(19) 中华人民共和国国家知识产权局

(12) 发明专利

(10) 授权公告号 CN 102473936 B
(45) 授权公告日 2014.06.18

(21) 申请号 201080035060.7
(22) 申请日 2010.08.04
(30) 优先权数据
2009-184358 2009.08.07 JP
(85) PCT国际申请进入国家阶段日
2012.02.07
(86) PCT国际申请的申请数据
PCT/JP2010/063205 2010.08.04
(87) PCT国际申请的公布数据
WO2011/016493 JA 2011.02.10
(73) 专利权人 日产自动车株式会社
地址 日本神奈川县
(72) 发明人 长谷川卓也
(74) 专利代理机构 北京林达刘知识产权代理事务所（普通合伙）11277
代理人 刘新宇 李茂家

(51) Int. Cl.
H01M 8/02 (2006.01)
H01M 8/10 (2006.01)

(54) 发明名称
燃料电池及其制造方法

(57) 摘要
公开当临时堆叠单元电池时可以进行位置调整的燃料电池，以及所述燃料电池的制造方法。具体公开由膜电极组件和隔离膜的层压体组成的燃料电池，在所述膜电极组件中，阳极电极层和阴极电极层分别设置在电解质膜表面上。所述燃料电池的特征在于，自熔合性密封材料设置在膜电极组件或隔离膜的端部上。还具体公开所述燃料电池的生产方法。
1. 一种燃料电池，其包括通过多层层压电极组件和隔离膜而构成的层压体，其中，
所述膜电极组件包括电解质膜和设置在电解质膜的两面上的阳极电极层和阴极电极
层；
在所述膜电极组件的端部或所述隔离膜的端部设置有自熔合性密封材料，且在所述自
熔合性密封材料表面上还设置有防粘层；
采用在所述层压体的临时层压下不因自身重量而显示粘合力的构成，且通过在临时层
压后对所述层压体加压，所述自熔合性密封材料熔合。

2. 根据权利要求1所述的燃料电池，其中所述自熔合性材料包括聚有机硅氧烷和硼化
合物。

3. 根据权利要求2所述的燃料电池，其中所述自熔合性材料进一步包括硅化合物。

4. 根据权利要求1所述的燃料电池，其中所述防粘层由氧化铝粉末和二氧化硅粉末中
的至少一种形成。

5. 一种燃料电池的生产方法，其包括：
(1) 将自熔合性密封材料涂布在由膜电极组件以及隔离膜构成的层压体组中的膜电极
组件的端部或隔离膜的端部的工艺，所述膜电极组件包括电解质膜和设置在电解质膜的两
面上的阳极电极层和阴极电极层；
(2) 在所述自熔合性密封材料的表面上形成防粘层的工艺；
(3) 将所述膜电极组件和所述隔离膜临时层压并调整膜电极组件与所述隔离膜的位置
的工艺；
(4) 加压所述层压体以使所述自熔合性密封材料熔合的工艺。
燃料电池及其制造方法

技术领域
[0001] 本发明涉及燃料电池和燃料电池的制造方法。

背景技术
[0002] 燃料电池是一种通过电化学氧化燃料如氢气和甲醇而产生电力的发电装置。近年来，燃料电池作为供给清洁能源使用资源得到重视。将燃料电池根据电解质类型分类为磷酸型、熔融碳酸盐型、固体氧化物型和固体聚合物电解质型。它们中，固体聚合物电解质型燃料电池（也简称为”PEFC”）为通过供给氢气至膜电极组件（也称为”MEA”）的一侧和供给氧气至膜电极组件的另一侧进行发电而配置的燃料电池，所述膜电极组件包括在电解质膜的两面的电极。由于PEFC可提供与内燃机相当的输出密度，因此对作为电动车用电源及其它应用的实际使用进行广泛研究。

[0003] 通常，PEFC为包括多个单元电极的燃料电池组的形式，所述单元电极各自包括一体化的固体聚合物电解质膜，以及夹持固体聚合物电解质膜彼此相对的氢气侧和氧气侧电极。这些单元电极通过一个或多个隔离膜堆叠。在各隔离膜和相邻电极之间，设置通常具有导电性的多孔材料的气体扩散层。配置气体扩散层可起到能够稳定交换电极层和外部回路之间的氢气、氧气、水、电子、热等的作用。

[0004] 作为车辆用燃料电池，广泛使用包括单元电池组的堆叠型燃料电池，所述单元电池中各自包括片状MEA和片状隔离膜。通常，单元电池厚度为小于或等于10mm。在该厚度内，需要单元电池包括燃料气体和氧化气体，在一些情况下进一步包括其它流体（如冷却水）的各流程的同时流动。因此，单元电池需要对于各流程设置复杂的密封结构，而该需求成为劣化燃料电池的生产率的因素。

[0005] 作为该密封技术，已知利用弹性材料回弹力的技术，利用粘合或粘着的技术，利用用压缩性材料固定或加压的技术和利用机械变形如热压（staking）或焊接的技术。这些中，广泛使用利用弹性材料回弹力的技术，这是因为以下优点：1）高可靠性，2）高耐久性，和3）剥落或剥离的可能性。然而，因为需要成定的收缩或挤压余量（margin），所以该技术在燃料电池的薄型化和小型化时受到限制。

[0006] 由于无需收缩或挤压余量，因此使用粘合剂（涂布后的液体材料通过硬化或固化实现粘合性）作为密封材料的技术对于薄型化和小型化是有利的。然而，存在防止除被接合材料以外的材料与硬化前用粘合剂涂布的表面接触的需要。此外，在将用粘合剂涂布的单元电池层叠时，粘合剂直至硬化是流动的。因此，尽管可以进行微小的位置调整，但是层压体由于外因或其它影响而易于移动至偏移的位置。

[0007] 由于无需收缩或挤压余量，因此使用粘着剂（sticky agent）（涂布后的粘胶状固体材料，通过压力实现粘合性；也称为压敏性粘合剂）作为密封材料的技术对于薄型化和小型化是有利的。专利文献1公开了使用粘着剂的技术。

[0008] 现有技术文献

[0009] 专利文献
发明内容

发明要解决的问题

然而，在专利文献1中公开的技术中，不像粘合剂，粘着剂不具有流动性。因此，在层叠单元电池时位置调整是不可行的，存在层叠后无需位置调整的精密位置控制设备等的需要。

设计本发明以解决上述问题。本发明的目的在于提供在堆叠单元电池时能够位置调整的燃料电池和生产方法。

用于解决上述问题的方案

为了解决上述问题而进行充分实验研究后，通过本发明人的以下发现完成本发明：通过使用具有特定粘性的自熔合性密封材料，在层叠单元电池时位置调整变得可行。

发明的效果

根据本发明的燃料电池装置中具有特定粘性的自熔合性密封材料。该自熔合性密封材料在通过临时层压燃料电池的单元电池而产生的压力水平下的压力下不显现粘性。因此，临时层压后位置调整是可行的。位置调整后，通过加压可以产生强固的粘合力，从而可改进燃料电池的生产率。

附图说明

图1为示意性示出固体聚合物燃料电池构造的截面图。
图2为以放大的模式示意性示出图1中所示的固体聚合物燃料电池一部分的放大截面图。
图3为示意性示出根据本发明的燃料电池中的自熔合性密封材料配置的第一优选实施方案的局部放大截面图。
图4为示意性示出根据本发明的燃料电池中的自熔合性密封材料配置的第二优选实施方案的局部放大截面图。
图5为示意性示出根据本发明的燃料电池中的自熔合性密封材料配置的第三优选实施方案的局部放大截面图。
图6为示意性示出根据本发明的燃料电池中的自熔合性密封材料配置的第四优选实施方案的局部放大截面图。
图7为示意性示出根据本发明的燃料电池中的自熔合性密封材料配置的第五优选实施方案的局部放大截面图。

