7112301 A2 |0 O 0 0RO

<r

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date
23 December 2004 (23.12.2004)

PCT

(10) International Publication Number

WO 2004/112301 A2

HO4L

(51) International Patent Classification’:

(21) International Application Number:

PCT/US2004/018510
(22) International Filing Date: 10 June 2004 (10.06.2004)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/477,530 11 June 2003 (11.06.2003) US
(71) Applicant (for all designated States except US): WTVIII,
INC. [US/US]; 1266 West Paces Ferry Road, Suite 459,

Atlanta, GA 30327-2306 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): VINCENT, Winchel
Todd III [US/US]; 4474 Tangle Hurst Lane, Lexington,
KY 40415 (US).

(74) Agent: SANTOS, Daniel, J.; Gardner Groff, P.C., Paper
Mill Village, Building 23, 600 Village Trace, Suite 300,
Marietta, GA 30067 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
7ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: MARK UP LANGUAGE AUTHORING SYSTEM

______________________________ 105
120

SCHEMA
REPOSITORY

130

100
e

____________ e
185

APPLICATION
150

VIEWER /
INDEXER

145 160

SCHEMA CODE

EDITOR DOCUMENT

FRAMEWORK GENERATOR

WIZARD REPOSITORY

125

SCHEMA
GENERATOR

140
155

E-FILING
MODULE

(57) Abstract: A mark up language authoring system that normalizes schemas and archives normalized schemas in a schema repos-

itory. A schema generator receives user input and creates normalized schemas based on the user input. The normalized schemas

& are archived in a schema repository that has a directory tree structure that can be searched to retrieve a schema using the schema
& namespace. Once a schema has been archived in the schema repository, the schema and its namespace preferably are frozen and
cannot be altered. Schemas can be reused by searching the schema repository for a schema having a particular namespace, retrieving
the archived schema and importing the retrieved schema into a document being created. The system may include multiple schema
repositories with identical directory tree structures having identical schemas archived at identical locations in the directory tree struc-

=

tures.

WO 2004/112301 PCT/US2004/018510

MARK UP LANGUAGE AUTHORING SYSTEM

CROSS REFERENCE TO RELATED APPLICATION
[0001] This application claims priority to U.S. Provisional Patent Application Serial No.
60/477,530, ﬁled June 11, 2003, which is hereby incorporated herein by reference in its entirety
for all purposes.
FIELD OF THE INVENTION
[0002] The present invention relates generally to a mark up language authoring system,
and more particularly, to a system for creating and normalizing schemas and for archiving

schemas in a manner that enables normalized schemas to easily be retrieved and reused.

BACKGROUND OF THE INVENTION

[0003] Extensible Markup Language (XML) is specification developed by the World Wide
Web Consortium (“WC3”). XML has become increasingly more important in the exchange of
data and documents (“XML documents™) on the Web and elsewhere. XML allows designers to
create their own data and document formats (“formats”). XML formats are customized tags,
enabling the definition, transmission, validation, and interpretation of data between applications
and between organizations. Schemas define XML formats. The W3C, OASIS, and other
organizations have published specifications for creating schemas (e.g., the W3C’s XML DTDs
and XML Schema, and OASIS’ Relax NG). There is, however, no specification that describes
how designers can manage schemas on a large scale and within a standard schema framework.

[0004] Therefore, there exists in the industry a need for a system that facilitates the ongoing
and consistent creation, management, and use of multiple schemas and versions of schemas over
time. Further needs exist for a set of best practices and methodology for developing XML
schemas that provide version control, unique schema identifiers, schema management and

maintenance over time, and consistent publishing rules for schema discovery and documentation.

SUMMARY OF THE INVENTION
[0005] The present invention provides a mark up language authoring system. In one
aspect, the present invention provides a system for normalizing schemas and for archiving

normalized schemas in a schema repository. A schema generator receives user input and creates

WO 2004/112301 PCT/US2004/018510

a normalized schema based on the user input. The normalized schema is then archived in a
schema repository that has a directory tree structure. A schema can be retrieved from the
repository by searching the repository using the schema namespace, which facilitates reuse of
normalized schemas and document creation.

[0006] In accordance with the preferred embodiinent, once a schieina has been archived in the
schema repository, the schema and its namespace are frozen and cannot be altered. Freezing the
schema and its namespace in this manner facilitates schema uniformity and.encourages reuse of
existing schemas while allowing new schemas to be easily created. The system may include
multiple schema repositories with identical directory tree structures with identical schemas
archived at identical locations in the directory tree structures of the repositories. Mirroring
schemas in multiple repositories facilitates deployment of the system in a distributed
environment and encourages schema normalization and reuse.

[0007] In another aspect, the schema framework of the present invention is a set of rules and
best practices that a user follows when creating schema in accordance with the present invention.
By following these rules, schema are produced that can be used, reused, and managed in a
distributed computing environment, thus reducing the time and effort associated with creating
and using schema and instance documents based on the schema. Certain rules govern the content
and format of the schema namespaces. Each schema namespace includes a category identifier
that identifies a category to which the schema associated with the namespace relates. Once an
instance document based on the schema has been published in a schema repository, the schema
and the namespace associated with that schema are “frozen” and cannot be changed. By freezing
the schema and namespace, the schema and namespace become standardized, which facilitates
instance document generation, validation, and use across a distributed system.

[0008] In addition, the namespace category identifier makes it possible to group schema in
the repository by subject matter, which allows schema to be more easily searched, retrieved and
managed from distributed schema repositories. This also facilitates instance document
generation across a distributed system. Each namespace includes a category identifier that
identifies a subject matter, such as, for example, a geographical region identifier, a legal
jurisdiction identifier, a person, an address, a document type, a form type, and an organization
identifier. The geographical identifier may identify a geographical or other location or a place.

The organization identifier may identify a social or commercial organization, an institution, a

WO 2004/112301 PCT/US2004/018510

department, an agency, an industry, etc. Preferably, a category identifier has a subject matter
meaning that is commonly understood by humans so that understanding the category identifier is
easy and so that reuse and management of schema is encouraged.

[0009] In still another aspect, the present invention provides a system for creating and editing
mark up language forms and documents that is user friendly. The system comprises a first
portion' for editing forms and a second portion for editing documents. The system dynamically
generates a user interface that is customized to the particular form or document selected by the
user. The user then enters information into the plurality of fields in the user interface for the
form or document. Once the form or document is completed, the user can save the form or
document in a document repository. The user can also transmit the form or document as an
electronic filing document. Additionally, the data entry fields of the form or document can
automatically expand or contract to accommodate data of varying length. Moreover, the user can
create templates that include frequently used data. \
[0010] In addition, the user interface for editing documents can have the look and feel of
standard word processing software. To keep the “what you see is what you get” or WYSIWYG
nature of the user interface, the user interface does not reveal the XML tags, but rather color can
be used in the user interface to denote different nodes. Thus, when the user positions the cursor
over a node (whether by using the mouse or by using the arrow keys), the selected node changes
colors. A tool tip, or a message describing the type of node, can also appear when the user
places the cursor over the node. When moving between nodes with the arrow keys, the user
positions the cursor after the last character of a node, for example, and the clicks the right arrow
key once to change the color of the adjacent node, and then clicks the right arrow key again to
move the cursor within the adjacent node. Moreover, particular keystrokes, when depressed
while the cursor is positioned in a node, can cause an input screen to open for user input, rather
than performing their typical operations.

[0011]} In another aspect, the present invention provides a system for viewing and indexing
mark up language messages, forms, and documents that have been stored in a document
repository. The viewer and indexer can search the document repository based on any of a variety
of search parameters, including any field of each message, form or document in the document
repository. The viewer and indexer can automatically configure itself based on an input schema

to create a user interface having search term options that can be selected to cause a search to be

WO 2004/112301 PCT/US2004/018510

performed in the document repository (and/or mirrored and local repositories) containing
messages, documents and forms created based on the same input schema.
[0012] These and other features and advantages of the present invention will become

apparent from the following description, drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS
[0013] FIG. 1 is a block diagram representation of a system for developing and managing
schema and XML documents in accordance with an exemplary embodiment of the present
invention. ‘
[0014] FIG. 2 is a block diagram representation of a schema framework of FIG. 1.
[0015] FIG. 3 is a block diagram representation of a schema repository of FIG. 1.
[0016] FIG. 4 is a block diagram representation of a schema generator of FIG. 1.
[0017] FIG. 5 is a block diagram representation of a code generator of FIG. 1.
[0018] FIG. 6 is a block diagram representation of a wizard of FIG. 1.
[0019] FIG. 7 is a block diagram representation of an editor of FIG. 1.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0020] Referring now to the drawing figures, in which like reference numbers refer to like
parts throughout the several views, preferred forms of the present invention will now be
described by way of example embodiments. It is to be understood that the embodiments
described and depicted herein are only selected examples of the many and various forms that the
present invention may take, and that these examples are not intended to be exhaustive or limiting
of the claimed invention. Also, as used in the specification including the appended claims, the
singular forms "a," "an," and "the" include the plural unless the context clearly dictates
otherwise. _

[0021] Fig. 1 depicts a block diagram of a system 100 for developing and managing schema
and using the schema to author and manage content in accordance with an exemplary
embodiment of the present invention. Preferably, the system 100 comprises a schema
development and management subsystem 105 and a content authoring, management and

-

electronic filing subsystem 110.

