PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GO6F 17/00 Al

(11) International Publication Number:

(43) International Publication Date:

WO 00/03329

20 January 2000 (20.01.00)

(21) International Application Number: PCT/US99/14994

(22) International Filing Date: 2 July 1999 (02.07.99)

(30) Priority Data:

09/109,726 2 July 1998 (02.07.98) us

(71) Applicant (for all designated States except US): ACTIVE-
POINT LTD. [IL/IL]; P.O. Box 8027, Industrial Park Poleg,
42101 Netanya South (IL).

(71) Applicant (for T7J only): FRIEDMAN, Mark, M. [US/IL];
Alharizi Street 1, 43406 Raanana (IL).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB,
GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG,
KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, T™M, TR, TT, UA, UG, US, UZ, VN, YU, ZA,
ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ,
UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD,
RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI
patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR,
NE, SN, TD, TG).

Published

With international search report.

(72) Inventors; and

(75) Inventors/Applicants (for US only): TAVOR, Onn [IL/IL];
Beth Shamai Street 10/13, 47278 Ramat Hasharon (IL).
BEN, AVRAHAM, Gila [IL/IL]; Yehuda Halevi Street
20/12, 42480 Netanya (IL). SHEVCHENKO, Vadim
[IL/IL]); Itshak Sadeh Street 5/4, 52256 Netanya (IL).

(74) Common Representative: FRIEDMAN, Mark, M.; Anthony
Castorina, Suite 207, 2001 Jefferson Davis Highway, Ar-
lington, VA 22202 (US).

(54) Title: VIRTUAL SALES REPRESENTATIVE

Sales Engine - General Architecture

I7Web Server Technologies (CGI, ISAPI, NSAPL..) }/m
\

N SR G RSN W SR G
r \ 4 Customers Analysis l

* Tools for output ["\yo Detection Engine

28
Sales Engine Unit l/
core routines I Transfer to chat
[1 [appiication.. o 2

Arithmetic
|| Calculations

Screen
(GUI)
2

(57) Abstract

A method for enabling users over a network or over the WWW (20) to interact with an interactive sales representative system (28)
for providing sales guidance. The system offers the user products, services, or ideas (the "products" (24)) according to parameters collected
from the user. The system guides the customer to retrieve the desired products. If the system does not have a product matched to the
customer requirements, preferably it will operate a mechanism for suggesting alternatives which are the closest to the customer requirements.
The system will execute various sales tools and techniques (10) to help and assist the customer and to convince the customer to purchase
a product. By guiding the customer to a target product, the system will shorten the search cycle for the customer as well as find better
matched products. The system will provide market advisory, suggest, recommend, discuss (in written form and optionally voice form (26)),
comment, advise the customer regarding the products. The system might advise the customer in any other aspects as well. The system
adds graphics, animation, 3D, movie clips, voice and other effects to make the session enjoyable for the customer.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
Cl
CM
CN
Cu
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cdte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Tsrael

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
TJ
™
TR
T
UA
UG
Us
Uz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 00/03329

VIRTUAL SALES REPRESENTATIVE

FIELD AND BACKGROUND OF THE INVENTION

The present invention relates to virtual sales personnel, and more
particularly, to software which is capable of assisting a computer user to
complete an on-line sales transaction in a substantially similar manner as a
human sales representative.

As the Internet grows, many Web sites are becoming connected and
more corporations are trying to do business on the “Web”. Although most
information is still given freely on the Internet, an increasing number of
organizations are attempting to actually sell their products electronically by
charging a credit card. As credit card security problems are being resolved,
the area of electronic sales, or Electronic Commerce (e-commerce), has been
developing rapidly. The new and exciting point about e-commerce is the
ability of every one, almost anywhere on the globe to which a Web
connection is available, to access any commercial business offerings catalog
implemented as a Web site. Moreover, the user, can access this service
anytime, 24 hours a day, seven days a week. However, one area in which
virtual stores lag far behind their actual, physical counterparts is in the area
of sales representatives.

A common practice worldwide in actual physical stores is to have
sales representatives or sales persons. These sales representatives help the
customer to understand the product and its benefit to the customer, as well as
enabling customers to find the needed product quickly. In addition, the sales
representative can advise the customer on product related issues, including
the virtues of competing brands. In this sense, the sales representative is the
technical expert who generally advises the buyer. However, since the sales

representative is also an employee of the store, the sales representative

PCT/US99/14994

10

15

20

25

WO 00/03329 PCT/US99/14994

should also promote certain products according to the interest of the business
and also sell as many products as possible.

As a basic example, if customers go to a computer hardware or
software store, a sales representative helps them find the appropriate product.
Even when ordering a product over the phone, a sales representative can
speak to the customer directly and give advice. Unfortunately, when the
customer wishes to buy a product through the Internet, only a menu and
pictures are shown. No advice, no knowledge, no expertise, no confidence in
the purchase is provided. Thus, if the customer does not understand
computers, for example, he or she will not purchase one through a virtual
store on the Internet since no advice is provided.

Clearly, one solution would be to add the Sales Representative
function to the Internet virtual store. Currently, the merchant would need to
hire 3 shifts of human representatives for a 7 day work week, including
holidays. Then, the merchant would need a chat system in a call center of
some sort for enabling communication from these ‘human’ Sales
Representatives to the users over the Web. Thus, this solution is difficult and
expensive to implement.

There is thus a need for, and it would be useful to have, a virtual sales
representative accessible through the Internet or via some other electronic
connection, with which a potential customer can communicate through

interactions with a GUI (graphical user interface) such as a Web browser.

SUMMARY OF THE INVENTION

It is one object of the present invention to provide a virtual sales
representative.
It is another object of the present invention to provide intelligent

interactions with a computer user for the purpose of securing a sale.

10

15

20

25

WO 00/03329 PCT/US99/14994

It is yet another object of the present invention to provide such
intelligent interactions through a GUL

It is still another object of the present invention to provide such a GUI
through a Web browser, such that the virtual sales representative is accessed
through the Internet. Alternatively, the GUI is provided through an applet or
other stand-alone software program, such that the virtual sales representative
is accessed through a locally operated software module.

These and other objects of the present invention will be explained in
further detail with regard to the description, figures and claims given below.

Hereinafter, the term "Web browser" refers to any software program
which can display text, graphics, or both, from Web pages on World Wide
Web sites. Hereinafter, the term "Web page" refers to any document written
in a mark-up language including, but not limited to, HTML (hypertext mark-
up language) or VRML (virtual reality modeling language), dynamic HTML,
XML (extended mark-up language) or related computer languages thereof, as
well as to any collection of such documents reachable through one specific
Internet address or at one specific World Wide Web site, or any document
obtainable through a particular URL (Universal Resource Locator).
Hereinafter, the term "Web site" refers to at least one Web page, and
preferably a plurality of Web pages, virtually connected to form a coherent
group.

Hereinafter, the term “applet” refers to a self-contained software
module written in an applet language such as Java or constructed as an
ActiveX™ control.

Hereinafter, the term "network" refers to a connection between any
two computers which permits the transmission of data. Hereinafter, the term

“computer” includes, but is not limited to, personal computers (PC) having

10

15

20

25

WO 00/03329 PCT/US99/14994

an operating system such as DOS, Windows™, OS/2™ or Linux;
Mackintosh™ computers; computers having JAVA™-OS as the operating
system; and graphical workstations such as the computers of Sun
Microsystems™ and Silicon Graphics™, and other computers having some
version of the UNIX operating system such as AIX™ or SOLARIS™ of Sun
Microsystems™; or any other known and available operating system.
Hereinafter, the term “Windows™" includes but is not limited to
Windows95™, Windows 3.x™ in which “x” is an integer such as “17,
Windows NT™, Windows98™, Windows CE™ and any upgraded versions
of these operating systems by Microsoft Inc. (Seattle, Washington, USA).

Hereinafter, the phrase “display a Web page” includes all actions
necessary to render at least a portion of the information on the Web page
available to the computer user. As such, the phrase includes, but is not
limited to, the static visual display of static graphical information, the
audible production of audio information, the animated visual display of
animation and the visual display of video stream data.

Hereinafter, the term “user” is the person who operates the Web
browser or other GUI interface and navigates through the system of the
present invention.

Hereinafter the word “product” includes both physical products and
services (tangible and intangible products), as well as ideas and concepts.

Abbreviations in the text are as follows:

VSD - Virtual shop designer (Sales Representative Designer)

VS - virtual shop (Sales Representative)

SEU - The core of the Sales Engine Unit (SEU)

BRIEF DESCRIPTION OF THE INVENTION

10

15

20

25

WO 00/03329 PCT/US99/14994

The present invention is of a virtual sales representative for
interacting with a customer browsing a virtual store Web site, for example.
The virtual sales representative can ask questions and receive answers from
the customer. The reverse is also possible, in which the customer poses the
question. In addition, the virtual sales representative can be programmed to
guide the sales transaction in order to promote certain products, for example,
or in order to more easily provide the customer with the desired product.
Such guidance is provided through software modules capable of “intelligent”
interaction with the customer, as described in more detail below. The
operation of the virtual sales representative is as follows.

First, the user navigates via the Web browser to a site where the
system operates. The Internet sales representative system of the present
invention then interacts with the user, advises, guides, consults, suggests,
comments and negotiates with the user regarding items available for sale or
any other topic to be conveyed. The system offers alternatives in case the
requested item is not available. The system works to convince the user to
buy certain products and generally promotes the products.

The system is installed over a Web server and preferably serves many
users simultaneously. The number of users is limited substantially only by
the capacity of the server itself.

The system accompanies the customer from the initial stage of
requesting an Internet sales representative, through the stage of determining
the needs of the customer, guiding the customer to the desired products
while maintaining a product and market advisory, and generally suggesting
or recommending, and discussing or commenting with regard to the product
through the purchasing process. The system follows a line of reasoning.in
order to sell to the end user. The system optionally continues through the

credit card charge process with a secure mechanism for charging the card.

10

15

20

25

WO 00/03329 PCT/US99/14994

The system features a “Detection engine” mechanism to recognize
characteristics of the user and to modify the session from user to user
according to the individual. The “Detection engine” is capable of sensing
certain behavior patterns by the user, such as: curious about more
information, serious customer, not a serious customer, and the like.

The system, following a signal from the “Detection engine” or
following a request from the user, preferably can change the session from the
logic based system to a chat mode with a “live” human sales representative
whenever and if one is available. The “live” sales representative is preferably
briefed regarding the customer’s interests (if any were demonstrated), such
that the session will preferably continue smoothly from the logic based
system to the chat mode.

The system, following a signal from the “Detection engine”
optionally and preferably writes the email addresses of all the users which
the “Detection engine” found to be interesting or important to a dedicated
log file.

The system performs the functions described above also on a stand
alone system without the Internet as well as over a network system, using
either Internet technologies such as browsers and servers or a dedicated
Graphical User Interface (GUI) without Internet or web tools.

The system has at least one application file per business
application. The application file is built by the builder system by
interviewing a sales representative or other expert individuals regarding the
products and strategy of the desired sales. The interviewing is done in a
process of an intelligent “chat-like” session, where the sales person or other
qualifying personnel answers questions asked by the system according to

instructions, explanations and guidance by the intelligent system.

10

15

20

25

WO 00/03329

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects and advantages will be better
understood from the following detailed description of a preferred
embodiment of the invention with reference to the drawings, wherein:

FIG. 1 is a schematic block diagram of an illustrative sales
representative system of the present invention;

FIG. 2 is a schematic block diagram of an illustrative sales engine
unit of the present invention;

FIG. 3 is a schematic block diagram of illustrative GUI components
of the present invention;

FIG. 4 is a schematic block diagram of an illustrative engine core
interface according to the present invention;

FIG. 5 is a schematic block diagram of an illustrative comments
processing module according to the present invention;

FIG. 6 is a schematic block diagram of an illustrative preferences
module according to the present invention,

FIG. 7 is a schematic block diagram of an illustrative arithmetic
module according to the present invention,;

FIG. 8 is a schematic block diagram of an illustrative system of
departments according to the present invention;

FIG. 9 shows a first embodiment of the system of departments
according to the present invention;

FIG. 10 shows a second embodiment of the system of departments
according to the present invention;

FIG. 11 shows a third embodiment of the system of departments

according to the present invention;

PCT/US99/14994

5

10

15

20

25

WO 00/03329

FIG. 12 shows a fourth embodiment of the system of departments
according to the present invention;

FIG. 13 is a schematic block diagram of an illustrative system of
offering alternatives according to the present invention;

FIG. 14 1s a schematic block diagram of an illustrative financial
purchase manager according to the present invention;

FIG. 15 1s a schematic block diagram of an illustrative credit charge
manager according to the present invention;

FIG. 16 is a schematic block diagram of an illustrative department
messaging system according to the present invention;

FIG. 17 is a schematic block diagram of an illustrative e-shop builder
according to the present invention;

FIG. 18 is a schematic block diagram of a first illustrative portable
code implementation of the system of the present invention;

FIG. 19 is a schematic block diagram of a second illustrative portable
code implementation of the system of the present invention;

FIG. 20 is a schematic block diagram of an illustrative chat transfer
system according to the present invention;

FIG. 21 is a schematic block diagram of an illustrative chat session
according to the present invention; and

FIG. 22 is an illustrative parser according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is of a virtual sales representative for
interacting with a customer browsing a virtual store Web site, for example.
The virtual sales representative can ask questions and receive answers from
the customer. The reverse is also possible, in which the customer asks the

questions and the virtual sales representative gives the answer. In addition,

PCT/US99/149%94

10

15

20

25

WO 00/03329 PCT/US99/14994

the virtual sales representative can be programmed to guide the sales
fransaction in order to promote certain products, for example, or in order to
more easily provide the customer with the desired product. Such guidance is
provided through software modules capable of “intelligent” interaction with
the customer, as described in more detail below.

The principles and operation of a method for providing a virtual sales
representative to a computer user according to the present invention may be
better understood with reference to the drawings and the accompanying
description, it being understood that these drawings are given for illustrative
purposes only and are not meant to be limiting.

Referring now to the drawings, Figure 1 is an exemplary block
diagram of a virtual sales representative system according to the present
invention. Block 10 of the system shows the Sales Engine Unit core routines:
rules linkage, “lookAhead”, reading information from the e-shop and basic
rules processes as described in more detail below. Block 12 is the Business
Logic module for controlling the departments and business strategies. Block
14 shows the Financial Purchase Management system, including the credit
card charge security of the present invention. Block 16 includes various
arithmetical functions such as the arithmetic parser. Block 18 shows the
Application Support module, including the generation of sales comments,
department messages and multimedia output. Block 20 is the module
providing the Web server technologies and block 22 is the GUI (graphical
user interface) platform for interactions with the user. Block 24 is the E-
Shop and includes links to the various modules required for the interaction of
the virtual sales representative and the user. Block 26 is a software module
providing the option to transfer the interaction to “chat mode” with user.
Block 28 is the Detection Engine. All of these software modules and

components of the present invention are described in more detail below.

10

15

20

25

WO 00/03329 PCT/US99/14994

10

| Turning now to the sales engine unit (SEU), Figure 2 shows a more
detailed description of SEU 10. SEU 10 interacts with the user using a CGI
or other web server interface, as shown by the block labelled “Interface to
the SEU” (block 52), which calls the main SEU procedure labelled
"EngineCore" (block 42). “Interface to the SEU” (Block 52) handles the I/0
(input and output) which consists of questions and answers from the user.

Inside SEU 10 there are global functions for processing the rule base,
such that the answer of the user is analyzed according to the rule base of the
E-shop (see below), and to determine if another question is to be asked or if
a type of a product can be recommended to the user. “ProcessRulesList”
(block 38) is initiated and starts the process by calling the software module
“FireRule” (block 32). “FireRule” (block 32) then walks through the list of
rules with a trace marker to determine if any rule can be satisfied yet, in
order to guarantee the alertness and efficiency of the system.

The SEU includes which is a logic unit for decomposing the answer
of the user into at least one fragment and for determining if the fragment
satisfies a rule of the rule base. The rules are decomposed into at least one
sub-condition or rule portion by the EngineCore routine. The actual logic
testing of the rules is handled by the module labelled “Equate” (block 44).
This function will return the value TRUE preferably if and only if all the
processing of the sub-conditions returns TRUE. At the very least, the
function should return the value TRUE substantially only if the at least one
fragment satisfies at least one rule of the rule base.

If logic testing returns the value TRUE, the action or actions required
in response are performed with the module labelled “Perform” (block 40),
which is responsible for recommending the product for the user. The

purchase is then made by the user by clicking the “purchase” button of GUI

10

15

20

25

WO 00/03329 PCT/US99/14994

11

(block 22, see Figure 1), thereby launching the “Purchase Mechanism”
module (Block 50).

“FireRule” (block 32) algorithm uses the working memory directly to
determine the rule being examined, by saving the position of the rule in the
list which is the trace marker.

“FireRule” (block 32) uses “Equate” (block 44) to determine that the
rule conditions are satisfied. “Equate” (block 44) asks the user questions
regarding those conditions, using the module “AskUser” (block 36).
“AskUser” (block 36) uses a flag to stop the output of the questions to the
user after the first question. Then, “FireRule” (block 32) launches the
“lookAhead” software module (block 30), which processes the entire list of
rules and tries to satisfy a rule, based on the information already obtained.
This is done in order to break the dependency between the order of product
recommendation, the order of the rules and the “length”, or number of
conditions, in the rule. The main function employed is “FireNextRule”
(block 34).

When a rule is processed and fails from lack of information, the
condition is indicated with the appropriate flag. In this case, the module
“lookAhead” (block 30) starts at the following rule, returning to the current
rule when “FireNextRule” (block 34) is finished. If the rule fails from
contradictory
information - “lookAhead” (block 30) goes to the following rule, returning to
the following rule when “FireNextRule” (block 34) is finished

“FireRule” (block 32) is not finished until every rule in the rules list
has been fully processed and either proven or failed.

“LookAhead” (block 30) is the shell to the “FireNextRule” (block 34)
routine. The tasks performed are used to preserve the system status before

launching “FireNextRule” (block 34).

10

15

20

25

WO 00/03329 PCT/US99/14994

12

Before “FireNextRule” (block 34) is launched, “lookAhead” (block
30) saves the current position in the list of rules in order to be able to return
after “FireNextRule” (block 34) is finished. The current position is passed to
“lookAhead” (block 30) as an argument. “lookAhead” (block 30) then
restores the previous position after returning from “FireNextRule” (block
34). Optionally, if “Equate” (block 44) turned a flag regarding missing
information in the process rule processing, “lookAhead” (block 30) turns it
off.

The software module named “FireNextRule” (block 34) is the “twin”
of “FireRule” (block 32), in the sense that it makes the same use of memory
and calls the same routines as “FireRule” (block 32), with the exception of
“lookAhead” (block 30). “FireNextRule” (block 34) works until all the rules
are processed, discarding and performing any rule that can be proven with
the current stack of information (without external input).

Technologies such as CGI operate within the framework of
sequentially entering and exiting a system. When output takes place the
system is shut down until the user submits the form and then the program
entered again. In order to accomodate this structure, if rule performance
involving output occurs and the system exits from “FireNextRule” (block
34), the previously saved position of the rule which “FireRule” (block 32)
was last processing is not saved. Instead, when the program is re-entered, the
previously saved position acts as a flag, such that the system continues from
“FireNextRule” (block 34) using that flag. “FireNextRule” (block 34) is used
in other mechanisms of the systems besides “lookAhead” (block 30).

The “Equate” (block 44) software module provides the support for the
entire session. The rules to be evaluated consist of fragments of conditions,
which in combination enables the virtual sales representative to recommend

a particular product to the user.

10

15

20

25

WO 00/03329

13

“Equate” (block 44) allows use of any of the logical operators {and,
6r, =} and the arithmetical operators of comparison {=, \=, <, >, <=, >=},
“Equate” (block 44) is a recursive routine formally defined as follows:)
Equate (Partl and Part2) : Equate(Partl) Equate(Part2)

The rule is considered proven if the invocation of “Equate” (block
44) both on Partl and Part2 returns TRUE.

Equate (Partl or Part2) : Equate (Partl) Equate (Part2)

Now the rule is considered proven if either the invocation of
“Equate” (block 44) on Partl returns TRUE or the invocation of “Equate”
(block 44) on Part2 returns TRUE.

For any other operator - Equate(X) (see “Equate” block 44) compares
the pattern of the condition to the already known information. It returns
TRUE if the right side of the condition is present in the stack of known
information. Otherwise, it fails.

In the case of missing information “Equate” (block 44) calls
“AskUser” (block 36) to get more information from the user by asking
questions. In case the output is blocked, by “lookAhead” (block 30), for
example, “Equate” (block 44) also returns FALSE. To distinguish between
the different cases, a “missing_value” flag is set.

The “Perform” (block 40) software module is implemented as a
unique routine used to perform numerous tasks, as described with reference
to the remaining Figures below. “Perform” (block 40) is initiated once a rule
has been proven, such that all the conditions were fulfilled and a product can
be recommended. In order to recommend the product, the “TryRecommend”
(Block 46) routine is started, which will find the product in the virtual shop
and it’s text/url/html reference, and send the information back to the user

with the CGI or other Web server technology transaction.

PCT/US99/14994

10

15

20

25

WO 00/03329

14

“Perform” (block 40) writes to the memory all the products that were
récommended, information which shall be used later for other mechanisms
such as “CC Charge”. “Perform” (block 40) can also recommend several
products by the same conditions, using the logic operator “and”. This saves
constructing the same rule multiple times.