附图表记说明

10 燃料电池
11 固体聚合物电解质膜
12 催化剂层
13 气体扩散层
14 微多孔层
15 基材
具体实施方式

[0037] 下文中，参考附图说明本发明。说明附图时，相同要素给出相同的附图标记，省略重复说明。附图中，为便于说明可以放大尺寸比例，并且在一些情况下可以不等于实际比例。

[0038]（燃料电池的全部构造）

[0039] 图1示意性示出优选实施方案中固体聚合物型燃料电池10的结构。燃料电池10中，膜电极组件18包括在固体聚合物电解质膜11的两面上彼此相对而配置的一对催化剂层12（阳极催化剂层和阴极催化剂层）。该层压结构夹持在一对气体扩散层13（隔侧气液体扩散层和隔侧气体扩散层）之间。在一些情况下，膜电极组件18被称为MEA，固体聚合物电解质膜11和催化剂层12的组件被称为CCM。图1中，各气体扩散层13包括基材或基板15和微多孔层（MPL）14，气体扩散层13与催化剂层12接触而放置。然而，微多孔层（MPL）14不是绝对必要的。气体扩散层13可以仅由基材15组成。一对隔离膜16（隔侧隔膜和隔侧隔膜）配置在基材15的外侧上。各隔离膜16具有形成气体（隔侧的燃料气体和隔侧的氧化剂气体）的通路17和水用通路17′的沟槽结构。以此方式构成固体聚合物型燃料电池。

[0040]图2为以放大的模式示意性示出图1的固体聚合物燃料电池10一部分的截面图。如图2中所示，固体聚合物燃料电池10的电解质膜11的端部设置有自熔合性密封材料20。

[0041]如前所述，作为对于燃料电池的单元电池而提供的密封技术，存在使用粘合剂的技术和使用粘着剂的技术。粘合剂和粘着剂无需收缩或挤压余量，从而这些技术对于薄膜化和小型化是有益的。然而，在使用粘合剂的技术中，需要保护用粘合剂涂布的表面，以防止粘合剂硬化前与被接触材料以外的材料接触。此外，在层叠用粘合剂涂布的单元电池时，粘合剂直到硬化是可流动的。因此，尽管可以微小的位置调整，但是堆叠时单元电池由于外因或其它影响而易于移动至偏移的位置。在使用粘着剂（涂布后的凝胶状固体材料，通过压力实现粘合性，也称为”压敏性粘合剂“）的技术中，粘着剂不具有流动性，因此，在层叠单元电池时位置调整是不可行的，存在层叠后无需位置调整的精密位置控制设备的需要。

[0042]相比之下，根据本发明的燃料电池包括具有预定粘性的自熔合性密封材料。该自熔合性密封材料为如下密封材料，所述密封材料将硬化后的自熔合性密封材料的密封构件通过彼此接触地放置或压制，通过在室温下或在借助于加热升至较高温度下的熔合（fusion）而将密封构件的接触表面彼此接合。此类自熔合性密封材料在堆叠相当数量的燃料电池用单元电池时产生的压力下不显现粘性。因此，使用自熔合性密封材料的结构在临时层压燃料电池组后可允许位置调整。位置调整后，自熔合性密封材料通过加压可显现强固的粘合力。结果，该结构可改进燃料电池的生产率。
图 2 示出自熔合性密封材料配置在电解质膜的端部中的实例。然而，自熔合性密封材料的位置不限于图 2 中所示的位置。自熔合性密封材料可以配置在膜电极组件或前述隔离膜的端部中。具体地，自熔合性密封材料 20 可以配置在催化层（阳极催化层和阴极催化层）、气体扩散层和隔离膜的端部中。具体地，自熔合性密封材料可以期望地配置在选自提及电解质膜、催化层、气体扩散层和隔离膜的组的至少一种的端部中。这些位置中，一个以上的气体扩散层的端部是优选的，这是因为多孔结构产生强的绝缘效果，并且使得可以略自熔合性密封材料涂布前特殊的表面处理。

以下是参考图 3 ～ 7 而对自熔合性密封材料 20 的位置的优选实施方案说明。图 3 ～ 7 为示意图示出根据本发明的燃料电池中的自熔合性密封材料配置的优选实施方案的局部放大侧面图。

图 3 中，自熔合性密封材料 20 配置在固体聚合物电解质膜 11 的端部中。对自熔合性密封材料 20 的厚度不施加特别限制。例如，如图 3 中所示，在膜电极组件包括催化层 12 和气体扩散层 13 的情况下，自熔合性密封材料 20 的层的厚度可以设定为基本上等于催化层 12 的厚度与气体扩散层 13 的厚度的和。同样地，在膜电极组件仅包括催化层 12（不包括气体扩散层 13）的情况下，自熔合性密封材料 20 的层的厚度可以设定为基本上等于催化层 12 的厚度。以此方式，可以使膜电极组件的总厚度基本上均匀，并且因此使燃料电池各单元电池的层压体的总厚度基本上均匀。

在图 3 的实例中，固体聚合物电解质膜 11 的端部单独地设置有自熔合性密封材料 20。然而，如图 4 中所示，任选在自熔合性密封材料 20 和固体聚合物电解质膜 11 之间插入增强层 19。本技术领域中已知的材料可用作增强层 19 的材料，而无特别限制。增强层 19 的材料的一个实例是聚对苯二甲酸乙二醇酯 (PET)。对增强层 19 的厚度不施加特别限制。在膜电极组件包括催化层 12 和气体扩散层 13 的情况下，自熔合性密封材料 20 的层和增强层 19 的总厚度可以设定为基本上等于催化层 12 的厚度与气体扩散层 13 的厚度和。同样地，在膜电极组件仅包括催化层 12（不包括气体扩散层 13）的情况下，增强层 19 和自熔合性密封材料 20 的层的总厚度可以设定为基本上等于催化层 12 的厚度。以此方式，可以使膜电极组件的总厚度基本上均匀，并且因此使燃料电池各单元电池的层压体的总厚度基本上均匀。

在图 3 和图 4 的实例中，自熔合性密封材料 20 或者自熔合性密封材料 20 和增强层 19 的组合形成于在离开催化层 12 或气体扩散层 13 末端的位置处的固体聚合物电解质膜 11 端部上。然而，任选在固体聚合物电解质膜 11 的端部上形成自熔合性密封材料 20 或者自熔合性密封材料 20 和增强层 19 的组合，以使自熔合性密封材料 20 或者自熔合性密封材料 20 和增强层 19 的组合与催化层 12 或气体扩散层 13 的末端接触。自熔合性密封材料 20 或者自熔合性密封材料 20 和增强层 19 的组合优选形成于在离开催化层 12 或气体扩散层 13 末端的位置处的固体聚合物电解质膜 11 端部上。更期望地，如图 3 和图 4 中所示，自熔合性密封材料 20 或者自熔合性密封材料 20 和增强层 19 的组合与催化层 12 和气体扩散层 13 的末端分离。该构造中，催化层和气体扩散层的端部未被自熔合性密封材料 20 覆盖。因此，催化层和气体扩散层可在全部区域内有效实现它的功能。