WO 2004/112301 PCT/US2004/018510

[0022] The schema development and management subsystem 105 comprises a schema
framework 115 that describes rules that govern the operation of a schema repository 120, a
schema generator 125, and a code generator 130. The schema repository 120 and the schema
generator 125 communicate between each other and with the code generator 130. Schema output
from the schema development and management subsystem 105 are used as input for the content
authoring, management, and electronic filing subsystem 110. Additibnally, schema output from
the schema development and managemeht subsystem can be recycled for reuse in the schema
development and management subsystem. As an example, schema output from the schema
generator 125 can be used as input for the code generator 130. The code generator, in turn,
communicates with the content authoring, management, and electronic filing subsystem 110.
[0023] The content authoring, management, and electronic filing subsystem 110 comprises a
wizard 140 for editing forms, an editor 145 for editing documents, a viewer and indexer 150, an
electronic filing module 155, and a document repository 160. The content authoring,
management, and electronic filing subsystem 110 can also comprise external application
software 165.

The Schema Framework

[0024] The schema framework 115 provides a set of rules, or best practices, for developing
schemas 200 that can be used to create messages 205, forms 210, and documents 215, as
depicted in Fig. 2. Preferably, the schemas use the W3C XML Schema 1.0 as a basis for
creating the schema framework 115. However, other types or versions of schemas could be
used, such as a future version of W3C XML Schema or OASIS’ RELAX NG Schema.

Namespaces

[0025] Preferably, the schemas use namespaces 220 to distinguish the context of XML
elements that have the same name but that have different meanings. An XML namespace is
generally defined as a collection of names, identified by a URI reference, that are used in XML
documents as element types and attribute names. More preferably, the schemas 200 generated
through the sch(?ma framework 115 use meaningful namespaces 220 and meaningful namespace

prefixes as a form of version control. Preferably, the namespaces 220 are meaningful in that they

WO 2004/112301 PCT/US2004/018510

convey to the user of the system 100 a description of the XML elements and thus provide an
automated way of discovering schema in Internet-based or local schema repositories.
[0026] Namespaces 220 are declared in an XML document either as a target namespace, in
which case the namespace prefix is not used, or as a non-target namespace, in which case the
namespace prefix is used. Preferably, a “xsd:targetNamespace” is declared wita a value equal to
the default namespace value.
[0027] The schema framework 115 distinguishes between two types of instance documents:
(a) complex XML documents and (b) simple XML documents. In a complex XML instance
document, the namespace prefix prefixes all elements in the document, except that the root
element may be unprefixed. That is, the prefix is separated from the element name by a colon.
In Simple XML instance documents, a default namespace without a prefix is used on each
module’s intended root element, in which case the default context of its descendants are implied.
[0028] In an instance document, the namespace prefix precedes the element name separated
by a colon or the namespace is declared on a parent element in which case the default context of
its descendents are implied. For example, the following are preferred namespaces.
xmins:Furniture="http://www.xmllegal.org/Schema/xmlLegal/Furniture/01
xmlns:Document="http://www.xmllegal.org/Schema/xmlLegal/Document/01

[0029] Thus, in these two examples, the namespace prefixes are “Furniture” and
“Document”. It should be understood that the prefix is not the actual namespace, but rather, the
prefix is a mapping to it.
[0030] For example, the following attribute maps the “Address” prefix to a namespace (that
happens to be a uniform resource identifier “URI”):

xmlns: Address="http://www.XMLlegal.org/Schema/BuildingBlocks/Primitives/Address/01/"
[0031] Inthe next example, the prefix is the same, but the namespace is different:

xmlns:Address="http://www.XMLlegal.org/Schema/BuildingBlocks/Primitives/Address/02/"
[0032] The result is an element <Address:Line> in Instance Document One where the first
namespace is used that has a different technical value than the same <Address:Line> element in
Instance Document Two where the second namespace is used. Thus, the two elements are
different, even though textually they appear the same (in instance documents, e.g.,
<Address:Line> in a Complex XML document or <Line> in the “Address” context in a Simple

XML document).

WO 2004/112301 PCT/US2004/018510

[0033] Thus, unlike other namespace regimes, the schema framework 115 standardizes
meaningful namespace prefixes. This provides a type of human-readable categorization system
for schemas. For example, the “Address” prefix is used for a cétegory of schemas that represent
addresses, although each address schema may be slightly different and may be assigned a
different namespace and a correspondingly difference place in a schema repository 120.

[0034] Thus, it can be said that a “genre” of schemas is “Address” but there may be different
types of addresses within the genre. In this way, the specific “meaning” of a particular XML
instance document can be tied to the schema located at a repository location with the same
namespace. If the schema 200 is frozen, then this in turn “freezes” the meaning of the schema
and all document instances associated with it. This provides a great deal of flexibility in creating
related schemas for similar but different applications, while providing both a technical and
human-readable means of understanding instance documents and mapping like-schema to like-
schema and like-meaning to like-meaning.

[0035] In exemplary embodiments, the prefix “Address” is a standard prefix for addresses.
There can be multiple namespaces associated with a single prefix, which can distinguish
meaning and provide version control. Preferably, all addresses, for example, use the “Address”
prefix.

[0036] It should be noted that the list of standard prefixes, including but not limited to,
Phone, Email, Person, and Organization can expand. Thus, the schema framework 115 is
designed to accommodate expansion and evolution over time and to do so such that “meaning”
can be fixed and discovered in a mechanical way.

[0037] It should also be noted that multiple schema types can exist in the same XML
document (e.g., multiple Address formats used in the same document). If two address formats
exist in the same document, then meaningful prefixes can preferably be used that establish the
distinction (e.g., ShortAddress and LongAddress). Additionally, the schema framework 115 can
accommodate foreign language formats, which use a different prefix that corresponds to the

English word in the foreign language (e.g., “Addresse” would be used for a German address).

Namespaces for Version Control

[0038] In the preferred embodiment, the schemas 200 generated through the schema

framework 115 use meaningful namespaces 220 and meaningful namespace prefixes as a form of

WO 2004/112301 PCT/US2004/018510

version control 225. Version control 225 is important because i\n the software and technical
standards industries, most products have multiple versions that are incremented over time. It is
useful to version XML schemas as well for at least three reasons: (1) in cases where an existing
schema may be updated or replaced by a new schema; (2) in cases where there may be a needl for
two similar schemas to meet different requirements; and (3) in cases where there are language
differences such as foreign languages or even differences in the English language (e.g.,
organization versus organisation).

[0039] Thus, version control 225 can be achieved with the use of unique namespaces 220.
Namespaces are preferably URIs (i.e., uniform resource indicators) that point to a location at the
schema repository 120. Local and mirrored repositories can also be used, provided those
repositories preferably follow the schema framework 115 rules for local and mirrored
repositories.

[0040] In a preferred embodiment, the namespace 220 is unique; the schemas 200 are frozen
upon publication of the first instance document; and the schema 200 can be programmatically
discovered in the schema repository 120 (or in the local or mirrored repository) based on the

namespace string.

Format of a Namespace

[0041] Namespaces 220 in the format 230 of a URI are preferably made of four parts,
although other organization is possible. In the preferred embodiment, the first part includes the
string to a domain name, such as for example, “http://www.xmllegal.org/”. The second part
includes the string “Schema/”. The third part is a logically-ordered string of meaningful subject
matter, including jurisdictional, organizational, or geographical names, preferably separated by a
forward or backslash, depending on the nature of the directory. The fourth part is a numeral to
indicate version. In some cases, the numeral to indicate version will sometimes precede the
name of the schema as a grouping mechanism. The numeral to indicate version may be omitted
in cases, such as for example, where a primary schema imports secondary schemas and the
primary schema uses a numeral for version control. In such a case, the secondary schemas can
be located in subdirectories of the primary schema and are, therefore, clearly versioned from
others of like kind. In the preferred embodiment, the numeral indicating version can be in any

one of the following formats, where X is a digit 0 to 9: XX; XXX; TestXX; or TestXXX,

WO 2004/112301 PCT/US2004/018510

although other formats are possible. The numeral at the end of the namespace allows different
versions of the same type of schema to be adopted in the same geographical location,
organization, or jurisdictions. J
[0042] Preferably, namespaces 220 and associated directory structures use full-spelled,
Upper Camel Case words, except for widely understood abbreviations or acronyms (such as
country codes), with no spaces, although namespaces 220 and directory structures can be created
using abbreviated or truncated names or acronyms and be within the scope of the present
ipvention. The use of full-spelled Upper Camel Case words makes namespaces and directory
structures human-readable and aesthetically pleasing and also provides the ability to more
efficiently do mechanical human-language dictionary analysis and aggregation and comparison
of human-language synonyms.

. [0043] In the preferred embodiment, the schema repository 120 uses a descriptive label, such
as one describing a general subj\ect matter or organizational label, following the Part II
“Schema/” string. Such labels include, for example, “Court”, “Transcripts”, “Justice”,
“Healthcare”, “Automotive”, “Banking” or an organizational name, such as “xmlLegal”,
“Microsoft”, or “DepartmentOfPublicSafety.” In the preferred embodiment, either before or
following the subject matter or organizational label, a two-letter ISO 3166 country code
optionally can be used. For example, “US” would be used for United States, or “AU” for
Australia. Additionally, in the preferred embodiment, after the county code, the fully spelled
state or province can be used. Optionally, a two-letter abbreviation for the state or province can
be used. After the state or province name, a narrower geographic or jurisdictional subdivision,
such as the county name, can be used. Different or additional subdivisions can be used to further

refine the applicability of the schema and be within the scope of the present invention.