The above 4 tasks of the “Perform” (block 40) software module can
be used in various combinations through the same rule, linked by the
operator “and”. The “AskUser” (block 36) routine is used to generate the
query output. After the first question is sent, “AskUser” (block 36) turns the
“question_on” flag, blocking further output until that flag is removed by
another routine.

“AskUser” (block 36) uses mechanisms defined in the “Interface to
the SEU” (Block 52) to generate a query with all the related multimedia
attributes (sound, video, pictures, text/html). The only argument is the
query’s name as defined in the virtual shop. As noted above,
“TryRecommend” (Block 46) is used to generate another type of output: the
product recommendation text. This software module can also be used to
generate “normal” text answers without recommending any product.

The difference between a product and a text answer is being
processed by the “Interface to the SEU” (Block 52) which is called here to
complete the final output. “TryRecommend” (Block 46) works differently
based upon the “sales strategy” chosen. For “human” sales representatives,
the module generates an immediate output without any reference to the
memory. In the “quick” or “cruiser” mode, the module gathers the products
and text references to a list output as the session is finished (“FireRule”
(block 32) finished rule processing).

In addition to the “TryRecommend” (Block 46) software module, an
option is given to use “TryGetConstText”. “TryGetConstText” is a unique

PCT/US99/14994

10

15

20

25

WO 00/03329 PCT/US99/149%4

15

routine which enables a “canned” text to be combined with information
generated on the fly. For example: “The time now is 15:00” or “You have to
pay us $23000.

If the VSD wants to use sentences of the form above in the system
of the present invention, the “variable” must be declared, with the text part
of this type of answer. The information should be glued to the end of the text
and is received by the rules in the e-shop. This part of “TryGetConstText”
has widespread usage especially in the Arithmetic module.

“TryGetConstText” is able to receive a line of text with “to-be-
replaced” entries and a list of replacements (variables), as well as to change
the whole “to-be-replaced” entries with the corresponding entries in the list.
That means that a different line of text will always be provided, based on the
variables’ value at the moment of replacement.

Figure 3 is a schematic block diagram of the E-Shop of the present
invention. The e-shop of the present invention is a software package \x;hich
consists of one or several files (depending on the VSD) with the following
components: configuration (internal or external to the rule base); a rule base;
topic definitions; and questions (prompts) to the user, which can then be
interpreted according to the rule base. For example, the query might state
“What kind of diamond are you looking for?” to the user. Possible answers
to the question (in the case of multi-optional input such as menu) are found
in the set {One carat, Below one carat, Over one carat}. A number of
different input format styles are possible, such as free input (Block 64) or
“menu like” input. The output styles include radio (Block 58), check-box
(Block 60), list box (Block 62), button-checkbox (Block 56), and optionally
button-radio (Block 54). Furthermore, multimedia references, including

pictures, animation, sound, etc., can be optionally provided.

w

10

15

20

25

WO 00/03329

16

A “negotiation text” to be used in “offering alternatives” is optionally
provided. For instance “Would you agree to compromise on the size of the
stone and settle for “ (One carat, 2 carat or any other attribute the current rule
requires)”. See “offering alternatives” section below for more details. In
addition, a recommendation text - for example “This “fancy” diamond with
the size of 67 carats and the price of 100000000 U.S dollars is the best
diamond we can offer you“. Or - “I recommend ‘imaginary car
manufacturer product 1°. It’s a safe, fast car which is ideal for family rides,
business... plus, if you’ll buy it before 4.6.1998 (date) I guarantee you a 78%
discount!”.

In addition, a multimedia reference can be presented to the user. The
reference is a picture in an HTML accepted format to be used in the
“Shopping Smart” function icon (optional - See “Shopping Smart” section
below).

Both of the products and topics may be constructed in a database. If
the VSD chose to put these topics, products or both of them into a database,
the rule looks different.

In this case, instead of the usual “if X=Yand C=Fand ... then P
where all the topics X, C,... and the product P reside in a file written in the
SL language, the condition (or the result if a product) of the rule will contain
the following: a reference to an external file which is the name of the file;
and the index of the entry corresponding to the topic/product.

The format is “db(<File Name>, < Entry’s index>)".

This allows better maintenance and flexibility of the system: for
example, the VSD may construct a few different databases and merely
change the references to them to facilitate different sessions for different
types of users. See the section about the “Detection Engine” below for more

details.

PCT/US99/14994

10

15

20

25

WO 00/03329

17

Instead of their contents as described above, the topics and the
products may contain nothing but an HTML reference or a link to a
specified URL.

Another issue that is included in the e-shop is the Business strategies
supported by the SEU, which is contained in a business strategy unit (not
shown) within the SEU.

The Human strategy tells the SEU to work in a human-like, full
interactive mode. Once a product recommendation can be made, it is given
immediately along with the purchasing offer with no delay. The user is asked
various questions followed immediately by the appropriate answer. This
creates an illusion of a real, human conversation.

It should be noted that the output of the question does not depend on
the (physical) position of the rule in the rule base. The “lookAhead” (block
30) mechanism is responsible for the correct processing of the rules and for
providing answers immediately after the corresponding questions.

In the Cruiser strategy, the SEU gathers all product recommendations
and purchasing suggestions and outputs them all on the user’s departure
from a current department/session. The user sees many questions and
comments without getting any answers to them. The user will be “cruising”
through the current department, responding the questions the SEU finds
necessary to ask. At the end, when and only when all the rules in the current
department are processed, the user receives a list with all the answers and/or
product recommendations collected throughout the time in the current
department.

The Quick strategy stops the investigation process after reaching the
first product, or optionally and preferably recommends all possible products
based on the existing information provided by the user. Naturally, the

answers and purchasing offers are produced at the end of a

PCT/US99/14994

10

15

20

25

WO 00/03329 PCT/US99/14994

18

department/session. The user is asked as few questions as possible, and after
the SEU finds a product recommendation it stops the investigation. From
that point and on, the SEU processes every rule in the current department
trying to reach another product recommendation without asking anymore
questions. The user gets a list of the product answers gathered by the SEU,
ending the session in the current department.

Rules linkage and Variables: The VSD may want to operate a rule
only if a certain “flag” is on or a specific circumstance(s) occur(s) (e.g.
product “X” was purchased or not) or let the rules add information (e.g. if
the eyes of the child are blue and the color of his hair is blond). The SEU
knows how to deal with such techniques because it treats all sorts of
information identically, such that the storage of information in the memory is
done by the same patterns and thus is stored in the same memory zone.

Variables defined as a pseudo-topics do not contain a description.
Thus, the SEU does put them to the virtual memory, along with their
internally received values, but no output (questions) is involved during the
process.

The Interface to the SEU is the unit for communication between the
user and the main procedure of Sales Engine Unit (SEU) - “EngineCore”
(Figure 2, block 42) through some Communication Environment (CE).
Examples of CE implementations are CGI, ISAPI, Console , GUI of
Windows and other communication technologies and interfaces which can
provide the connection of the user to the SEU.

The Interface unit interacts with the SEU unit on one hand and the
server on the other hand using 3 routines: “WebMain” - calls the
“EngineCore” (Fig 2, block 42) routine which launches the main routine of

the engine, “WebLoad” - loads the e-shop file, “Weblnit” - reads the

10

15

20

25

WO 00/03329 PCT/US99/14994

19

configuration file which contains definitions for the communication
environment and initializes the server.

The SEU, on the other hand, uses several functions from the Interface
unit for input and output (this is how the SEU interacts with the user) as
shown in Figure 4. The “AskUser” procedure (which resides in the SEU
unit) sends questions to the user. It is configurable to send all questions one
by one or several questions together.“AskUser” then calls the “SendAsk”
(Block 72) procedure which resides in the “Interface”, to perform the actual
output.

In order to output an answer (or a number of answers), the
procedures “RecommendInstant” (Block 70) or “RecommendAll” (Block
66) respectively are invoked. The procedure “TellAllFound” (Block 68) is
launched when the last message should be sent.

Whenever one of the mentioned procedures of the “Interface” unit is
executed, it calls the “OutputAgent” (Block 76) that contacts the server.and
tells the server to send the “on the fly” constructed HTML page to the
Internet. The method for contacting the server differs according to the CE
software being used.

However, “TryRecommend” (Block 46) acts differently based on the
type of the business strategy that the VSD chose. If the business strategy is
“human”, “TryRecommend” (Block 46) will call the “RecommendInstant”
(Fig 4, Block 70) . In case of any other business strategy it will save the
recommendations in the virtual memory. “FireRule” will call the
“DelTryRecommd” (Block 48) later, to construct a list of the
recommendations saved previously. “DelTryRecommd” (Block 48) will call
“RecommendAll” (Block 66) with the constructed list passed as a parameter
in order to complete the output (further information regarding this process

can be found in the “Business strategies supported by the SEU” section).

5

10

15

20

25

WO 00/03329

20

The user’s responses to the SEU’s queries are always processed by
the “InputAgent” (Block 74) which translates the data received from the
user (in the HTML format) to a language that the SEU understands and saves
it into the virtual memory for further usage by “EngineCore” (Block 42).

The components of this system operate as follows:

The “RecommendInstant” (Block 70) procedure builds an answer
page in HTML format. To build the header of the HTML page, it calls
“BuildHead” procedure.

The header consists of the following information: the name of the
CGI program; reference to font and background; a heading (such as
“Welcome to Our Site Online” or other messages).

The answer itself resides in the HTML body. The answer may be a
product recommendation plus purchasing offer or some other kind of
answer. Every kind of answer includes answer text. All answers which are
product recommendations have “price” and “currency” variables in their
description. While such type of answer being built , the “price” information
and the ‘button - checkbox’ pair named “purchase” are being attached to the
dynamically built HTML page (supported by the "Purchase Mechanism"
(Block 50)). It is possible for the user to purchase the product immediately
by pressing the button or clicking the checkbox. The button and the
checkbox are together an object that makes it possible to control the button
by the checkbox and vice versa.

The mark within the checkbox and the change of the button’s label
from “purchase” to “purchased” (or any other description desired) mean that
the product is marked as purchased. According to such marks, a list of
products can be built at the end of purchasing.

The “Continue” button closes the answer page in order to proceed

with the SEU’s session.

PCT/US99/14994

10

15

20

25

WO 00/03329 PCT/US99/14994

21

The header as well as the footer are constant for the entire session, but
the HTML representation of the answers described above is built “on the
fly” according to answer’s type and contents.

The “RecommendAll” (block 66) procedure builds an HTML page
that consists of number of different answers.

Given a list of answers as the only parameter, it generates the same
HTML header as the previous function does. After that, all the answers are
output using the same algorithm “RecommendInstant” (Block 70). The user
can choose what products to buy by pressing the “purchase” button
(supported by the "Purchase Mechanism" (Fig2, Block 50)).

Note that there is a separate button for each and every product in this
page. The “Continue” button closes the page to allow the session to
continue.

The “TellAllFound” (Block 68) procedure is only invoked at the end
of the session to say ‘Good-bye’ and to thank the user for the visit. This
procedure sends the previously prepared HTML page - “Completing form”.

The “SendAsk” (Block 72) procedure builds different types of
HTML pages for user questions and answers.

All questions, which are stored in memory , have definition variables
such as “askStyle” and “menuStyle”. “AskStyle” specifies the form of the
question - a menu or a field.

“AskStyle” is always associated with a question. If the question
requires a ‘yes’ or ‘no’ answer - ‘yesno’ style is used.

“MenuStyle” defines the way the menu appears, such as radioboxes ,
checkboxes , “buttonRadio” (pair button and radio) and “buttonCheckbox”
(a button and a checkbox pair). The styles “buttonRadio” and
“buttonCheckbox” are a radio or a checkbox controlled by a button. They

make the usage of the menu easier and more comfortable because of the

10

15

20

25

WO 00/03329

22

size of the button, so that the button is naturally bigger and easier to contact
by mouse then a radio or a checkbox input.

Like the other pages the output is closed by the “Continue” button.

All the described procedures remain unchanged for ISAPI as well as
other types of CE’s operating under the Internet and using HTTP protocol.

The SEU allows the virtual sales representative to release comments
throughout the session through a comment unit (not shown).

The comment structure is implemented as a condition that always
succeeds. In the rule base it is planted in a rule using any one of the
following keywords:

Humor (a set of humoristic remarks, or humoristic in nature phrases
to output to the user. All are combined in a special database for this
purpose.)

Day2day (a set of slang language remarks, called day2day since:it is
designed to simulate simple and common daily language, which can also be
described as a “pleasantry”. All are combined in a special database for this
purpose.)

Personal_preference (to specify the sales representative’s personal
preference remarks, designed to help in convincing the customer regarding a
decision. All these remarks (comments) are combined in a special database
for this purpose)

Any other possible idea combined in its special database.

The comment is invoked by specifying the type of the comment
followed by “ = “ and the number of the comment in the external library file
which holds all the comments database. The library consists, in fact, of a
number of different databases, one for each type of comments. This is used
to supply the user with ready made comments yet giving the option to add

new comments.

PCT/US99/14994

10

15

20

25

WO 00/03329

23

The reference is made by giving the position of the comment in the
database.

In the processing of this rule, the SEU asks about all the Attribute
Value pairs in the rule. If all the conditions are proven, the SEU refers one of
the databases in the library and outputs the appropriate position entry in that
database instead of asking a question.

The comments may be used freely throughout the system, exactly like
conditions. Their position inside the rules will ensure that they are output
only if all the conditions before them are fulfilled, which means that the
VSD may create very meaningful comments inside the rules, giving the
entire system even more intellectual capabilities.

Because the SEU treats the comments by simply generating output
without receiving any information by this output (it is not a question) the
comment is a condition that is always TRUE. Thus, after the comment is
output, the SEU continues to the next condition in the rule.

As was said before, the library might contain comments such as jokes,
word playing, cynical remarks, etc. (the “humor” section); shallow remarks
such as “It is such a lovely day” or “Really? Do you live in Israel? It is such
a beautiful country” and comments that are meant to convince the user that
he/she should buy the product: “You know, I also bought a “brand x” screen
2 years ago and it never was broken!” or “When my child was 8 years old I
bought her a teddy bear just like that one and she always told me that it was
the most beautiful present she ever received”.

As shown in Figure 5, the comments software module operates as
follows. Because the comment is a part of a rule, it is encountered by
“Equate” (block 44) as it processes a rule. Thus, each time “Equate” (block
44) handles with the operator “=" it checks to see if the left side of the*

PCT/US99/14994

10

15

20

25

WO 00/03329

24

condition is a comment keyword, by calling “IsSpecial”. If it is a comment
it invokes the “DoSpecial” mechanism which deals with that special event.

This IsSpecial routine takes the name of the query as an argument
and compares it to each of the keywords described above. In case of any of
the keywords matches the argument this function returns TRUE - else it
returns FALSE.

The DoSpecial (Block 78) is the mechanism that outputs the
comment. Once the type of the comment is known, the database entry that is
specified in the rule is examined (the number is passed as an argument to this
function). It calls “OutputComment” (Block 80) in the interface shell to
actually send the comment to the user.

The Preferred mechanism is a handy tool that can be used by the sales
representative to increase sales. This mechanism allows the system designer
to specify which products have top priority for sale, and these products-are
pushed to the potential client first. As shown in Figure 6, the system designer
must specify a list of product names to be taken as a top selling priority. The
system then processes the list and tries to direct the user to those products by
asking guiding questions. This feature can also be used to specify a pre-set

order of how products shall be sold (kind of user-defined grading on each

- product)

If the word “preferred” is in the Rules List (Block 90), followed by a
list of preferred products, every rule is obtained that includes those
preferences and placed in a list, and “FireRule” (Fig 6, 2, block 32) is called
to process the list. After that the rest of the processing is as described before
- 1.e. invoke “FireRule” (block 32) - from the start of the Rules List (Fig 6,
Block 90).

PCT/US99/14994

10

15

20

25

WO 00/03329

25

The “GetPreferred” (Block 82) function takes the preferences list
from the system as written in the file. Each item on the list is processed and
the following steps are performed:

Walk through the Rules List (Block 90) using “GetPreferredRules”
(Block 84) gathering pointers (positions in the list) of every rule that leads to
the preference.

Create a small, temporary list of all rules which are found.

Pass the list to “FireRule” (Fig 6, 2, block 32) for the rest of the
process. After “FireRule” (block 32) is finished, advance to the Next
Preference (Fig 6, Block 88) recursively, until the list of preferences is
exhausted.

“ProcessPrefList” (Fig 6, Block 86)” is also responsible for handling
the tracing marker. Each time “FireRule” (Fig 2, block 32) is exited, the
marker is returned to the first entry of the new rules list for processing (rules
for the next preference).

The “GetPreferredRules” (Fig 6, Block 84) routine gets and processes
the rules for a current preference.

First, all the rules that lead to the product specified by the preference
are gathered using “GetPreferred” (Fig 6, Block 82).

“GetPreferred” (Block 82) uses the active memory to save the
positions of the rules that are relevant to the current preference. When this is
finished (all rules have been processed), a list of those numbers is made
using “GetPreferredRules” (Block 84). After building the list,
“GetPreferredRules” (Block 84) also processes it by a call to
“ProcessPrefList” (Fig 6, Block 86).

The “GetPreferred” (Fig 6, Block 82) routine looks for a rule that has
the preference in its results. “GetPreferred” (Fig 6, Block 82) is an

PCT/US99/14994

10

15

20

25

WO 00/03329

26

implementation of a simple string search which tries to find the string
specified by the preference in the results of a rule.

If a rule is found leading to the preference, the position is saved in the
memory. The search is repeated for each and every rule until the list of the
rules is exhausted.

The “ProcessPrefList” (Fig 6, Block 86) procedure also handles the
following two tasks. First, it scans the memory in search of previously
saved rules positions. Each time it finds one it retrieves the rule pointed to by
the position from the original rules list. All the rules it finds are appended to
a temporary list. Second, the temporary list constructed previously is passed
as an argument for “FireRule” (Fig 6, 2, block 32) to process.

There are two ways to implement arithmetic evaluation in the system,
as shown in Figure 7:

For the first method, the parser allows the VSD to construct formulas
containing variables. The variables are the topics which carry a numerie type
information (such as age, price, amount...). The parser works with the
standard arithmetic signs (+, -, *, (,), \) plus the operator “percents_of”.

The second method, Built in arithmetic functions, allows the user to:
sum up all of the purchased products in the session (“SumUpAll” (Fig 7,
Block 98)); sum up the purchased products in a current department
(“SumUpDepartment” (Fig 7, Block 98)); sum up all of the products of a
given type (“SumUpProduct” (Fig 7, Block 98)); give a percentage discount
(“Sys_PercentsDiscount” (Fig 7, Block 98)); and give a coupon discount
(“Sys_CouponDiscount” (Fig 7, Block 98)).

Both types of arithmetic are called from within “perform” (Fig 2,
block 40) and thus are allowed only in the results of a rule.

The Parser Structure: This kind of arithmetic is identified by the-
“perform” (block 40) by the “is” sign (Fig 7, Block 92) between the variable

PCT/US99/14994

10

15

20

25

WO 00/03329

27

and the formula instead of the “=" sign usually appearing between the
tbpic/keyword and the value in the jurisdiction of “perform” (block 40)

The operation of the module is as follows. “ParametersToValues”
(Fig 7, Block 94) is the heart of the parser. “ParametersToValues” (Bfock
94) is given the formula written by the VSD and the variable to the left of
the formula (the variable to store the result of the evaluation in). First, the
routine breaks the formula string to tokens and constructing a list of it.
Afterwards the operator “percents_of” is found and converted to a standard
arithmetic expression (X*Y/100). Then, another list is constructed using the
following guidelines.

If the token is a number or a standard symbol (+, -, *,\, ()), add it to
the list with no changes. If the token is a variable find the value of the
variable. If it’s a topic described in the system file and has not been asked
yet, call “AskUser” (Fig 2, block 36) to ask the question. Ifit’s not a topic
and no value is present in the virtual memory, assume its value is 0.

This routine uses the memory to retrieve the values for the variables.
It generates questions output only in the case a value for a current topic can
not be found in the memory.

After the original list is fully processed and a new one created
(containing only numbers and standard operators) the formula is evaluated
by stepping through the created list.

The built-in functions are invoked whenever the “perform” (Fig 2,
block 40) identifies the respective keywords (Fig 7, Block 100) after the “="
sign in the results of the rule. The software module works as follows.

The “SumUpAll” (Fig 7, Block 98) routine works with an
accumulator (previously initialized to zero) and the working memory

directly to retrieve every product registered under the handle “purchased”.

PCT/US99/14994

10

15

20

25

WO 00/03329 PCT/US99/14994

28

After a product is retrieved, this routine looks it up in the system file and
finds its price. The prices are summed automatically by the accumulator.

Given a department’s name, the “SumUpDepartment” (Fig 7, Block
98) routine works like “SumUpA1l” (Fig 7, Block 98) except it retrieves
from the memory only the “purchased” handle that belongs to the
department specified.

Given a product’s type which must be a “variable” that the VSD uses
to assign products to, the “SumUpProduct” (Fig 7, Block 98) routine
retrieves all information about products which were purchased and which are
declared in the system as connected to the product’s type. For example, if
the following rules exist in the rule base: “if size = big and speed = high
then computer = first example, if operating_system = unix then computer =
work_station and computer = second example” and the user decided to
purchase the first example and the second example, then by invoking the
“SumUpProduct” (Fig 7, Block 98) with the “computer” given as parameter,
the prices are summed.

