravity at increasing speed. Under these circum-

stances it is desirable that the passengers be loaded upon the conveyances near the ground level and the conveyances then raised to the elevated end of the inclined track. The invention, therefore, contemplates as an additional feature the provision of a lift for vertically raising the conveyances, this lift preferably carrying a section of track onto and off of which the conveyances may be rolled, and which section of track is designed to be brought into registry with a take-off track near the ground level and also with the elevated end of the inclined track adjacent the top of the lift. The passengers are preferably seated upon the conveyances at a loading station near the ground level the conveyances then being rolled, or permitted to roll by gravity, down the take-off track onto the lift. The invention further contemplates the provision of means for rigidly supporting the fabric during seating of the passengers thereon and safety mechanism for controlling the passage of conveyances onto the lift. At the lower end of the inclined track is an unloading station where the passengers may vacate the conveyances. In order that the empty conveyances may be quickly returned to service, these stations are located closely opposite each other and a transfer mechanism is provided whereby the conveyances may be shifted from the unloading to the loading station.

In the accompanying drawings there is illustrated a preferred embodiment of the invention. In these drawings Figure 1 is a side elevation of a frame structure incorporating the ride; Figure 2 is a plan view of the ride shown in Fig. 1; Figure 3 is a section on the line 3—3 of Fig. 2 showing a conveyance at the loading platform in position for receiving passengers, the retractile floor for rigidly supporting the fabrics during this interval, and the conveyance transfer car; Figure 4 is a section along the line 4—4 of Fig. 2 looking at the loading platform at right angles to Fig. 3; Figure 5 is a section along the line 5—5 of Fig. 1 of the lift for raising the conveyances from the ground level to the top of the inclined trackway; Figure 6 is a side elevation of the lift shown in Fig.

5; Figure 7 is a detail view of the mechanism for insuring registry between the ends of the rails carried by the lift and the ends of the rails of the inclined track prior to removal of a conveyance from the lift; Figure 6 is a section along the line 8—8 of Fig. 7 of one of the pair of stops which are adapted to be slid to a position in the path of the ends of the rails carried by the lift so as to arrest 10 these rails in correct position; Figure 9 is a section of the inclined track along the line 9—9 of Fig. 1 and showing the position occupied by a conveyance thereon; Figure 10 is a detail perspective showing of the conveyance; Figure 11 is a section along the line 11—11 of Fig. 1 showing one of the positions assumed by the conveyance during its travel along the inclined track; and Figure 12 is a plan view of a conveyance.

20. The ride shown in Figs. 1 and 2 comprises generally a frame structure 1 upon which is supported an inclined track 2 leading from the top of a lift 3 to an unloading platform 4, a take-off track 5 extending from a loading 25 platform 6, opposite the unloading platform 4, to the foot of the lift 3, and a plurality of passenger conveyances 7, adapted to travel along the tracks and to be raised by the lift from the lower to the higher track. The unloading platform 4 and the loading platform 6 lie in a common horizontal plane a short distance above the ground level, and the lower end of track 2 and the forward end of take-off track 5 where they respectively 30 skirt the unloading and loading platforms extend substantially on a common level with these platforms. The take-off track is formed with a bend so as to wind into a position beneath the elevated end of track 2 near 35 the foot of the lift, and is disposed at a gentle slope so that the conveyances, after receiving their passengers, will roll by gravity toward the lower end of the lift.

The tracks 2 and 5 are composed of a pair 40 of rails 9 made of I-beams which are fastened at intervals throughout their length to uprights 1a, forming part of the frame structure 1, in a manner such that the flanges 9a of the I-beam are supported in a position 45 clear of the frame structure. The rails 2 are not disposed in parallelism throughout their entire length but, on the contrary, weave back and forth toward and from each other in the plane of the tracks so as to vary the gage of 50 the tracks. As shown in Fig. 2 the take-off track 5 at its forward end, that is, in the vicinity of the loading platform 6, is of maximum gage and that intermediate the length of this track there is a short section 55 in which the rails converge, and from there to the end of the track at the lower end of the lift the track is of uniform but narrower gage. The track 2, on the other hand, except 60 for short horizontal sections adjacent the unloading platform and the upper end of the 65

lift, is of a constantly changing gage, the rails being curved upon a wavy line in the plane of the track so as to approach and recede from each other.

