冷冻剂充填料的储存

摘要

制冷系统包括压缩机、第一和第二热交换器以及膨胀装置。制冷剂循环流动通道依次向下延伸通过压缩机、第一热交换器、膨胀装置和第二热交换器。该系统包括充填料存储系统。该充填料存储系统包括第一和第二制冷剂存储室。至少一个阀联接到存储室上，以允许各存储室各自单独地置于与位于膨胀装置上游和下游的流动通道交替连通。
1. 一种制冷系统 (20)，包括：
压缩机 (22)；
第一热交换器 (24)；
膨胀装置 (26)；以及
第二热交换器 (28)，制冷剂循环流动通道 (40) 依次向下游延伸通过压缩机、第一热交换器、膨胀装置和第二热交换器。
其特征在于：
第一制冷剂存储室 (85)；
第二制冷剂存储室 (86)；以及
至少一个阀 (90, 91, 96, 97)，其联接到该第一制冷剂存储室和第二制冷剂存储室上，以允许该第一制冷剂存储室和第二制冷剂存储室各自单独地置于与位于该膨胀装置的上游和下游的流动通道成交替连通。
2. 如权利要求 1 所述的系统，其特征在于，所述第二制冷剂存储室大于所述第一制冷剂存储室。
3. 如权利要求 2 所述的系统，其特征在于，所述系统还包括：
第三制冷剂存储室 (87)，其大于所述第二制冷剂存储室。
4. 如权利要求 1 所述的系统，其特征在于，所述系统还包括：
第三制冷剂存储室 (87)。
5. 如权利要求 1 所述的系统，其特征在于，没有额外的制冷剂存储室。
6. 如权利要求 1 所述的系统，其特征在于，所述系统还包括：
联接到所述至少一个阀上的控制系统 (66)，且该控制系统配置成：
从多个预定的条件中选择填充料存储条件；以及
操作所述至少一个阀，以将系统置于所选择的填充料存储条件下。
7. 如权利要求 1 所述的系统，其特征在于，所述系统还包括：
具有舱 (226) 的运输容器 (224)，该舱 (226) 定位成与所述第二热交换器成交连通。
8. 如权利要求 7 所述的系统，其特征在于，所述系统还包括：
内燃机驱动的发电机 (230, 232)，该发电机联接到压缩机上以驱动该压缩机。
9. 如权利要求 1 所述的系统，其特征在于，所述系统的制冷剂充填料为按重量计算至少 50% 的二氧化碳。
10. 如权利要求 1 所述的系统，其特征在于：
所述至少一个阀定位成允许第一制冷剂存储室和第二制冷剂存储室各自单独地置于与正好位于该膨胀装置 (26) 的入口位置和该膨胀装置 (26) 的出口位置处的流动通道成交替连通。
11. 如权利要求 1 所述的系统，其特征在于：
所述第一制冷剂存储室和所述第二制冷剂存储室与该膨胀装置并联。
12. 一种制冷系统 (20)，包括：
压缩机 (22)；
第一热交换器 (24)；
膨胀装置 (26)；
权利要求书

第二热交换器 (28)、制冷剂循环流动通道 (40) 依次向下游延伸通过压缩机、第一热交换器、膨胀装置和第二热交换器；以及

装置 (90,91,92,96,97,98)，其连接到多个室 (85,86,87)，以允许该多个室各自单独地置于与位于该膨胀装置的上游和下游的流动通道成交替连通，用于选择性地将制冷剂从流动通道转向多个室 (85,86,87) 以及使制冷剂返回到流动通道，而同时将这些室保持在低于流动通道的峰值压力的压力下。