The connection is established in the system file using the type of a

9

product, the sign and the actual name of the product.

The “Sys_PercentsDiscount” (Fig 7, Block 98) routine is given the
number of percents (15, 17, 22...) and the sum to deduct a discount from.

Each of the arguments may be an actual number, a value or a formula.
This routine will calculate the actual sum of the discount and reduce it from
the original sum. The result is saved in another variable given especially for
this purpose by the VSD.

The “Sys_CouponDiscount” (Fig 7, Block 98) is used in a case the
VSD wishes to work with “coupons”, thus this routine takes as arguments

the sum to perform the discount on and the value of the coupon. Again, each

of these parameters may be a number, a formula or a variable.

10

15

20

25

WO 00/03329 PCT/US99/14994

29

The routine performs a simple reduction of the “coupon” from the
6rigina1 sum given.

All arithmetic functions use the memory (Fig 7, Block 96) for writing
and the result of their invocation is saved with the variables they store the
results in. This information is saved in the same form used to save the
information gathered from the user or “rule linkage” and may be used later
in the rules or in the detection engine.

Departments (see Figure 8) are used to help the Virtual Shop
Designer (VSD) to create an actual store, logically delimited by subjects.

Each department consists of : the “startDep” keyword, which is used
to mark the beginning of the department; the department’s name;
configuration to whether or not to initiate the negotiation process
(negotiation = on or off); and a message list with optional messages the VSD
wishes to define. If no messages are defined that list is empty by default. In
addition, there is a list of rules which are local to the current department.

Note: There is a possibility to pass along information obtained in one
department to the other department. For example: if a product named “X”
was purchased in one department, such information can be used in another
department, using “rules linkage”.

There are 4 ways to design and manage the departments (see Figures
9,10,11,12). The first way to manage the departments is “Spider” (Fig 9). In
this architecture there is one main module (Fig 9, Block 122) which
functions like a dispatcher, guiding the system to a different departments
(Fig 9, Block 124) with a rule derived technology (Fig 9, Arrow 132).
After a department is finished (the rules list is exhausted), the program
returns immediately to the previous invoked department (Fig 9, Arrow 134).
See the “Departments section” and corresponding Fig 8 for a description of

the process of going to a department and returning from one department to

10

15

20

25

WO 00/03329 PCT/US99/14994

30

another. The departments (Block(s) 124) represent different rules content
according to the VSD’s design. The departments may contain links to other
departments (Fig 9, Block(s) 126) which do not have an entrance from the
main department (Block 122).

This architecture produces a smart, sophisticated system giving a
variety of options for touring the departments in an intelligent way. (For
example: a client never enters the negotiation module if the client did not
buy anything previously or did not get product advice at any one of the
departments).

The second way to manage the departments is “Path” (Fig 10). This
type of e-shop has several departments (Fig 10, Block 128) which are not
linked by rules. The “tour” is given by a path (Fig 10, Block 116) with the
departments’ names. Each time a department is finished (Block(s) 128),
regardless of whether or not an answer was given to or from the user, the
next department is entered (Block(s) 128) as written on the path. This type of
an e-shop is easier to build. In this type of technology the departments’)
messages can be more logical because the department (Block(s) 128) b;ing
left is known, as is the department (Block(s) 128) being entered. So that if|
for example, the user enters the necklace department after visiting the
department of earrings, an entrance message can be featured of the form
“What are earrings without a matching necklace? Welcome to the necklace
department!”.

Because there is no possibility to an automatically “fall back” or
return from one department (Block(s) 128) to another, this approach is both
predetermined and controlled, thus reducing the moments where the
system’s behavior is erroneous or illogical.

The third way to manage the departments is “Pipe Line” (Fig 11). In
this approach there are several departments (Fig 11, Bleck 126) with no

10

15

20

25

WO 00/03329 PCT/US99/14994

31

dispatching mechanism. The logic here is very similar to the logic of the
path, only here there must be a “main” department (Fig 11, Block 130) and
the other departments (Fig 10, Block 126) are linked by rules (Fig 10, Arrow
132). There is also the possibility of returning to a previous department. As
an example, after department A (Fig 11, Block 126) is finished, a return is
made to the previous department, the “main” department (block 130). In
order to prevent problems from arising, the “pipe line” approach is taken
only in a case where the departments (Fig 10, Block 126) connected by this
architecture are logically dependent (one department’s products are a
necessity for the other department’s products). For example consider the
following pipe lines:

Screens — Screen protectors — A cable for the screen protectors

A VCR — A remote control for the VCR —> A case for the remote
control

A table — A tablecloth for the table — The embroidery for the
tablecloth

The fourth way to manage the departments is “Path + Rules” (Fig 12):
This is a combination of two different technologies: the pipe line -derived
technology (Fig 11) and the pre-set path (Fig 10) derived technology. It
allows paths to be created (Fig 12, Block 116), such that some departments
are connected by a path only (Fig 12 Arrow 136) (no rules lead from one
department to the other) (Fig 12, Block 128). For other departments,
spontaneous linkage based on rules is allowed (Fig 12, Arrow 132) which
means that the departments linked by a path (Fig 12, Block 128, Arrow 136)
can refer to other departments that are not part of the path (Fig 12, Block
126). Those other departments (Block 126) are linked to the “path-driven”
departments (Block 128, Arrow 136) with rules (Arrow 132) . This gives a

10

15

20

25

WO 00/03329

32

more intelligent system than the path (Block 116), giving various options for
cbnducting the session. The “path” part (Block 116) in it guarantees that it
will fall back (Arrow 134) rarely.

It is possible to combine and intermix the four ways to manage the
departments in order to gain flexibility or features according to the need. In
Fig 9 there is an example of mixing the Spider with pipeline (A 2 Al E -
El,E1 - E2.... See Fig 9, Block(s) 126, 128 and Arrows 132, 134) .

As shown also in Figure 8, the routine that launches the engine,
“EngineCore” (Fig 2, block 42), determines whether it should invoke the
“path” (Fig 8, Block 116) algorithm or not by checking if the keyword
“departments” is present in the VS file. If that keyword is present, a preset
list of departments should be entered (Block 116) and so
“StepOverDepartments” (Fig 8, Block 112) is called to process that list.

If no such list is present , “SectionB” (Fig 8, Block 110) is invoked to
process the departments.

The “StepOverDepartments” (Fig 8, Block 112) routine is used to
process names of departments in the list (Fig 8, Block 116) passed to it as an
argument. It does so by calling “SectionA” (Fig 8, Block 114) for each
name. After “SectionA” (Fig 8, Block 114) is finished processing the
department, the next department in the list is considered. When the list is
exhausted, the program is finished.

This routine is using the memory to retrieve any information
regarding the position in the VS.

This routine is necessary due to the specification of the CGIL, in that
the session consists of exiting and re-entering the program. Each time
“StepOverDepartments” (Fig 8, Block 112) finds a “position marker” it

passes the information consisting of current department name and the rule

PCT/US99/14994

10

15

20

25

WO 00/03329 PCT/US99/14994

33

number in that department as an arguments to “SectionA” (Fig 8, Block
11 4). By default those arguments are instantiated to “main” for department
name and “1” for the rule number.

The “SectionA” (Fig 8, Block 114) was written to be called from
“StepOverDepartments” (Fig 8, Block 112) . That is why it does not use the
working memory for reading or writing (compare with “SectionB” (Fig 8,
Block 110) below).

In the operation of “SectionA” (Block 114), first the department’s
information is allocated in the VS file using “startDep”. Then the
departments’ rules list is retrieved and passed to “ProcessRulesList” (Fig 2,
block 38) for processing. After “SectionA” (Fig 8, Block 114) is finished,
the program returns to “StepOverDepartments” (Fig 8, Block 112) which
then permits access to the next department in the list specified in the VS file.
If the current department’s messages list contains an “entrance” message this
routine outputs the entrance message by a call to “OutputComment” (Fig 5,
Block 80)

The “SectionB” (Fig 8, Block 110) routine is invoked in every VS
design except the “path” that was described above.

It is responsible for saving the initialization of the parameters that
are specified in the department, such as negotiation (on or off) and the
business strategy (human, quick or cruiser), updating the trace marker for the
department and outputting the entrance message for the department. Thus, it
uses the working memory directly plus it passes all the necessary
information about the department (rules’ list, messages list, current position
(rule number) and the department’s name) to “ProcessRulesList” (Fig 2,
block 38).

If information was saved in the memory previously regarding the

current department and position, “SectionB” (Fig 8, Block 110) does not

10

15

20

25

WO 00/03329

34

overwrite the information. Instead, it reads that information from the
fnemory and pass the information along to “ProcessRulesList” (Fig 2, block
38) as an argument. If no such information exists, “SectionB” (Block 110)
looks up the rules list of the “main” department to pass along to
“ProcessRulesList” (block 38) and saves that information in the memory for
next time (for example of the process see Fig 8, Block 104).

Because only one description of the department’s information can be
present in the memory, either “SectionB” (Fig 8, Block 110) or
“StepOverDepartments” (Fig 8, Block 112) must clean up all descriptive
information from the stack before writing any department’s description to it.

The department’s information consists of the 5 parts described in the
beginning plus the trace marker (the number of the rule currently being
processed).

The VSD may specify a department reference in the “then” part of a
department rule as a result or consequence to be executed if the rule is true,
by using the keyword “department” followed by the “ = sign and the name
of the department. The system then performs a transition to the specified
department, saving the current department’s name and marker’s position as a
place to go back to (Fig 8, Blocks 104, 106). When the department being
entered is finished, the program goes back to the previous department
without losing any information gathered previously. Such a transition is
performed by one of the “Perform” (Fig 2, block 40) routines as follows:

First, identify the department to be entered.

If the current department’s messages list contains a “backInAMinute”
message - output it now using “OutputComment” (Fig 5, Block 80) .

Save the current department’s information with the handle

“previous”.

PCT/US99/14994

10

15

20

25

WO 00/03329

35

Generate a partial department’s information constructed of the
department’s name and the position set to “1”. After that, “Perform” (Fig 2,
block 40) calls the “SectionA” (Fig 8, Block 114) or "SectionB" (Fig 8,
Block 110) to continue the construction of the department’s information,
based upon whether or not the keyword “departments” followed by a ljst of
department names (Fig 8, Block 116) is present in the VS.

Another department can also be entered with the “lookAhead” (Fig 2,
block 30) mechanism.

In that case, the status is saved under the name “lookAhead” (block
30). The meaning of this is that both “FireRule” (Fig 2, block 32) and
“FireNextRule” (Fig 2, block 34) are moved to the new department’s
location.

Returning from a department to another department is relevant only
for two departments linked by a rule and not a path (Fig 8, Blocks 104, 106).
When 2 departments are written in a preset list (Fig 8, Block 116), such a
return is not possible.

When department A refers to department B, the system returns to
department A at the same position when the department was exited (Fig 8,
Blocks 104, 106). For this, 2 routines are used:

The “BackADep” (Fig 8, block 102) routine is called from the third
part of “ProcessRulesList” (Fig 2, block 38). Once the end of a department
is reached, this routine does the following;:

Output the appropriate message for the department, passing the name
and messages list to “OutputTheRightMessage” (Fig 16, Block 184).

Invoke the “Go_Back” (Fig 8, Block 108) routine to perform the
exchange between the current and the “previous” department info in the

working memory.

PCT/US99/14994

10

15

20

25

WO 00/03329

36

Retrieve the current department information (after the exchange).

Invoke “FireRule” (block 32) to process the rest of the rules in the
department.

Unlike the move to another department done according to an
appropriate rule (which means it is written explicitly in the VS), the process
of returning back from a department is done automatically when the
department is finished, such that the rules list is exhausted. Thus, this
process is marked with a dashsed arrow (Fig 8, Arrow 118), unlike the
process of moving to another department which is marked by a solid arrow
(Fig 8, Arrow 120).

The “Go_Back” (Fig 8, Block 108) function does a pure memory
manipulation and thus produces no visible output.

First the memory is read to find the previous department’s
information using the handle “previous”.

“Go_Back” (Fig 8, Block 108) also updates the trace marker
according to the status when the department was left. If it is “lookAhead”
(Fig 2, block 30) status, then the program returns to the same rule. If it is not,
the program returns to the rule succeeding that rule.

The current department information including all tracing signs, such
as “was” is totally abolished. Instead, the “new” department information is
given, which was the same information received under the handle “previous”

It is also up to “Go_Back” (Fig 8, Block 108) to free the “previous”
handle regarding the department returned to.

“Go_Back” (Fig 8, Block 108) returns no value to the calling routine
assuming all the necessary information is read from the memory.

The mechanism for offering alternatives attempts to bargain with the

potential client and tries to make a sale when the user visited a department

PCT/US99/14994

10

15

20

25

WO 00/03329 PCT/US99/14994

37

and got no answer, meaning that no products were available for this kind of
demand.

The system always remembers the questions it asked and the
responses given by the user.

In a case no product is available for a client according to the client
request, the mechanism attempts to persuade the client to compromise about
one or more topics to attempt to complete a sale of some product.

Preferably, the mechanism can be turned on and off from within each
department.

The maximum number of attributes that differ from the original
request is defined by the VSD.

The mechanism naturally integrates with the normal flow of the
session.

The mechanism quits after a certain amount of questions or after a
product is purchased.

The “line”’s consist of the number of the rule and a list of conditions-
flags pairs where the flags are 0 - for a condition that was not fulfilled and 1
for conditions that were fulfilled.

The “goodLines” on the other hand, contain only a list of conditions
that were not fulfilled (the conditions with the 0 flags), the number of the
rule and the exact number of the conditions that were not fulfilled.

The operation of the mechanism for offering alternatives is described
with reference to Figure 13. The mechanism is invoked (Fig 13, Block 160)
from “ProcessRulesList” (Fig 13, Block 38) using “BuildTable” (Fig 13,
Block 138). This routine creates the table file if the table file does not exist.
If it exists this routine simply opens it for reading. Then “ProcessRulesList”
(Block 38) invokes the “Loop” (Fig 13, Block 140) mechanism to do the

work.

10

15

20

25

WO 00/03329 PCT/US99/14994

38

Given a department's name and the rules list , the “BuildTable” (Fig
13, Block 138) routine builds a table file using "OpenTableFile" (Fig 13,
Block 156) which consists of lines marked with “line” which hold the
satisfied and not satisfied conditions for each and every rule, and other lines
marked with "goodLine" that carry the information about those the rules
which are relevant to the negotiation. The writing to the file is done by,
“WriteTableFile” (Fig 13, Block 158). This information must consist of rules
that meet the following demands: a. These rules must have all their
attributes declared as negotiable. b. The maximum number of conditions
that were not fulfilled must be less or equal to X, where X is a constant
number defined either by the detection engine or directly from the e-shop’s
configuration file. The “gatherRuleStatistics” module is called (Fig 13,
Block 154) to satisfy these demands:

First, each and every rule in the current department is processed,
checking which conditions were fulfilled and which were not fulfilled in the
current session.

Then the “line” entries are constructed and written to a file using
“WriteTableFile” (Fig 13, Block 158). The lines are sorted to “goodLines”
according to the number of unfulfilled conditions in those rules and whether
ornot a “line” consists only of negotiable topics. If at least one topic in a
“line” is not negotiable, a negotiation on this “line” is not possible.

The “goodLine”s also specify the exact number of unfulfilled
conditions for each rule.

The “WriteTableFile” (Fig 13, Block 158) writes both “line” entries
and “goodLine” entries to the same file.

To sort all the “line”s to “goodLines”, statistics are gathered on the

“line”s to see how many unfulfilled conditions they have.

10

15

20

25

WO 00/03329 PCT/US99/14994

39

The program starts by looking at the “maxZeroes” information -
which specify the maximum number of disproven conditions a “line” can
have so it will be treated as “goodLine”. This number is set by the VSD
when the VS is built, however, it may be altered by the DE throughout the
session.

A “line” will be considered as “goodLine” if and only if the number
of conditions that were not fulfilled in this line is less or equal to
“maxZeroes”. If the number of conditions that were not fulfilled in this line
is less or equal to “maxZeroes”, “GatherRuleStatistics” (Fig 13, Block 154)
will also create a “goodLine” which will contain only the conditions that
were not fulfilled in the current line. If the number of unfulfilled conditions
is greater than “maxZeroes”, the current line is skipped and the program
continues checking the next line.

If the constant “maxZeroes” was not specified in the VSD or set by
the detection engine, the default is preferably considered to be 3.

The “Loop” (Fig 13, Block 140) procedure is where negotiation
actually occurs.

The method is to process N "goodLines" where N is configurable
either by the VSD, or by the detection engine.

This is a “smart” processing with a priority - from the "best" option
to the "worst" option: e.g the "goodLine" which has only one unfulfilled
condition vs. a "goodLine" which has all N unfulfilled conditions. To do so,
“StartPushing” (Fig 13, Block 140) routine is called, but first the flag
“question_out” is turned on, so no more questions are asked during the
process.

“Loop” (Fig 13, Block 140) uses the memory for reading. It checks
the memory from time to time looking for an information saved under the

handle “negotiated”. Once it finds such information, it looks for the

10

15

20

25

WO 00/03329

40

matching user’s answer. If the answer is “yes” (e.g. the user was asked a
question of the type “Do you agree to compromise and agree the color of the
diamond would be yellow?” and answered “yes” to it), “Loop” (Fig 13,
Block 140) puts the information received by the negotiation process as if it
was received by a normal process, and invoke “FireNextRule” (Fig 2, block
34) to process the rules again with the extra information supplied (in the
memory).

The “StartPushing” (Fig 13, Block 140) routine executes for a
maximum times of “productsToNegotiate” which is a constant number
similar by definition and handling to “maxZeroes”. The routine specifies the
maximum of products which are allowed to be pushed, and thus, the
maximum number of “goodLines” which the program is allowed to process.

This procedure (“StartPushing” (Fig 13, Block 140)) gives the
“grading”, such that the program begins looking for a “goodLine” with 1
unfulfilled condition.

When such a “goodLine” is found, the program initiates
“NegotiateOnLine2” (Fig 13, Block 144), and increments the iterations
counter (Fig 13, block 152) using “NegotiateOnLine3” (Fig 13, Block 146).
After “NegotiateOnLine2” (Fig 13, Block 144) is finished, and there isno
product available for the user yet, the processed “goodLine” is deleted and
the program tries to find another “goodline” that also has one unfulfilled
condition. If the program could not find a “goodline™ that has only one
unfulfilled condition, it looks for a line which has 2 unfulfilled conditions
and so on. All in all 2 indexes are used, one for the total amount of the
“goodLines” already processed, and the other for the current amount of
unfulfilled conditions being processed. The procedure stops execution and
exits immediately if one of the following events occurs. First, if the number

of “goodLine”s processed exceeds the limit set by “productsToNegotiate”;

PCT/US99/14994

10

15

20

25

WO 00/03329

41

or alternatively, if the number of unfulfilled conditions being examined
éxceeds the limit set by “maxZeroes”.

“StartPushing” (Fig 13, Block 140) stores the two inner indexes in
the virtual memory in order to prevent data loss.

The “NegotiateOnLine2” (Fig 13, Block 142) routine takes as an
argument the “goodLine” to process. It calls “NegotiateOnLinel” (Fig 13,
Block 144) which outputs questions to the user regarding the appropriate
topics by using “AskUserNegotiate” (Fig 13, Block 150). The module
performs a local “rules discard” mechanism after each part of the current
“goodline” was negotiated but before the user’s answer is checked. If the
answer is “no”, the “goodLine” is deleted entirely and the program exits.
Before exiting the program reads the current number of iterations (the
“goodLines” which were processed) from the memory and increments this
number (Fig 13, Block 152).

The “AskUserNegotiate” (Fig 13, Block 150) procedure outputs
specific “yes or no” questions for offering alternatives according to a factor
described as a “negotiating factor”, such as the price.

The VSD may specify a special question in the description of the
topic in the VS file, such as “You know, the color you are asking for is
currently unavailable, but we have so many other beautiful colors. Maybe
you would like...”. The rest of the sentence is constructed by this routine on
the fly, according to the value that the specific rule expects, such as color,
brand name, size, etc.

If the VSD chose not to specify a special question, there is preferably
a default text of the type “Would you agree < Topic > would be < Value >,
where the topic is the current topic that is passed to this procedure as an
argument. The value is the value needed to equate with the topic in order to

perform the rule which is specified by the current “goodLine”.

PCT/US99/14994

S

10

15

20

25

WO 00/03329 PCT/US99/14994

42

As an alternative and preferable file handling mechanism, the file for
dumping the “lines” and “goodLines” could be created under the
department’s name, which would increase the ease of finding and
manipulating the different routines participating in the mechanism.

The handle obtained is saved in the memory under the memory
section “system”.

When the file needs to be opened subsequently, the previously saved
handle is used to open the file. Then all the information is written to the
virtual memory, using the “OpenTableFile” (Fig 13, Block 156) routine.

For writing the “WriteTableFile” (Fig 13, Block 158) routine is used,
which receives the department’s name as its only parameter.

The routine opens a file under that name and writes to each and every
piece of information to the file regarding the “line”s and the “goodlines”.
The "line”s and the “goodLines” have already been constructed in another
routine, so all “WriteTableFile” (Fig 13, Block 158) must do is transit them
in the appropriate order to the file.