图 5 中，自熔合性密封材料 20 配置在催化层 12 的端部上。对自熔合性密封材料 20 的厚度不施加特别限制。例如，在膜电极组件包括催化层 12 和气体扩散层 13 的情
况下，自熔合性密封材料 20 的层的厚度优选设定为基本上等于气体扩散层 13 的厚度。同样地，在膜电极组件仅包括催化剂层 12（不包括气体扩散层 13）的情况下，自熔合性密封材料 20 的层的厚度优选尽可能薄，或使其上形成自熔合性密封材料 20 的催化剂层 12 的端部较薄，以使自熔合性密封材料 20 和催化剂层 12 端部的总厚度基本上等于催化剂层 12 其余部分的厚度。以此方式，可以使膜电极组件的总厚度基本上均匀，并且因此使燃料电池各单元电池的层压体的总厚度基本上均匀。在图 5 的实例中，自熔合性密封材料 20 单独地形成于催化剂层 12 的端部。然而，任选以与图 4 中所示配置相同的方式，在自熔合性密封材料 20 的层和催化剂层 12 之间形成增强层 19。

【0049】图 6 中，自熔合性密封材料 20 配置在气体扩散层 13 的端部上。对自熔合性密封材料 20 的层的厚度不施加特别限制。例如，自熔合性密封材料 20 的层的厚度优选尽可能薄，或使其上形成自熔合性密封材料 20 的气体扩散层 13 的端部较薄，以使自熔合性密封材料 20 和气体扩散层 13 端部的总厚度基本上等于气体扩散层 13 其余部分的厚度。以此方式，可以使膜电极组件的总厚度基本上均匀，并且因此使燃料电池各单元电池的层压体的总厚度基本上均匀。该实施方案中，如图 6 中所示，自熔合性密封材料 20 可以至少部分浸入或渗透至气体扩散层 13 中。然而，因为气体扩散层 13 具有多孔结构，所以自熔合性密封材料 20 可全部深度地浸入或渗透至气体扩散层 13 中，由此改进密封性能。在图 6 的实例中，自熔合性密封材料 20 单独地形成于气体扩散层 13 的端部上。然而，任选以与图 4 中所示构造相同的方式，在自熔合性密封材料 20 的层和气体扩散层 13 之间形成增强层 19。

【0050】图 7 中，自熔合性密封材料 20 设置在隔离膜 16 的端部上。对自熔合性密封材料 20 的厚度不施加特别限制。优选地，自熔合性密封材料 20 的层具有在堆叠单元电池（膜电极组件）时提供在单元电池（膜电极组件）之间所希望的厚度。在形成自熔合性密封材料以具有确保自熔合性密封材料 20 特定粘性的厚度的情况下，如图 7 中所示，优选使形成自熔合性密封材料 20 的隔离膜 16 端部较薄。在该构造的情况下，堆叠单元电池（膜电极组件）时，可以在单元电池（膜电极组件）之间设置适当间隙，并且同时使燃料电池各单元电池层压体的厚度基本上均匀。此外，在堆叠单元电池（膜电极组件）时，隔离膜可彼此紧密接合。因此，可以防止通路 17 和 17’ 中气体和冷却水的泄漏，并且可以促使气体和冷却水有效流动。在图 7 的实例中，自熔合性密封材料 20 单独地形成于各隔离膜 16 的端部上。然而，任选以与图 4 中所示构造相同的方式，在自熔合性密封材料 20 的层和隔离膜 16 之间形成增强层 19。

【0051】上述构造中，图 3～5 和 7 的构造是期望的。图 3、4 和 7 的构造是更期望的。具体地，图 3 或 4 与图 7 的组合是期望的。

【0052】以下，对在本发明中使用的自熔合性密封材料说明。

【0053】（自熔合性密封材料）

【0054】本发明中，“自熔合性密封材料（自熔合性密封层）”意指，特征在于通过在相同或类似种类的材料之间的接触界面中显现熔合而粘接或粘合接合的材料或构件。自熔合性密封材料明确区别于“粘合剂”和明确区别于“粘着剂”，“粘合剂”的特征在于，通过将粘合剂涂布至相对的被粘物表面的任一或两者，接着使两者彼此接触，其后硬化或固化粘合剂而粘合接合；“粘着剂”的特征在于，通过将粘着剂涂布至相对的被粘物表面的任一或两者，然后硬化或固化粘着剂，接着使两者表面彼此接触而粘合接合。
本发明中，"自熔合性密封材料（自熔合性密封层）" 意指如下材料或构件，所述材料或构件除了上述特征以外，其特征还在于通过加压显现固的自熔合性，同时在被粘物接触界面中低压力下不显现固的自熔合性。具体地，通过在 25℃、5kPa 下加压 10 分钟获得的自熔合性（下文中也称为加压前的自熔合性）小于 0.01N/mm。通过在 25℃、100kPa 下加压 10 分钟获得的自熔合性（下文中也称为加压后的自熔合性）大于或等于 0.05N/mm。自熔合性通过 50cm/分钟剥离速度下的 T 型剥离试验测量。该范围是优选的，这是因为临时层压燃料电池的单元电池后可以位置调整，并且位置调整后通过加压可获得固的粘合性，从而可改进燃料电池的生产率。

加压后的自熔合性可在 25℃、100kPa 下加压 10 分钟后，通过进行 50cm/分钟剥离速度下的 T 型剥离试验确定。优选地，加压后的自熔合性为大于或等于 0.1N/mm。依次优选以下范围：0.15N/mm 以上、0.2N/mm 以上、0.3N/mm 以上、0.4N/mm 以上、0.5N/mm 以上、1.0N/mm 以上。优选增加加压后的自熔合性，从而不具体限制上限。优选地，加压后的自熔合性上限为 1000N/mm。

自熔合性密封材料的实例为：丁基橡胶、聚氯乙烯、乙丙橡胶，或者包括聚有机硅氧烷和硼化合物的硅橡胶组合物。具体地，从耐热性和化学稳定性的观点，包括聚有机硅氧烷和硼化合物的硅橡胶组合物是优选的。

对硅橡胶组合物不施加特别限制。可以使用已知硅橡胶组合物，如 JP H10-120904A 中公开的组合物。以下组合物是优选的。

（A）100 质量份由通式表示的聚有机硅烷：\(R_a SiO_{(4-a)/2} \)（\(R \) 表示彼此相同或不同，取代或未取代的单体烃基，\(a \) 为 1.90 ～ 2.70）

（B）0.1 ～ 30 质量份选自硼酸、硼酸衍生物、聚有机硅氧烷的至少一种硼化合物。

（C）0.1 ～ 10 质量份有机过氧化物。

聚有机硅氧烷（A）为自熔合性密封材料的基础聚合物。聚有机硅氧烷由平均组成式：\(R_a SiO_{(4-a)/2} \)（\(R \) 和 \(a \) 如上述限制）表示。\(R \) 的实例为：烷基如甲基、乙基、正丙基、异丙基、正丁基、正戊基、正己基、正辛基和正癸基；烷基如环戊基和环己基；烯基如乙烯基和烯丙基；芳基如苯基和苯基；以及取代烃基如氯甲基和 1,1,1-三氯丙基。为了获得作为硅橡胶的良好的耐热性、耐寒性和加工性，排除后述的烯基，甲基的浓度优选为全部 \(R \) 的 50mol％以上，更优选 85mol％以上。具体地，当耐辐射性、耐热性和耐寒性为必需或重要时，优选将期望的苯基引入至分子。特别当耐油性和耐化学药品性为必需或重要时，优选将期望量的 1,1,1-三氯丙基引入至分子。

取决于同述组分（C）的类型，由组分（C）的有机过氧化物产生的自由基，可对组分（A）中的甲基起作用并且形成交联结构。然而，为了避免促进广范围种的组分（C）以少量起作用而获得具有良好的耐热性和机械性能的硅橡胶，优选使用包含一定量的烯基，特别是乙烯基的 \(R \)。从聚有机硅氧烷的耐热性的观点，优选乙烯基含量为小于或等于 1mol％。更期望的范围为 0.02 ～ 0.2mol％。由于可获得良好的自熔合性，因此优选通过包括硅烷醇基的基团如二甲基羟基甲硅烷基而封闭聚合物末端的构造。