Freezing a Schema in a Namespace

[0044] Instance documents can use namespaces 220 for version control 225 because the
schema (or schemas) corresponding to the instance document can be “frozen” once a document
instance has been published.

[0045] Stated another way, “freezing a namespace” or describing a schema as “frozen”
means that the schema located in one or more repositories and identified by a unique identifier

such as a unique namespace may no longer be changed. Thus, preferably, a new schema or

WO 2004/112301 PCT/US2004/018510

version of a schema of a similar type uses a different unique identifier and can be located in a
correspondingly different place in one or more mirrored schema repositories. For example, a
schema can be copied into another namespace and the new schema in the new namespace can be
altered. However, once frozen, the original schema preferably cannot be changed. If the schema
were to be changed after it was “frozen”, then the instance documents based on the changed
schema potentially will not validate against the original schema, which means that applications
cannot rely on either schema and the system may not function properly.

[0046] Preferably, the schemas 200 are frozen once instance documents based on those
schemas are published to the schema repository 120 because once an instance document is
published and available to the world, the namespace in it will point back to the location in one or
more schema repositories where the schema on which it is based is located. If the schema is
changed at the position in the directory where the namespace points, then the instance documents
based on the schema are not likely to validate against it, thus potentially causing interoperability
problems that may cause the system to not function properly.

[0047] To overcome these shortcomings, a new version of the same schema can be created
and stored in a directory corresponding to a similar, but new namespace. In this way, the
integrity of published instance documents is maintained indefinitely, while allowing new

versions to be developed.

Namespace Declarations and Import Statements

[0048] In the preferred embodiment, namespaces are declared as attributes of the xsd:schema
element using a standard namespace prefix appropriate to the schema. The namespace prefix
represents the genre of schemas being created, such as, but not limited to, an Address, Phone,
Email, Person, Organization, Weapon, Vehicle, =, Account, or Patient. New namespace prefixes
are added as desired and are preferably descriptive of the schema genre being described. Also
preferably, the schemas can import an Attributes schema, which is a set of global attributes.

[0049] In the preferred embodiment, the namespace value is declared as an attribute in the
xsd:schema element that matches the namespace declared in the xsd:import element. The
schema location attribute on the xsd:import element is preferably a relative path (rather than a
hard coded path) to a location in the schema repository directory structure beginning with the

directory “Schema.”

10 .

WO 2004/112301 PCT/US2004/018510

Conventions

[0050] For organizational purposes, the schema framework 115 preferably orders schema
constructs 245 as follows: complexTypes; simpleTypes; elements; and groups, although other
ordering schemes are also within the scope of the present invention. The order of complexTypes
and elements are preferably in the order the element first appéars in the schema, even if the
element is only referenced. Regardless of how complexTypes are ordered, in the preferred
embodiment, the first complexType in the schema preferably has an attribute name value that is
the same as the schema’s namespace prefix, filename, and parent or grandparent directory, as
described below, although other naming conventions are also within the scope of the present
invention.

[0051] The first complexType in the schema preferably corresponds to the element intended
to be the “root” element of the schema. The root element, the genre of the namespace prefix, the
name of the schema filename in the schema repository, and the name of the schema’s parent
directory or grandparent directory if a version number directory is used, are preferably the same
string.

[0052] The value of the “name” attribute on all complexTypes is preferably the exact string
as the corresponding element declaration. All complexTypes preferably use the
Attributes:Global attributeGroup. ComplexTypes may contain

clement references to internal, globally declared elements or to imported elements, but
preferably do not include locally declared, non-unique elements. For example, if the element
names are not unique within the context of the namespace (which can happen with locally
declared elements), then the system may not work properly. ComplexTypes are preferably
declared globally, not locally to an element. SimpleTypes are preferably declared globally

within the schema or imported from another schema.

Element and Attributes

[0053] XML information often sits just below the user interface. If named and structured
such that the names convey the content of the elements, the names for elements 250 and
attributes 255 can be taken directly from XML and used as labels in the user interface. For

example, by searching the string “CaseName” for an uppercase character preceded by a

11

WO 2004/112301 PCT/US2004/018510

\

lowercase character, it is very easy fo add a space that results in a readable and aesthetically
pleasing user interface. This can be done with elements that use underscores for spaces and for
Lower Camel Case. If, however, abbreviations are used as element names, then the use of them
as labels, without additional translation encoding, can often be difficult or confusing.

[0054] Thus, preferably, the element names have formats using uppercase letters for the first
Jetter of each word (Upper Camel Case), although other element naming conventions are also
within the scope of the present invention. One or all words in the element name can be
programmatically or otherwise capitalized, which ultimately provides a visually pleasing user
interface. For example, the following are preferred formats for element names: CourtFiling,
FirstName, LastName, and City. Also preferably, the element names use no abbreviations. If,
however, common abbreviations are used, then the abbreviations are preferably documented and
listed in the schema's specification with the non-abbreviated form clearly documented.

[0055] In the preferred embodiment, elements 250 are preferably declared globally, not
locally, as elements with no children elements except for elements used for documentation. (In
the preferred embodiment, child elements can occur when using xsd:annotation or xsd:appinfo).
Thus, all global elements are preferably unique to the schema and, hence, to the namespace, and
therefore every element in the schema repository preferably has a unique and distinct meaning.
Elements 250 preferably use the “type” attribute. The value of the element’s type attribute can
be either the name of a complexType declared in the schema, or the name of a complexType
declared in an imported schema. All elements 250 preferably use, at least, the Attribute:Global
group of attributes. The global attributes are preferably declared in the element’s corresponding
complexType declaration. Elements used as children of other elements are referenced in the
intended parent’s complexType.

[0056] Attributes 255 are preferably declared in an element’s corresponding complexType as
a local attribute. Also preferably, attributes 255 are not declared globally and referenced. Any
number of attributeGroup elements may be referenced. Attributes that are a simpleType
preferably use the type attribute, consistent with the rule that simpleTypes are preferably
declared globally.

[0057] The Attributes:Global group preferably includes at least the following attributes: ID
(xsd:ID); Class (xsd:string); and Type (xsd:string), although other or additional attributes are

also within the scope of the present invention.

12

WO 2004/112301 PCT/US2004/018510

[0058] Although it is possible to use minOccurs and maxOccurs in a variety of ways, the
schema preferably do not use minOccurs and maxOccurs attributes on content model
declarations for choice, sequence, or all, although other conventions are also within the scope of
the present invention. The schema also preferably do not use “nested” content models within a
schema. The group element may use minOccurs and maxOccurs. Itis possible to “nest” content

models by either importing the intended root element of a schema or by referencing a group.

Normalization

[0059] Schemas can follow certain rules of construction. Schemas following the rules of
constructions are called “normalized” schemas, and the process of creating or ensuring that a
schema is normalized is called “normalization.”

[0060] Schema “normalization” is an algorithm that represents a set of best practices and
conventions used in the schema framework 115. In the preferred embodiment, the algorithm
functions such that an input schema is transformed into another representation and then
transformed from that new representation into schema. The resulting schema should be a valid
schema, should follow the rules of the schema framework, and should validate the same instance
documents as the original schema. Schema normalization is done in the schema framework 115
so that one structure is used consistently in a number of schemas rather than several structures
used inconsistently in different schemas. That is, preferably, an Address schema that is
normalized uses the same schema constructs and conventions as a Person schema.
Normalization makes it much easier for developers to understand and develop code for schemas
and instance documents based on schemas, to manage schemas, as well as to develop new

schemas.

Modularity
[0061] The ‘schema framework 115 preferably uses modular XML schemas as building

blocks to build other, more complex schemas, messages, protocols, forms, and documents. XML
schemas 200 and XML namespaces 220 provide an easier technical means of creating “modular”
schemas as compared to creating one large schema to describe an XML format. Modularity in

XML schemas allows certain parts of the schema 200 to be used in other schema definitions and

13

WO 2004/112301 PCT/US2004/018510

applications. Reuse of a schema module allows developers to build objects around schema
modules and reuse code. Reuse of code speeds development and encourages standardization.
[0062] Thus, preferably, the schemas in the schema framework 115 are modular. For
example, a schema describing a Person may include import Address, Phone, and Email schemas.
A schema describing a Vehicle may include a RegisteredOwner that may be a Person or an
Organization. In each case, each schema preferably is a separate schema module. Complex
schemas may have several modules.

[0063] The namespace prefix plus the name of the element, read together, should have a
human-language meaning appropriate to the genre of the schema. For example, if the schema
genre (e.g., namespace prefix) is “Person”, then the following prefix/element name combinations
are preferable for the “Person” schema: Person:Name; Person:FirstName; Person:LastName;
and Person:Addllress. ’

[0064] In the preferred embodiment, the root element of a schema may be imported and used
in another schema in one of two ways: use in element declaration type attribute or use in element
reference name attribute. Also preferably, only the “intended root element” of a schema or
groups within a schema may be imported into another schema. That is, the entire “noun” or
“object” is preferably used in the case of a root element or specified groups of elements. Other

conventions are also within the scope of the present invention

Construction

[0065] Preferably, the schema framework 115 distinguishes the following: individual
elements; base primitives; two-level primitives; multi-level primitives; protocols; messages;
forms; and documents. An individual element is an XML element. An XML element can have a
tag name such as “City.” An example of an XML element is <City>Sydney</City>.