Figure 14 shows an illustrative embodiment of the Financial Purchase
Manager (FPM). The FPM provides financial service of purchases. It
enables the display of the full list of goods bought, their prices, any discount
and the total amount which the client should pay.

The client has the ability to change the quantity of chosen goods and
recalculate the sum of discount and the total price according to the changed
quantity.

All the processes of the FPM are implemented as a specific part of
the “Perform” (Fig 2, block 40) unit for credit card charging.

For mathematical calculations of total sum and discount, the
“SumUpAll” and “Sys_PercentsDiscount” (Fig 14, Block 164 ; Fig 7, Block

98) routines are used accordingly. They are both launched from

10

15

20

25

WO 00/03329 PCT/US99/14994

43

“ReportBasket” (Fig 14, Block 162), a routine that is responsible for
displaying the list of the purchased goods.

The operation of these procedures are described with reference to
Figure 14. Before displaying list of purchased goods, the total price and
discount are calculated. A list of goods is displayed in a table with a quantity
field for each row (product) allowing the user to change the number of units
to be ordered separately for every product.

The “ReportBasket” (Fig 14, Block 162) routine starts by skimming
the memory in search of “purchased” handles. As it was described in “The
interface to the SEU” section of this document, the “purchased” handle
stands for products that were purchased during the session.

Once it finds such a handle, “ReportBasket” (Fig 14, Block 162)
extracts the product’s name and refers to the VS file.

In the VS file, “ReportBasket” (Fig 14, Block 162) finds the product
by the name and finds the price in the product’s description\database field.
The product’s name and price are saved as a list entry.

After “ReportBasket” (Fig 14, Block 162) has found and processed
every “purchased” handle, it generates a HTML page with a table. The rows
of the table consist of the generated list’s entries plus one more column for
the quantity field. The value of the field is also read from the virtual memory
and 1s preferably “1” by default. Two buttons, “Continue” and “Recalculate”
are displayed on the GUI and the output finishes.

The identity of the field corresponding to each product is known
because the field’s name in the HTML generated source it receives the name
of the product it responds to.

The user’s input is preferably checked to avoid negative numbers,

fractions or letters. If the user uses one or more types of invalid input as

10

15

20

25

WO 00/03329

44

described above, a message is shown, saying that only positive, whole
numbers are allowed.

The user is preferably only able to press the ‘Continue’ button after
pressing ‘Recalculate’ if the quantity has changed. Pressing the
“Recalculate” button starts the process from the beginning (Fig 14, Block
166), so that the “SumUpAll” (Fig 14, Block 164) routine is invoked
followed by “Sys_PercentsDiscount” (Fig 14, Block 164) and/or
“Sys_CouponDiscount” (Fig 14, Block 164) with the new quantities so to the
total price is obtained and the discount updated. The results of the inference
resides in a new HTML page created by “ReportBasket” (Fig 14, Block
162) as it repeats the whole process again.

Because the new quantities reside in the virtual memory with the
name of the product they refer to, the new page includes the new quantities
as the appropriate fields’ values.

Pressing the “Continue” button (Fig 14, Block 170) takes the user to
the credit card charge process (Fig 14, Block 168). The Financial Purchase
Management unit may include the credit card charge unit, or else
alternatively and preferably the units can be separate but in communication
with each other.

The Credit Card Charge (CCC) process enables safe transfer of credit
card numbers through the Internet. The security is provided by transferring
the number with a plurality of separate transactions, in which the number is
divided into a plurality of portions, and each portion is included in a separate
packet for separate transmission through the Internet. The user preferably
decides how many digits from the credit card number are transferred at any
transaction. The CCC process at the client side has the following steps.

First, the user is prompted to fill in a form including the shipping and credit

PCT/US99/14994

10

15

20

25

WO 00/03329

45

card data. Next, at least one digit of the credit card number is entered in the
input field. The user then presses the “Continue” button to send the form.

On the next screen the user is prompted to input at least one more
digit and press the “Continue” button. This process is continued until the
whole number is entered. The number of figures left to input is displayed.

After the entire number is received, determined by the server
according to the type of the credit card and the number of expected digits of
the credit card number, the user is prompted that the process finished
successfully.

If characters other then numbers were entered or extra numbers were
entered it is considered to be an error and the user is informed of the mistake.
The process is interrupted and preferably must start all over again.

CCC process implemented as a specific part of the “Perform” (Fig 2,
block 40) function.

Note: The client decides how many digits to put in each form. The
system generates as many forms as needed to charge the complete credit
card number

The operation of the credit card charge unit is explained with
reference to Figure 15.

The same “Perform” (Fig 2, block 40) function is called several times
during CCC process. However the behavior is different depending upon the
CCC process state. In order to indicate the state, appropriate flags are used.

When entering the “Perform” (block 40) function, first the flag
“ibeginning_of charge” is tested (Fig 15, Block 172). This testing is being
done in order to send the first (prepared) HTML page at the beginning of
CCC process with the use of “HTMLSend” (Fig 15, Block 174). If it is the
beginning of the CCC process, the first (prepared) HTML form is sent using
“HTMLSend” (Fig 15, Block 172). The difference between the first and the

PCT/US99/14994

10

15

20

25

WO 00/03329 PCT/US99/14994

46

following pages is that the first page exists as a file in the disk while the
others are created dynamically . The first form is being simply read from the
disk and sent to the user by the “Interface” module using “HTMLSend” (Fig
15, Block 172). Other pages are built “on the fly” by the same “Interface to
the SEU” , that has functions for building number types of HTML forms.
The “SendAsk” (Fig 15, Block 72) function is used for prompting to input
numbers and “OutputComment” (Fig 15, Block 80) for reporting state
(errors and success). The first form that is sent by “HTMLSend” (Fig 15,
Block 174) includes fields for name, address, telephone number of client,
credit card type and first part of credit card number.

The “TestData” routine (Fig 15, Block 176) tests the received data
and indicates whether the important client data was input by the client into
the first page and was successfully received by server. All fields in the first
page must be filled in, preferably excluding some non-mandatory fields such
as telephone number and E-mail address. If not all the necessary data was
filled in, an error message is sent using “OutputComment” (Fig 15, Block
80) and the CCC process restarts.

The next test performed by “IsNumber” (Fig 15, Block 178)
determines whether the received portion of the credit card number is a valid
number. If any non-numerical characters are present in the received part of
credit card number, the number is invalild. If the number is invalid , an error
message is sent using “OutputComment” (Fig 15, Block 80) and the CCC
process restarts. If the received part of credit card number is valid, the part is
appended to the previously received parts using string concatenation, in
order to construct the whole number . The “f charge” variable serves for
credit card number collection .

The third test performed by “CheckDifference” (Fig 15, Block 180)

checks whether the whole credit card number was received. The decision is

10

15

20

25

WO 00/03329 PCT/US99/149%4

47

made by matching the received number length with a previously stored
constant number which is a length of every known type of credit card
number. “CheckDifference” (Fig 15, Block 180) performs all of the length
tests.

The “CheckDifference” (Fig 15, Block 180) routine is called from
“TestData” (Fig 15, Block 176) to calculate the difference between the
valid length of the given credit card number and the length of the received
data. There are two purposes for this calculation, showing the client how
many digits are left to input and checking if the length of the input number
is larger than it should be.

This function simply performs a subtraction between the length of the

number as it should be (a constant) and the length of the number that was
input. The variable “left” serves to store the difference. If the entire number
was not yet received, “CheckDifference” (Fig 15, Block 180) returns the
difference and “TestData” (Fig 15, Block 176) prompts the client using
“SendAsk” (Fig 15, Block 72) to input the next part. “TestData” (Fig 15,
Block 176) shows the user how many digits are left to input, using the value
that was calculated in “CheckDifference” (Fig 15, Block 180).
While checking the entire number received, the situation of extra data input
is being tested as well. In the case that extra numbers were entered,
“CheckDifference” (Fig 15, Block 180) returns a negative difference.
“TestData” (Fig 15, Block 176) informs the user about the mistake and the
CCC process is restarted. If the input is of a valid length, “CheckDifference”
(Fig 15, Block 180) returns 0 and “TestData” (Fig 15, Block 176) notifies
the client about a successful transfer using “OutputComment” (Fig 15, Block
80).

After the numbers have been received , the credit card number is

optionally encoded and stored using “SaveCCNumber” (Fig 15, Block 178)

10

15

20

25

WO 00/03329 PCT/US99/14994

48

along with the user’s private information for further processing. Thus, if
éncoding is used the whole credit card number exists as a whole only for a
rather short period of time.

Encoding is performed by the following steps :

The number being encoded is divided into several parts.

Every part is encrypted using an arithmetic or a logic operation with
the appropriate part of the key. Alternatively and preferably, each part is
encrypted substantially before being transmitted from the first computer to
the second computer. During encryption, the length of the result string may
overflow or underflow the length of the part that was encrypted. To
recognize this, “situation flags”are set such as ‘overflow’, ‘underflow’ or ‘no
overflow’ for every part that is being encrypted.

The credit card number is then reassembled from all the parts with the
additional flags. The process is as follows.

First, the number, as well as the key, is converted to a string. Then,
the “encrypt” routine is invoked.

The first few characters of the number are taken and converted to
integer. The same is done with the first part of the key. The arithmetic or
logic operation with these two integers is performed. If overflow or
underflow occur then the appropriate ‘overflow’ or ‘underflow’ flag is set.

Note: the actual representation of the flags consists of three parts: the

first holds, as was said previously, the “overflow” or “no overflow”

information about the part of the number it corresponds to. The second part
of the flag carries information about the number of digits that the according
part of the number contains.

In case overflow or underflow did occur, the third part of the flag
holds the extra (or missing) number of digits which were added (or

subtracted) as a direct result of the encoding operation. This number is

10

15

20

25

WO 00/03329 PCT/US99/14994

49

evaluated by subtracting the length of the string before encryption from the
1ength of the string after encryption.

The initial value of the flags is set to “no overflow” for the first part
and “0” for the other two parts.

The second part of the number is taken and converted to an integer.
The same is done with the second part of the key. The arithmetic or logic
operation with these two integers is performed. If overflow occurs the
appropriate ‘overflow’ flag is set.

The same conversions and operations are performed with every part
of the number and the corresponding part of the key.

After that, all encrypted parts of the number are converted to strings
and packed to a whole, encoded string, along with their corresponding flags.

The resulted string is stored in an external file along with the rest of
the client’s personal data (name, last name, etc.).

The decoder is a separate program, isolated from the Encode program
in order to avoid fraud and theft. It can be located in a different server, URL,
company, network or the like.

One implementation can be to locate the decoder program at the
credit card company, so the card number is not available even to the VSD.
The VSD receives the number only as a code representation while the true
card number stays at the financial institution.

The decoder takes the string that represents the decoded credit card
number, divides it into the parts which are set by the flags, converts the parts
to integers, takes associated parts of the key, converts them to integers and
performs the opposite arithmetic or logic operation with each part-key pair.

After performing the operation with all pairs, the decoder packs them
all to create the decoded number. The Decoder takes the encoded string as

the first and only parameter. The Decoder starts by extracting the flags” sub-

10

15

20

25

WO 00/03329 PCT/US99/14994

50

string from the string. Then, by the value of the second part of the flag, the
decoder collects the appropriate number of digits from the number and the
key.

The sub-strings formed in branch 1 are transformed to integers.

The opposite arithmetic/logic operation is performed on these two
integers. (instead of “+” there will be used “-* here, instead “*” used in the
encoder, here shall be used “\” and so on).

The result is saved in a container.

Steps 1-3 are performed until the entire number is processed.

The list that was constructed from all the parts (branch 4) is
assembled as a string.

The Department Messages are described with regard to Figure 16.
Every department may contain a message list (Fig 16, Block 182) which may
specify 5 different types of messages (described below). This messages are
of the form:

< Message keyword > = < Message text >

where Message keyword is one of the “entranceMsg” (Fig 16, inside
Block 182), “failureMsg” (Fig 16, inside Block 182), “exitMsg” (Fig 16,
inside Block 182), “non-purchasedMsg” (Fig 16, inside Block 182) or
“pbackinAMinuteMsg” (Fig 16, inside Block 182) and the Message text is
some lines of text the e-shop designer entered.

Not all five types of messages must be defined. Indeed, the messages
might not be defined at all, if the VSD does not wish to let the user know
which department is being accessed. These messages are configurable for
each department separately.

There are basically 2 groups of messages : messages given upon
entering a department and messages given while exiting. Those messages are

handled differently. The pre-department messages work as follows. The

10

15

20

25

WO 00/03329 PCT/US99/149%4

51

message is handled by the routine that handles the entrance to the
department.

It can be either “SectionA” (Fig 16, Block 114) or “SectionB” (Fig
16, Block 110), depending on the virtual shop design.

The message is retrieved from the messages list using the keyword
“entranceMsg” (Fig 16, inside Block 182). The message string is sent using
the routine “OutputComment” (Fig 16, Block 80) , once the department
which is about to be entered is identified using “startDep”.

The post-department messages work as follows. There are several
ways to leave a department. For example, if all rules are processed but there
was no product to recommend -give a “failure message” (Fig 16, inside
Block 182).

If all rules are processed and one or more recommendations were
given but the product(s) was not purchased - give a “non-purchased”
message (Fig 16, inside Block 182).

If all rules are processed and eventually the user did buy something -
give an “exit” message (Fig 16, inside Block 182).

If in the middle of rules processing, go to another department - give a
“backInAMinute” message (Fig 16, inside Block 182).

The procedures operate as follows.

The first 3 messages in the post-department messages are output
using “OutputTheRightMessage” (Fig 16, Block 184) routine.

The “OutputTheRightMessage” (Fig 16, Block 184) routine is merely
checks what message should be outputted and outputs the message using
“OutputComment” (Fig 16, Block 80) .

“OutputTheRightMessage” (Fig 16, Block 184) is called from
“BackADep” (Fig 16, Block 102), which means that the messages are given

when about to return to the previous department.

10

15

20

25

WO 00/03329 PCT/US99/14994

52

The “failure” message (Fig 16, inside Block 182) is output if the flag
;‘has_answer” is turned off for the current department (this flag is turned ‘on’
by “TryRecommend” (Fig 2, Block 46) routine).

The “exit” message is output if the flag “purchased” is turned on for
the current department.

The “has_answer” flag does not need to be checked, because
purchasing can’t be done without receiving a product recommendation first.

The “non-purchased” message is given when the flag “has_answer” is
on but the flag “purchased” is off.

The “backInAMinute” message (Fig 16, inside Block 182) is handled
in the “Perform” (Fig 2, block 40) routine. When “Perform” (block 40)
encounters the keyword “department” in the results of the rule it has to
perform - it retrieves the “backInAMinute” message (inside Block 182) from
the current department messages list (Fig 16, Block 182) and send it using
“OutputComment” (Fig 16, Block 80) . This message is sent before leaping
to the next department.

The description of the E-Shop builder is shown in Figure 17.

The E-Shop is a software package, individualized for each VSD.
Therefore, it has to be designed by the VSD and added to the SEU in order
to form a complete, working system.

The E-shop builder is structured as a unit that helps the VSD build the
e-shop. It does so by interrogating the VSD about the products, the selling
methods and strategies. Everything is done in the form of an interactive
interview with the VSD. The trend is to work on one product at a time -
asking about the usual topics usually considered during the sale of the
product. The purpose of this session is to teach the Internet Sales
Representative regarding the shop, the products, the sales strategy, the

negotiations and every other component the ‘human’ sales representative

10

15

20

25

WO 00/03329 PCT/US99/14994

53

would like to teach to the Internet Sales Representative. However, it should
be noted that the E-shop builder of the present invention could also be used
to build substantially any rules-based system based on questions asked of,
and answers obtained from, a live human being.

The procedure operates as follows. The process begins with greeting
the sales representative and an explanation of the process, in a form of:
“Hello, welcome to the E-Shop builder. We will now build you an electronic
shop which will consist of departments, shelves, products, a cash register and
salesmen as you would like to see it. All you have to do is to answer the
questions [will ask you.” /

After that, the session begins. The builder asks about the departments
first. Departments are defined as product lines, much like real departments,
so a possible answer to the question “which departments do you want?” may
be “computers, printers, modems”.

The builder then concentrates on each department separately, asking
the VSD which products are to be sold in each department. For example,
when the VSD is asked “What products do you want to sell in the printers
department?”, the answer may be “Epson 400, Epson600, Epson800,
HPOL”.

After receiving the information about the products, the builder starts
asking questions about about each product separately. The VSD is asked
about the subjects usually considered while selling the current product. The
term “subjects” refers to issues which are crucial to the selling process.

For example, if cars are sold then the acceleration of the car, the
make and model, the number of passengers, even the color is important to
know before any car is recommended.

So the VSD is prompted to enter those topics and the input may be

something like “color, model, acceleration, performance” and the like.

10

15

20

25

WO 00/03329

54

Once the issues are known, the builder asks for the text of the
Questions. That text is used by the SEU later to ask about the issue. The
builder asks “How would you ask your client what color he or she wants?”.
The VSD writes the question to ask, using imagination and creativity. For
instance, an interesting question may look like this:

“The color of the car is very important, you know. My cousin once
bought a beige limousine and no one has spoken to him for a year. So think
hard before you tell me : what color do you want your car to be?”

After that, the builder needs to know the appropriate answers to the
issues, the answers which lead the sales representative to recommend the
current product. For example, if the issues are: “color, speed, acceleration”
and the product is “Brand X car”, the sales representative recommends that
brand only if the color is black, gray or white and the speed is very high and
the acceleration is very fast. So the next builder’s question is “When you ask
me “what color do you want your car to be?” what should I answer you so
you’ll recommend a Brand X car?” and the VSD will input all the colors
wanted here, for instance “gray or black or white”.

After the issues for the current product are processed in that way, the
recommendation text is given. The recommendation text is used by the SEU
to tell the user the recommended product. After the user is asked about the
color, the speed and the acceleration and respond to the questions
accordingly to what the VSD expected, the user gets this recommendation
text. The builder asks the VSD how to recommend the product to the user. A
possible answer could be “Brand X is the perfect choice for people who like
big, fast cars. We have a special Brand X sale this month, so if you buy one

now, you’ll get a 10% discount!”

PCT/US99/14994

10

15

20

25

WO 00/03329 PCT/US99/14994

55

The process continues until all the departments are built, along with
fhe topics, options, answers and so on. This indicates the end of the first pass
on the creation of the E-shop.

The second pass deals with the different business strategies, the
offering alternatives and the preferred products for each department. The
builder goes through the list of departments by their names asking the user
to choose the business strategy for the department. Some possible business
strategies are: human, quick, cruiser, as described above.

After selecting the business strategy, the builder asks the VSD about
the products to try to sell first in the current department. The VSD may
specify product names in the form of “Brand X, Brand Y, Brand Z”. This list
is written to the e-shop file as “preferred” for the current department. If the
VSD supplies no answer to this question but just indicates acceptance, the
builder will continue the investigation and no “preferred” brands are written
to the file.

As for the offering alternatives, the builder asks the VSD only one
question regarding all the topics in the department : “Click on the topics you
want from the list below to specify that the topic is negotiable” followed by a
list box that contains all the topics that were input throughout the session. If
the VSD selects the topic in the list box, the topic changes color and is
treated by the builder as negotiable. The word “negotiable” is written in the
topic’s description in the VS file. The same is done for the departments to
specify “negotiation = on” or “off” in the department’s description.

The third pass is used to specify the department architecture (spider,
path, pipe line, etc.)

The builder helps the VSD to create an appropriate design by giving
directions based on the amount of the rules, the industry the VSD is dealing
with and other criteria. In the fourth pass the VSD is guided through the

10

15

20

25

WO 00/03329 PCT/US99/14994

56

construction of the “cash register” department and the decision of which
department is the “main” department. The last pass before adding graphics to
the VS is the pass where the builder simulates the session by reading the
rules and outputting the appropriate questions. In this process the VSD may
add the comments by clicking the “Add comment” button in the session’s
window instead of clicking the “OK” button which launches the next screen
(question).

The process functions are described with regard to Figure 17.

The “ProcessDepartments” (Fig 17, Block 202) routine uses
“OutputComboQuery” (Fig 17, Block 186) to get the departments the VSD
wants to put in the virtual shop. It simply outputs the question and reads a
string of the departments’ names separated by commas. It calls
“ProcessProducts” (Fig 17, Block 188) to gather information about the
products the VSD has in each department.

The “ProcessProducts” (Fig 17, Block 188) routine reads a string of
products the VSD wants to sell in the current department and create a list of
them. After that, this procedure goes through the list, asking the user to enter
the topics. It calls “ProcessAllTopics” (Fig 17, Block 192) to read, create a
list out of and process the topics the VSD wants to talk about in the process
of selling each product. In the end of it all, it builds the rule pattern and write
it to the virtual memory directly (Fig 17, Block 190). It also creates the
appropriate pattern for product recommendation in SL format. This is also
saved in the virtual memory (Fig 17, Block 190), until the VS file is created
(Fig 17, Block 196).

éiven a string of topics and the name of the product those topics are
related to, The “ProcessAllTopics” (Fig 17, Block 192) routine will create a

list out of the topics and for each topic the following shall be performed:

10

15

20

25

WO 00/03329 PCT/US99/14994

57

If the topic is new (e.g.- the VSD never mentioned it before), the
system asks the user for a text string which shall be used as a question for the
topic. If the topic was recognized by the system as an existing topic, thif
query is skipped. The system asks the user what answer should received on
the question so that the appropriate recommendation is the current product.