\(a \) 在 1.90 ～ 2.70 范围内。更期望的范围为 1.99 ～ 2.01。

组分（B）的硼化合物是将硬化后的自熔合性赋予至硅橡胶组合物的成分。组分
（B）的实例为：硼酸如无水硼酸、焦硼酸和原硼酸；硼酸或无水硼酸的衍生物，如硼酸甲酯、硼酸乙酯、硼酸三甲酯（trimethoxy borate）、硼酸三乙氧基（triethoxy borate）和三甲氧基环硼氧烷；以及包括偶联引入至聚硅氧烷链中的硼氧烷的聚有机硼硅氧烷，如聚甲基硅氧烷。聚有机硼硅氧烷可借助于加热使有机硅氧烷组合物如二甲基二氧基硅烷和二甲基二氧基硅烷）和无水硼酸缩合获得。可以采用这些中的一种或者两种以上的组合。从与组分（A）聚有机硅氧烷的相容性的观点，聚有机硼硅氧烷是优选的。

[0066] 组分（B）的共混物优选为 0.1～30质量份，相对于 100质量份组分（A）。更期望地，组分（B）的共混物为 1～15质量份。在小于 0.1质量份的范围内，可能不明显硬化后的自熔合性。在大于 30质量份的范围内，通过硬化获得的硅橡胶耐热性可能不充分，并且机械性能可能较低。

[0067] 组分（C）的有机过氧化物为如下硬化剂或固化剂，所述硬化剂或固化剂通过加热产生自由基而引起组分（B）的交联反应，并且由此硬化或固化自熔合性硅橡胶组合物。有机过氧化物的实例为：钾基过氧化物如过氧化苯甲酰；过氧化二(对-氯苯甲酰)，过氧化二(2,4-二氯苯甲酰)；烷基过氧化物如过氧化2-叔丁基基，2,5-二甲基-2,5-四(叔丁基过氧基)己烷；叔丁基过氧化物二丁基过氧化物等；以及酯基有机过氧化物如过氧化苯甲酸叔丁酯。

[0068] 组分（C）的使用量优选为 0.1～10质量份，相对于 100质量份组分（A）。更期望的范围为 0.3～5质量份。为了安全和容易处理，组分（C）可以为通过与硅油混合而形成的糊剂或者通过吸附至无机或粉末而形成的共混物的形式。

[0069] 除了上述硼化合物以外，还可以包括锡化合物（D）。锡化合物是改进自熔合性和防止所谓“伤风（catch cold）”现象的组分，所述伤风现象是通过在水分或湿气或高温下长时间放置而使自熔合性变低的现象。锡化合物的实例为：锡氧化物如二氧化锡；有机锡如三酸亚锡、辛酸亚锡、癸酸亚锡、环烷酸亚锡、辛烷酸亚锡和油酸亚锡；以及包括与锡原子直接结合（coupled）的烃基的有机锡化合物，如二乙酸二丁基锡、二辛酸二丁基锡、二月桂酸二丁基锡、二甲酸二丁基锡（dibutyltin dimethyleate）和二氧化二甲基锡（dimethyltin dioxide）。从与组分（A）聚有机硅氧烷的相容性的观点，优选实例为锡化合物用作室温固化硅橡胶的缩合催化剂。

[0070] 在使用锡化合物的情况下，锡化合物的使用量优选为 0.01～10质量份，相对于 100质量份组分（A）。更期望的范围为 0.1～5质量份。在小于 0.01质量份的范围内，在一些情况下可能消除抑制“伤风现象”的效果。在超过 10质量份的范围内，锡化合物可能阻碍硅橡胶的固化。此外，固化的硅橡胶的耐热性可能不充分，机械性能可能降低。

[0071] 根据需要，任选将无机填料共混至自熔合性硅橡胶组合物。预期无机填料将需要的硬度和机械性能赋予硅橡胶组合。实例为：补强填料如气相二氧化硅、二氧化硅气凝胶和沉淀二氧化硅；以及非补强填料如石英粉末、硅藻土、碳酸钙、氧化钛、氧化铁、铁素体和炭。可以单独使用这些中的一种，或将这些中的两种以上组合使用。

[0072] 考虑到固化后获得的橡胶的物理性质和赋予橡胶的各种性质，可适当共混无机填料。通常，优选共混无机填料至上限为 1,000质量份，相对于 100质量份组分（A）。考虑到加工性，更期望的共混范围为 1～500质量份。

[0073] 任选将已知为硅橡胶的配混成分的各种成分混合至硅橡胶组合物中，所述各种成
分如颜料、耐热性改进剂、抗氧化剂、加工助剂和有机溶剂。此外，为了防止假交联（pseudo cross linking），任选混合物如甲醇、乙醇、丙醇、丙二醇和甘油。

硅橡胶组合物可通过用如斑布里混合机、捏合机或辊等的捏合装置冷捏合或热捏合而制备。可将组分（A）～（D）和任选的无机填料以共混或配混的任意次序共混。在用加热热捏合的情况下，优选在热捏合后，在冷却混合物后添加组分（B）、（C）和（D）。

作为硅橡胶组合物，任选使用商用产品。商用产品的实例为：由 Toray Dow Corning silicone Co.Ltd 生产的 SE6770U 硅橡胶配混物。可以使用本领域中已知硅橡胶组合物的任一种。

在本发明中使用的自熔合性密封材料加压前的自熔合力或自熔合性粘合力优选为小于 0.01N/mm²。更期望的范围为小于 0.001N/mm²。更期望地，自熔合性密封材料不具有加压前的自熔合力（即 0N/mm²）。加压前的自熔合力可在 5kPa 下在 25℃下加压 10 分钟后，通过 50cm/分钟剥离速度下的T型剥离试验而测量。当临时堆叠相当数量的燃料电池单元电池时，推定通过其自身重量施加的压力而施加 5kPa 的压力。优选地，当至少用对应于其自身重量的压力，根据本发明的自熔合性密封材料压向相对的自熔合性密封材料时，根据本发明的自熔合性密封材料不显示自熔合性。

优选地，本发明中使用的自熔合性密封材料在 23℃下的球粘性（ball tack）低于或等于 3。球粘性通过由 JIS Z 0237:2009 规定的 J. Dow 法而测量球粘性值。随着粘性变得更强，球粘性就变得更大。球粘性优选为小于或等于 2。更期望地，球粘性为小于或等于 1。无球粘性（球粘性等于零）是特别期望的。