[0066] A base primitive is an XML schema module that logically groups a number of
elements. For example, an Address is a base primitive that may include the elements “Line,”
“City,” “State,” “PostalCode,” and “Country.” Ina preferred embodiment, per the normalization
rules above, all schemas import an Attributes.xsd that includes global attributes. Thus, in a
preferred embodiment, a Base Primitive, by definition, irﬁpoﬁs only an Attributes.xsd, but does

not import any other schema.

14

WO 2004/112301 PCT/US2004/018510

[0067] A two-level primitive is a primitive constructed from more than one base primitive.
For example, a “Person” may be constructéd using the schema modules “Address”, “Phone”, and
“Email.” Multi-level primitives (schema) are schema constructed from several base, two-level,
or other multi-level primitives. For example, a “Vehicle” may include a registered owner that
would be a “Person” or an “Organization.” The Person and Organization schemas are
themselves two-level primitives; and therefore, Vehicle becomes a multi-level schema. These
naming conventions are not necessary for the proper functioning of the schema framework, but
serve to define a vocabulary that allows users to meaningfully describe interrelated sets of
schema.
[0068] Messages 205 and protocols are constructed from elements and base, two-level, and
multi-level primitives. There is a fine line between a protocol and a message. Indeed, the line
may be so blurred that there is little distinction. In its purest form, a message is a transfer of data
from one information system to another information system. A protocol is a message or a series
of messaées that invokes a subsequent response (e.g., an acknowledgement) or some other
workflow. In practice, most messages require some sort of response, so a message is usually part
of a protocol and could be considered one and the same.
[0069] Like messages, forms 210 are constructed from elements and base, two-level, and
multi-level primitives. A form is preferably combined with a stylesheet so that it is easy for a
human to read. “Forms” are distinguished from “documents™ by the lack of free-form prose.
Forms 210 consist of data elements and corresponding labels arranged in a logical and
aesthetically pléasing document. Forms 210 may have “memo” fields for long answers to
specific questions, but do not generally include long free-form prose, although other hybrid
form-documents are also within the scope of the present invention. In the schema framework
115, additional rules can be specified for forms. For example, the schema framework 115 can
use the following conventions to create special formats for forms 210:

The root element of a form is “[General Descriptive Word]”.

The first child of the root element is <Head>.

The second child of the root element is <Body>.

An optional third child of the root element is <Signature>.
In this example, <Head> is invisible metadata, <Body> is visible information on a form, and

<Signature> is information for a digital signature.

15

WO 2004/112301 PCT/US2004/018510

[0070] In the preferred embodiment, the root element can optionally be created by a
“container” schema located within the namespace of the schema that is the first child of the body
of the form. For example:

http://www.xmllegal.org/Schema/Court/U S/Geor;gia/Douglas/Juvenile/Form90/0l/
http://ww\w.xmllegal.org/Schema/Court/U S/Georgia/Douglas/Juvenile/Form90/01/Legal/

[0071] The head element preferably includes metadata about the form 210 that would not
typically be included in the styled representation of the form (i.e., it would not appear on the face
of the form for the human reader). The head element preferably includes, but is not limited to,
the following schemas: DocumentSummary; DocumentStatistics; DocumentVersion;
DocumentProperties; and DocumentWorkflow. Other means of incorporating form metadata are
also within the scope of the present invention. Preferably, the head element for all forms 210 is
common or, at least, very similar.‘ The stylesheet for the form 210 can be included within the
form or can be a reference to a separate file. The body element"s first, and preferably only, child
includes the unique schema that make up the form.

[0072] Documents 215 are constructed from elements and base, two-level, and multi-level
primitives. Like forms, a document 215 can be combined with a stylesheet so that it is easy for a
human to read. Like forms, a document 215 can include a head, a body, and an optional
signature. Unlike forms, documents 215 include free-form prose (or “unstructured text”) that
requires special document-specific primitives. In the schema framework 115, the head, body,
and signature elements can operate in the same way for both forms and documents. The body of
a document, however, differs from the body of a form.

[0073] The body of an document preferably includes (1) frontmatter; (2) a body, or body
elements, that include as descendants paragraphs, headings, outlines and optionally tables and
objects (graphics, pictures, controls), and (3) backmatter. Paragraphs, headings, outlines, and
tables include within them “flattened” inline vocabulary. \

[0074] Frontmatter and backmatter usually include information that is structured like a form.
For instance, a court document usually has a caption with the name of the court, the names of the
parties, a civil action number, and a title. Likewise, a contract usually has a title, date, names of
parties, and recitals. For each type of document, the information in the frontmatter and
backmatter is preferably different, but all documents preferably have both frontmatter and

backmatter, even if there is no content in the frontmatter or backmatter. Further, depending on

16

WO 2004/112301 PCT/US2004/018510

the style and preferences of the author of the document, normal frontmatter information may,
appear in backmatter or visa versa. For instance, the dates and parties in a contract are
interchangeably included either at the front of the document or at the back, depending on the
preferences of the author of the document.

[0075] In between frontmatter and backmatter is preferably the body of the document 215.
The body of the document can be prose and can include a mixture of arbitrarily ordered
headings, outlines (sometimes called lists), tables, and paragraphs as desired by the author. The
body may also include graphics, pictures, and other objects (such, for example, as ActiveX
controls).

[0076] In addition to the head and body, forms 210 and documents 215 may optionally
include an XML signature. An XML signature is information about a digital signature and
should be distinguished from a “signature block.” A signature block is viewable signature
information that is usually included in backmatter. A signature block may include the names of
parties, titles, a typewritten signature (e.g., /Signature/) or a graphical signature (e.g., a
bitmapped signature).

Vocabulary
[0077] Sprinkled randomly throughout the paragraphs, tables, and outlines in the document

body is vocabulary 260. For instance, in a contract, there are names, price terms, conditions, and
consideration. In transcripts there are questions, answers, witnesses, and exhibits. Different
types of documents 220 have different types of vocabularies 260. Not all vocabularies are
available to all types of documents. Vocabularies 260 are, therefore, modular based on
individual schema.

[0078] In determining whether an element 250 is suitable as vocabulary 260, the schema
framework 115 can distinguish between types of elements, including structural, data, and hybrid.
A structural element is one that represents the structure of a document, such a frontmatter, body,
backmatter, paragraph, heading, outline, or table. A data element is one that has some meaning to
the human reader, such as, but not limited to, Name, Address, Time, Vehicle, and Consideration.
Hybrid elements are elements that serve a structural purpose and are also data. For example, the
title in a document is structural in that it conventionally comes at the top of the document,

somewhere in frontmatter. Title is also data, in that a title of a book could be extracted and taken

17

WO 2004/112301 PCT/US2004/018510

out of its structural context and still have meaning. Data elements and hybrid elements are
preferably appropriate as vocabulary. Also preferably, pure structural elements are not
appropriate as vocabulary. It should be noted that even data elements have structure when
represented as XML. For example, an Address has within it (as children) address lines, city,
state, postal code, and others.

[0079] Vocabulary 260 appears in the text portion of paragraphs, headings, outlines, and
tables. The text element in each of these structures is preferably “mixed” content, meaning that
text can be arbitrarily sprinkled with elements within the text element. A vocabulary group can
be created in individual schemas. Each vocabulary group can be imported into a vocabulary
schema. A vocabulary group in the vocabulary schema can be imported into an inline schema.
The inline schema can create various groups of vocabulary and other elements that are imported
into the text element of paragraph, outline, heading, and table. .

[0080] The creation of a vocabulary group in individual schemas can provide a “flatting” of
any structure used by data elements. Structure is preserved in the data elements that have
content models, but by referencing children, the children are made available through the
vocabulary group for inserting into the text. In the preferred embodiment, these elements are
called “inserted vocabulary elements” (“IVE”).

[0081] Vocabulary 260 is pret;erably collected by importing and referencing one or more
groups in a vocabulary schema. The vocabulary group can then be imported into the inline
schema. The inline schema preferably includes other elements that are common to all
documents.

[0082] The inline group can then be imported into each of the text elements of paragraph,
heading, outline, and table. A simple reference to Inline:Inline makes available all of the
vocabulary elements from all of the schema that are imported in the first step, which provides the
ability to create either a very specific vocabulary for a specific document type or a very extensive

vocabulary for a more general or complex document type.

Schema Maintenance, Discovery, and Documentation

[0083] The schemas can be maintained over time and published so that interested parties are
able to discover schemas electronically. Preferably, the schemas are also documented.

Preferably, the system 100 automatically maintains, discovers, and documents XML schema, in

18

WO 2004/112301 PCT/US2004/018510

both a machine and human-readable format by publishing schema, documentation, data
dictionaries, and indexed lists of schema in the schema repository. For example, a
SchemaDescriptions.xsd file can be created such that it uses the namespacé prefix “Iml” (for
“Legal Markup Language”).