The question for the topic and the expected value are saved by this
routine in the virtual memory (Fig 17, Block 190), in the “on the fly”
generated SL format. The pair topic-value is also saved separately under the
handle “condition”.

Both of these routines use “OutputComboQuery” (Fig 17, Block 186)
to generate output and “GetValidXXXX” (Fig 17, Block 198) unit to read a
valid input.

After a specific product has been discussed, the “MakeRule” (Fig 17,
Block 198) routine is invoked to collect conditions of the virtual memory
(Fig 17, Block 190) and organize them all under the handle “rule”. After this
procedure the conditions are deleted so the different rules are not mixed up.

The “WriteVSFile” (Fig 17, Block 194) routine is invoked by the
main routine and is used to copy data previously saved in a working memory
to a file. It opens a file with the name specified by the user plus the extension
“sell”. All information stored under the handle “products”, “topics” and
“rules” is flushed to the file.

“WriteVSFile” (Fig 17, Block 194) is called every 10 minutes or so,
in order to back up the existing work of the VSD.

The wizard library is used to generate an interesting, human output.

The file is divided to sections each of which is initiated by a certain
keyword and contains several strings delimited by commas.

The strings themselves are represented as a normal text strings but

(YN Y LN T I 11

they may contain “replace tags” of the format ‘<’ xxxxx’>" *. XXXXXX” 18

10

15

20

25

WO 00/03329 PCT/US99/14994

58

some line of text. While execution, this line shell be replaced with

information generated on the fly, by “OutputComboQuery” (Fig 17, Block
186).

The “OutputComboQuery” (Fig 17, Block 186) routine is called with
a query name (keyword) that must be specified in the “wizlib” and a list of
replacements to be used instead of the text inside the “replacement tags”.

First, a random number function is run, giving as a seed the number
of lines in the section specified in the “wizlib” by the keyword, to avoid
repeating the same question several times in a row.

Next, the line specified by the number that the random function
returned is extracted, and the following operations are performed.

First, convert the string to a list of words.

Next, find the left mark-up tag (“<”) and delete it from the list.

Replace the following text with the first element of the list of
replacements given as a parameter.

Delete the right mark-up tag (“>7).

Delete the first element in the list of replacements, making the second
element the first element for the next time.

The above steps are performed as long as the list of replacements is
not empty.

The “GetValidXXXX” (Fig 17, Block 198) unit contains various
routines under the prefix “GetValid”. These routines are responsible for
getting a valid input from the user. Invalid input is a blank line, gibberish,
etc.

Each of these routines calls “OutputComboQuery” (Fig 17, Block
186) to ask the user to re-enter the answer to one of the wizard’s questibns.

These routines are designed to be executed until the user gives a valid input.

10

15

20

25

WO 00/03329 PCT/US99/14994

59

The task of the Detection Engine (DE) is to detect different situations
and twist the session course in a way the VSD decides. Extreme situations
can be an industrial spy in the system, a user that wishes to purchase
valuable products, or another things, according to criteria defined by the
VSD.

The detection engine can be thought of as a special, secret department
in the VS. This department never produces any external output, instead its
results are written to the system data in the virtual memory. Thus, the results
of its rules modify the flow of the session.

Some of the “extreme situations ” are handled by default in the DE,
while the user is free to add such situation definitions at will.

The structure of the DE is the structure of a department without the
messages. It is fully rule-derived as the results of a rule are either the
modifiable features (such as “maxZeroes”, business strategy, etc.), or any
other type of information the VSD wants to put in the DE

The procedure is operated as follows. The SEU is always aware of
the DE physical location on the disk. While working in a normal mode, after
each question outputted to the user - the SEU referring to the DE and scans it
using the routine “LoadDE” which operates exactly like “FireNextRule” (Fig
2, block 34) only with a different “Perform” (Fig 2, block 40) routine:
“twist”. The “Equate” (Fig 2, block 44) function, however, remains the
same.

The “Twist” routine takes the results of the detection rules and write
them to the “system” section of the memory. It acts differently based upon
the given input.

If the result is a keyword (“maxZeroes”, “departments”,
“buisness_strategy”, etc.) - “Twist” replaces all existing information

regarding the keyword.

10

15

20

25

WO 00/03329 PCT/US99/14994

60

If it some other input - “Twist” adds it to the memory and no
overwriting takes place.

Some of the built-in options are as follows:

(*) Transfer to chat - given the appropriate conditions that were
accomplished (following criterias described by the VSD), the DE is able to
generate a message to the user that someone wants to talk to him and transfer
him to chat with a human sales representative .

Show the door - the DE may decide, based on the conditions supplied
by the user, that the current user is a spy or another intruder and is able to
gently encourage the user to exit, saying something like “sorry, but we have
no products available for you” or “I’'m really busy right now, could you
come back later?”

Lengthen the session - the DE is able to create a longer sessions by
changing the “businessStrategy” information and/or changing the
“maxZeroes” constant.

More/ less animation - The DE can also change the visual appearance
of a question/answer by outputting more multimedia or, on the contrary,
prevent the SEU to output one or more types of multimedia. This is done by
formatting the HTML script generated by the SEU and removing all
references to pictures, sounds, movies, etc.

Changing the text of a question/recommendation - based on a specific
conditions, the DE can replace the text of a specified
question/recommendation with another text specified by the user.

The technique is the same as mention in the Visual Appearance.

Such a replacement can also be done with multimedia.

Add to VIP list - (available after the session only) - the DE decides
which customers are “interesting” from the VSD’s point of view and adds

their e-mail to a special log for future use by the VSD.

10

15

20

25

WO 00/03329 PCT/US99/14994

61

The Portable Code SEU implementation structure and description is
shown in Figures 18 and 19. The Portable Code SEU is a preferred
embodiment of the present invention which has the advantage of reducing
the amount of time required for data transfer between the client and the
server through the Internet. Currently the speed of Internet connections is
not very high. Sending the whole SEU + the e-shop to the client side needs
only three transactions: one to transfer the SEU, the second to transfer the e-
shop to the client and at the end of the session, the third to transfer the
history of the session (log) back from the client to the server. For
comparison, the SEU implemented in CGI (or any other non-portable web
server technology such as ISAPI) requires one Internet transaction per
question\comment\answer or message. A regular session may include 30-60
transactions such that a portable-code implementation of the SEU results in a
significant acceleration of communication. In this implementation, the entire
work that needs to be done by the SEU is done at the client side while the
server is only responsible for uploading the SEU and the e-shop, and for
receiving the log file.

There are two approaches developed to embed the SEU in portable
code scripts, such as Java applets. Either the SEU is written in portable code
language, or the SEU is invoked by an interpreter which was written in a
portable code language.

In the first approach - the SEU works almost the same as if it was
embedded using common web server technologies (CGI, ISAPI, NSAPI and
the like). The difference is that the system works in consult mode at the

client side (Fig 18, Block 212) - The steps of loading and launching it are as

follows.

10

15

20

25

WO 00/03329 PCT/US99/14994

62

Once the request has been made to the server, the portable code
Written SEU script downloads itself to the client computer being operated by
the user (Fig 18, Block 210).

The SEU stays in the virtual memory of the client computer
throughout the session (Fig 18, Block 212).

Once at the client side, the SEU uses the open connection (Fig 18,
Block 208) as an input stream and loads a copy of the e-shop to the client’s
memory (Fig 18, Block 210).

The session takes place on the user’s computer (Fig 18, Block 212).
All of the features are available by using the GUI (See FIG 3), as described
for the Web browser interface.

During the session, the user answers the questions, receives the
comments of the SEU and messages, is exposed to multimedia and is able to
purchase any product in real time.

After the session is finished, the program creates a file which holds
everything saved previously by the SEU to the memory.

This file is transported immediately (Fig 18, Block 214) to the server
(Fig 18, Block 214). The implementation of the SEU as portable code is
very similar to the Web-based version. The only differences involve the
interface with the user. Rather than building HTML pages as the SEU
normally does, the portable SEU builds local windows and controls on the
client side (GUI) (see FIG 3).

Also, rather than loading the e-shop as a file from the server’s
computer (Fig 18, Block 204), the portable SEU loads it by using an HTTP
connection (Fig 18, Block 208) through the Internet.

The credit card number transferring process differs from the process
described previously (see Figure 15). While working with the portable code,

the whole credit card number is received by the SEU, encoded and passed on

10

15

20

25

WO 00/03329 PCT/US99/14994

63

to the server (Fig 18, Block 204) in one piece with a log and private client
information (Fig 18, Block 214). The reason for this difference is that when
the entire program resides on the client computer, the possibility is reduced
that the user’s credit card number would be stolen.

There are two particularly important routines that require special
attention: the routine that saves the virtual memory to a file, and the one that
sends the log from the client side to the server.

The “PutMemToFile” (Fig 18, Block 216) routine starts by gathering
all flags’ handles such as “info”, “previous” and all others mentioned
through this document. Then, it continues by creating a list from each piece
of information associated with those handles. Each list is written to the file.

As the file returns to the server, the file is decomposed and saved in
the log file along with other similar files.

The “SendLog” (Fig 18, Block 218) function sends all the collected
information received through the session and the credit card information (if
there is any) to the server (Fig 18, Block 204). The function opens an HTTP
connection (Fig 18, Block 208) to the server (Fig 18, Block 204), sendsa
POST request with all the collected data and receives a confirmation about
successful data transfer. The confirmation is sent using text/plain MIME
type.

If confirmation is not received, the SEU reports to the user (Fig 18,
Block 206) that the purchase cannot be completed because of the absence of
a connection (Fig 18, Block 208) with the server (Fig 18, Block 204).

The confirmation is given by a server side application written in CGI,
ISAPI or other web server technology which receives the data, saves it to
the local disk in a previously specified location and, if the above two tasks

were completed successfully, sends confirmation to the client (Fig 18, Block
2006).

10

15

20

25

WO 00/03329 PCT/US99/14994

64

In the second approach, the SEU is interpreted by a transportable code
implemented interpreter.

The program, consisting of the SEU, the e-shop and the interpreter, is
a stand-alone application (Fig 19, Block 220) which starts execution once all
of the components are downloaded to the client computer (Fig 19, Block
206). For this embodiment, the SEU must be implemented by an
interpretable language (such as BASIC).

Once the interpreter is downloaded by the client, it builds an HTTP
request, loads the SEU and starts the SEU. The remaining processes are
operated as describe before.

The term “interpreter” refers to an interpreter from the source
language of the SEU to the destination language (the portable code).

Because the e-shop may contain links to a database (Fig 19, Block
222), which are impossible to transfer using any known portable code, the
database must be converted to a file which is transferable (Fig 19, Block
228).

The “DBtoNoDB” (Fig 19, Block 226) routine uses simple string
search to scan through the rule base and find references to a database (given
by file name and entry number). It creates new, temporary, e-shop file in
which every database reference is removed. Instead, an answer is written in
SL format. This answer will consist of the product’s name, the
recommendation string and the price of the product.

The “DBtoSL” (Fig 19, Block 228) routine is used to convert any
database written in SQL, Oracle or DB2 format to a transferable file (Fig 19,
Block 228). The routine generates a list of every row in the original
database. The database fields are written to a text file separated by commas.

[T}

There is a “.” (period punctuation) at the end of each row.

10

15

20

25

WO 00/03329

65

The SEU automatically identifies the first word as containing the
object’s name and the second word as containing the object’s text. For any
other words it assumes they are the style, the asking format, “negotiable”
flag (on or off) and “multiple” flag respectively. The process is similar to the
one previously described for enabling the SEU to interact with the database
directly. This routine may be used to transfer comments, questions and
answers which are not do contain product information.

Note: The detection engine has the ability to determine whether or
not to recommend to the user to start the session by using portable code. The
DE may give a recommendation to start downloading the portable code
version of the application to the user, based on the time of day and the speed
of the connection, which is verifiable by the use of standard functions such
as “ping”.

The Shopping Smart summary software module is a preferred feature
of the present invention which allows the user to view the list of products
which were purchased. This feature is implemented within the
Communication Environment using Web server technologies (CGI, ISAPI
and so on). The user can see the contents of the purchase at any point of the
purchase process.

Preferably, every HTML page used as a GUI for the present invention
includes an icon to represent the Shopping Smart feature. When user moves
the mouse over the icon, a window is opened. In the window the user can see
a list of products, previously marked as purchased, with their respective
prices and quantities. Below the list, the user can see the total sum of the cost
of the purchase. The button “Recalculate” is supplied below for the user to
push. The user has the ability to change the quantity of any purchased

product in the appropriate “Quantity” text field and recalculate the total sum

PCT/US99/14994

10

15

20

25

WO 00/03329

66

according to the new quantity. Moving the mouse cursor out of the Shopping
Smart window causes the window to be closed automatically.

The Shopping Smart function is preferably always available on any
Web page being used as part of the GUI by the present invention, so that
there is no need to go to another Web page in order to view this information
as described previously for other prior art on-line shopping implementations.

The Shopping Smart function can optionally and preferably be
implemented in various languages by using various technologies. The
implementations below are possible options for full and partial solutions.

For example, for the SEU based implementation example and
structure, all the data processing and calculations are made by the SEU.
When the user contacts the Shopping Smart icon with the mouse or other
pointing device, preferably substantially without “clicking’ on the icon, the
‘onMouseOver’ event launches the “ShopSmart” function written in the
page in a form of script. The “ShopSmart” function launches the SEU in a
special mode for Shopping Smart, in order to run Financial Purchase Manger
mechanism. The SEU sends the response to Shopping Smart window in-a
form that was described above. Pressing the “Recalculate” button will send
the updated information to the SEU. The SEU sends the results back to the
Shopping Smart window as is usually done in regular CGI or other Web
Server Technology processes.

The window is closed when it the mouse or other pointer device is
“off” the icon, such that the GUI indicator (a cursor or arrow for example) is
no longer visible in contact with the icon, through the ‘onMouseOut’ event,
which is called from within the reference to the ‘Shopping Smart’ summary
icon image.

The procedure for operating the “Shopping Smart” function is as
follows. The ShopSmart procedure opens a window with an HTML (or

PCT/US99/14994

10

15

20

25

WO 00/03329 PCT/US99/14994

67

other markup language) form (or other similar structure). The ShopSmart
procedure calls the “open” function in order to open the window. The URL
that is passed to “open” as a parameter is:

[SEU]?VS = [the VS name]&MODE=FPM

Using the mode “FPM”, the SEU will know that the “Perform” (Fig 2,
block 40) routine which deals with FPM is required. Thus, the normal SEU
process is halted and the appropriate “Perform” (block 40) routine (for FPM)
is invoked.

Alternatively and preferably, the Shopping Smart function can be
implemented by using substantially only JavaScript™ or other similar
languages as advanced markup languages for all types of scripts. When the
user contacts the Shopping Smart icon with the mouse, the ‘onMouseOver’
event will launch the “ShopSmart” function. However, in this
implementation, the function works differently. The function operates as
follows.

The ShopSmart procedure takes information about purchased
products and displays that information in a table, positioned in a previously
opened window. The data about purchased products and prices is generated
by the SEU throughout the session and is accumulated in the dynamically
created HTML pages as a hidden type of input. For example:

<INPUT TYPE = “hidden” NAME = “sys_purchased 01” VALUE =
“Brand X mouse” >

<INPUT TYPE = “hidden” NAME = “Brand X mouse” VALUE =
“30”>

<INPUT TYPE = “hidden” NAME = “Currency” VALUE = “$”>

The shown data represents the product ‘Brand X mouse’ that costs

30$. By scanning names and finding “sys purchased nn” (where ‘nn’ is any

10

15

20

25

WO 00/03329

68

integer) “ShopSmart” knows the name of the purchased product . Then, the
rhatching price string can be retrieved according to the name and then
concatenated with the currency string taken from the “Currency” hidden
input. “ShopSmart” outputs the product name and price as row of HTML
table to window. The same action is performed for all found products. The
total sum is calculated and displayed under the products list. As a result, the
user can see the full list of products, their prices and the total sum of the
purchase.

According to another preferred embodiment of the present invention,
“multiple Sales Representatives” can be implemented with the SEU. Such
an embodiment can be used within a framework of a plurality of different
Virtual Shops (VS) being operated with the same Sales Engine Unit (SEU).
The VSD can build a number of VS’s (separate VS for each department,
product line or just a different electronic sales representative character) and
to pass the VS file name on to SEU as a parameter. At least one
characteristic of the different sales representative “characters” can determine
the interaction with the user.

The manner in which the VS is loaded is optionally and preferably
different for each Communication Environment (CE). As an example for
CGI and HTML, in CGI mode the SEU is launched by an HTML FORM. In
order to launch the SEU with another VS name, other than the default name,
the FORM tag should look like:

<FORM METHOD = POST ACTION = < SEU
name>?VS=<VS name> ...>
where < SEU name> is the real name of the SEU file, and <VS name> is

the real name of the VS file.

PCT/US99/14994

10

15

20

25

WO 00/03329

69

The SEU gets <VS name> from the “QUERY_STRING”
environment variable, previously written by the server , and loads the named
VS file instead of the default.

The described method enables a separate VS to be implemented for
every shop’s department. Such an embodiment allows much of the work
required for building the first VS to be reused for further VS
implementations. In order to incorporate new departments in an existing VS,
references to the different departments must be included and the information
concerning each department saved in another file. The references are
represented by strings. Each string includes the reserved word “ref”, in
order to recognize the reference as a reference, and a path to the referenced
department. As an example, the reference can look like this:

PrintersRef = ref(“/cgi/printers.sell”).

The SEU will recognize the references and load all referenced files. In such
a way, the SEU will have the full data of the whole shop.

If the different e-shops are constructed with different sales
representatives, the DE preferably determines which e-shop to launch. For
example, if one virtual sales representative is a woman named Kelly, another
is a former boxer named “Rocky” who speaks accordingly, and yet another
is a teenager named Jessy, the DE may decide which virtual sales
representative is the most suitable for the user, based on user gender and age,
the time of day, the speed of the connection, and so on.

The reasons for constructing different types of virtual sales
representatives include the ability to use different languages, language styles,
multimedia representations, or to give the user a variety of “people” to
choose from. Another reason is that the use of multi-file VS is extremely

useful when linked to an existing site. Yet another reason is to enable the

PCT/US99/14994

10

15

20

25

WO 00/03329

70

user to receive a recommendation from each display on the GUI separately,
instead of forcing the user to go through the session from the beginning.

In addition, working in multi-files also confers a great deal of
flexibility for the DE. The DE may construct the session by deciding on the
departments which are “off-limit” to the current user. For example, if the
user is a spy, the department which gives information about the new line of
the company’s products could be made “off limits” to such a user.

According to yet another preferred embodiment of the present
invention, there is provided the ability to transfer to “chat” mode from the
SEU.

Transfer to chat, shown in Figure 20, is the operation of detecting and
transferring to live chat. The motivation here is the detection of users with
whom such “chat” would be beneficial.

The DE is responsible for the detection of clients that the VSD has
specified as “interesting” (Fig 20, Block 230). For example, the VSD may
construct a rule that says that only clients who bought S products or above,
enter the chat. The rules according to which the DE will transfer the user to a
live chat reside in the DE department. After the DE has come to a conclusion
that the specific user should be transferred to chat, it must check for an
available live human sales representative. Such a human sales representative
is considered to be unavailable if all of that representative’s previously
opened browsers are connected to users

If no human sales representative is available, the DE allows the SEU
to continue the session without generating any message to the user. The DE
then places the user on a queue and attempts to lengthen the session as much
as possible while waiting for such a human representative to become
available. After each “Post” request from that user, the DE automatically

checks for an available line to such a human sales representative.

PCT/US99/14994

10

15

20

25

WO 00/03329 PCT/US99/14994

71

If a free line can be found, the DE constructs a page with a message to
the user that human sales representative X would like to speak. After sending
the page to the user, the DE immediately constructs a memo for the human
sales representative which is a brief overview of the session with the user,
including all the information the user has supplied.

After performing each of the following tasks, the DE connects the
user to the chatter and the SEU’s session with the current user ceases to
execute.

If no free line could be found and there are no more features available
to lengthen the session, the DE sends the user a message saying something
like “Joe would want to talk to you so much, but all lines are busy. Can you
come back later so he could talk to you?”. The message sent in this situation
is preferably constructed by the VSD in the process of building the shop.

The chat function is operated as follows, with reference to Figure 20.
The “ConductChat” (Fig 20, Block 232) routine is the core for the ‘transfer
to chat’ mechanism.

It starts by launching “CheckFreeLine” (Fig 20, Block 234) to find an
available line to transfer the user for the chat.

If “CheckFreeLine” (Fig 20, Block 234) returns “NO_LINE”,
“ConductChat” (Fig 20, Block 232) will indicate this situation by turning a
flag “ChatQueue” ‘on’.The user is now in a queue for a chat (Fig 20, Block
236). Whenever the SEU sees that flag, it will invoke “CheckFreeLine” (Fig
20, Block 234) again, trying to get the user to chat with the human sales
representative.