In addition to the curvature of the rails in the plane of the track, the rails of the track 2 are undulated in a vertical direction, as shown in Fig. 1, so as to define a series of hills and valleys. The hills and valleys of the two rails need not, and preferably do not, match; 70 that is, corresponding points along the rails do not necessarily lie at the same elevation and, in fact, the bottom of a valley of one rail may correspond to the top of a hill on the other rail at the same location along the 75 track, or one of the rails may be uniformly inclined and the other undulated in a vertical direction. The ingenuity exercised by the builder in varying the eccentricity of the track will determine the type and variety of 80 thrills afforded by the ride and hence the shape which the track assumes will largely be a matter of individual selection. Furthermore the rails 9 have no fixed position with reference to a vertical plane but are 85 twisted from a position wherein the web connecting the flanges of the I-beam occupies a substantially vertical position at the most constricted portions of the track to a position wherein the web occupies an approximately 90 horizontal position at the widest portions of the track. Thus, as the gage of the tracks increase the webs of the I-beams constituting the rails tend to assume a horizontal position. This will be clear by a comparison of Figs. 9, 95 10 and 11.

Arranged to travel along the tracks just described are the passenger conveyances 7 each having a flexible passenger support 8. Since carpet, due to its rugged nature, and wear-resistant quality, lends itself particularly well for use as the flexible material for supporting the passengers upon the conveyance, this material will ordinarily be employed. The word "carpet" however as it 100 appears in this specification is used not in a limiting sense to specify a particular class of fabric, but in a broader sense to designate a conveyance having any kind of flexible passenger support mounted to travel along a 105 track. These conveyances may, in fact, be made of other heavy fabric, or even woven wire having a protective covering. Each of these fabrics is suspended from a series of spiral springs 10 extending through reinforced openings formed in two opposite margins of the fabric, these springs having their other ends attached to trolleys 11. The trolleys each comprise a casting forked in a manner to span the free side of an I-beam, that is, that side of the I-beam most distant from the frame structure 1. Upon the opposed faces of the fork and rotatable about axes at right angles to these faces are rollers 12 which travel upon the inner surface of the flanges 110 115 120 125 130

9a of the I-beams. Depending from the forked casting is a stem 15 upon which is journaled a side roller 16, the arrangement being such that the side roller rotates about an axis approximately at right angles to the axes of the rollers 12. The stem 15, as shown by dotted lines in Fig. 11, may comprise a tie bolt inserted through an opening in the portion of the casting bridging the two forks 10 and carrying adjacent its end a spring clip 13 which is adapted to be drawn together by means of a clamping screw 14 extending between its split ends. The series of trolleys supporting each side of the carpet is held in 15 assembly by means of a flexible rod 17 to which the trolleys are clamped by the spring clips 13; this rod holding the trolleys in spaced relation but yielding so that the rollers may follow the sinuous path of the rails. 20 The fabric support 8 is of an area sufficient to accommodate two occupants whose seating positions are indicated thereon by a pair of rope hoops 18 fastened side-by-side on the fabric. It will be realized, however, 25 that the number of passengers to be accommodated by the carpets and their seating arrangement is essentially a matter of choice. Short sections of rope 19 are secured to the fabric supports at appropriate locations to 30 provide ledges against which the passengers may brace their heels. To avoid any possibility of injury safety belts 20, connected to the carpet by straps 21, are associated with each seat, these belts being designed to be attached to the waists of the passengers.