The Schema Repository

[0084] Preferably, there is a primary schema repository 120 that stores all schemas.
Additionally, mirrored and/or local schema repositories can hold all or a subset of all schemas. It
is also possible that several schema repositories exist that are not full mirrors of each other but
that combined hold all schema. A block diagram of an exemplary schema repository 120 is
depicted in Fig. 3. In the preferred embodiment, schemas in the schema repository 120 are
located as a web resource at a URI corresponding to the value of the schema’s namespace with a
filename that is the same as the intended root element and namespace prefix. Thus, the schema
repository 120 can be accessed via HTTP, for example, although it is also possible to access
schemas in repositories using other protocols and in other directory structures.

[0085] The schema repository 120 is a directory structure that allows any schema
corresponding to any given arbitrary namespace or arbitrary instance document (which would
have a namespace within it) to be discoverable and available. A schema is considered available
even if it is password protected for security, privacy or other practical reasons.

[0086] The schema can also be available in mirrored or local repositories. Also preferably,
the schema repository 120 can be portable from the local or mirrored schema repositories. Local
schema repositories can be created, but preferably the schemas downloaded in the local schema
repository match exactly the schemas in the schema repository 120. If changes are made locally
to a non-frozen schema, then the schema can be uploaded to the schema repository 120, and the
old schema can be archived. If the schemas in the local schema repository does not match
exactly the schemas in the schema repository 120, then the system may potentially encounter
inoperability problems.

[0087] Mirrored schema repositories in either HTTP or FTP or other publicly accessible
space can be created. Preferably, the mirrored schema repository follows the same directory
structure as the schema repository 120 beginning with the directory “Schema”. Also preferably,
the mirrored schemas are exact replicas of corresponding schemas once a schema is frozen. If

the schemas are not exact replicas, then the system 100 may potentially not work correctly

19

WO 2004/112301 PCT/US2004/018510

because the system 100 preferably has distributed schema repositories. In the preferred
embodiment, creating exact replicas of schemas in a mirrored repository can be done using
digital signature technology, although other means are also within the scope of the present
invention.

[0088] Optionally, the schema repository 120 can be password protected for access only by
authorized users. Also, parts of the schema repository 120 can be password protected for access
by different groups of users, while parts of the schema repository 120 can be open for semi-
private or public consumption. Thus, “sub-repositories” can be created within the schema
repository 120. Each of these sub-repositories can be password protected such that a select
group of users is given access. Each sub-repository can also have its own
SchemaDescriptions. XML file. When a user navigates to that part of the schema repository 120,
the sub-repository would preferably have the same or similar look, feel, and functionality as the
schema repository 120, but only those schemas in that part of the sub-repository would be
available for searching and viewing. For example, the schema repository can have a first sub-
repository 305A and a second sub-repository 305B. The first sub-repository 305A can have a
security feature 310 that provides for password protection.

[0089] Also each sub-repository 305A and 305B can include a mailing list 315 and its own
document repository 320. Both the mailing list 315 and the document repositories 320 can be
used in a workgroup environment where multiple users, including users across organizations, can
work on a set of schema and documentation at once.

[0090] Preferably, the schema repository 120 has a user interface 325 that allows the user to
search the schema repository 120 and to view links to schemas in the repository. For example,
the schema repository 120 can have a user interface 325 that lists the schema namespace prefix,
or the “genre” of schema and its associated schema namespace as a web address. By clicking on
the web address, the user can view 335 the schema. The list of schema can be in alphabetical
order based on the namespace.

[0091] Also, there can be a search box/field that allows the user to search for a particular
schema based on its namespace prefix or by elements, attributes, or types within schemas. For
example, if the user searches the term “Email”, all of the schema that have the string “Email”
will appear in the browser, and the other schema will be sorted out. Letters or partial words can

also be searched.

20

WO 2004/112301 PCT/US2004/018510

[0092] In the schema repository 120, the user can also view a description 340 of each
schema. For example, if the user clicks on the schema prefix, the user can view a description of
the schema. The schema description can provide an update history for the schema, including the
name of the author and whether the schema, in its history, has been copied from another
namespace. This historical record can be useful for understanding when and why changes were
made to the schema and can provide a means to trace the schema back in time. The schema
description can also be available either within the schema or in an accompanying documented
schema.

[0093] The user can also view schema documentation 345 in the schema repository 120. For
example, the schema namespace is a hypertext link that can take the user to either the schema
documentation or to the schema itself, if documentation is not available. Schema documentation
can include, but is not limited to, the schema namespace, the schema repository 120, the schema
prefix, the elements, attributes, types, and imported schema in the schema, and the change
history. Also within the schema documentation, there is preferably a “Schema Repository
Location” link that takes the user to the schema file itself. There can also be a reference to a
data dictionary and to a compressed (zip) file that includes all subschema of a complex, multi-
level schema. Preferably, all schema documentation includes the same or substantially similar
information in the same or substantially similar format, even though the schema documentation
can include a variety of information in a variety of formats.

[0094] Preferably, the schema documentation begins with a table of contents. Also
preferably, the items in the table of contents are hypertext links that, when clicked, take the user
to a description of the element, simpleType, imported schema, or other construct used in the
schema. Preferably, each definition has a link that can take the user back to the table of contents.
The table of contents also includes a list of imported schema. Imported schema are external, not
internal, and the schema themselves can contain elements, attributes, simpleTypes, imported
schema, and other constructs.

[0095] Through the user interface, the user can also download 350 schema packages and
view 355 data dictionaries. The data dictionaries can be created from the schema and can
provide a flat list of each term in a single schema or in a set of schema along with a link from the
element, attribute, or simpleType name to the definition in the online schema documentation as

well as the data type and a link to the definition of the data type. The schema packages can be

21

WO 2004/112301 PCT/US2004/018510

compressed (e.g., zipped) files that preserve the hierarchical directory structure and include all
schema that are in a set of schemas. Thus, the schema packages provide an easy way for a user
to download the entire set of schema and unzip it into a local repository while preserving the
directory structure. |

[0096] The schema repository 120 can be periodically updated by using a crawler 360. The
crawler 360 is a tool that allows an administrator to literally “crawl” the schema repository 120
and update the SchemaDescriptionXML files, which are used to generate the interfaces and
provide the search capability described earlier in this section. For example, the crawler 360 can

be a web-based tool.

The Schema Generator

[0097] Preferably, the schema generator 125 is an application that provides an interface 405
for creating, editing, and building normalized schema. To create 410 schema, the schema
generator can preferably import 415 other schema or import 420 data dictionaries. Also
preferably, the schema generator 125 can provide a user interface 420 that allows a user to
manage schema, schema documentation and schema data dictionaries. Preferably, the schema
generator 125 c}an do this by allowing a user to view schema 425; backup schema 430; copy
schema and subschema 435; delete schema 440; document and annotate schema 445; and
validate and normalize schema 450. Additionally, the user can create schema documentation
455; create data dictionaries 460; package schema and documentation 465; publish 470 schema,
schema documentation, schema data dictionaries, and schema packages into a schema repository
120; and freeze schema 470.

[0098] To view schema, the user interface 405 can include a treeview and a schema
properties window. In the treeview, there can be, for example, four tabs, “Repository,”
“Schema,” “Imported Schema,” and “Copy.” Preferably, the schema properties window shows
the properties of the last opened schema. In an exemplary embodiment, the Repository tab opens
by default. On the Repository tab, the schema generator 125 can provide an interface into the
local schema repository 120.

[0099] . To open or view a schema 425, the user finds the schema in the schema repository
120 by preferably using the directory menu. Then, the user can select the schema file from the
file menu. The user can open the schema in various applications, including but not limited to,

the schema generator window, Internet Explorer, Notepad, or XML Spy.

22

WO 2004/112301 PCT/US2004/018510

[0100] Schema can also be documented 430 in the Repository tab. For example, a document
button can be located on the Repository tab so that when the user clicks the button, the schema
can be automatically documented. The user can add prose documentation to the schema either
by editing the schema as a text file in another application, such as, for example, in Notepad or
XML Spy, or the user can add prose documentation through the schema generator interface.
[0101] Also within the schema generator 125 is a feature to manipulate the schema 420. To
validate and normalize schema 435, there can be two additional buttons: “Validate” and
“Normalize.” Clicking on the Validate button validates the schema by using, for example,
Microsoft MSXML 4.0 parser. If the schema is not valid, the schema generator 125 can provide
a message that states (a) that the schema is not valid with an error message from MSXML; (b)
whether or not the schema is well-formed; (c) whether or not the schema namespace is a valid
namespace; and (d) whether, based on the namespace, the schema is located in a correct place in
the repository (if it is not located in a correct place, the schema may not import other schemas
properly and may be invalid as a result, but otherwise be a good schema).

[0102] Clicking on the Normalize button will normalize the schema based on the schema
framework’s‘ practices and conventions. Because the schema is altered during this processes and
potentially changed, option boxes are preferably used to allow the user to the instruct the schema
generator 125 whether or not to (a) back up the original schema; (b) over write the original
schema; and/or (c) document the new schema with an update showing the schema has been
normalized. |

[0103] ‘Also preferably, the schema generator 125 can include a function to automatically
normalize schema by using a normalization algorithm. In the preferred embodiment, the
algorithm functions such that an input schema is transformed into another representation and
then transformed from that new representation into a schema. The resulting schema should be a
valid schema, should follow the rules of the schema framework 115, and should validate the
same instance documents as the original schema.

[0104] It is possible that the schema is a valid schema, such as a valid W3C schema, but not
a normalized schema. In this case, the schema generator 125 attempts to fix the schema and put
it into a normalized state. If the schema generator 125 cannot do this, it provides some
explanation. The user has the option of normalizing the schema without saving it or normalizing

the schema and saving it.