If “CheckFreeLine” (Fig 20, Block 234) returned a human sales
representative’s name, “ConductChat” (Fig 20, Block 232) launches
“BuildUserMsg” (Fig 20, Block 238) with the parameter “in”, followed by
“BuildMemo” (Fig 20, Block 240) to prepare both the user and the human

10

15

20

25

WO 00/03329 PCT/US99/149%4

72

sales representative for the coming chat. “BuildMemo” (Fig 20, Block 240)
clears the virtual memory of any trace of the user, finishing the session (Fig
20, Block 242).

The CheckFreeLine (Fig 20, Block 234) function checks for an
available human sales representative for a chat. No parameters are passed to
it; instead it works with an external INI file. The INI file contains the
following information, written in the usual INI format:

[linesInfo]

Kelly =0

Kelly IP =192.156.9.786
John=1

John IP =222.999.1.333
Roy =1

Roy IP =201.967.7.123

“Roy”, “John” and “Kelly” are the names of the human sales
representatives, while the numbers to their right are the flag (0 - human sales
representative’s current browser is free , 1 - human sales representative’s
current browser is busy). For each name, the IP address is also specified to
get the full identification of the human sales representative when the users
are matched to the human sales representatives throughout the chat.

“CheckFreeLine” (Fig 20, Block 234) finds the section “lineslnfé”
and packs all the strings that follow it to a list.

The procedure then starts processing the list, by breaking each of the
list elements to a “Name = IsBusy” structure and checking if the sales
representative is free. If a free sales representative is found,
“CheckFreeLine” (Fig 20, Block 234) returns the corresponding “Name”; if
not, the procedure returns “NO_LINE”.

10

15

20

25

WO 00/03329

73

The “BuildUserMsg” (Fig 20, Block 238) routine expects one of the
following parameters : “in” and “out”.

When it is launched with the parameter “in”, this routine generates an
HTML page for the following purposes: to inform the user of the transfer to
a chat mode; and to initialize the chatter with some information that is
passed to it by a hidden parameter residing in the page. It should be
mentioned that the chatter is a different program, isolated from the SEU.

The form that is built is as follows.
<Form method = Post Action = /cgi-
shl/chatter.exe?MODE=CLIENT&STATE=INIT>
<Input type = hidden Name = “clientName”

Value = *client’s name as was supplied in the
beginning of the session*>
The next portion is where the message for the user is written:
<Input type = hidden Name = “Sales representative” Value = * The sales
representative’s name * >

<Input type = hidden Name = “Sales representativelP” Value = *
The sales representative’s IP address. * >

<Input type = hidden Name = “Data file” Value = * data file name
*>

<\Form>

The parameters “data file”, “Sales representative” , “Sales
representative]P” and “ClientName” are those which shall be used by the
chatter for initialization.

When the procedure is launched with the parameter “out”, it generates
a plain text message to inform the user that sales representative X would like

to speak with the user, but that the representative is busy. The message could

PCT/US99/14994

10

15

20

25

WO 00/03329 PCT/US99/14994

74

also suggest that the user could come back later, when X would not be as
busy.

The “BuildMemo” (Fig 20, Block 240) routine constructs a file to be
passed to the chatter which displays the information in the sales
representative’s window.

Given the appropriate user’s handle as a reference to the virtual
memory zone that stores all the information about the user since the session
started, “BuildMemo” (Fig 20, Block 240) can work in one of the following
ways.

If the VSD specified in the “config” section of the VS an “important”
set of the form “important(interest, age, money,)"”, which describes the
major issues that the sales representative needs to know when entering a chat
with the user, “BuildMemo” (Fig 20, Block 240) processes the topics by
their names, given on the right side of the “="sign. It does so by referring to
the appropriate handles in the memory, specified by those names, and
retrieving the information that resides under those handles.

If no such section is specified in the INI file, or if it contains no data,
“BuildMemo” (Fig 20, Block 240) looks at all handles, but retrieves only the
information meets the following conditions: first, that the information is of
the form “(X, Y)” and second, that neither X nor Y are keywords (except
the “purchased” keyword which identifies the products purchased throughout
the session).

After the information was read from the memory “BuildMemo” (Fig
20, Block 240), the information is placed into a file with the same handle
which was previously generated by the SEU for referring the appropriate
memory zone.

In each of these approaches, “BuildMemo” (Fig 20, Block 240) goes

through the entire memory zone. Regardless of the action taken with a

10

15

20

25

WO 00/03329 PCT/US99/14994

75

handle, that handle is deleted from the memory. In the end, all handles
dssociated with the current user are removed so that this user no longer
exists from the SEU’s point of view.

As shown in Figure 21, the chatter software module is a separate
program designed for communication between the user and the sales
representative. It has two modes: user mode and sales representative mode
page (Fig 21, Block 246) . For “user” mode, it is launched by the DE (Fig
20, Block 230). The sales representative runs his or her own chatter software
module locally, declaring by doing so that he or she is ready to have a chat.
The sales representative sees a few browsers, one for each of the users,
while the user sees only the progress of the user’s own chat with the sales
representative.

Every time the sales representative opens a browser, it is considered
by the chatter to be connected to a different sales representative. Thus, every
time the word “sales representative” is used throughout the document, it is
usually describing a single “user-sales representative” connection.

As described previously, the chatter can work in two modes: user and
sales representative page (Fig 21, Block 246). The mode in which the chatter
works is passed to it by a parameter. The mode is ‘user’ by default.

When the chatter is activated, it checks to see if it is launched for
refreshing the chatter page (Fig 21, Block 244). The chatter page is
refreshed automatically every 15 seconds. The “state” parameter contains the
state of the channel, identified by the “channel” parameter. The examples
for invoking the chatter are shown below. If the current state is “refresh”
(Fig 21, Block 244) , the chatter calls the “RefreshChat” (Fig 20, Block 262)
function in order to send an updated chat page. In both ‘user’ and ‘sales
representative’ mode (Fig 21, branches of block 246) , the chatter tests if

the channel between the user and the sales representative exists (Fig 21,

10

15

20

25

WO 00/03329

76

Block 248). If the ‘STATE’ is ‘INIT” the channel does not exist (Fig 21,
Block 248 | the branch marked with “no”) and thus the chatter calls the
“BuildNewChannel” function (Fig 21, Block 266) in user mode and
“RegisterSales representative” (Fig 21, Block 250) in sales representative
mode and exits.

If the channel exists (Fig 21, Block 248 , the branch marked with
“yes”) and the “Send” button was pressed by either the user or the sales
representative, the message received from the user or the sales
representative is stored in the channel’s storage room (Fig 21, Blocks 254,
260). If the “Leave the Chat” button was pressed (Fig 21, Blocks 252, 256 -
the branches marked with “yes”), the message “User has left the chat”, or
“Sales representative has left the chat” is stored (Fig 21, Blocks 258). The
message that is written depends on the current chatter’s mode.

“UpdateRegister” routine (Fig 21, Block 264) is called, in order to
update the sales representative state. The “UpdateRegister” function (Block
264) marks the sales representative as “available” when the user left the
chat, or deletes the sales representative from the section [linesInfo] when the
sales representative left the chat.

The channel storage room looks like a section in an INI file where
the name of the section is the name of the channel (channel0, channell,
channel2.....). The channel’s storage room contains data in the format shown
below:

[channel 0]

sales representative_name = Michael

sales representative IP = 132.63.98.65

user_name = John

user IP =123.65.89.5

PCT/US99/14994

10

15

20

25

WO 00/03329 PCT/US99/14994

77

sm_msg = Hello , glad to see you in our shop...
user_msg = Hi , I would like ...
sm_msg = ...

user msg = ...

[channel 1]

sales representative name = Daniel

sales representative IP = 120.253.45.5

user name = Alex

user [P =157.125.84.235

sm_msg = Hello , glad to see you in our shop...

user_msg = Hi, I am looking for ...

The functions for these channels work as follows, with reference to
Figure 21. There are two situations in which the chat page is refreshed: for
an existing chat (the ‘channel’ parameter specifies a live channel); for
initialization of the chat for the sales representative (the ‘channel’ parameter
specifies a free line, such that the connection is idle).

In the case of an existing chat, the function scans the current
channel’s storage room for chat elements (string in form “sm_msg = ...” and
user_msg = ...”) and extracts the parts of chat text from them. Then, a
markup language page is built from the gathered text and sent to the HTTP
server.

In the case of initialization of the chat for the sales representative,
the entire channel’s data is scanned in order to test if the current sales
representative is involved to chat by the Detection Engine (Fig 20, Block
230). For this purpose the sales representative’s name and the connection’s

IP address are matched to the current connection’s data in every section, If

10

15

20

25

WO 00/03329 PCT/US99/14994

78

no matching data can be found, a page with the text “Line is free” is sent to
fhe free connection’s browser as described in the “RegisterSales
representative” function (Fig 21, Block 250). If a new channel for the
current sales representative is found , the function “BuildSales
representativeResponse” is launched.

The function “BuildNewChannel” (Fig 21, Block 266) takes the data
previously prepared by the Detection Engine (Fig 20, Block 230) about the
user and the sales representative’s data and builds a new channel for them. It
builds the channel name by concatenating the word “channel” with the
channel’s number. The channel’s number is increased by 1 for every new
channel, starting with 0. A new channel’s storage room (a new section in the
INT file) is created and the corresponding data about the user and the sales
representative (names and IP addresses) is written into it.

The description of “BuildMemo” (Fig 20, Block 240) in the ‘Transfer
to chat’ section of the present Application describes the generation and
transfer process of the user data and the sales representative’s name from the
DE to the chatter (Fig 20, Block 230).

The user IP address is received from the HTTP server using standard
CGI (or other Web Server technology). The data is of the form as shown
above. After those operations the function “BuildUserResponse” is called.

The function puts a new sales representative’s name and IP address
into the section “linesInfo” of the INI file. If the pair ‘name - IP address’
already exists (in the case the sales representative wants to conduct two or
more chats simultaneously) the IP address is slightly changed (by appending
letters ‘a’, ‘b’ and so on to the end of the IP address). This action is done in
order to give every active browser, or connection, full identification.

After that, the chatter treats each entry in the “linesInfo” section as

another sales representative. The sales representative’s name is taken from

10

15

20

25

WO 00/03329 PCT/US99/14994

79

the initial page of registration. The initial form includes a text field for
éntering the name of the sales representative. This initial form will launch
the chatter as shown below:

<FORM METHOD=POST

ACTION = “/cgi-shl/chatter.exe?’MODE=SALES
REPRESENTATIVE&STATE=INIT”>

The sales representative’s IP address is received from the HTTP
server in the same way as the user’s IP address.

How the sales representative’s data appears in this form is described
in the “Transfer to chat” part of this document. The Detection Engine (Fig
20, Block 230) uses the information later on, to decide which sales
representative is available or less occupied so it can distribute the users
equally between the sales representatives.

After registering the sales representative, the chatter sends a page
with a “Line is free” message to the sales representative. The page is
refreshed every 10 seconds in order to check whether the browser has started
a chat (the connection is alive). Refreshing is done by using a standard
markup language tags within the markup page header.

The function “BuildUserResponse” builds a frame of markup
language pages (as HTML , DHTML and like).

The pages include a header page with the sales representative’s name,
a Chat History page which reflects everything that was said by both the user
and the sales representative since the chat was initiated, and a Message page
which is the active text area for writing.

The Chat History page is automatically refreshed every 15 seconds.
The refresh is implemented by using standard mark up language tags within

the Chat History page header.

WO 00/03329

10

15

20

25

PCT/US99/14994

80

The Message Page includes two buttons: “Send” and “Leave Chat”

for proceeding or interrupting chat respectively. Both of them are ‘submit’

buttons of the form, which means that pressing either one of them launches
the chatter program. The event of proceeding or interrupting the chat is-
handled by the chatter program itself, which recognizes the button that was
pressed based on the button’s “VALUE”.

The function “BuildSales representativeResponse” builds a frame of
markup language pages (as HTML , DHTML and the like).

The pages include a Header Page with the user’s name, a Chat
History page (the same as above), a Message page (the same as above) and a
Purchase History page.

The Purchase History page contains the list of options and products
chosen by the user in this session with the SEU, before the chatter was
entered. This list aids the sales representative to move the chat in the right
direction. The page is built from the data of a file that was previously
prepared by the Detection Engine (Fig 20, Block 230). The name of the file
is obtained by the chatter from the initial form (the form which launches the
chatter).

The advanced parser link to the SEU is shown in Figure 22. The
parser is responsible for a) translating the user’s queries (written in natural
language) to conditions, b) skimming the rules in the VS file to find rules
that contain those conditions, ¢) handling cases such as inappropriate words
by activating several side mechanisms. In the last situation, those
mechanisms preferably answer the user in a form of “Don’t be rude”, for
example.

The parser’s answers are recommendations of a product or type of a
product, or stereotyped answers as written in the VS file as the results of the

corresponding rule.

10

15

20

25

WO 00/03329 PCT/US99/14994

81

The whole mechanism works with two different files. The first file, a
general file, holds the language fragments such as prepositions, adjectives,
nouns, etc. The second file, the product keyword file, holds the professional
terms that are relevant to the VSD’s industry. For example, if the indus%ry 1s
diamonds then the file may contain words like “carat”, “cut”, “clarity”.

The general file is preferably supplied with the software and is more
preferably renewed occasionally. The other product keyword file is
preferably and optionally constructed by the VSD, as a part of building the
e-shop, although industry-specific libraries could also be used.

The language is defined with a number of relations between the
product keywords, the most important being the schema. A schema is a
description of the logical structure of the VS. In the parser, the schema is the
"entity network" for the language. A schema entry follows the form:
ENTITY ASSOCIATION ENTITY; this signifies that the two entities are
bound together by the given association, such as ‘diamond’ from ‘country’,
‘cut’ of ‘diamond’, ‘price’ in ‘shequels’.

Both of the files contain the following items. First, there is the
schema of questions, which is the schema for all possible questions to be
asked such as color of diamond, clarity of diamond, country of export, etc.
Next, there are names of objects, in which all known objects are listed, such
as diamond, country, year. Third, synonyms for entities are allowed, such as
“stone” as the synonym for “diamond”, “articulation” as a synonym for “cut”
and so on. Fourth, synonyms for associations are allowed and can consist of
more than one word. For instance the association “on” is a synonym for
“above”, and the associations “in”, “inside of”, “within” are all synonyms.
Fifth, some words and phrases are simply ignored by the system since they
are not directly relevant to the meaning of questions. Ignored words are

“give me “, “tell me”, etc.

10

15

20

25

WO 00/03329 PCT/US99/14994

82

Sixth, the units of measure for different entities are, for instance,
"'carats” when the entity is the size of the diamond, “MHZ”, when the entity
is “speed of computer”. Seventh, there are synonyms for relational
operators, for example to state that a diamond is "bigger than" 1 carat. These
synonyms are listed here. Eighth, alternative ways to designate adjectives for
"minimum" in the current application are listed, such as slowest, smallést,
ugliest, less interactive. Ninth, alternative ways to determine equivalent
adjectives for "maximum" are listed here, such as fastest, biggest, most
beautiful, smartest.

The parser recognizes at least nine types of queries: a) something that
is equal to a second something (“diamond with the red color”); b) something
that is associated with a specific characteristic (“computer with 8 MB of
RAM?”); c) something associated with another query (“dress from the leading
designer”); d) something related to a feature (“diamond bigger than one
carat”); €) a minimum feature (“lowest price”, “slowest computer”); f) a
maximum feature (“fastest computer”, “biggest diamond™); g) a negative
feature (“computer that is not big”, “diamond that does not cost 1000
dollars”, “operating system which is not Brand X”); h) query1 or query2 (“a
very fast computer or big computer”, “computer with 8 MB of RAM or with
3.2 MB of disk space”); 1) query1 and query2 (“computer with 8 MB of
RAM and 3.2 GB of disk space”, “dress which costs 2000 dollars and is
from the leading designer”).

The procedure for operating the parser is as follows. The “GetQuery”
routine (Fig 22, block 310) is the main parser routine. It is invoked once the
SEU discovers that the user entered a query.

First, the “DumpRedundant” routine is started to remove all
punctuation marks and the words that are marked as “words to be ignored”.

“DumpRedundant” returns a list of words on which the parser itself is

10

15

20

25

WO 00/03329

83

invoked, in the form of the “Comprehend” routine (Fig 22, block 268). The

“Known” routine (Fig 22, block 312) is then launched. It travels down the

list of words and checks every word to see if it’s a known word. The routine
looks for the word both in the language file and the professional terms file.
In case unknown words are found, “Known” (Fig 22, block 312) gathers
them all in a list. After that, “Known” (Fig 22, block 312) reports to the user
that a portion of the question was not understood. The user is given two
options, to formulate the question differently, or to give up the question.
This output is done through “HandleErr”.

“HandleErr” - In any other type of query other than those described or
in the case the “Known” routine (Fig 22, block 312) encounters an
unrecognized word, the parser outputs an “error”. If there is an
unrecognized word, the word will be output also. Two buttons are output,
labelled as “Rephrase the question” and “Give up”. By pressing the
“Rephrase the question” button, the normal SEU’s session is suspended; the
same page 1s output again, regardless of whether the user answered the
SEU’s question. If the “Give up” button was pressed, the routine checks if
the user answered the SEU’s question. If so, the session continues normally.
If not, the question is output again, this time with no text area below.

The results of the parsing are stored in the virtual memory, and then
the routine “HandleRes” is invoked. “HandleRes” is the routine that works
with the virtual memory directly, and is responsible for deciding what action
to take.

As noted before, the “Comprehend” routine (Fig 22, block 268)
launches the parser. The parser works in a method called "parsing by
difference lists." It means that all of the functions that participate in the

process of parsing the query have the input list as a parameter and return the

PCT/US99/14994

10

15

20

25

WO 00/03329

84

remainder of the list after a part of a query is parsed. This remainder is stored
in the virtual memory.

The first action of “Comprehend” (Fig 22, block 268) is to invoke the
“Sentence” routine (Fig 22, block 270). As the “Known” procedure (Fig 22,
block 312) looked at the list of words and checked the validity of each word,
so does “Sentence” (block 270) check for phrases. It has several structures it
recognizes. If for any reason the structure cannot be recognized, it gives the
user the same options as the “Known” (Fig 22, block 312) routine.

The first block of “Sentence” (Fig 22, block 284) deals with the
queries of the form “How fast is the computer “imaginary brand AAAA” ?”.

It attempts to break the query to the form “Size-Entity-Constant”. The
structure of the sentence is considered valid if and only if the following
rules are true. First, the “Entity” is defined as an entity in the professional
terms file. Second, the “Size” is a relevant “size” for the entity (for example,
the size “fast” is relevant for the entity “car” or “computer” but is irrelc;/ant
to the entity “dress” or “diamond”). Third, the “Constant” “is” or “belongs
to” the “Entity” (for example, the constant “digital work station” belongs to
the entity “workstation” or “computer” but does not belong to the entity
“diamond”). Fourth, the statement “Size-Association-Entity” is defined as a
valid schema, in which ‘Association’ is the preposition used. For example,
the phrases ‘computer is big’ or ‘software from “imaginary firm GGG’ are
proper, but not ‘computer from big’ or ‘software is “imaginary firm GGG”’.

First, the size is identified, because the size can consist of only one
word. The identification is performed by examining all of the “rel_size”
entries in the professional terms file. Then, the routine looks for a
“Constant”, which can be only a professional term or product keyword such
as “imaginary brand AAAA”, “imaginary designer’s cloth”, “imaginar;/

firm CCCC?” so that the search is relatively small. The search is performed

PCT/US99/14994

10

15

20

25

WO 00/03329

85

by concatenating the list of words to a string, taking each constant defined in
the professional term or product keyword file and checking for it within the
string.

If a constant is identified correctly, the “ExpressEnt” (Fig 22, block
274) procedure is invoked to determine if the remainder of the list is a valid
entity. If it is, the size is examined for relevance to the entity. A relevant
size is found with a “rel_size” entry which consists exactly of the entity and
size detected. If the size is relevant, the association is retrieved using
“ExpressAssoc” (Fig 22, block 280). If a valid association is returned, the
relevance of the constant to the entity is determined by finding a “data”
entry in the professional terms file which specifically states that the constant
“Constant” belongs to the entity found. The validity of the schema is
checked by a single reference to the professional terms or product keyword
file to verify whether the size found, the entity retrieved and the association
established exist together as a schema.

The second block of “Sentence” (Fig 22, block 286) handles the
queries of the form “How fast is “imaginary brand AAAA”?”. It attempts to
decompose the query to the form of “Size-Constant”. The structure of the
sentence is considered valid if and only if the “Constant” is defined in the
professional terms or product keywords file as a constant for any entity (for
example, the constants “imaginary brand AAAA”, “imaginary brand
BBBB” and “imaginary brand CCCC” may be defined as constants
belonging to the entity ‘computer’. In addition, the “Size” must be relevant
for the entity corresponding to the constant and the statement “Size-
Association-Entity” must be defined as a valid schema, in which
‘Association’ is the preposition.

The third block of “Sentence” (Fig 22, block 288) handles queries of

the type “how fast is the fastest computer” or “how expensive is the dress of

PCT/US99/14994

10

15

20

25

WO 00/03329 PCT/US99/14994

86

the leading designer”. The query is decomposed to the form of “Size-
Query”. The structure is considered valid, if and only if the “Size” is
relevant “size” for the entity, the statement “Size-Association-Entity” is
defined as a valid schema, and the query “Query” is a valid query.