From the construction of the ride thus far described, it will be apparent that during the passage of a carpet over those portions of the track of narrow gage the ends of its fabric 40 support will be folded toward each other permitting the carpet to sag, as shown in Fig. 10, but that as the gage of the track increases the ends of the fabric will be drawn apart so as to tend to stretch the carpet, thus 45 raising the occupants seated thereon as shown in Fig. 9. As the gage of the track varies the plane of the webs of the I-beams forming the rails will also change, so that the stems 15 of the trolleys 11 will always extend in 50 approximate alignment with the plane of the web of the I-beams and the plane of the fabric in the locality of the trolley. In the position in which the fabric support is drawn taut the flanges of the rails will thus occupy 55 an approximately vertical position, as shown in Fig. 9, and in order to avoid excessive pull in a lateral direction upon the trolleys, auxiliary rails 23 are provided at those portions of the track of widest gage upon which the 60 side rollers 16 of the trolleys may ride, thereby relieving the strain from the rollers 12. A smooth surfaced slide board 24, occupying a position between the rails of the track near 65 its lower elevation is designed to rub against the bottom of the fabric supports and func-

tion as a brake to bring the carpet to rest in front of the unloading platform.

As has previously been stated the track 5 in front of the loading platform 6 is of maximum gage in order to spread the carpets to their full extent. In order, however, to prevent the carpets from sagging through yielding of the springs 10 by which they are attached to the trolleys 11, a flat, solid backing for the carpets is provided. This backing comprises a floor 25 disposed between the rails in front of the loading platform and supported upon opposite sides by a pair of toggles 26, the two toggles of each pair being connected for unitary movement by means of a rod 27 extending between the toggles and constituting a floating pivot for the two links of a toggle. The toggles are arranged to be simultaneously made and broken by means of an operating rod 28 connecting the floating pivots of the two pairs of toggles, this rod being extended horizontally beyond the floor where it is pivotally connected to a hand lever 29. When the hand lever is pulled in the direction indicated by the arrow in Fig. 4 the toggles will be broken and the floor 25 vertically lowered from beneath a carpet, while, conversely, when the lever is moved in the opposite direction the floor will be raised into supporting engagement with a carpet. For latching the hand lever in either of its two extreme positions, a spring-pressed dog 30 is provided on the lever which snaps into appropriate notches 31 on an arcuate guide arm 32. At the unloading platform the carpet is kept from sagging by the horizontal terminal portion of the slide board 24.

The lift by which the carpets are moved from the ground level to the elevated end of the inclined track 2 will now be described. Constituting a part of the structure 1 is a tower 35 rising vertically to a height above the upper end of the track 2. The tower shown in the present embodiment as comprising an open framework of square cross section may, if desired, be closed to the light for introducing additional novelty into the ride. This tower is located in alignment with the ends of the two tracks 2 and 5, the take-off track 5 as has heretofore been stated terminating under the elevated end of the track 2. At the top and bottom of the tower and arranged in pairs lying in vertical planes upon opposite sides of the tracks are mounted shafts 36 carrying sprockets 37, over which sprockets wind endless chains 38. The runs of the chains 38 lie within four vertical parallel planes, two of the planes defined by one set of chains lying wholly on one side of the tracks 2 and 5 and two of the planes defined by the other set of chains lying wholly on the other side of the tracks, the arrangement being such that the two opposed runs of companion chains are spaced apart a dis-

tance slightly greater than the width of the tracks which are of equal gage where they communicate with the lift. To the chains winding over the sprockets located upon companion shafts are fastened rails 39 made of short sections of I-beams, similar to those constituting the tracks 2 and 5. These I-beams are rigidly connected to angle irons 40 which are in turn rigidly fastened to the chains in such manner as to hold the I-beams with their webs occupying a common vertical plane, clear of the chains. The rails are spaced a uniform distance apart throughout the length of the chains and the rails carried by the chains upon opposite sides of the tracks are disposed in parallelism and in common horizontal planes. The rails carried by the chains upon opposite sides of the tracks are adapted to be brought into alignment with the rails of either the tracks 2 or 5 so as to form short extensions of these tracks sufficient to accommodate a single carpet. Rotation is imparted to one of the lower shafts 36 by an electric motor 41 (having suitable speed reduction gearing not shown) and motion is transmitted to the other lower shaft through a crossed chain 42 extending between sprockets 43 on these shafts, the arrangement being such that both the opposed runs of chains 38 travel upwardly in unison. To prevent rotograde movement of the chains a series of spring-pressed dogs 45 pivoted to the framework of the tower 35 are arranged to snap beneath the rail sections as the chains move upward.