23

WO 2004/112301 PCT/US2004/018510

[0105] Schema can also be backed-up 440 in the schema generator 125. For example, a
“Backup” button can exist on the Repository tab such that when the user clicks the Backup
button, the schema is automatically backed-up in a file that preferably includes the date and time.
[0106] Because the schema are preferably “frozen” after an instance document based on the
schema has been published, it is useful to be able to copy schema 4435 or groups of schema from
one place in the schema repository 120 to another place. Whether one schema or several
schemas are copied, the schema generator 125 preferably copies the schema, changes the
namespaces in the schema as well as any imported namespaces, and then saves the schema in its
new location. The user can also specify where the copied schemas are to be stored. Groups of
schemas can also be copied in substantially the same manner. Preferably, there is “Copy Single
Button” and a “Copy All” button that the user can click to copy a schema and to copy all the
schemas.

[0107] This ability to copy schemas is especially useful for forms and documents that change
slightly from year-to-year or at other times. An exact replica of the form can be copied, and then
slightly modified in its new namespace. Because the form of the original schemas are uniquely
identified by their namespace and the schemas preferably remain “frozen” in their places in the
schema repository 120, it is possible to validate legacy forms and documents created with the
original schema, while upgrading to a new form. |

[0108] A schema that is open in the schema generator 125 can be edited 450. Clicking on
the Schema tab can bring up a sliding tab interface that shows elements, children, simpleTypes,
and attributes. Elementé, children, simpleTypes, and attributes can be added, edited, and/or
deleted. As new schema are opened in the application, the schema generator 125 stores element
names, attribute names, simpleType names, documentation (if available) and other information
in a Dictionary. If the schema is an XML schema, the vocabulary is associated with a
namespace, so that there is a history of where the term originated. Vocabulary from schemas
that are not normalized schemas can also be imported into the Dictionary.

[0109] Most complex schema, such as messages, forms, and documents use many of the
same “building block” schemas. It is often convenient to import “building blocks” or
“primitives” from the schema repository 120 and use those schemas as they are or with slight
revision. Similar to the Dictionary, the schema generator 125 has the ability to provide a pick

list of existing schema and import user-selected schema directly from the schema repository 120

24

WO 2004/112301 PCT/US2004/018510

into a schema as it is being built. For example, if a form includes a “Witness”, it is possible to
(a) create an element named “Witness”, (b) import the “Person” schema (which imports into it
the Address, Email, and Phone schemas), and then (c) create the Witness type as “Person”.

[0110] The pick list of schemas is created from a SchemaDescriptions. XML file generated
by the crawler. Because the schema repository 120 can be segregated and password protected
and can contain multiple SchemaDescription. XML files, users of the schema generator 125 can
be given limited access to parts of the schema repository 120 for security, privacy, or other
reasons. Once schema have been generated, copied, edited, normalized, and documented, both
the schema and documentation can be uploaded into the schema repository 120. This can be
accomplished by clicking on the schema and the documentation in the Repository tab and
clicking the Upload button.

[0111] Also within the user interface 405, the user can create schema documentation 455,
create data dictionaries 460, package schema and documentation 465, publish schema 470, and

freeze schema 475.

The Code Generator
\
[0112] Preferably, the code generator 130 has a user interface 505 which allows the user to

generates code 510, generate a test project 515, and generate code documentation 520 from
schema that, when compiled, provides a DOM-based (i.e., document object module based)
application program interface (“API”) to the schema. The code generator 130 generates code (or
an API) that allows a programmer (or user) to easily output XML instance documents 525 that
validate against the schema. The code-generated code can also consume valid XML instance
documents and provide the data in the document to other applications from its APL. Preferably,
the API can save the XML instance document in the XML document repository 160 in a
consistent manner.

[0113] The code-generated code can be source code 530 or compiled code 535, for example,
and can be used in other applications, such as the editor, development kits, and applications
created by third parties. The test project can use the code-generated code and has in itself
generated code. The code generated code and the test projects output instance documents.
Instance documents created by code-generated code (or the test project) can be stored in the

document repository and used as input for the wizard, editor, viewer, and e-filing applications.

25

WO 2004/112301 PCT/US2004/018510

[0114] Preferably, the code generator 130 has a user interface 505 that is simple to use. For
example, the user can select a normalized schema from the schema repository 120, can select an
output location, and can select various properties, such as to generate only code or to generate
source code or compiled code. Then, the user can click a button to generate code. The code
generated is a set of classes that, when run or compiled, provide a very quick and easy way of
creating XML instance documents that validate against the schema, as compared to manually
creating such code, which would require substantial time. Thus, the resulting code can be used
very easily within other code projects to output XML and consume XML instance documents,
and to make data within the documents available through the APL.

[0115] Preferably, the code generator 130 also creates a test project that uses the code-
generated source code 530 or compiled code 535 that outputs an XML instance document with
dummy data. The resulting test project can be used to output XML with little user intervention
except mapping data values to the céde-generated API and assuring the logic of the data is
consistent with the rules of the schema.

[0116] Preferably, the code generator 130 can also send XML instance documents over the
Internet or other network using one of several standard protocols, such as HTTP, FTP, SMTP, or
SOAP.

[0117] The output XML instance document 525 can be compatible with the mdexer and
viewer 150 so that complex searches and reports can be generated from a repos1tory of XML.
instance documents. The API allows a user to output “Simple XML” or “Complex XML.” Both
Simple XML and Complex XML preferably validates against the schema used to generate the
code that generated the instance document. Specifying “Simple XML” preferably generates
XML using locally declared namespaces and no namespace prefixes. Specifying “Complex
XML preferably generates XML using either globally or locally declared namespaces and uses

namespace prefixes.

The Wizard

[0118] The wizard 140 is designed to allow users to quickly and simply enter data into a user
interface 605 (that can be dynamically created by the wizard), create and edit XML messages
and forms 610, create and edit templates 615, and submit completed messages and forms to
electronic filing applications or other custom applications 620. Users of the wizard 140 need

little or no knowledge of XML or other underlying technologies. Users simply type data into a

26

WO 2004/112301 PCT/US2004/018510

user interfaces to create the XML message or form. When the form is completed, it is preferably
saved in a document repository 160. ’

[0119] Preferably, the wizard 140 is simple to use, supports multiple forms and messages,
supports submission of the forms and messages to electronic filing applications or other custom
applications for processing of the XML data, and supports automatic storage of XML forms and
messages in the document repository. Forms and messages can be created from any schema
following the normalization rules of messages or forms. Forms that have stylesheets can be
printed directly from the wizard 140. Forms can be viewed in html format, as for example in
Internet Explorer or Netscape, in an Adobe PDF format, in a Rich Text Format (“RTF”), or in
Scalable Vector Graphic (“SVG”) format. Previously created documents can be opened, edited,
and resent to electronic filing applications or other custom applications. Also, the wizard 140
can be configurable to automatically distribute completed forms to multiple HTTP, FTP, or
SMTP addresses.

[0120} To reduce data entry into the forms, the user can create multiple templates 615 from
within the wizard 140 to hold frequently used data; the user can use the internal copy button to
copy and reuse information previously typed into the form into multiple other locations within
the form; or the user can use the external copy button to copy and reuse information from outside
data sources. Also, the wizard 140 can employ “perfect fit” technology to provide as much or as
little space on the form for data of variable length. ‘

[0121] The wizard 140 can work with both encrypted and unencrypted schema. Use of
encrypted schema provides additional data security and integrity. The wizard 140 is also
compatible with the viewer 150 for complex searches of the document repositories.

[0122] The wizard 140 provides users with a simple way to enter data into XML forms.
“perfect Fit” form technology provides as much or as little space as needed on the form for data
of variable length. Perfect Fit technology works by combining the XML data and a stylesheet to
dynamically create the visible form. Whether there is one address or five, all of the addresses
will fit the space on the form. This is an improvement over paper forms and other electronic
forms where a fixed space is provided for variable length data and blanks must be filled. For
example, if a traditional form provides space for four data items, but the user types in only one of
those data items, then there is extra space on the form for three items. Similarly, if the user has

five items and there is only space for four, then the traditional form does not have enough room

27

WO 2004/112301 PCT/US2004/018510

and the user either has to type in the form margin or some other free space, or the user has to add
an addendum to the form.

[0123] Some forms can automatically be installed when the wizard 140 is installed. Other
forms can be downloaded from the schema repository 120, or created by a user or an
administrator using the schema generator 125 or another XML Schema development tool.
Preferably, the system 100 is configured to allow only the administrator to add forms to the
wizard 140, although it is within the scope of this invention to allow any user of the wizard 140
the ability to add and remove forms from the wizard 140.

[0124] When forms are added to the system, the user can select “Simple XML” or “Complex
XML?” as the “Output format.” Both Simple XML and Complex XML can validate against the
schema used to generate the wizard interfaces used for data entry. Specifying “Simple XML”
preferably generates XML using locally declared namespaces and no namespace prefixes.
Specifying “Complex XML” preferably generates XML using either globally or locally declared
namespaces and will use namespace prefixes. The output location is a location in the document
repository where the resulting XML instance document can be saved. The user can select any
output location on any local or network drive for the document repository. Different forms can
be saved in different document repositories, if desired.