已知典型的自熔合性材料仅通过在室温下在没有压力（小于 1kPa）下接触而显现强固的熔合性。然而，通过采用在表面层中形成防粘层从而防止在低压力下自熔合性材料之间接触的技术（如 JP 2566304B2 中公开的那样），可以设计得显现自熔合性密封材料期望的物理性质。此外，将包封增塑剂的微胶囊分散在自熔合性较低的基材层中的技术（如在 JP H06-172725A 中公开的那样），对于显现自熔合性密封材料期望的物理性质是有效的。此外，可以通过将添加剂粘附至自熔合性密封材料表面，将加压前的自熔合力与粘性以及加压后的自熔合力调整在期望的范围内。对添加剂不施加限制，只要添加剂可将加压前的自熔合力与粘性以及加压后的自熔合力调整在期望的范围内即可。作为添加剂，优选使用氧化铝和二氧化硅的细粉末和细纤维。使用氧化铝粉末和二氧化硅粉末是更期望的。通过使用粘附至自熔合性密封材料表面的此类添加剂，可以将加压前的自熔合力与粘性以及加压后的自熔合力调整在期望的范围内。不限制添加剂的共混量（涂布量），只要实现上述效果即可。共混量依赖于添加剂的种类而适当确定。尽管当添加剂为细粉末形式时，对粉末的平均粒径不施加限制，但是平均粒径优选为大于或等于 0.001μm。更期望的范围为等于或大于 0.01μm。等于或大于 0.02μm 的范围仍然是更期望的。在使用细粉末作为添加剂的情况下，平均粒径的上限优选等于或小于自熔合性密封材料的厚度。等于或小于 10μm 的范围是更期望的。等于或小于 5μm 的范围仍然是更期望的。等于或小于 1μm 的范围是特别期望的。因此，在细粉末形式的添加剂的情况下，平均粒径的期望范围为 0.001～10μm。更期望的范围为 0.01～5μm，仍然更期望的范围为 0.02μm～1μm。可以推定添加剂起作用通过将压力下插入自熔合性密封材料之间而阻碍自熔合，并且能够通过将压力下自熔合性密封材料中凹陷（retract）而显现自熔合的作用。可以将添加剂粘附至与相对的
说明书

自熔合性材料的至少一个表面。

[0079] 本发明中，关于除自熔合性密封材料以外的形成MEA和PEFC的构件，可以使用燃料电池领域中已知的构造而不改变或者进一步适当改进。以下是对构成MEA和PEFC的元件的说明。然而，本发明不限于以下模式。

[0080] （固体聚合物电解质膜）

[0081] 本发明中使用具有质子传导性的固体聚合物电解质膜，并且具有在固体聚合物燃料电池运行时阳极催化剂层中发生的质子沿膜厚度方向选择性透过至阴极催化剂层的功能。此外，固体聚合物电解质膜具有作为防止供给至阳极侧的燃料气体和供给至阴极侧的氧化气体混合的隔离的功能。

[0082] 对固体聚合物电解质膜的结构不施加特别限制。可以采用在燃料电池技术领域中已知的聚合物电解质膜。根据构成的聚合物电解质种类，将固体聚合物电解质膜分为氟系固体聚合物电解质膜和烃系固体聚合物电解质膜。

[0083] 构成氟系固体聚合物电解质膜的聚合物电解质的实例为：全氟磺酸型聚合物如nafion（注册商标, DuPont产品）、aciplex（注册商标, Asahi Kasei corporation产品）和flemion（注册商标, Asahi Glass Co.Ltd.产品），全氟烃亚磷酸型聚合物，三氟苯乙烯磺酸型聚合物，乙烯四氟乙烯-苯乙烯磺酸聚合物，乙烯四氟乙烯共聚物和聚偏二氟乙烯-全氟烃磺酸型聚合物。从发电性质如耐热性及化学稳定性的观点，使用这些氟系聚合物电解质膜是期望的。使用由全氟烃磺酸型聚合物组成的氟系聚合物电解质膜是更期望的。

[0084] 构成烃系固体聚合物电解质膜的聚合物电解质的实例为：磺化聚醚醚（S-PEES）、磺化聚芳醚酮、磺化聚苯并咪唑烷基（sulfonated polybenzimidazolealkyl）、膦酸酯化聚苯并咪唑烷基（phosphonated polybenzimidazolealkyl）、磺化聚苯乙烯、磺化聚醚醚酮（S-PEEK）和磺化聚亚苯基（S-PPP）。从生产的观点如廉价原料、简便的生产工艺和宽的材料选择，使用这些烃系聚合物电解质膜是期望的。可以仅使用上述离子交换树脂中的一种或其两种以上的组合。

[0085] 假定使用除构成上述固体聚合物电解质膜的聚合物电解质以外的材料，作为聚合物电解质。例如，具有高质子传导性的液体、固体和凝胶材料是可用的。实例为：磷酸、硫酸、酸、酸、酸和杂多酸的固体酸、掺杂有无机酸如磷酸的烃聚合物；部分由质子传导性官能团置换的有机/无机混杂聚合物；以及包括用磷酸溶液或硫酸溶液浸渍的聚合物基体的凝胶状质子传导性材料。可以使用具有质子传导性及电子传导性的混合导体，作为聚合物电解质。

[0086] 固体聚合物电解质膜的厚度可考虑到膜电极组件和聚合物电极的特性而适当确定，但不特别限制。然而，固体聚合物电极电解质膜的厚度的期望范围为5～300μm。更期望的范围为5～200μm。仍然更期望的范围为10～150μm。特别期望的范围为15～50μm。厚度在这些范围内，可以控制形成膜的厚度，使用期间的耐久性和使用期间的输出特性之间的平衡。

[0087] （催化剂层）

[0088] 存在阳极催化剂层和阴极催化剂层。下文中，当阳极催化剂层与阴极催化剂层之间不进行区别时，简单地使用“催化剂层”。催化剂层具有通过电化学反应产生电能的功能。阳极催化剂层通过氢气的氧化反应产生质子和电子。阳极催化剂层中产生的质子和电
子用于阴极催化剂层中氧气的还原反应。
[0089] 催化剂层包括具有支持催化剂组分的导电性载体的电极催化剂，以及聚合物电解质。可以采用燃料电池技术领域中已知的任一种催化剂层构造，而没有特别限制。
[0090] （导电性载体）
[0091] 导电性载体为支持催化剂组分的载体，并且具有导电性。需要导电性载体具有足以以期望的分散状态来分散催化剂组分的比表面积，并且具有充分的电子传导性。关于导电性载体的组成，优选的主组分是炭。导电性载体材料的实例为：炭黑、活性炭、炭粉、天然石墨和人造石墨。术语“主组分是炭”意指所述材料包括作为主组分的炭，并且包括仅包括碳原子的含义和其基本上由碳原子组成的含义两者。在一些情况下，为了改进电池的特性，可以包括除碳原子以外的一种元素或多种元素。术语“其基本上由碳原子组成”意指允许包括小于或等于约2～3质量%的量的杂质。
[0092] 对导电性载体的 BET(Brunauer-Emmet-Teller) 比表面积不施加特别限制，只要可以以高分散状态支持催化剂组分即可。然而，期望的范围为 100 ～ 1500m²/g。更期望的范围为 600 ～ 1000m²/g。在这些范围内，可以充分控制导电性载体上催化剂组分的分散性和催化剂组分的有效利用率之间的平衡。
[0093] 尽管对导电性载体的平均粒径不施加特别限制，但是通常平均粒径在 5 ～ 200nm 的范围内。优选范围为约 10 ～ 100nm。作为导电性载体的平均粒径，采用通过借助于透射电子显微镜(TEM)的一次粒径测量法而获得的值。
[0094] （催化剂组分）
[0095] 催化剂组分具有在电化学反应中进行催化作用的功能。负载在导电性载体上的催化剂组分没有限制，只要可进行促进电化学反应的上述催化作用即可。可以适当采用已知催化剂。催化剂组分的实例为：金属如钯、钌、铱、铑、钯、铑、锇、铁、铑或镍、铱、铑、铱和铑，以及这些金属的合金。从良好的催化活性和耐久性的观点，优选催化剂组分至少包括钯。在采用合金作为催化剂组分的情况下，合金的组成可由本领域技术人员依赖于合金中的金属种类而适当选择。优选地，钯含量为约 30 ～ 90 原子%，以及其它一种或多种金属允许的含量约 10 ～ 70 原子%。通常，合金为具有金属性质的材料，其组成将一种以上金属元素或非金属元素添加至一种金属元素而获得。合金的结构可以是不同晶体形式的构成元素的混合物的固溶体，构成元素完全共混的固溶体，以及通过构成元素形成的化合物如金属间化合物和金属与非金属的化合物。可采用这些结构中的任一种。可以通过使用ICP 光学发射光谱仪确定合金结构。
[0096] 对催化剂组分的形状和大小不施加特别限制。可以采用已知催化剂组分的形状和大小。催化剂组分的优选形状为粒状。催化剂组分颗粒的平均粒径期望在 0.5 ～ 30nm 范围内，更期望在 1 ～ 20nm 范围内。在这些范围内，可以适当控制与其进行电化学反应的有效电极表面积相关联的催化剂利用率，和载体支持的容易性之间的平衡。催化剂组分颗粒的平均粒径可根据由 X 射线衍射分析中催化剂组分颗粒衍射峰的半高宽确定的微晶直径，和由透射电子显微镜图像获得的催化剂组分的粒径的平均值而计算。
[0097] 对电极催化剂中的导电性载体含量与催化剂组分含量的比率不施加限制。催化剂组分的含量百分比（支持量）优选在相对于电极催化剂的总质量为 5 ～ 70 质量%的范围内。更期望的范围为 10 ～ 60 质量%，仍然更期望的范围为 30 ～ 55 质量%。当催化剂组
分的含量比率等于或大于5质量％时，催化剂组分可充分进行电极催化剂的催化剂功能，因此有助于改善固体聚合物燃料电池的发电性能。当催化剂组分的含量比率等于或小于70质量％时，导电性载体表面上催化剂组分的附聚得到抑制，并且以期望的更高分散状态支持催化剂组分。上述含量比率通过使用由ICP光学发射光谱仪测量的值而确定。