13. 如权利要求 12 所述的系统，其特征在于，所述系统的制冷剂充填物为按重量计算至少 50% 的二氧化碳。

14. 如权利要求 12 所述的系统，其特征在于，所述系统还包括：

具有烃 (226) 的运输容器 (224)，该烃 (226) 定位成与所述第二热交换器成热连通。

15. 一种制冷系统操作方法，包括：

压缩制冷剂；

使压缩的制冷剂沿制冷剂流动通道 (40) 通过位于压缩机 (22) 下游的第一热交换器 (24)；

使沿制冷剂流动通道位于第一热交换器下游的制冷剂膨胀；

使膨胀的制冷剂通过第二热交换器 (28)；

使制冷剂返回压缩机；以及

使制冷剂转向储存单元 (80) 并使制冷剂从储存单元返回；

其特征在于：

所述储存单元具有多个室 (85,86,87)；

所述储存单元包括至少一个阀 (90,91,92,96,97,98)，该至少一个阀联接到多个室 (85,86,87) 并且定位成选择性地将各室置于与流动通道连通；以及

该转向和返回包括；致动所述至少一个阀，以允许各室各自单独地置于与位于该膨胀装置的上游和下游的流动通道成交替连通。

16. 如权利要求 15 所述的方法，其特征在于，该转向和返回包括：

从多个预定位的条件中确定所需的充填物存储条件；以及

致动所述至少一个阀以获得所需的充填物存储条件。

17. 如权利要求 15 所述的方法，其特征在于：

压缩的制冷剂以超临界状态穿过第一热交换器。

18. 如权利要求 15 所述的方法，其特征在于：

该转向和返回包括以正常八种不同的充填物存储配置运行。

19. 如权利要求 15 所述的方法，其特征在于：

该转向和返回包括以正常四至八种不同的充填物存储配置运行。

20. 如权利要求 15 所述的方法，其特征在于：

所述膨胀包括通过膨胀装置 (26) 进行膨胀；

该转向包括从该膨胀装置的入口位置转向；以及

该返回包括返回至该膨胀装置的出口位置。
制冷剂充填料的储存

技术领域
[0001] 本发明涉及制冷，更具体地涉及用于运输或商用制冷的跨临界制冷系统。

背景技术
[0002] 作为天然的和环境无害的制冷剂，CO₂(R-744) 正吸引重点个注。CO₂ 的临界温度是 87.8°F。在大多数空调和制冷操作条件下，排热发生在此温度之上，使得 CO₂ 系统以临界模式运行。
[0003] 不同的应用将需要不同的运行范围（例如，气体冷却器的范围和蒸发器条件）。例如，饮料冷藏柜具有基本上固定的期望特性条件（例如，非常接近 34–38°F，以避免冰冻风险，但仍提供冷却）。此温度基本上固定稳态压缩机吸入压力。任何操作员不太可能试图在不同温度下运行饮料冷藏柜。其它应用，例如运输冷藏装置（例如，卡车箱、拖车、集装箱等），需要更大的容量。可实现特定装置结构为具有不同需求的多个操作员制造。许多操作员在不同时期具有使用特定装置高温冷冻货物和非冷冻冷藏食品的需求。示例性冷冻货物温度大约是 -10°F 或更低，而示例性非冷冻冷藏食品的温度是 34–38°F。操作员将预先确定这两种模式中的每一个模式的适当温度。在脱开或连接之前，技术人员或操作员将输入两种温度中的一个合适的温度。其它操作人员可能有更广的需求（例如，-40–57°F 的示例性总范围）。
[0004] 典型地随着运行条件的变化，制冷剂的质量流率和密度变化很大。对于具有固定量的活动（循环）充填料（charge）的系统，这可引起不均匀的致冷压力和温度控制，并且影响系统性能。此外，CO₂ 对运行条件的灵敏度相对较高。运行压力和典型充填料存储点处的两相态缺乏可引起更多的问题。因此，已提议了不同的充填料存储系统以允许从循环中有选择地取回冷却剂，从而允许系统内有利地操作。除了运行问题，如果存储容器在系统中隔离的话，其可能暴露在非常高的环境温度下。如果装满充填料的话，高环境温度可引起显著的压力增加。压力增加可引起容器破裂。
[0005] 美国专利 7096679 公开了加热/冷却容器以调整返回的制冷剂量。加热增加了系统上的热负荷，因而使系统的效率更低。加热和冷却可增加系统中的功耗。美国专利 6385980 公开了热蒸罐调节装置。如果热蒸罐调节装置的蒸气管线因某些运行条件而被关闭，那么热蒸罐内的压力可如上面所描述的那样增加。其它系统包括在作为充填料存储装置的蒸发器下游端的部分。这就可能会遭受积累在聚积器底部的过量石油和在系统启动时晃动进入压缩机的液体。
[0006] 因此，本公开可解决上述一个或所有的问题，并提供一种用来在典型的运输或商业应用中的一个作业范围始终如一地调节系统内充填料的方法。