[0125] Each form can be stored as a file in the document repository 160, and then
subsequently accessed by a user or an application, by its unique form name, which preferably
identifies the content of the form. For example, a form for a police complaint in New Hampshire
can have the form name: “New Hampshire Police Complaint”. Preferably, characters that are not
permissible in filenames, such as colons or slashes, should not be used. Stylesh@ets can also be
applied to a form. The use of a stylesheet is optional, but the stylesheet will enable the document
to be viewed in a human readable format. The form can also be identified by opening it and
determining its namespace.

[0126] In the wizard 140, the user can select either a new document or a new template.
Preferably, a document is the default when the user first starts the application, and preferably, the
application will remember the last selection each time the wizard 140 restarts.

[0127] In the document, the user can choose which form to open by selecting the form name
from the list of available forms. Preferably, when “New Document” is selected, a form will open

with a data entry screen on top. The data entry interface is generated dynamically from the

28

WO 2004/112301 PCT/US2004/018510

schema. The form in the background is dynamically generated from the schema and the
stylesheet. The wizard 140 can dynamically generate new interfaces based on an arbitrary XML
schema, provided the schema is normalized based on the rules of the schema framework.

[0128] The wizard 140 understands the form based on the namespace of the XML schema
selected in the configuration. Schemas imported are understood as well, as their namespaces will
be present when imported. The wizard configuration file allows the administrator to select a
schema and a stylesheet and a form name for the form. The form name appears in the new
document window. In the background, the form is uniquely identified by its namespace. As a
result, the wizard 140 can automatically generate interfaces appropriate to the form based on the
XML schema. Likewise, the stylesheet is created especially for data created by the XML
schema, ensuring that it will work properly to render the data irllput and resulting XML.

[0129] Completed or partially completed forms can also be opened in the wizard 140.
Alternatively, forms can be opened directly from the document repository or from within the
viewer. When opened, data in a saved form automatically populates the data entry scréens where
the data can be edited or augmented. Because the XML document’s namespace is preferably
present in the XML document when it is saved, the wizard 140 can read the namespace and
locate the appropriate schema in the schema repository 120. However, if the namespace is not
present in the XML document (or if the namespace is incorrect or if the schema at the end of the
namespaces has changed), then the wizard 140 may not work properly and the system 100 can
fail. Thus, the wizard 140 can generate interfaces appropriate to the XML form and can populate
the XML data automatically into the interfaces.

[0130] Preferably, schema included in the wizard installation files are encrypted and
packaged so that they cannot be easily altered. Thus, schema that are distributed are “frozen”
from a technical perspective so they are more difficult to alter.

[0131] The user interface for each form can differ depending on the schema and stylesheet
used. The wizard 140 can use multiple screens and sub-screens to navigate through the data
entry process. These screens correspond to the hierarchy of the XML schema. The user is able
to type in as little or as much data as is necessary, as defined by the schema, for a particular
form. The user can enter data into a field by typing directly into that field. Some fields, for
example “Create Date” or “Create Time,” open a new pop up box where the user can enter data

specific to that field. There are a number of XML schema constructs that the wizard 140

29

WO 2004/112301 PCT/US2004/018510

recognizes to create special controls in the interface. For example, combo boxes, or drop down
lists, can be created based on specific schema constructs.

[0132] In the preferred embodiment, common controls (for the specific platform,
programming language, or operating system, such as but not limited to, Windows, Linux, and
Java) can be created based on the data type or construct in the schema. For example,
simpleTypes with enumerations can create drop down boxes with lists. Strings (xsd:string) or
integers (xsd:integer) with maxLength and minLength can create a text box that allows specified
length in characters. A simpleType named “Memo” can create a large, multi-line text box.
Special constructs can exist for font picker controls, radio buttons, check boxes, date and time
pickers, and other controls.

[0133] The labels in the wizard 140 interface are preferably dynamically generated from
element and attribute names. Preferably, element and attribute names use no spaces. As a result,
the wizard 140 searches for combinations of lower case and uppercase letters (e.g., “tN” in
“FirstName”) and adds a space in between the lower case and upper case letter to create a
dynamically generated label. Other ways of generating labels for interfaces based on the
schema are also within the scope of the present invention

[0134] Thus, users can create any arbitrary schema, using for example the schema generator
125 and have the schema and its vocabulary appear in and create data entry screens in the wizard
140. For example, the wizard 140 can automatically generate foreign language interfaces simply
by using schema that use foreign words for element and attribute names.

[0135] Within the user interface, the user can navigate through the fields by using the mouse
or the tab key and keystrokes, for example. “Previous” and “Next” buttons can be used to move
between screens. Also, the user can navigate through main screens and sub-screens. Sub-screens
are screens within screens. The relationship among screens reflects the Parent/Child/Sibling
relationships as defined by the XML schema. As a result, it can be said that there are parent
screens, children screens, which are screens on different levels, and sibling screens, which are
screens on the same level. Parent screens may have multiple children screens. A child screen
may itself be a parent screen and may have children.

[0136] “Choice screens” can be used to enable the user to choose an item from among a
discrete number of items defined by the schema. For example, radio buttons can be used to

allow the user to make a choice among the items. Once the user chooses an item, then the user

30

WO 2004/112301 PCT/US2004/018510

can input data. Once the user presses a Done button, the text beside the radio button previously
chosen will preferably change to reflect that data has been inputted.

[0137] The “Done” button can be used to save the data entered on the screen or sub-screen.
If the user is in a sub-screen, the done button will preferably return the user to a main screen or
parent screen.

[0138] A “Cancel” button can be used to discard all new data entry f;)r that particular screen
and close the screen. If the user is working on a sub-screen (e.g., a child screen) and presses
cancel, the data entered on that screen will preferably be cleared and the user will return to the
screen’s parent screen. If the user presses cancel on a main screen, the entire form preferably
will be closed and all previously entered data will be discarded. Also preferably, if the user is
editing data previously typed, the cancel button will not discard the data previously typed, but
new data will not be saved.

[0139] A “Finish” button can be used to save all of the data entered as an XML file in the
document repository. The location of the document repository is set in the wizard configuration.
The Finish button also shows the user a finished version of the form the user has just completed.
Additionally, the Finish button can be configured to email the form as an attachment to the email
addresses in the configuration and/or to call an external application, such as an electronic filing
application, that can receive and process the form.

[0140] An “EFiling” button can be used to electronically file the form through the e-file
module. Other buttons can be added to the user interface. The other buttons can include, for
example, copy, delete, save, print preview, print, email, new form, all of which are generally
known in the art. Also, arrow buttons can be used to add additional data in a field. Additionally,
buttons can be defined within the wizard 140. For example, one button can be labeled “Create
Complaint”, such that when it is clicked, a screen pops up for data entry. Alternately, a
complaint form can appear in the user interface.

[0141] The user of the wizard 140 can create and store various templates within the wizard
140. Templates can bé useful when the user wishes to store frequently used data in a form, so
the user does not have to type the same information repeatedly. For example, if the user has a
form where the user always uses the user’s address as the return address, then the user could
create a template with the user’s address stored in it. The template can then be available to the

user when the user creates a new document, which saves the user from typing in the address

31

WO 2004/112301 PCT/US2004/018510

repeatedly. Thus, it can be much quicker to create and use templates for common data.
Combined with the copy button, duplicate data entry is reduced or eliminated, and the quality of
data is high because mistakes are avoided when retyping is avoided.

[0142] The wizard can receive as input an XML form or message created by code-generated
code. For example, a developer can use the API from code-generated code to put information
from a backend database into an XML instance document based on a schema. The XML
instance document created from the code-generated code can then be opened in the wizard and

edited as if the XML instance document were created in the wizard.

The Editor

[0143] The editor 145 is a word processor that can be used for editing the documents defined
by the schema framework 115. Even a user unfamiliar with XML and the underlying technology
can quickly and easily operate the editor 145. Preferably, the editor 145 automatically
configures itself based on the document type opened. Also preferably, the editor 145 uses the
wizard 140 internally to allow the user to edit data inside the document without seeing the XML
tags within the document. The editor 145 has an authoring interface 705 that preferably uses
«colorization” 710, “tool tips” 715, and “keystrokes™ 720 to show the author visually where data
elements and document parts are located within the document, rather than including tags within
the text. This provides a what-you-see-is-what-you-get (“WYSIWIG”) XML authoring
environment. Additionally, the user can insert new vocabulary into the XML document.
Moreover, the editor 145 is preferably compatible with the wizard 140 and can be used in
frontmatter, backmatter, and within paragraphs, outlines, tables, and headings in the body. The
editor can include an electronic filing button that passes documents to an electronic filing
application.

[0144] Upon launching the editor 145, the user can create a new document, edit a document,
or create a document from a template. For example, the user can search the document repository
and open a document for editing. Preferably, the user interface of the editor 145 has the look and
feel of standard word processing software.

[0145] However, unlike traditional word processing software, the top and bottom portions of
the document (i.e., frontmatter and backmatter) are preferably static forms. For example, if a
user is typing information into the document frontmatter, and the user types the enter key or the

spacebar key within a vocabulary item, the wizard tool will pop up and provide the user an

32

WO 2004/112301 PCT/US2004/018510

interface in which to type the information. Thus, unlike other word processing software, the
enter key does not produce a line feed within frontmatter, backmatter, or a vocabulary item.
However, when the user edits prose that is not vocabulary within paragraphs, outlines, and tables
within the body of the document and types the enter key, a line feed is created.