[0098]（聚合物电解质）

[0099]聚合物电解质具有改进催化剂层的质子传导性的功能。关于在催化剂层中包括的聚合物电解质的构造，可适当使用在燃料电池技术领域中已知的知识，而没有限制。例如，在催化剂层中包括的聚合物电解质，可以使用形成上述固体聚合物电解质膜的聚合物电解质。因此，此处略去关于聚合物电解质重复的详细说明。在催化剂层中包括的聚合物电解质可以仅包括一种或可以包括两种以上。

[0100]从良好离子传导性的观点，在催化剂层中包括的聚合物电解质的离子交换量，优选在0.8～1.5mmol/g范围内。更期望的范围为1.0～1.5mmol/g。聚合物电解质的离子交换量越大，聚合物电解质中相对于单位干燥质量的硫酸基摩尔数。可以通过借助于加热干燥从聚合物电解质分散液除去分散介质而制备固体聚合物电解质，并且进行固体聚合物电解质的中和过程，确定离子交换量的值。

[0101]对催化剂层中聚合物电解质的质量不施加限制。然而，催化剂层中聚合物电解质的量与导电性载体的量的质量比（质量比＝聚合物电解质质量/导电性载体质量），优选在0.5～2.0范围内。更期望的范围为0.6～1.5。仍然更期望的范围为0.8～1.3。从抑制膜电极组件内阻的观点，期望聚合物电解质/导电性载体的质量比为等于或大于0.8的条件。从抑制溢流的观点，期望聚合物电解质/导电性载体的质量比为等于或小于1.3的条件。

[0102]任选将防水剂和各种其它添加剂，以涂布或包含（inclusion）的形式添加至各催化剂层，特定添加至导电性载体表面和聚合物电解质。在添加防水剂的情况下，可以提高催化剂层的防水性，并且迅速排出发电时产生的水。防水剂的混合量，可适当确定在对本发明的作用效果不施加影响的范围内。作为防水剂，可以期望地使用上述实例。

[0103]尽管没有特别限制，但是根据本发明的催化剂层的厚度优选在0.1～100μm范围内。更期望的范围为1～20μm。在获得期望发电量的程度下，催化剂层厚度为等于或大于0.1μm的条件是期望的。在维持高输出的这点下，催化剂层的厚度为等于或小于100μm的条件是期望的。

[0104]可通过如下生产膜电极组件：借助于已知方法，在固体聚合物电解质膜的两面上形成阳极侧催化剂层和阴极侧催化剂层，并且将由此获得的层压体夹持在借助于上述方法形成的气体扩散层之间。

[0105]可通过如下生产催化剂层：将由电极催化剂、聚合物电解质和溶剂组成的催化剂墨，借助于已知方法如喷雾法、转印法、刮刀法和印模涂布机法，在固体聚合物电解质膜上涂布。

[0106]固体聚合物电解质膜和催化剂墨的涂布量没有限制，只要电极催化剂可充分进行催化电化学反应的作用即可。优选地，进行涂布，以使每单位面积的催化剂组分的质量在0.05～1mg/cm²范围内。涂布后涂层催化剂墨的厚度优选在5～30μm范围内。涂布量和涂布厚度在阳极侧和阴极侧之间无需相同。可以单独调整阳极侧和阴极侧的涂布量和厚
度。

[0107] （气体扩散层）

[0108] 配置一对气体扩散层，以使由上述电解质膜和催化层组成和MEA夹持在气体扩散层之间。气体扩散层起到促进通过和所述的隔膜气体通路供给的气体（阳极侧上的燃料气体；阴极侧上的氧化气体）扩散至催化层，并且用作电子传导路径的功能。

[0109] 形成气体扩散层基材的材料没有限制，可使用本领域中已知的知识。实例为：具有导电性和多孔性（porosity）的片状材料，如碳制织物、纸状纸制品、毡和无纺布。基材厚度可考虑到所得气体扩散层的特性而适当确定。期望的范围为30～500μm。在具有该范围内的厚度的基材的情况下，可以控制气体和水的机械强度和扩散性之间的平衡。

[0110] 优选地，对气体扩散层进行亲水处理。通过亲水处理加工的气体扩散层可促进催化剂层中存在（或流动）的过量水的排出，并且有效地把水从氧化反应区域移出。施加至气体扩散层的亲水处理实例为；氧化钛涂布至基材表面，以及用酸液去用载体基材表面改性的处理。不限于这些实例。可以采用其它亲水处理。

[0111] 此外，为了促进催化剂层上的电极反应层中包含的过量水排出，以及防止发生渗透现象，气体扩散层要在基材的催化层上附着有包含炭颗粒的微多孔层（炭颗粒层）。具体地，可以采用多孔层（炭颗粒层）中包括的炭颗粒，可以采用已知材料如炭黑、石墨和膨胀石墨，而不特别限制。具体地，因为氧化的电子传导性和高的比表面积，所以炭黑如油炼黑、槽黑、灯黑、热裂炭黑是优选的。优选地，碳颗粒的平均粒径为10～100nm。在炭颗粒的平均粒径在该范围内的情况下，可以获得通过毛细管力的高的排水性，并且可以促进催化剂层的接触性。

[0112] 微多孔层（炭颗粒层）可以包含防水剂。防水剂的实例为：氟类聚合物如聚四氟乙烯（PTFE）、聚偏氟乙烯（PVDF）、聚六氟丙烯和四氟乙烯与六氟丙烯的共聚物（FEP）、聚丙烯；以及聚乙烯。因为氧化的防水性和电极反应时的耐腐蚀性，所以优选使用氟类聚合物。

[0113] （隔离膜）

[0114] PEFC的单电池通过夹持在隔膜之间的MEA形成。通常，PEFC为包括串联连接的多个单元电池的堆叠结构形式。在这种情况下，隔膜具有串联电连接MEAs的功能，具有提供输送不同流体如燃料气体、氧化气体和冷却介质的流路和管的功能，并且具有保持层叠体的机械强度的功能。

