ADVERTISING AND LIKE SIGN

INVENTORS

G F. WHIPPY ET AL.

INVENTORS

GEORGE F. WHIPPY
DOUGLAS J. NOOPPER
WALLACE H.T. MAHLEY

Dec. 3, 1929.

1,738,468

Filed Nov. 24, 1928

2 Sheets-Sheet 2

BY SOULMIN-SOULMIN
ATTORNEYS
This invention comprises improvements in and connected with advertising and like signs of the kind involving the employment of a mirror or the like for enabling the sign to be viewed during daytime by solar light reflected from the mirror or the like, and the principal object of the invention is to provide an improved form of device for showing a sign on both sides thereof. A further object is to provide an improved construction for rendering the characters or letters of the sign more clearly visible, and to prevent detrimental action of condensation on the silvered surface of the mirror, and a further object is to enable the sign to be viewed in colour.

According to this invention, the device comprises opaque reflective surfaces such as silvered glass or polished metal plates which have parts removed to form the stencil sign, the surfaces being so disposed in relation to each other that light reflected from one surface passes through the stencil formed on the other surface, the result being that the reflective surfaces act not only for reflecting light but also are adapted to form the stencil sign. The reflective surfaces are preferably in the form of mirrors which are inclined at an angle to the vertical to form a casing of substantially V-shape in cross-section, the silvered surfaces of the mirrors being outermost. A sheet of coloured glass having light diffusing properties may be fitted over the outer surface of each mirror and these glass sheets are advantageously spaced apart from the silvered surfaces of the mirrors for purposes to be hereinafter described. Mirrors are also suitably provided in the ends of the casing for improving the visibility of the sign. Instead of providing coloured sheets over the outer surfaces of the mirrors or in addition thereto the sign may be viewed in colour by arranging a coloured glass top to the casing and this top may comprise strips of different colours so that different letters or parts of the sign may have different colours, which are variable as the sign is observed from different angles.

The invention will now be described with reference to the practical constructions illustrated in the accompanying drawings in which:

- Figure 1 is a longitudinal section with parts in elevation of a sign embodying these improvements.

- Figure 2 is a cross-section on the line II—II, Figure 1.

- Figure 3 is a perspective view of the sign shown in Figures 1 and 2, with the top cover removed.

- Figure 4 is a perspective view of a modified construction of sign one end cover being removed, and

- Figure 5 is a transverse section of the sign shown in Figure 4.

According to the construction illustrated in Figures 1, 2 and 3 the device comprises a casing of substantially V-shape in cross-section, the arms of the V comprising mirrors a b with their silvered surfaces outermost, and coloured sheets of glass c d serving to protect the silvered surfaces. Portions of the silvering of each mirror are removed or scratched away to form a sign as indicated for example in Figure 1 in which the words Feb and Jue have been formed on the mirrors a and b by removing the silvering. The mirrors and protecting glass sheets are supported by upper and lower metal bars or strips e e' which are welded or screwed on to the metal ends f of the casing. Inwardly bent metal lugs g secured to the upper metal bars e by screws g' engage the upper edges of the mirrors the lower edges of which are held in place by metal spacers h. Suitable cushioning devices j in the nature of fibrous strips are interposed between the lugs g g' and the mirrors a b and f to protect the latter against injury which might be caused by vibration when the sign is employed, for example, on motor vehicles. Narrow rubber or like strips k are inserted between the side mirrors a b and the glass sheets c d at points around the perimeter, and including the places at which the retaining lugs
gbear, and these strips k serve to space these side mirrors from the glass sheets. The narrow space thus provided permits the entry of air, so that the formation of moisture by condensation between the mirrors and the glass sheets d is prevented, with the result that the silverying is not liable to the detrimental action of such moisture. In addition, an extra width is imparted to the illuminated portions of the sign due to the provision of this space and the sign is observable with a dull glowing outline which is comparable to that of artificially illuminated signs and is distinctive from arrangements in which the mirror is closely fitted against the protecting glass sheet, to give a sharp outline to the sign. The visibility of the sign is also improved by the provision of the end mirrors s which prevent “fading” of the end portions or letters of the sign and render all portions of the sign clearly visible even under unfavourable lighting conditions.

The top cover l of the sign consists of a sheet of glass l', having light diffusing properties, which is fitted in a metal frame m adapted to be screwed or otherwise removable connected to the end members f of the casing. The glass l' is transparent and permits the passage of solar light during daytime into the casing with the result that light is reflected from the silveryed portion of each mirror and through the stencilled portion of the other so as to illuminate the sign.

If desired the sign may be illuminated at night by artificial light provided by an elongated electric lamp a supported from an aluminum bar q placed inside the casing and mounted between the upper parts of the casing and members f, through one of which the electric conductor p is adapted to pass. The bar q is suitably of channel or trough section for receiving the electric conductor portion p' leading to the lamp n and the outer surface of the horizontal portion o' is burnished or polished so as to reflect light from the lamp through the stencilled mirrors in the most advantageous manner. The elongated form of the electric lamp is of particular advantage as it obstructs only the minimum of solar light passing through the top l of the casing when the sign is being used during the daytime.

The narrow strip part e forming the bottom of the V casing is preferably provided with holes or perforations q for the inlet of air and for the outlet of moisture or condensation.

It has been found that the most convenient angle for the placing of the stenciled mirrors $a b$ is one of approximately 28° from a vertical plane passing through the centre of the casing. However, this angle may be varied as desired and as the particular conditions demand.

According to the modified construction of