发明内容
[0007] 因此，本发明的一方面涉及包括压缩机、第一和第二热交换器和膨胀装置的制冷系统。制冷剂循环流动通道依次自下游延伸通过压缩机、第一热交换器、膨胀装置和第二热
交换器。该系统包括充填料存储系统。该充填料存储系统包括第一和第二制冷剂存储室。至少一个阀联接到存储室，以允许各存储室单独地布置成与膨胀装置上游和下游的流动通道成交互连接。

[0008] 本发明的一个或更多实施例的详细信息在附图和下面的描述中给出。本发明的其它特征、目的和优点将从具体实施方式和附图以及权利要求而变得显而易见。

附图说明
[0009] 图 1 是第一制冷系统的局部示意图；
[0010] 图 2 是第二制冷系统的局部示意图；
[0011] 图 3 是冷藏传输装置的视图。
[0012] 不同图中的相似的参考数字和标号和表示相似的元件。

具体实施方式
[0013] 图 1 示意图地示出了使用 CO₂作为工作流体（制冷剂）的典型蒸汽压缩系统 20。该系统包括沿循环主流动通道依次序布置的压缩机 22（例如，具有电动机的往复式、滚动式或螺杆式压缩机）、散热热交换器（气体冷却器）24、膨胀装置 26 和吸热热交换器（蒸发器）28。示例性气体冷却器和蒸发器可各采取制冷剂至空气的热交换器形式。
[0014] 强制气流通过一个或两个热交换器。例如，一个或多个风扇 30 和 32 可驱使各自的气流 34 和 36 通过两个热交换器。沿主制冷剂流动通道 40 的管道包括从蒸发器 28 的出口 44 延伸至压缩机 22 的入口 46 的吸入管 42。排出管 48 从压缩机的出口 50 延伸至气体冷却器的入口 52。附加管段 54 和 56 分别将气体冷却器出口 58 连接至膨胀装置入口 60，以及将膨胀装置出口 62 连接至蒸发器入口 64。
[0015] 示例性膨胀装置 26 是电子膨胀阀（通常标识为 EEV 或 EVX）。电子膨胀阀典型地包括连接到针阀的步进电动机以改变有效阀开口或流量。阀的开口可被控制器 66 电控，该控制器 66 也可控制压缩机和其它系统部件的运行。控制器可操作以响应来自一个或多个用户输入装置 68（例如开关、电子控制等）和一个或多个传感器（例如，蒸发器出口温度和/或压力、排气压力和/或温度、环境和控制区温度）的输入。
[0016] 对于系统的理想运行条件，并取决于系统各部件的性能，将有系统以最大效率运行的特定排气压力，并将有系统以最大容积运行的特定排气压力。当系统经受速冷（pulldown）过程时，可能有利的是系统遵循提供最大容量的排气压力。当达到稳态时，可能有利的是系统遵循提供最佳效率的排气压力（或为了效率和容量的结合而优化的两个压力之间的某个压力）。为了在特定条件下运行循环，以及为了对该条件而将系统维持在所需的排气压力下，将有相关的最优量的制冷剂沿流动通道 40 循环。由于整个系统充填料是固定的，充填料存储系统 80 用来存储来自流动通道 40 的制冷剂并将制冷剂返回至流动通道 40，使得循环充填料将更紧密地对应于对于维持所需系统性能可能适当的最优充填料。
[0017] 通常，随着蒸发器温度下降，蒸发器中的液体制冷剂密度增加并且更大质量的制冷剂得以存储在蒸发器中。当干涉不存在时，循环充填料的质量流量比下降。在那种条件下，需要在系统 80 中存储最小量的制冷剂。类似地，当热交换器处在其最高温度下时，蒸发器将存储相对少量的制冷剂。为了避免系统 20 超压，需要在系统 80 中存储大部分制冷剂。
因而，在系统启动和低冷时，需要在系统 80 中具有最大量的制冷剂。当蒸发器温度下降时，可控制存储系统 80 以将更多充填料逐步卸入活动循环。