[0115] 作为隔膜材料，可以适当利用本领域中已知的知识，而无特别限制。实例如；炭材料如致密炭石墨和炭炭；以及金属材料如不锈钢合金。隔膜厚度可以考虑到PEFC的输出特性而适当确定，而没有特别限制。

[0116] （垫片）

[0117] 将垫片配置在燃料电池周围，从而围绕催化层端和气体扩散层对。垫片具有防止供给至催化层端的气体泄漏至外部的功能。气体扩散电极为气体扩散层和催化层组件。垫片材料没有限制。垫片的实例为：橡胶材料如氟橡胶、硅橡胶、乙丙橡胶（EPDM）、聚异丁烯橡胶；氟类聚合物材料如聚四氟乙烯（PTFE）、聚偏氟乙烯（PVDF）、聚六氟丙烯和四氟乙烯与六氟丙烯的共聚物（FEP）；以及热塑性树脂如聚烯烃和聚酯。对垫片厚度没有特别限制。垫片厚度的期望范围为50μm～2mm。更期望的范围为100μm～1mm。
对燃料电池类型不施加特别限制。前述说明中，采用聚合物电解质型燃料电池作为实例。可使用的其它实例为：碱性型燃料电池、直接甲醇型燃料电池和微燃料电池。具体地，从可以小尺寸、高密度和高输出的观点，聚合物电解质燃料电池是优选的。燃料电池用作固定电源以及移动体或运输用电源，如安装空间受限的车辆用电源。燃料电池可优选用于需要频繁发生系统的启动/停止和输出变化的机动车辆。

（燃料电池的生产方法）

根据本发明的燃料电池的生产方法或制造方法包括：（1）涂布步骤，其将自熔合性密封材料涂布在选自由电解质膜、一个或多个气体扩散层和一个或多个隔离膜组成的组的至少一种构件的端部上；（2）硬化或固化步骤，其硬化或固化自熔合性密封材料；（3）层压步骤，其通过叠加包括电解质膜、一个或多个气体扩散层的膜电极组件和一个或多个隔离膜，形成层压体或层叠体；以及（4）熔合步骤，其加热压层压体用于熔合。以下是对生产方法的逐步说明。本发明不限于以下实施例和实施例。

（1）涂布步骤，其将自熔合性密封材料涂布在选自由电解质膜、膜电极组件和一个或多个隔离膜组成的组的至少一种构件的端部上。

（2）在该步骤中，将自熔合性密封材料涂布至选自由电解质膜、膜电极组件和一个或多个隔离膜组成的组的至少一种的端部。

（3）作为自熔合性密封材料的涂布方法，可以采用常规涂布方法，而没有特别限制。实例为：用分散机、凹版涂布机、刮刀涂布机、唇口涂布机或棒涂机涂布；丝网印刷或胶版印刷。

（4）自熔合性密封材料的涂布量优选在等于或大于 2g/m²范围内。更期望的范围为等于或大于 10g/m²。仍然更期望的范围为等于或大于 20g/m²。特别期望的范围为等于或大于 30g/m²。尽管没有设定上限，但是当涂布量超过 1000g/m²时，密封体（seal）可能变得过厚。在上述范围内，可以通过熔合将密封体充分粘附至被粘物表面。

（5）（2）硬化或固化步骤，其硬化或固化自熔合性密封材料。

（6）考虑到保护与其它材料紧靠接触的自熔合性密封材料的涂布面，开始该步骤，并且自熔合性密封材料借助于通过加热或照射的干燥而硬化或固化。硬化的自熔合性密封材料几乎不显示在不同材料在接触压力下或低于 5kPa 下和在相同材料之间的熔合性或粘性。因此，可以将用自熔合性密封材料涂布的构件形成为辊状，通过切割用自熔合性密封材料涂布的构件而临时存储在储箱中，并且能够设计和构造各种燃料电池用生产线。

（7）通过加热而硬化材料的硬化或固化温度优选为低于或等于 120℃，更期望为低于或等于 110℃。尽管对硬化温度的下限没有特别限制，但是期望的范围为低于 20℃或高于 20℃。更期望的范围为等于 40℃或高于 40℃。

（8）硬化或固化时间优选为等于 1 小时或短于 1 小时。更期望地，硬化或固化时间为等于 10 分钟或短于 10 分钟。对硬化或固化时间不设定特定下限。

（9）（3）层压步骤，其通过层压包括电解质膜、一个或多个气体扩散层的膜电极组件和一个或多个隔离膜而形成层压体或层叠体。

（10）在该步骤中，将包括电解质膜、一个或多个气体扩散层的膜电极组件和一个或多个隔离膜逐一叠加。自熔合性密封材料设置在选自由电解质膜、一个或多个气体扩散层和一个或多个隔离膜组成的组的至少一种的端部中。尽管在层压体中层压的层数依赖于燃料
电池的预期目的而不同，但是层数通常对于固定应用 (stationary application) 等于几十层，对于机动车辆为几百层。如前所述，在本发明中使用的自熔合性密封材料几乎不显示在不同材料之间和在接触压力下等于 5kPa 的熔合性或粘性。因此，临时层压或叠层单元电池后，可以进行位置调整。作为位置调整用方法，存在通过将平板固定至临时层压燃料电池组的外周部，借助于振动、重力等对齐部件的实例。

[0132] （4）加压和熔合层压体的步骤。

[0133] 在该步骤中，将层压体或层叠体用等于或高于 10kPa 的压力沿层压方向加压。在该加压的情况下，在自熔合性密封材料之间产生强固的熔合力，完成燃料电池组。根据预期目的，可以期望地在 100℃以上的温度下，更期望地在 80℃以下的温度下加热燃料电池组，以改进自熔合力。尽管不设定熔合温度的下限，但是熔合温度期望为等于或高于 20℃，更期望等于或高于 40℃。

[0134] 加压操作的压力为等于或高于 10kPa，期望等于或高于 50kPa，更期望等于或高于 200kPa，更期望等于或高于 500kPa。压力范围为等于或高于 1MPa 是特别优选的。当期望较高压以减少燃料电池中的接触电阻时，可以使用较高压力。对于压力不设定具体上限。加压操作的压力在不破坏或损坏层压体（膜电极组件）结构的压力范围内。

[0135] （车辆）

[0136] 装配有根据本发明燃料电池的车辆也在本发明的技术范围内。根据本发明的燃料电池适于车辆用应用，这是因为其优越的发电性能和耐久性。

[0137] 实施例

[0138] 以下是参考实施例对本发明的更具体说明。然而，本发明的技术范围不局限于以下实施例。

[0139] （实施例 1）

[0140] 以如下工艺生产具有图 2 结构的膜电极组件。

[0141] （1）PET 膜上的自熔合性密封材料（自熔合性密封层）的形成。

[0142] 将通过表面等离子体处理加工的 PET 膜 (0.1mm) 切割，以获得在中心部具有 50mm×50mm 开口部的 70mm×70mm PET 膜。将该 PET 膜的外周部通过分散机法用自熔合性密封材料涂布，所述自熔合性密封材料 (SE6770U, by Toray Dow Corning silicone CO, Ltd. 生产；100 质量份，过氧化二乙基胺；2 质量份，三乙氧基硅烷；5 质量份) 具有 10mm 宽度和 20μm 厚度，并且包括聚有机硅氧烷和硼化合物。此后，将其具有 0.5μm 平均粒径的氧化铝粉末以 0.9g/m² 的量粘附于涂布面。

[0143] PET 膜上的自熔合性密封材料的粘度为零。此外，自熔合性密封材料重叠以使彼此相对，并且在 5kPa 表面压力下在 25℃下施加压力 10 分钟。在这种情况下，自熔合力为等于或小于 0.005N/mm。自熔合力通过在 50cm/分钟剥离速度下的 T 型剥离试验测量。