The size is located first and then the association within the question.
The remainder is considered to be “Query” and is passed first to
“ExpressEnt” (Fig 22, block 274) which should return a valid entity, and
then, if the previous process is correct , the “Query” is passed recursively to
“Sentence” (Fig 22, block 270) to parse and evaluate the query.

The fourth block of “Sentence” (Fig 22, block 290) handles queries
of the type “the slowest computer” or “the cheapest dress”. The query is
decomposed to a form of “Min-Query”. The structure is considered to be
valid if and only if the “minimum” word is relevant to the entity (the
“minimum” word “slowest” is relevant to the entities ‘computer’ and
‘rocket’ but is not relevant to the entity ‘diamond’, for example), the entity
in the “Query” query is defined as an entity in the professional terms file,
and the “Query” is a valid query.

The fifth block of “Sentence” (Fig 22, block 292) handles queries of
the type “the fastest computer” or “the biggest diamond”. The query is
decomposed to a form of “Max-Query”. The structure is considered to be
valid if and only if the “maximum” word is relevant to the entity (the
“maximum” word “fastest” is relevant to the entities ‘computer’ and
‘rocket’ but it is not relevant to the entity ‘diamond’, for example), the entity
in the “Query” query is defined as an entity in the professional terms file and
the “Query” is a valid query.

The sixth block of “Sentence” (Fig 22, block 294) handles queries of
the type “give me computers” or “tell me about the diamonds you have”. The

appropriate structure is “Entity” and thus, to be considered valid, the

10

15

20

25

WO 00/03329 PCT/US99/14994

87

structure simply needs is to verify that “Entity” is a valid entity (the entity is
defined in the “professional terms” file).

The seventh block of “Sentence” (Fig 22, block 296) handles queries
of the type “..... faster than 200 MHZ”, “bigger than 1 carat”. The
appropriate structure is “Rel-Val-Unit”. The structure is considered valid if
and only if the relational operator is relevant to the unit (for instance the
relation “fast” is relevant to “MHZ” and the relation “long” is relevant to
“meters”, but both of those relations are irrelevant to “litters”), and the value
“Val” exists.

The eighth block of “Sentence” (Fig 22, block 298) handles queries
of the type “ computer faster than 200”, “ diamond bigger than 2”. The
structure should be “Rel-Val”. The structure is considered valid if and only if
the value is a valid numeric value and the relation is relevant to the entity
used. There is a single measuring unit for the current entity, so there is no
ambiguity in such a reference. For example, the only measuring unit for
“size” of diamonds is “carat” so by saying “ diamond with the size of 17, the
phrase cannot be misunderstood. However, if “size” is defined as “can be
measured as ‘grams’ or ‘carats’, the same phrase causes ambiguity.
“IsSingleUnit” (Fig 22, block 280) determines only one such unit is possible.

The ninth block of “Sentence” (Fig 22, block 300) handles queries
of the type “with a speed of 200 MHZ”, “with a size of 1 carat”. The
structure is “Ent-Val-Unit”. This structure is valid, if and only if the entity is
valid, the value is a valid numeric value, and the unit is relevant to the*
entity.

The tenth block of “Sentence” (Fig 22, block 302) handles queries of
the type “... with a speed of 200 «, “....with the size of 1”. The structure is
“Ent-Val”. In order to be considered valid, the structure must fulfill the

following conditions. First, the entity is valid and the value is a numeric

10

15

20

25

WO 00/03329 PCT/US99/14994

88

value. Next, there exists only a single measuring unit for the current entity,
so there is no ambiguity in such a reference, as determined by “IsSingleUnit”
(Fig 22, block 280).

The eleventh block of “Sentence” (Fig 22, block 304) handles queries
of the type “... the computer “imaginary brand AAAA” *, “the book
“imaginary book 1111 and the like. The structure is “Ent-Const”. In order
to be considered valid, the structure must fulfill the following conditions.
First, the Entity is a valid entity and Const is a valid constant. In addition,
the constant must be relevant to the schema.

The twelfth block of “Sentence” (Fig 22, block 306) handles
constants only. The structure is “Const”. The constant “Const” can consist of
multiple words, of course, as for “The Pride Of Sinai” (diamond),
“imaginary brand ABCD” (computer) and so on. In this case, the constant
must be valid and the entity to which it belongs is determined in order to
replace the constant with the sequence “Entity-Constant” to continue parsing
correctly. Thus, the phrase “how fast is the “imaginary brand AAAA”?”
will be replaced by “how fast is the computer “imaginary brand AAAA™).

The thirteenth block of “Sentence” (Fig 22, block 308) handles the

b 19

logic operators: “and”, “or”, “not”, for queries in the form of ... the biggest
computer and the fastest computer... . “...a diamond with size of 1 carat or
clarity of VS”, for example. Once one of these words is found, the
structure is decomposed to “Query1 and Query2”, “Query1 or Query2” or
“not Query”. In either case, the “Sentence” routine is invoked for each..
query separately.

“EvalQuery” (Fig 22, block 272) is the routine for evaluating the
query. The first block of “EvalQuery” (Fig 22, block 272) is called from the
first and the second blocks of “Sentence” (Fig 22 blocks 284, 286

respectively). In this case “EvalQuery” (Fig 22, block 272) receives the

10

15

20

25

WO 00/03329 PCT/US99/14994

89

“Size” (“fast”, “low”, “big”...) and the “Constant” (“imaginary brand
AAAA” (the entity: computer), “imaginary band ONON?” (the entity: band),
“imaginary brand MMMM?” (the entity: mouse)). The routine then finds the
major corresponding entity for the “Size”, looks for the entity in the
description of the constant in the database and retrieves the value of the
“size” listed there (for instance: “200 MHZ”). The result constant is saved in
the memory under the handle “output”.

The second block of “EvalQuery” (Fig 22, block 272) is called from
the fourth block of “Sentence” (Fig 22 block 290). This part of
“EvalQuery” (Fig 22, block 272) receives the maximum word (“fastest”,
“most expensive”) and the entity name (“computer”, “dress”) as parameters,
and then retrieves a constant name (“imaginary brand AAAA”, “imaginary
designer’s summer suit”) from the entry defined as “maximum” for the
current maximum word and the given entity. The result constant is saved in
the memory under the handle “output”.

The third block of “EvalQuery” (Fig 22, block 272) is called from
the fifth block of “Sentence” (Fig 22 block 292) (queries of the type “the
slowest computer”, “the least beauitiful dress”). This part of “EvalQuery”
(Fig 22, block 272) receives minimum word (“slowest”, “ugliest”, “least
expensive”) and the entity name (“computer”, “dress”) as parameters, and
then retrieves a constant name (“imaginary brand SSSS”, “imaginary
clothing EEE”) from the entry defined as “minimum” for the current
minimum word and the given entity. The result constant is saved in the
memory under the handle “output”.

The fourth block of “EvalQuery” (Fig 22, block 272) is called from
the seventh and the eighth blocks of “Sentence” (Fig 22 blocks 296, 298
respectively) (queries of the type “.. faster than 200 MHZ” and “faster than
2007). “EvalQuery” (Fig 22, block 272) is called with the parameters

10

15

20

25

WO 00/03329 PCT/US99/14994

90

“relop” (“faster”, “higher”, “lower”....) and the value (“200”, “1”, etc.). Note
that the values passed here have already been processed by “ExpressValue”
(Fig 22, block 278).

“EvalQuery” (Fig 22, block 272) now determines whether the
relational operator is a synonym for “greater” or “less” and retrieves the
word’s root (for example, “fast” is the root word for “faster”, “big” is the
root for “bigger”, “interesting” is the root for “more interesting” and so on).
Next, the appropriate (relevant) major entity for the word accepted
previously is retrieved by using schema. For example, the entity ‘speed’ is
retrieved for the word “fast”. Next, a condition of the form “RootWord
relation-operator Value” is constructed (for example: “Speed > 2007, “Size
< 3”). The condition is stored in the virtual memory, under the handle
‘condition’, for further use.

The fifth block of “EvalQuery” (Fig 22, block 272) handles queries
of the type “...with a speed of 200 MHZ” and “with a speed of 200” and
thus is invoked from the ninth and tenth blocks of “Sentence” (Fig 22 blocks
300, 302 respectively). When called, this part of “EvalQuery” (Fig 22, block
272) takes only the “entity” (speed, size, height) and the value (“200, 1, VVS
....). Next, a condition of the form “Entity = Value” (Clarity = VVS, Speed
=200, etc.) id determined.This condition is saved in the virtual memory
under the handle ‘condition’,

Both the fourth and the fifth blocks of “EvalQuery” (Fig 22, block
272), also receive the logic operator preceding the query they are parsing.
Thus, the conditions they construct are saved under the handle conditions, as
stated before, but keeps the logical order, since the logic operator (if any is
present) is saved under the handle “op”, before the evaluated condition.

All entities, values, sizes and associations passed as parameters to

“EvalQuery” (Fig 22, block 272), or addressed to by this routine, were

10

15

20

25

WO 00/03329 PCT/US99/14994

91

processed previously by the “ExpressXXXXX” routines (Fig 22 blocks 274-
282).

The “ExpressNum” routine (Fig 22, block 276) is responsible for
identifying numeric expressions in a query and words and phrases which
stand for numeric expressions : “one million”, “2 thousands”, “five
hundreds”, “seven”. The routine attempts to convert each word to a number.
If the conversion succeeds, the process stops and the word is returned. If no
numeric values are found in the list, “ExpressNum” (block 276) continues by
searching each of the words “hundred”, “million”, “billion”, “thousand”...
etc. in the input list. The set of the words which are searched also includes

bR}

the words “one”, “two”...., “ten”, “twenty”......). If any of those words is
found, “ExpressNum” (block 276) automatically converts the word to the
numeric value and continues by looking at the word right to the next of it.
This is done to correctly convert expressions like “ten thousand”. If the
word to the right is also one of the words mentioned above, the conversion is
performed and the resultant number is multiplied by the result of the
previous conversion. If the word to the right of the previous word is not a
verbal representation of a number, “ExpressNum” (Fig 22, block 276)
determines whether it is an adjective. If it is an adjective, the word is skipped
and “ExpressNum” (block 276) continues to the next word. If it is not,
“ExpressNum” (block 276) stops executing and returns the converted result
found. If nothing is found, the input list is returned, and the “result” returned
is “-0”.

“ExpressUnit” is a routine which uses an entity as a parameter and
searches the measuring unit in the input list, from left to right. The procedure
starts at the first word in the list. “ExpressUnit” then searches for that word
first in the set of units from the file containing the professional terms and

then, if the word is not found in the professional terms file, the procedure

10

15

20

25

WO 00/03329 PCT/US99/14994

92

looks in the language file. When examining the professional terms file,
“ExpressUnit” only considers the units which are defined for the current
entity. If the word is found there, the word is simply returned, because the
parser assumes that the query is of the form “Speed of 233 MHZ”. If the
word was not identified as a correct unit for the current entity,
“ExpressUnit” checks if the word is an adjective. If it is an adjective, the
word is skipped and “ExpressUnit” continues by examining the next word.

If no valid measuring units are found, this routine returns a symbolic
constant “NO_UNIT”.The “ExpressValue” routine (Fig 22, block 278) tries
to retrieve a value for entities. The functions include retrieving a verbal
value for the given entity (passed as a parameter). For example, the word
‘Round’ is a verbal value for the entity ‘cut of diamond’. If this fails, the
entity tries to find a numeric value in the text by calling “ExpressNum” (Fig
22, block 276).

“ExpressValue” (Fig 22, block 278) first examines the “Entity -
Word” pair in the definition of “data” entries (assuming that the parser is
parsing a query of the form “Clarity of VVS”). If “ExpressValue” (block
278) cannot find an appropriate “data” entry, an expression of the form
‘data’ ([clarity, ‘“VVS’], [clarity, ‘PK’].....) has not been defined. Ifno
valid value of any kind is found, this routine returns a symbolic constant
“NO_VALUE”.

“ExpressEnt” (Fig 22, block 274) retrieves entities or converts
synonyms for entities to a “real” entity representation. For example, if an
entity named ‘diamond’ with a synonyms list {‘stone’ , ‘rock’, ‘tear of
angels’...} is defined and the query is of the form “What is the biggest
stone?”, “ExpressEnt” (Figure 22, block 274) converts the word “stone” to

the word “diamond”.

10

15

20

25

WO 00/03329 PCT/US99/14994

93

The “Sentence” routine (Fig 22, block 270) launches the
“ExpressEnt” (Fig 22, block 274) function with a parameter which is a non-
empty list of words. This list is considered by “Sentence” (block 270) to be a
representation of an entity. Thus, “ExpressEnt” (Fig 22, block 274) simply
determines if the “Sentence” (block 270) determination is correct.

First, the list of the words is concatenated to a string. Then,
“ExpressEnt” (Fig 22, block 274) looks for the string in the “entity”
definitions of the professional terms file. If the definition is found, it is
returned. If not, “ExpressEnt” (block 274) continues to look for the word in
the “synonyms” part of the file. If not there, “ExpressEnt” (block 274)
returns a symbolic constant “NO_ENT”.

“ExpressAssoc” (Fig 22, block 280) retrieves associations or converts
synonyms for associations to a “real” association representation. For
example, if an association named ‘in’ is defined with a synonym list
{‘within’ , ‘inside’, ‘from within’...} and the query is of the form “What
color tubes are inside the TV?”, “ExpressAssoc” (block 280) converts the
word “inside” to the word “in”.

The “Sentence” routine (Fig 22, block 270) launches the
“ExpressAssoc” (block 280) with a parameter which is a non-empty list of
words. This list is considered by “Sentence” (block 270) to be a
representation of an association. Thus, “ExpressAssoc” (block 280) simply
determines whether the “Sentence” (block 270) determination is correct.

First, the list of the words is concatenated to a string. Then,
“ExpressAssoc” (Fig 22, block 280) looks for the string in the “association”
definitions of the professional terms file. If the definition is found, it is
returned. If not, “ExpressAssoc” (block 280) continues to look for the word
in the “synonyms” part of the file. If not there, “ExpressAssoc” (block 280)
returns a symbolic constant “NO_ASSOC”.

10

15

20

25

WO 00/03329 PCT/US99/14994

94

The binary routine “IsSingleUnit” (Fig 22, block 282) receives an
entity as a parameter and searches the measuring unit section to see if only
one measuring unit is defined. If so, this routine returns TRUE. If the
measuring unit section contains more than one measuring unit, the routine
returns FALSE.

The interactions of the SEU and the parser are as follows. The VSD
may specify in the VS file, in the topics, answers and product definitions,
where, if at all, the user has the option to ask a question. This specification is
made by adding the keyword “AskHere” to the topic, to the answer or to the
product definition.

When any of the routines “AskUser” (Fig 2, block 36),
“TryRecommend” (Fig 2, block 46) or “DelTryRemmd” (Fig 2, block 48)
consider a keyword, a text area is output, by using any standard mark-up
language, under the name <Input Type = TextArea name = UserQuery>.

When the form is returned, after the user presses the continue button,
first the text area is examined for a response. If there is an entry, under
“UserQuery” with any text string the user wrote, saved under the handle
“fact” in the virtual memory, the user’s query is retrieved and the parser is
invoked.

If no such entry is present “FireRule” (Fig 2, block 32) is invoked
normally.

After completing execution of the parser, “HandleRes” is invoked to
handle the consequences of the parsing process. These consequences can be
either ‘conditions’ or ‘output’, based on the query the user asked and how
the parser translated it. For example, the result of a query in the form of “Do
you have a computer of the size of ‘Midi Tower’ and the speed of 266
MHZ?” is 2 conditions, size = ‘Midi Tower’ and speed = 266, linked by the
operator “and”. On the other hand, the result of the query “Give me the

10

15

20

25

WO 00/03329 PCT/US99/14994

95

biggest computer you have” is output based upon which computer is defined
as the biggest.

For a query of the type “give me computers..... “ or “ I am interésted
in big screen TV’s”, identified by the flag “query” that is set to “request”,
the “HandleRes” invokes the “LookForCond” routine. This routine attempts
to find the rules which contain those conditions. The routine first creates
blocks out of the conditions. The blocks of conditions which are created are
determined by the separating conjunction. If the structure is “Condition1
and Condition2”, the two conditions are examined together, such that the
rules must contain both the ‘Condition1’ and the ‘Condition2’ and those
conditions must be also linked by an “and” conjunction. On the other hand,
for “Condition] or Condition2”, the two conditions are examined separately,
and thus the rules which contain either “Condition1” or “Condition2” are
collected.

Preferably, the “and” conjunction has higher precedence than the
“or” conjunction.

For example, if in the process of the session, the user asked: “I’'m
interested in computers with 16 MB of RAM and 3.2 GB of disk space”, the
procedure would be as follows. Suppose there are 10 computers which meet
those demands, such that their corresponding rules contain the conditions
memory = 16 and diskSpace = 3.2. The rules are then gathered to a list.
“FireRule” (Fig 2, block 32) now works only with that list, until the session
is over. If no matching condition is found, the definition of the topic is used
to build a sentence similar to: “Well, we do not have currently the computers
with the exact speed you want, but we have computers with 300 MHZ of
speed, 400 MHZ of speed , 100 MHZ of speed and lots, lots more!”.

These sentences are constructed using “OutputComboQuery” (Fig 17, block

10

15

20

25

WO 00/03329

96

186) which takes the topic’s name and the topic’s value list as the
parameters.

If there are conditions in the memory, and the flag “query” is set to
“yesno”, the situation is a little bit different. “LookForCond” is still invoked
by “HandleRes”, and the blocks of conditions are also built, but in this case,
for each block constructed, the following procedure is followed. Each
condition in the block is marked by “Condition : 1”. Then, the “Check”
routine is invoked to process all of the rules in the VS file. If one or more
answers are found at this point, they are output using “DelTryRecmmd”
(Fig. 2, block 48). If an answer cannot be found, the block is re-marked as
“Condition : 0” rather than “Condition : 17, the topics in the conditions are
declared as ‘negotiable’ and the “offering alternatives” mechanism is
invoked (described in FIG 13).

In the process of executing the “Check” routine, everything not yet
asked is considered to be proven.

It is also possible that “HandleRes” does not find any conditions in
the memory after “Sentence” (Fig 22, block 270) is finished. In this case, a
handle named “output” is located in the memory. Under this handle, all
constant names are saved. “HandleRes” simply outputs the constants.

If the constant is a product, “HandleRes” outputs the button
“purchase” and a “Sounds Interesting” button.

If a “purchase” button is pressed, information about purchasing is
written to the virtual memory and the SEU’s session continues normally.

If the ”Sounds Interesting” button is pressed, “HandleRes receives
all of the rules which result in the recommendation of the current product. In
those rules, the conditions which were not proven are received, and the
investigation is started. For example, if the rule needs the speed to be ‘high’

and the ‘size’ to be ‘big’ and the ‘color’ to be ‘Yellow’, and the user’s query

PCT/US99/149%4

WO 00/03329 PCT/US99/14994

97

was ‘...big computers....’, the conditions speed = ‘high’ and ‘color’ =
‘Yellow’ are extracted, and questions are asked about the color and the

speed.

It will be appreciated that the above descriptions are intended only to
serve as examples, and that many other embodiments are possible within the

spirit and the scope of the present invention.

WO 00/03329 PCT/US99/14994

98
What is claimed:

1. A virtual sales representative system for selling a product to a

user of a computer, the system comprising:

(a) an e-shop featuring at least one question about the product for
asking the user and a rule base for interpreting at least one answer
of the user;

(b) a GUI (graphical user interface) for presenting said at least one
question to the user and for receiving said at least one answer
from the user, said GUI being displayed by the computer; and

(c) asales engine unit for analyzing said at least one answer of the
user according to said rule base of said e-shop and for
determining if another question is to be asked, or alternatively if a
type of the product is to be suggested to the user through said
GUI, said type being selected according to said at least one

answer from the user and according to said rule base of said e-

shop.
2. The system of claim 1, wherein said GUI is presented to the user
through a Web browser.
3. The system of claim 1, wherein said GUI is presented to the user

through a self-contained software module.

4. The system of claim 3, wherein said self-contained software

module is an applet.

5. The system of claim 1, wherein said GUI is presented to the user

through a stand-alone software program.

WO 00/03329 PCT/US99/14994

99

6. The system of claim 1, wherein said e-shop and said sales engine
unit send data to said GUI and receive data from said GUI through a Web

server protocol.

7. The system of claim 1, wherein said e-shop, said sales engine unit

and said GUI are implemented as a self-contained software module.

8. The system of claim 7, wherein said self-contained software

module is an applet.

9. The system of claim 7, wherein said self-contained software

module is a stand-alone software program.

10. The system of claim 1, wherein said sales engine unit further

features:

(1) a logic unit for decomposing said at least one answer of the user
into at least one fragment and for comparing said at least one
fragment to at least one rule of said rule base, such that if said at
least one fragment satisfies said at least one rule of said rule base,

said at least one rule is true, and alternatively if said at least one
fragment does not satisfy said at least one rule of said rule base,
said at least one rule is false, and such that a determination

whether said rule is true or false is used for determining said type

of the product to recommend to the user.

11. The system of claim 10, wherein said sales engine unit further
features:
(I) an EngineCore unit for decomposing said at least one rule into at

least one rule portion; and

WO 00/03329 PCT/US99/14994

100

(2) an Equate unit for comparing said at least one rule portion to said
at least one fragment, such that if said at least one fragment
satisfies said at least one rule portion, said at least one rule
portion is true, and alternatively if said at least one fragment does
not satisfy said at least one rule portion, said at least one rule
portion is false, and such that said rule is true only if all of said at

least one rule portions is true.