At the top of the tower 35 there is a platform 47 designed to be occupied by an attendant. Rotatably supported upon this platform is a vertical rod 48 having loosely pivoted thereto at its upper end a hand lever 49 whereby the attendant can rock the lever in opposite directions. A pair of stops 50 connected by a link 51 for unitary movement are arranged to slide upon the surface of the upper flanges of the rails of track 2, the ends of these stops 50 away from the lift embracing these flanges as indicated in Fig. 8. An arm 52 connected to the hand lever 49 is slotted at its end so as to receive a pin projecting from the link 51. By this construction, when the attendant rocks the hand lever in one direction the arm 52 moves the stops along the rails 9 until they project over the ends of these rails into the path of the rising pair of rails 39 carried by the lift and form abutments against which the ends of the rails may engage to insure alignment of the rails of the lift with the rails of the track 2.

While the motor 41 for imparting movement to the chains 38 is designed to operate continuously, the chains move upwardly intermittently and in steps corresponding to the distance between adjacent rails on the chains, so that after a predetermined number of vertical steps from starting position, in which

the rails 39 are in alignment with the rails of take-off track 5, the rails will come to rest in the plane of the end of track 2. This step-by-step movement of the lift is accomplished by interposing a one-revolution clutch 54, conventionally represented, and which may be of any of the well-known forms, between a drive shaft connected to the motor 41 and the driven shaft 36. The clutch is electrically actuated through a circuit including a switch 55, conventionally shown, arranged to be closed by the movement of a switch lever 56, fixed upon the vertical rod 48, when this rod is rocked by means of a handle bar 58. The rod 48 is extended to a position near the ground level and is supported near the end of the I-beam constituting one of the rails of the lower take-off track 5. Near the end of rod 48 is provided a lug 57 rotatable into the path of the rollers 12 of a carpet when the rod is rocked to swing the lever 56 in a direction to sweep over and momentarily close the switch 55. When the rod 48 is rocked in its other direction, the lug 57 is removed from the path of the rollers 12 permitting the carpet to roll off of track 5 onto the rails of the lift and against a suitable abutment in position to be raised. The switch 55 is not affected upon this reverse movement of the lever 56.

In order that the carpets may be quickly transferred from the end of track 2, after having discharged their passengers onto unloading platform 4, to take-off track 5 preparatory to receiving other passengers from the loading platform 6, there is provided a car 60 having rollers 61 traveling along a short track 62 supported upon a frame 63 and extending transversely between the ends of tracks 2 and 5. The car has mounted thereon a pair of rails 64 together forming a short extension of either of the tracks 2 or 5 so that by bringing the rails 64 on the car into alignment with the rails of the track 2 a carpet can be run onto this car and the car then shifted to bring its rails into alignment with the rails of take-off track 5, after which the carpet can be removed onto this latter track.

In the operation of the ride, a carpet 7 is drawn up in front of the loading platform 6 on the take-off track 5 and the attendant who is stationed at this point pushes forward upon the lever 29 to raise the floor 25 into engagement with the bottom of the fabric support 8 thus to maintain it solid while the passengers take their seats facing toward the near end of track 5 or in a direction away from the lift 3. After observing that the passengers have attached the safety belts 20 securely about their waists, the attendant retracts the floor 25, which causes the fabric to sag slightly under its load, and shoves upon the carpet sending it down the gently inclined take-off track toward the lift 3. After coasting a short distance along the track the car-

pet arrives at a point where the rails of the track converge which causes the sides of the fabric to approach each other and the bottom of the fabric support to lower. With its occupants seated in the trough of the fabric, the carpet continues its progress at a slow rate of speed until the forward roller 12, of the series of trolleys 11 supporting the fabric, rides into engagement with the lug 57 on the end of the vertical rod 48. When this rod is next rocked through manipulation of the handle bar 58 by the attendant stationed upon the platform 47 (which under full-capacity operating conditions will be every time a carpet has been removed from the top of the lift onto the track 2) the carpet will roll down under the influence of gravity onto the pair of rails 39 carried by the chains 38 of the lift and come to rest. When the rod 48 is rocked in the opposite direction by the attendant, not only is the lug 57 again interposed in the path of a following carpet but through movement of the lever 56 fastened to this rod the switch 55 is momentarily closed, establishing a circuit to trip the one-revolution clutch 54. Thus, no carpets can enter the lift when the clutch-operating lever 56 has been turned in a direction to close the switch. Tripping the clutch serves to connect the continuously operating motor 41 to the lower pair of shafts 36 carrying the sprockets 37 thereby to move the opposed runs of the chain 38, and hence the carpet suspended thereon, a step upward corresponding to the distance between the rails on the chains, after which the clutch is automatically disengaged.