【0018】示例系统包括多个容器 82.83 和 84。它们的室 85.86 和 87 平行地彼此流体连接并与膨胀装置流体连接。各容器可通过在容器高压端和低压端的阀向主流动通道 40 打开和关闭。为了说明目的，各个容器示出为在容器入口 93.94.95 和膨胀装置入口位置 / 条件 60 之间具有连接第一（高压）阀 90.91 和 92。各容器还在容器的第二端口 99.100.101 和膨胀装置出口位置 / 条件 60 之间具有连接第二（低压）阀 96.97 和 98。如在文进一步的讨论，各种第一阀可彼此结合在一起，第一阀和第二阀可彼此结合或与其它组合（例如，使用四通或更大的阀结构）结合。

【0019】在一个示例性操作方法中，第一阀和第二阀的打开和关闭由控制器响应于测量 / 检测到的条件的组合和 / 或用户输入的参数（例如，设定温度）而控制。该示例性方法中，在正常的运行条件下，各容器恰好使其两个阀中的一个打开而另一个关闭。对打开和关闭的阀的合适组合的选择将决定系统 80 的有效充填料存储。

【0020】对于各容器，存储在容器中的充填料将由它的第一和第二阀（或联合端口）开启时的系统条件决定。如果第一阀打开，容器将暴露在相对高的压力膨胀装置入口条件下。容器因而保持相对高的充填料量。然而，如果第二阀打开，容器将暴露在相对低的压力吸入条件下，并且相对于少量的充填料被存储。

【0021】因而，最大存储充填料和最小循环充填料的条件与所有打开的第一阀和关闭的第二阀相关。同样地，最小存储充填料和最大循环充填料的条件与所有关闭的第一阀和打开的第二阀相关。关闭和打开的阀的其它组合提供一个或更多中间条件。这些中间条件的性质将依赖于容器的相对大小和绝对大小。

【0022】在示例性的容器大小中，可选择第一和第二容器的相对大小以便第二容器的有效容量是第一容器的两倍（也就是，第二容器在其两种条件之间所保持的充填料量的差异是第一容器的两倍）。类似地，第三容器选择为具有第二容器两倍的有效容量。选择容器的绝对大小，使得组合有效容量提供所需的总充填料存储 / 缓冲容量。利用容器大小的这种示例性组合，可在最小存储充填料和最大存储充填料条件之间获得多种均匀分开的中间条件。

【0023】图 2 显示了仅具有第一和第二容器的更基本的系统，以便获得总计四种充填料存储条件。

【0024】图 3 显示了呈冷藏拖车形式的冷藏运输单元（系统）220。该拖车可被牵引车 222 拉动。示例性拖车包括限定内部 / 间隔 226 的容器 / 箱 224。安装到箱 224 的前部的设备外壳 228 可包含发电机系统，该发电机系统包括发电机 230（例如，柴油机）和机械联接到发动机上以被驱动的发电机 232。制冷系统 20 可电联接到发电机 232 上以便收电。蒸发器及其相连的风扇可放置在箱 226 内或以其它的方式与箱 226 热连通。

【0025】通过配置系统（或者机械地或者经由控制器编程或硬布线），使得各容器的一个端口常开，基本上消除了容器超压的可能性。这可允许省略用于防止超压的专用装置（例如，用于冷却容器的单独的系统）。

【0026】尽管已经说明了基本系统，但包括容器或基本制冷回路的其它特征的更复杂系统也是可能的。附加部件、流动通道等也可存在。
[0027] 已经描述了本发明的一个或多个实施例。然而，应该了解的是，在不脱离本发明精神和范围的情况下，可做出各种修改。例如，当在实施现有系统的修整和改型或现有系统配置的再造工程时，现有配置的细节可影响特定实施的细节。因此，其它实施例也在如下权利要求的范围内。
图 1