12. The system of claim 11, wherein said at least one rule is a

plurality of rules in a list, and said sales engine unit further features:

(3) aLookAhead unit for examining at least one additional rule in the
list and for determining if at least one rule portion of said at least
one additional rule is applicable to said at least one fragment,
such that if said at least one rule portion of said at least one
additional rule is substantially not applicable to said at least‘one
fragment, said at least one additional rule is substantially not
examined by said sales engine unit, and alternatively such that if
said at least one rule portion of said at least one additional rule is
applicable to said at least one fragment, said at least one
additional rule is substantially immediately examined by said

sales engine unit.

13. The system of claim 12, wherein said sales engine unit further
features:
(4) astrategy unit for determining said question to be asked of the
user according to a pre-determined mode of interaction with the

user.

WO 00/03329 PCT/US99/14994

101

14. The system of claim 13, wherein said strategy unit further
features a negotiating unit, said negotiating unit determining if said type of the

product is offered to the user with a negotiating factor.

15. The system of claim 14, wherein said negotiating factor is
selected from the group consisting of a price discount and a special feature of

said type of the product.

16. The system of claim 14, wherein said negotiating unit is invoked
when a requested type of the product is not available and wherein said
negotiating unit further comprises:

(a) arule parsing unit to determine a number of realizable rules and
for determining a number of unfulfilled conditions for each of
said realizable rules;

(b) asuggestion unit for suggesting to the user an alternative
condition fulfilled by an available type of the product as a
substitute for at least one of said unfulfilled conditions; and

(c) an evaluation unit for examining a response of the user to said
alternative condition, such that if said response is affirmative,

said available type of the product is offered to the user.

17. The system of claim 13, wherein said sales engine unit further
features:
(5) acomment unit for presenting a comment to the user through said
GUI, said comment being selected from the group consisting of a

humorous comment and a pleasantry.

18. The system of claim 17, wherein said sales engine unit further

features:

WO 00/03329 PCT/US99/14994

102

(i) a business logic unit for receiving at least one business rule for
determining said type of the product, and for comparing said type
of the product to said at least one business rule, such that said
type of the product is recommended to the user substantially only

if said type of the product satisfies said business rule.

19. The system of claim 1, wherein said e-shop further features a
plurality of departments, each of said plurality of departments featuring a
plurality of saleable items according to a category, such that the user selects
said department according to said category and such that the product for selling
to the user is located in at least one of said plurality of departments according to
a category of said product, the user examining said plurality of saleable items

according to a plurality of department rules.

20. The system of claim 19, wherein said e-shop is capable of
providing a plurality of types of virtual sales representative characters, each of
said plurality of types of virtual sales representative characters being

determined according to each of said plurality of departments.

21. The system of claim 20, wherein each of said plurality of types of
virtual sales representative characters is further determined according to said

type of the product.

22. The system of claim 20, wherein an interaction of each of said
plurality of types of virtual sales representative characters with the user is
determined according to at least one characteristic of each of said plurality of

types of virtual sales representative characters.

WO 00/03329 PCT/US99/14994

103

23. The system of claim 19, wherein the user receives at least one
department message upon moving from a first department to a second

department.

24. The system of claim 19, wherein said e-shop further features a
department controlling module for determining which of said plurality of
departments is accessible to the user, such that a first of said plurality of
departments is accessible substantially only until said plurality of rules has been
examined and such that another of said plurality of departments is accessible
only after said first of said plurality of departments is no longer accessible to

the user.

25. The system of claim 24, wherein said e-shop further features a
path for providing sequential access to said plurality of departments according

to a pre-determined sequence.

26. The system of claim 24, wherein said e-shop further features a
pipe line for providing two-way access to each said plurality of departments,
such that each of said plurality of departments is entered substantially only
from a first department and a second department.

27. The system of claim 26, wherein said e-shop further features a
department controlling module for determining which of said plurality of
departments is accessible to the user according to a set of department rules and
according to said pipe line, such that each of said plurality of departments is

entered from at least two departments according to said set of department rules.

28. The system of claim 1, further comprising:

WO 00/03329 PCT/US99/14994

104

(d) afinancial purchase management unit for receiving a request for
purchasing said type of the product from the user and for

performing a financial transaction with the user.

29. The system of claim 28, wherein said financial purchase

management unit further comprises:

(1) a credit card charge unit for securely transmitting a credit card
number of the user from said GUI of the user to said financial
purchase management unit, said credit card number being divided
into a plurality of portions and each of said portions being sent
separately from said credit card charge unit to said financial

purchase management unit.

30. The system of claim 28, wherein said system further comprises:

(1) a credit card charge unit for securely transmitting a credit card
number of the user from said GUI of the user to said financial
purchase management unit, said credit card number being divided
into a plurality of portions and each of said portions being sent
separately from said credit card charge unit to said financial

purchase management unit.

31. The system of claim 19, further comprising:

(e) adetection engine for detecting a condition pre-determined as a
terminating condition, such that if the user performs an act
resulting in said terminating condition, access by the user to said

GUI is denied.

32. The system of claim 31, further comprising:

WO 00/03329 PCT/US99/14994

105

(f) asummary software module for displaying information regarding
a purchased product to the user by said GUI, said summary
software module being activated by a summary icon on said GUI,
such that when the user selects said summary icon, said
information regarding said purchased product is displayed by said

GUL

33. The system of claim 32, wherein said information regarding said
purchased product is displayed by said GUI by substantially only partially
altering information currently displayed by said GUI, such that only an
alteration to said GUI necessary to display said information regarding said

purchased product is displayed by said GUI is made.

34. The system of claim 32, wherein said GUI is presented to the user
through a Web browser as a Web page, such that a currently displayed Web
page is substantially not replaced by a new Web page in order to display said

information regarding said purchased product.

35. The system of claim 32, wherein said GUI is presented to the user
thfough a stand-alone software program, such that said information regarding
said purchased product is displayed on a new portion of said GUI by overlaying

at least one existing portion of said GUL

36. The system of claim 1, further comprising:

(d) an e-shop builder module for constructing said e-shop and said
rule base according to at least one question regarding a rule of
said rule base, such that said rule is determined according to said

question.

WO 00/03329 PCT/US99/14994

106

37. The system of claim 36, further comprising;
(¢) anegotiating unit, said negotiating unit determining if said type
of the product is offered to the user with a negotiating factor;

wherein said e-shop builder module builds said negotiating unit.

38. The system of claim 1, further comprising:

(d) achat module for enabling the user to chat with a human sales
representative, said chat module determining if said human sales
representative is able to communicate with the user such that the
user is permitted to chat with said human sales representative
substantially only if a connection is available from the user to

said human sales representative.

39. The system of claim 38, wherein said GUI is a Web page
displayed by a Web browser, such that said connection is available substantially
only if a Web browser being operated by said human sales representative is not

already connected to a Web browser of the user.

40. The system of claim 39, wherein said human sales representative
receives a report of a session between the system and the user substantially

before chatting with the user.

41. The system of claim 1, further comprising:
(d) aparser for receiving a user question from the user and for

sending a response to the user.

42. The system of claim 41, wherein said parser examines said user
question to determine if said user question includes a product keyword, such

that if said user question includes said product keyword, said response contains

WO 00/03329 PCT/US99/14994

107

information regarding said type of the product, and alternatively if said user
question includes said product keyword, said response contains a general

comment.

43. The system of claim 42, wherein if said user question includes a
product keyword, such that if said question includes said product keyword, an

interaction with the user is determined according to said product keyword.

44. The system of claim 43, wherein said parser further comprises a
schema, said schema containing at least one relationship between at least two
product keywords, such that said interaction with the user is determined

according to said at least one relationship.

45. A method for secure transmission of a number over a network
from a first computer to a second computer, the method comprising the steps
of:

(a) dividing said number into a plurality of portions, each portion

including at least one digit by the first computer; and

(b) transmitting each of said plurality of portions from the first

computer to the second computer.

46. The method of claim 45, wherein each of said plurality of
portions is encrypted substantially before being transmitted from the first

computer to the second computer.

47. The method of claim 46, wherein each of said plurality of

portions has an attached flag to indicate the correct sequential order of plurality

of portions.

WO 00/03329 PCT/US99/14994

108

48. The method of claim 47, further comprising the steps of:
(¢) receiving said plurality of portions by the second computer; and

(d) decrypting each of said plurality of portions to obtain the number.

49. A method for providing a virtual sales representative for selling a
product to a user of a computer, the method comprising the steps of:

(a) asking a question of the user regarding the product;

(b) receiving an answer from the user;

(c) decomposing said answer into at least one fragment;

(d) comparing said fragment to at least one rule for recommending

the product; and
(¢) recommending the product to the user according to a comparison

of said fragment to said rule.

50. A method for providing a display of purchasing information to a

user, the method comprising the steps of:

(a) providing a computer unit for being operated by the user, said
computer unit featuring a GUI (graphical user interface) and a
pointer device for interacting with said GUI,

(b) receiving a request for purchasing information from the user
through said GUI of said computer unit; and

(c) displaying said purchasing information on said GUI by
substantially only partially altering information currently
displayed by said GUI, such that only an alteration to said GUI

necessary to display said purchasing information is made.

51. The method of claim 50, wherein said pointing device is capable
of clicking on an icon and wherein the step of receiving said request for

purchasing information is performed by moving said pointer device such that a

WO 00/03329 PCT/US99/14994

109

GUI indicator appears to be placed in contact with a summary icon on said

GUI, substantially without clicking on said summary icon.

52. The method of claim 51, wherein said GUI is presented to the
user through a Web browser as a Web page, such that a currently displayed
Web page is substantially not replaced by a new Web page in order to display

said purchasing information.

53. The method of claim 51, wherein said GUI is presented to the
user through a stand-alone software program, such that said purchasing
information is displayed on a portion of said GUI by overlaying at least one

existing portion of said GUI.

PCT/US99/14994

WO 00/03329

1/22

\oN

S

ucﬁsoH 9100
yiu) duiduy s9fes

\NN

(1nD)

IEER BIN

ndino 10J S[o0],

¢ ¢ SIISOTOUYII | JIAIIQ Q9
v ("Id VSN ‘IdVSI ‘19D) so1s0[0uyddJ, S 4o

ainpaIYdIy [pIausg - auibug sa|pg

-+ Ol

PCT/US99/14994

WO 00/03329

2/22

(1dS Inup) 2uiSud savs T €)14

2 1

T(dVSN TdFSI 1DD -Sp yons’ | s3130[0U|0a) PDARS GOAN |

\\wv

WEES@M? %_m@

Em_CU-._UOE

ﬁ aspydand

T\:&EEOumm?L.

1S PISY
e .,

9€

PeSyy00T] - a10DsuIduyg

PCT/US99/14994

WO 00/03329

3/22

indur asuy - pjoy

ubissp [p1rods ubisap |pi>ads

210y aybuis/aydynw - xoq 4sif

- “:Q\\\NQ Q.Nﬁn\\ zo\ﬁ\wQ W@*QQ «Umh\h QQNN\NQ mU\Oh\U m\mh\\hu - W:Q\&:Q Q\wu\\ Q.V\Qh\h m\&\\\bE - WWKQQ «Umh\.v

riX3] @

vs — 9s)}
nis @4 Aq

pojioddns pup abonbup] df oy ur pajusuiajdiir
9dpJI9ju] 19sn diydoig < 94

PCT/US99/14994

WO 00/03329

4/22

A

A

A

L>-(1ua8y IndinQ)— s AOVAYHLINI

sy nduy V___

1----|4------l------[----1---|--|-- “U -
| 105D "ATOSNOD “ (" IdVSI ' [DD)$2180]0Utf23] 424425 qo4f !
(7)) JUDUUOAIAUT UOIDITUNUIULO)) i

uoI22UU0d 210)AUISUD,, - D)

S0eLISJU] p 0—&

PCT/US99/14994

WO 00/03329

5122

o[y YL

08

Suissado4d spuaunio)) ¢ 914

Em%&ougﬁmo

!

vy

PCT/US99/14994

WO 00/03329

6/22

pasiafoad -9 |4

QOUALIJOI IXON

> I INERI|

A

.\ A 8
ve \

UISUD SIfes

PALISJOIJIOD)

IS So[y

doys-o

PCT/US99/14994

7/22

WO 00/03329

- N soyauiyly L ©|4

96

AJOUWIIIN | < — e
[enyar A

vé

PCT/US99/14994

WO 00/03329

8/22

ﬁ Yuo1109§

A

yind Aq uaaulg

801}

~

yorq 03 j \

ﬁ Q@Qv&w@m\ g

vl 901 vol

sa|nyY Aq u2ALIq

spuouipinda(q ‘8 €)|4

PCT/US99/14994

WO 00/03329

9/22

(Buijjejpuawiiedap e Sunxa) plemdyoeq suros

(jewiou) premloj 3ulod

WO 00/03329 PCT/US99/149%4
10/22

116

Y

128

128

128

{A, C, D, A, B, D, E}

FIG 10. Path

11/22 PCT/US99/14994

WO 00/03329

(Sur|rejausuiedop e unixe) premoeq Surod 7
vEL

14! premio} Suros é
_/ -

t4 37

9T

9Tl

9T}

o€l

_/

aury adid ++ 9ld

PCT/US99/14994

WO 00/03329

12/22

SOy + Yred ‘¢ 9l

(pajiey Juswntedap) juswiredap e woyj 3ulje)
Zurssed yed

Burssed a[nui

9T}

9Tl mm I\

A

8T}

9Ti

A

IV

8T}

vEL

g€}

Tel

PCT/US99/14994

WO 00/03329

13/22

- SAAYDPULIID SULI[J0 "€) 914

(42%

£110

8S1H 9s

// 5oUnINOT d24Y} 959y} uisn
"WISTUROAW U} FULOAU]

3[R LP[INY |« ISITSINYSSA00I]

PCT/US99/14994

14/22

WO 00/03329

IoSBUBIA 9SeyoINg [BIOURUL] V1 €)]4

PCT/US99/14994

WO 00/03329

15/22

abupyy pip) jpald
Ol

L

}

PCT/US99/14994

WO 00/03329

16/22

Sa3vssaul Juawpandaq 9} 9|4

aseyoand 3, upip 1nq UoEPUIWWIOII B 03

_ (410q 10)) sak

watuedap SIYI Ul UONEPUSWILOIAI B 19T am pip

d8essoIySryay [IndinQ

yonpoid ayy paseyaind pue

(10q 10J) ou

dovyorg

-
Nopj

WIOJId]

{1 3%

Huo1139S8

|

=

ov

Jd0| yuonooss |
—

Vit

"y = SSINposeydInJuou
Ty = SSTADIX?
<ﬁh...

iy ,,,_mmzm;:&

et = ww?o~:=_2¢n§o«m

[4:1

PCT/US99/14994

WO 00/03329

17/22

I[IAS AT

-

[enLIA

N

AJOWIN

_

Saj 061 —|¢

syuawilreda(]ssa00iy

M....ANQQQ a—,va “

pipaul st
oﬁl\\ ndul ayp
/
plpaul si
Yindur ayy
€ sapna _
: > mdui
SUOIPUOD Suia8
soido $S320.1
- so1doy + AO.LITY d jndui
suonIpuod | Su1j3a3
A .
981

S1IONPOIJSSAO0Id

mm_l\

{"‘gionpoid ﬁﬁo:vv&w

+19ppng doys-a ‘L1 ©|4

PCT/US99/14994

WO 00/03329

18/22

81T

[# Yovoaddy - apoo apqupiod *sa 7S Y[g} 9l4

807 k ,,,,,, ,
37/
@

I3AISS 3Y) 0} UOTRWIOJUI BUIUINIAT - PIYSIULJ ST UOISSIS

907

$s920.1d Ul MOU ST UOISSIS

j 3% 4
807 \\

907

® — >

uonewojul JULLIJSURI) - Opew Sem jsonbal 902

dIAY3IS

PCT/US99/14994

WO 00/03329

19/22

}ury apod d[qeriod + NHS

Z# Yovouddp -
apoo a1qupiod “sq

nas 4L 64 14

y0T

dIANd3IS

WO 00/03329 PCT/US99/14994

20/22
— FIG 2o0. Transfer to Chat
DE: The user should
be transferred to
chat mode
—— 232
230
ConductChat
234
¥ K
no . yes
CheckFreelLine |——

do we have a freeline?

238

~

BuildUserMsg

240

S~
. BuildMemo

WO 00/03329

252

1s the client
leaving
the chat?

no

Client

is the channel
already open?

Store =
client’s message

_/

254

21/22

246
N

Is it ‘REFRESH’
state?

is the
salesman leaving
the chat?

no

is the channel
already open?

Store
salesman’s message

i Sfoi"é tﬁe message

~~about leaving

BuildNewChannel

_/

266

¢[“\758

N

PCT/US99/14994

FlG 21. The chatter

Register
Salesman
262
Y
- RefreshChat
260

PCT/US99/14994

WO 00/03329

22/22

78T

80¢

}I0[q YI-¢1

€

}I0[q YI-T1

€

}I0[q P-11

}I0[q Y)-01

2019 Y}-6

o01q U)-8

}201q YI-L

LT

}201q 43-9

2 LG G LU

}o0[q Y3-§

06T

HI01q P-p

881

}I0[q pI-¢

dasand oy "TT 914

}201q pu-¢

98T

Yo0[q 5T

rel

puaya.iduio)

// 897

umouy |

(42

0l€

_

A4oM1()125)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US99/14994

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :GO6R 17/00
USCL : 705/26

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

u.s. 705/26,27,35,1

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No,
Y US 4,992,940 A (DWORKIN) 12 February 1991, col. 4, lines 45-67 | 19, 23, 29
and col. 7, lines 49-51, and abstract.
Y US 5,454,106 A (BURNS et al) 26 September 1995, entirety. 1-18
Y US 5,586,218 A (ALLEN) 17 December 1996, fig. 6 and cols. 8-9. | 1-18, 50-53
Y US 5,696,962 A (KUPIEC) 09 December 1997, entirety. 1-18
Y US 5,701,399 A (LEE et al) 23 December 1997, figure 1. 1-18, 50-53
Y US 5,715,399 A (BEZOS) 03 February 1998, figs. 1 and 3. 29-30, 45-48
Further documents are listed in the continuation of Box C. [| See patent family annex.
- Special categories of cited documents e later document published after the international filing date or priority

A" document defining the general state of the art which 1s not considered
to be of particular relevance

earher document published on or after the international filing date

document which mmay throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other

special reason (as specified)

"o document referring to an oral disclosure, use, exhibition or other
means

"p" document published prior to the international filing date but later than

the priority date claimed

date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X document of particular relevance, the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document 1s taken alone

Y document of particular relevance; the claimed invention cannot be
constdered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

27 AUGUST 1999

Date of mailing of the international search report

19 0CT 1998

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer F; .
MICHELE S. CRECCA Y
Telephone No. (703) 305-9600

Form PCT/ISA/210 (second sheet)(July 1992) »

INTERNATIONAL SEARCH REPORT International application No.

PCT/US99/149%4

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 5,581,664 A (ALLEN et al) 03 December 1996, cols. 3-4; col. | 1-44, 50-53
6, lines 22-53, col. 7, lines 7-23; and col. 8, line 64 - col. 9, line
16.
Y,P US 5,825,881 A (COLVIN, SR.) 20 October 1998, col. 2, lines 1- |32-34, 29, 30, 50-
15 and col. 5, lines 14-36. 53
Y TOMASULA, D. Self-service Web Ware Could Make Service 1-53
Reps Obsolete. Wall Street & Technology. March 1997 Vol. 15.
No. 3. page S26, note abstract and paragraph 11.
Y Brightware, Inc. Ships Brightware 1.0 to Automate Selling on the 1-44
Net. Press Release. August 4, 1997.
Y Brightware Ships Web's First Automated Real-time Advice Agent. |1-44
Press Release. June 29, 1998.
Y Birghtware Amer Finance: Brightware and American Finance Team | 1-44
to Provide Mortgages in Minutes on Internet's First Customer-
direct Mortgage Site. Business Wire. February 28, 1997.
Y STROH, M. Instant Connections More Firms Using Internet Chat 38-40
to Interact with Customers. Sacramento Bee, February 4, 1998,
paragraph 6.
Y NELSON, M. Neuromedia Offers Automated Online Services. 1-53
Infoworld. March 30, 1998. Vol.20, No. 13, page 20, note abstract.
Y BUCHOLTZ, C. Working with the Web, Bellsouth Brings 'do it 1-53

yourself' Applications to Customer Service. Telephony, August 25,
1997, paragraph S.

Form PCT/ISA/210 (continuation of second sheet)(July 1992) %

INTERNATIONAL SEARCH REPORT International application No.
PCT/US99/14994

B. FIELDS SEARCHED
Blectronic data bases consulted (Name of data base and where practicable terms used):

APS, Dialog, Internet, DR-LINK

search terms: (virtual, electronic, automated)(salesperson, sales representative, clerk), Al, rule base, expert system,
intellegent, inference, shopping, retail, merchandise, recommend, advise, guide, answer, respond, customer, patron,
user, shopper, human, chat, talk, discuss, interactive, customer()(service, assistance, representative)

Form PCT/ISA/210 (extra sheet)(July 1992) %

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