During raising of the lift the passengers will be seated in the trough of the partially folded carpet as shown in Fig. 5. After ascending five successive steps, corresponding to the number of carpets which are adapted to be simultaneously suspended upon the lift, the rails 39 upon which the carpet is supported will move into registry with the ends of the rails of track 2 at which juncture the lift will again come to rest. In order, however, to insure precise alignment of the rails carried by the chains and the rails of track 2, the stops 50 will previously have been moved into overhanging relation with respect to the rails 39 on the lift by the attendant operating the hand lever 49 and these stops function to prevent overrunning of the rails on the lift with respect to the rails of the track 2, the dogs 45 locking the chains against downward movement.

The attendant grasps the carpet, which is still folded with the passengers seated in its trough facing the track 2, and pulls it off onto the short horizontal section of track along which it coasts under its own momentum until it reaches the sharply declining portion of the track. Here the rails bow outwardly in the plane of the track and a stretch will be gradually imparted to the fabric support

to lift the occupants perpendicularly; but as the carpet continues its travel its occupants will again be lowered in response to the convergence of these rails which permits the fabric to sag. As the carpet gathers speed and its transition from constricted to expanded sections of the track occur in shorter intervals of time, the spreading of the fabric will take place more rapidly and the occupants will be bobbed up and down upon the carpet which, due to its suspension upon the elastic springs 10, yields so as to take up excessive shocks and at the same time imparts a series of independent impulses to the carpet. In addition to the motion communicated to the carpet due to the alternate stretching and sagging of the fabric support and the resilient action of the springs 10, another series of vertical impulses is imparted by reason of the carpet riding up and down the hills and valleys of the undulated track. Furthermore, if at certain locations along the track, the rails 9 are disposed at different elevations, opposite sides of the fabric will be alternately raised and lowered thereby rolling or rocking the occupants back and forth. As the carpet rides over the crest of a hill the momentum of the ride tends to lift the passengers; similarly as the carpet reaches the bottom of a valley the momentum tends to thrust the passengers downward. By spreading the carpet as the conveyance moves up the hills and folding it as the conveyance descends into the valleys the normal action of the ride's momentum can be accentuated and a novel thrill imparted.

As the carpet approaches the bottom of the incline its motion will be quickly retarded by the frictional engagement of the carpet with the slide board 24 coming to rest in front of the unloading platform 4 where the track being of the widest gage will spread the fabric to its maximum extent and in this manner allow the carpets to be easily and quickly vacated. The empty carpet is then rolled forward onto the rails 64 upon the car 60 and the car then shifted along the track 62 so as to place the rails 64 in communication with the track 5. Here the carpet is removed from the car and rolled up in front of the loading platform 6 faced in proper direction ready to receive another fare.

I claim:

1. An amusement ride comprising a track consisting of a pair of rails spaced non-uniform distances apart, and a flexible conveyance adapted to travel along said track.
2. An amusement ride comprising a track consisting of a pair of rails spaced non-uniform distances apart and a flexible conveyance having rollers adapted to travel upon the rails.
3. An amusement ride comprising a track consisting of a pair of rails spaced non-uniform distances apart and a passenger convey-

ance having rollers adapted to travel upon the rails and means resiliently connecting said conveyance to the rollers.

4. An amusement ride comprising a track 5 consisting of a pair of rails spaced non-uniform distances apart and a conveyance having rollers adapted to travel upon the rails, said conveyance comprising a passenger support flexibly and resiliently connected to the 10 rollers.

5. An amusement ride comprising a track consisting of a pair of rails curved so as to approach and recede from each other and a conveyance having rollers adapted to travel 15 on said rails, said conveyance comprising a flexible passenger support resiliently connected to the rollers.