[0144] （2）催化剂层 - 电解质膜 - 催化剂层的三层层压体 [CCM(1)] 的生产。

[0145] 向切割成 70×70mm 形状的电解质膜 (Nafion®注册商标，211, Dupont®产品) 的两面上，贴合上述 PET 膜，以使涂布表面面向外部。通过墨喷射方法，在各表面的开口部上涂布支持铂的炭电极 (48mm×48mm)，由此生产催化剂层 - 电解质膜 - 催化剂层的 CCM (PET 膜设置在各侧的外周部中)。由此生产的 CCM(1) 包括在电解质膜 11 两面上形成的催化剂层 12 (阳极催化剂层和阴极催化剂层)，而增强层 19 和自熔合性密封材料 20 形成于电解质
膜 11 的端部上。

[0146] 当几个 CCM 重叠以使自熔合性密封材料彼此相对时，通过用两手拿住几个 CCM 和
使所述几个 CCM 落下至台上而调整对齐端面。在这种情况下，CCM 可调整至良好排列的堆
叠而不熔合。

[0147] (2') 催化剂层 - 电解质膜 - 催化剂层的三层压体 [CCM(2)] 的生产。

[0148] 除了不粘附氧化铝粉末以外，以与上述工艺 (1) 相同的方式生产自熔合性密封材
料。

[0149] 接着，除了使用 (2') 中所生产的自熔合性密封材料以外，以与工艺 (2) 中相同
的方式生产催化剂层 - 电解质膜 - 催化剂层的 CCM(PET 膜设置在各侧的外周部中)。因此，生
产 CCM(2)。由此生产的 CCM(2) 包括在电解质膜 11 两面上形成的一催化剂层 12（阳极催化剂
层和阴极催化剂层），而增强层 19 和自熔合性密封材料 20 形成于电解质膜 11 端部上。将
由此生产的 CCM(2) 叠加，以使自熔合性密封材料彼此相对，所得层压体在 100kPa、25℃下
加压 10 分钟。此后，进行在 50cm/ 分钟剥离速度的 T 型剥离实验，加压后的自熔合力等于
0.35N/mm。

[0150] (3) 一个或多个隔离膜上的自熔合性密封材料 (自熔合性密封层) 的形成。

[0151] 隔离膜通过以下制备：将进行喷砂并且切割为 70×70mm 形状的铝隔离膜 (0.1mm
厚) 的外周部，用自熔合性密封材料通过分散机法涂布。所述自熔合性密封材料 (SE6770U，
由 Toray Dow corning silicone CO.Ltd. 生产; 100 质量份，过氧化二枯基; 2 质量份，三乙
氧基硼烷; 5.5 质量份) 具有 10mm 宽度和 20μm 厚度，并且包括聚有机硅氧烷和硼化合物。

[0152] 两个隔离膜叠加，使自熔合性密封材料彼此相对，所得层压体在 100kPa、25℃下
加压 10 分钟。此后，进行在 50cm/ 分钟剥离速度下的 T 型剥离实验，加压后的自熔合力等
于 0.41N/mm。

[0153] (4) CCM、气体扩散层和隔离膜的熔合。

[0154] 作为气体扩散层，使用切割为 50×50mm 形状的商购可得 GDL（由 SGL carbon
corporation 生产；25BC）。通过将由上述工艺 (3) 获得的隔离膜、上述气体扩散层、和工艺 (2)
生产的 CCM(1)、上述气体扩散层和由工艺 (3) 获得的隔离膜按所述次序叠加而形成层压体。
因此，生产层压体 (燃料电池) 10。如图 2 中所示，由此生产的层压体 10 包括催化剂层
12（阳极催化剂层与阴极催化剂层）与气体扩散层 13，增强层 19 与自熔合性密封材料 20
以及隔膜 16，所述催化剂层 12（阳极催化剂层与阴极催化剂层）与气体扩散层 13 分别形
成于电解质膜 11 两面上，所述增强层 19 与自熔合性密封材料 20 形成于电解质膜 11 端部
上，所述隔膜 16 配置在 CCM(1) 两面上，并且在端部中设置有自熔合性密封材料 20。

[0155] 当所述层压体中的两个进行重叠以使自熔合性密封材料彼此相对时，通过用两手
保持层压体和使所述层压体落下至台上面调整对齐端面。在这种情况下，层压体可调整至
良好排列的堆叠而不熔合。

[0156] 此后，通过在 0.1MPa、25℃下加压 10 分钟，使得相对的自熔合性密封材料彼此强
固地粘合。尝试用 0.2N/mm 的力的 T 型剥离，但是不可能实现剥离或脱离。因此，通过该实
施例获得的层压体具有至少 0.2N/mm 的加压后的自熔合力。

[0157] （实施例 2）

[0158] （1）自熔合性密封材料表面上的粘结层的形成。
作为防粘层添加剂，将 0.01g 氧化铝粉末 (BUEHLER MICROPOLISH II 氧化铝粉末，平均粒径: 0.05 μm 和 1.0 μm) 引入至玻璃试验瓶 (Asone, goodboy 100ml) 中，并且搅拌 2 分钟以上。接着，通过将切割为具有 50mm 长度和 10mm 宽度并放置在防止粘接至壁面用夹具中的自熔合性密封材料 (Fuji Polymer Industries Co., Ltd. 产品, Fujipoly, flat tape STVO, 25-25, 厚度: 0.25 μm, 宽度: 25 μm) 投入上述试验瓶中，并搅拌长于或等于 2 分钟的时间，使自熔合性密封材料的表面上形成防粘层。将从试验瓶取出的两个自熔合性密封材料轻轻叠加，以使防粘层彼此接触，并且在 5kPa 和 100kPa, 25℃ 下加压 10 分钟而进行加压操作。此后，用压缩试验机 (由 Kato Tech Co., Ltd. 生产) 进行 6cm/分钟剥落速度下的 T 型剥离试验，测量自熔合力 (T 剥离强度)。结果示于表 1 中。

<table>
<thead>
<tr>
<th>添加剂</th>
<th>涂布量 (g/m²)</th>
<th>T 剥离强度 (N/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>氧化铝粉末的平均粒径: 1.0 μm</td>
<td>6</td>
<td>0.00</td>
</tr>
<tr>
<td>氧化铝粉末的平均粒径: 0.05 μm</td>
<td>2</td>
<td>0.01</td>
</tr>
<tr>
<td>无</td>
<td>0</td>
<td>0.32</td>
</tr>
</tbody>
</table>

从表 1 理解的是，如在该实施例中那样，即使自熔合性密封材料在室温下在无压力（低于 1kPa）下通过接触而产生强固的熔合力，通过适当应用防粘层添加剂，自熔合性密封材料加压前和加压后的自熔合力 (T 剥离强度) 也可容易地调整至期望值。该实施例中，加压前 (5kPa) 的自熔合力 (T 剥离强度) 和加压后 (100kPa) 的自熔合力 (T 剥离强度) 通过 6cm/分钟剥落速度下的 T 型剥离试验测量。当进行 50cm/分钟剥落速度下的 T 型剥离试验时，加压前 (5kPa) 的自熔合力 (T 剥离强度) 和加压后 (100kPa) 的自熔合力 (T 剥离强度) 均比 6cm/分钟剥落速度下测量的自熔合力 (T 剥离强度) 高。

本申请基于 2009 年 8 月 7 日提交的在先日本专利申请 2009-184358。将该在先日本专利申请的全部内容在此引入，作为参考。
图 4

图 5

图 6
图 7