6. An amusement ride comprising a track 20 consisting of a pair of rails spaced non-uniform distances apart, said rails undulating in a vertical direction defining a series of hills and valleys and the distance between said rails increasing as the track approaches a crest of a hill, and a conveyance adapted to 25 travel along said track.

7. An amusement ride comprising a track 30 consisting of a pair of rails spaced non-uniform distances apart, said rails undulating in a vertical direction defining a series of hills and valleys and the distance between said rails increasing as the track approaches the crest of a hill and decreasing as the track approaches the bottom of a valley, and a resiliently mounted conveyance adapted to 35 travel along said track.

8. An amusement ride comprising a track 40 consisting of a pair of rails spaced non-uniform distances apart, said rails undulating in a vertical direction defining a series of hills and valleys and the distance between said rails increasing as the track approaches a crest of a hill, and a conveyance adapted to 45 travel along said track, comprising a flexible support for a passenger resiliently suspended upon rollers arranged to travel along said track.

9. An amusement ride comprising a track 50 consisting of a pair of rails spaced non-uniform distances apart and undulating in a vertical direction and a conveyance having rollers adapted to travel upon the rails, said conveyance comprising a passenger support and means resiliently connecting said support to the rollers.

55 10. An amusement ride comprising a track consisting of a pair of rails spaced non-uniform distances apart and undulating in a vertical direction and a conveyance having rollers adapted to travel upon the rails, said 60 conveyance comprising a flexible passenger support and means resiliently connecting said support to the rollers.

11. An amusement ride comprising an inclined track consisting of a pair of rails 65 spaced non-uniform distances apart and a

conveyance adapted to travel upon said track.

12. An amusement ride comprising an inclined track consisting of a pair of rails spaced non-uniform distances apart, rollers adapted to engage the rails and a flexible support connected to said rollers. 70

13. An amusement ride comprising an inclined track consisting of a pair of rails spaced non-uniform distances apart, rollers adapted to engage the rails, and a flexible support resiliently connected to said rollers. 75

14. An amusement ride comprising an inclined track consisting of a pair of rails spaced non-uniform distances apart, a conveyance adapted to travel upon said track, 80 and means for raising said conveyance to the elevated end of said track.

15. An amusement ride comprising an inclined track consisting of a pair of rails spaced non-uniform distances apart, a conveyance adapted to travel upon said track and comprising a resiliently mounted fabric support for a passenger and means for raising said conveyance to the elevated end of the inclined track. 85

16. An amusement ride comprising an inclined track consisting of a pair of rails spaced non-uniform distances apart and undulating in a vertical direction, rollers arranged to travel upon said rails, a support 90 for a passenger resiliently connected to said rollers, and a lift for raising said support to the elevated end of said track.

17. An amusement ride comprising an inclined track consisting of a pair of rails 100 spaced non-uniform distances apart, rollers arranged to travel upon said rails, a support for a passenger resiliently connected to said rollers, a lift for raising said support to the elevated end of said track, and a track 105 leading to the lower end of the lift.

18. An amusement ride comprising an inclined track consisting of a pair of rails spaced non-uniform distances apart, rollers arranged to travel upon said rails, a conveyance resiliently connected to said rollers, a lift for raising said conveyance to the elevated end of said track, a second track leading from a position adjacent the lower end of the inclined track to the lower end of the lift, and a means for transferring said conveyances from one track to another, said means comprising a section of track laterally 110 shiftable into alignment with either one of said tracks. 115

19. An amusement ride comprising an inclined track, rollers adapted to travel along said track, a passenger conveyance consisting of a flexible support, a lift for raising said conveyance to the elevated end of said track, said lift being so constructed and arranged to draw opposite side edges of the flexible support together so as to fold the passenger between its sides. 125

20. An amusement ride comprising an in- 130

clined track, rollers adapted to travel along said track, a conveyance consisting of a flexible support adapted to carry two passengers seated side-by-side, a lift for raising said conveyance to the elevated end of said track and a section of track upon said lift for supporting said conveyance, the gage of said track section being such as to permit the flexible support to sag with the passengers seated in its trough.

In testimony whereof I affix my signature.

HYLA F. MAYNES.

15

20

25

30

35

40

45

50

55

60

65