[0146] For example, document formats such as MS Word and Word Perfect create a
completely free-flowing document format where line feeds are inserted whenever the enter key is
used, creating a very flexible authoring environment with no fixed content. Document formats
such as Adobe Portable Document Format (PDF) are very static, rigid formats that allow a user
to type data into blanks, but do not allow the free-form editing environment of a word processor.
The editor uses a document format (defined by the schema framework) that tells the applfcation
that some parts of the document are fixed and not appropriate for line feeds, while other parts of
the document are not fixed and are appropriate for free-form editing such as editing in a word
Processor.

[0147] Preferably, the top and bottom of the document are authored much like a document in
the wizard 140 except that in addition to the wizard interface, it is possible to type directly into
the document, which is similar to using a word processor or typing into a fill-in-the-blank
electronic form.

[0148] To enter data into the vocabulary in the document, the user can type into the interface,
which‘ is similar to using a word process or typing into a fill-in-the-blank electronic form, or the
user places the cursor into a vocabulary field and clicks the enter key or the spacebar key. When
the user does this, the wizard 140 launches. The user can also right click on the mouse to insert
new vocabulary or edit existing vocabulary with the wizard 140. Once the wizard 140 opens, the
user can then type in information to fill the vocabulary. Some vocabulary items, for example
“Name of Child” or “Address”, can open a pop up box where the user can enter data specific to
that field. Olther items, such as “Date” fields, can open a pop up box that allows the user to
choose a date using a date picker control. Also, it should be noted that some vocabulary items
can be edited, while other vocabulary items can remain unedited. ‘

[0149] Alternately, the user can select a vocabulary field with the mouse (for example, by
left clicking the field) and then can type directly into the field. The vocabulary placeholder (e.g.
“[Enter Name of Child]”) preferably disappears, and the text the user types appears in its place.

33

WO 2004/112301 PCT/US2004/018510

[0150] Preferably, when the user moves the mouse over the text, or when the cursor is
otherwise placed in the text, the area where the user can enter text changes color, which is a
technique known as colorization 710. As the user moves the mouse over vocabulary, different
colors indicate where pieces or chunks of vocabulary, clauses, and paragraphs exist in the
document. In addition, a tool tip 715 can appear over the vocabulary, clause, or paragraph,
which conveys to the user the information is within the document.

[0151] The user can also use the arrow keys to move between the different fields,
vocabulary, clauses, and paragraphs (“nodes”). In the preferred embodiment, keystrokes 720 are
used in the user interface to move between the different nodes. For example, if the cursor is in
front of the last character at the end of the first node, and the user clicks the right arrow key, the
cursor will move one character to the end of the first néde, adjacent to the second node. The first
node will remain colored. When the user clicks the right arrow key again, the first node will
loose color and the second node will become colored, although the cursor will not move in the
user interface. The color signifies to the user that the content in the first node is no longer
editable but that the content in the second node is editable. If the user clicks the right arrow key
a third time, then the cursor will move one character to the right. Thus, two keystrokes of the
arrow keys allow the user to visually move between adjacent nodes (e.g., three right arrow key
strokes result in only two movements of the cursor when the cursor is at the boundary of a node).
This behavior is unlike other word processors. Combined with colorization, this behavior
enables the editor’'s WYSIWYG feature, because unlike other word processors, viewable
markers are not required within the editable document.

[0152] When the user left clicks on a vocabulary place holder, for example “[Type County]”,
and then types the text, the vocabulary placeholder disappears. Vocabulary placeholders
preferably use [brackets] and the word “Type” to indicate a blank vocabulary item within the
document, which can be edited, although other textual cues could be used. Once the user has
entered information into the vocabulary item, the placeholder disappears. If the user deletes all
of the text in a vocabulary item, by using the delete or backspace key, the vocabulary place
holder preferably reappears.

[0153] If the user has selected a vocabulary date field (i.e. “[Type Date]”) within a heading,

paragraph, or outline, a date wizard can be used to enter the date. The date wizard can provide

34

WO 2004/112301 PCT/US2004/018510

drop down lists of .the day, month, and year, and then automatically create a date field in the
XML document.

[0154}] Similar to the wizard 140 discussed herein, the editor 145 can also have a plurality of
buttons, including, but not limited to, next, previous, cancel, done, and finish, to move between
screens and to save, cancel, or manipulate data therein.

[0155] Also within the editor 145, the user can open, for example, a notepad application.
The notepad has the look and feel of standard word processing software, with various editing
tools, toolbars, and pop-up menus from the right click of the mouse. Within the notepad, the
user can create a new XML document. Within the document, the user can enter paragraph text
by, for example, clicking on the “[Type paragraph]” field on the screen, and typing into it. Also,
the user can select a feature to convert the paragraphs typed into an outline format. An outline is
an indented and numbered area of text (similar to bulleted lists in a word processor). Outlines
. can also be created directly within notepad.

[0156] In addition to adding paragraph text, the user can add headings to the paragraphs.
The user can select the heading option from the toolbar or the pop-up menu from the right click
of the mouse to generate a new heading. Headings can be automatically numbered within the
XML document.

[0157] The editor 145 has the ability to add and save “most used clauses” that can be
automatically inserted into the XML document, including into the paragraphs, headings, and
outlines. Thus, creating documents is quick and easy and reduces the number of errors by
minimizing the data entry involved in re-keying. For example, a pop-up window or a menu can
be used to store the “most used clauses” that can later be accessed by the user by opening the
window or menu. '
[0158] The editor can configure itself to any document that follows the rules of the schema
framework 115. Preferably, buttons will appear on a left-aligned toolbar that correspond to
structural elements in the body of the document. For example, in a transcript, if question and
answer structural elements are defined by the schema in a document’s body, then buttons that
allow the user to insert a question and answer will preferably appear on the left-aligned toolbar.
Likewise, in a contract, if a clause structural element is defined by the schema, then a bufton that

allows the user to insert a clause will preferably appear on the left-aligned toolbar.

35

WO 2004/112301 PCT/US2004/018510

The Document Repository

[0159] Preferably, the document repository 160 is a directory structure that can store the
various documents and forms. Also preferably, the document repository 160 can be indexed and
searched by the indexer and viewer 150. Preferably, the directory structure is set of hierarchical
directories and subdirectories that are organized by a main directory determined by a user, with
the first level of subdirectories named based on the year in which an XML instance document is
created, such as “2003” or “2004”; the second level of subdirectories named based on the
numerical month in which the XML instance document is created, such as “01” for January or
«“02” for February; and the third level of subdirectories named based on the day in which the
XML instance document is created. For example, an instance document created on March 7™

2004, can be saved in a directory such as “MainDirectory/2004/03/03/.”

The Viewer and Indexer

[0160] The viewer and indexer 150 can search the document repository 160 based on any of
a variety of search parameters. The viewer and indexer 150 can search any field of each
document in the document repository 160. Also preferably, the viewer and indexer 150 can
automatically configure itself based on the rules of the schema framework. For example, the
viewer and indexer 150 can automatically configure itself based on an input schema to create a
search term or a plurality of search terms that can be used to search the document repository 160
(and/or mirrored and local repositories) containing documents and forms created based on the
same input schema. If used with the e-filing module 155, electronic filings and confirmations
are also saved in the document repository 160 and are easily and fully searchable using the

viewer 150.

The E-Filing Module
[0161] The e-filing module allows the user of the system 100 to electronically file the form

or document with an electronic filing service provider. The module allows the user to send one
or more documents to one or more recipients in a manner similar to using electronic mail.

[0162] While the invention has been shown and described in preferred forms, it will be
apparent to those skilled in the art that many modifications, additions, and deletions can be made
therein. These and other changes can be made without departing from the spirit and scope of the

invention as set forth in the following claims.

36

WO 2004/112301 PCT/US2004/018510

CLAIMS

What is claimed is:
1. An apparatus for determining whether a mark up language schema is normalized, the
apparatus comprising:

logic configured to receive a schemé and to determine whether the schema conforms with
a schema framework rule set and if a determination is made that the schema does not conform
with one or more rules, then conforming the schema to the one or more rules.
2. A system for normalizing mark up language schema, the system comprising:

a schema generator configured to receive user input and to process the user input in
accordance with a predefined schema framework rule set to generate and normalize schema; and

a first schema repository configured to archive schema and retrieve archived schema, the
schema repository having a directory tree structure, and wherein each schema archived in the
schema repository has a namespace associated with the schema that points to a location at which
the schema is archived in the schema repository.
3. The system of claim 2, wherein the first schema repository corresponds to one or more
servers located at one or more web addresses, and wherein each schema namespace includes a
web address that designates a location of a server at which the schema associated with the web
address is archived.
4. The system of claim 3, wherein once a schema has been archived in the first schema
repository, the archived schema cannot be modified.
5. The system of claim 4, further comprising:

a second schema repository configured to archive schema and retrieve archived schema,
the second schema repository having a directory tree structure, and wherein each schema

archived in the second schema repository has a namespace associated with the schema that points

J to a location at which the schema is archived in the second schema repository, and wherein at
Jeast some of the schema archived in the first schema repository are also archived in the second
schema repository.
6. The system of claim 2, wherein groups of schema stored at certain locations in the first
schema repository are copied to certain locations in the second schema repository.
7. The system of claim 2, wherein the schema generator is also configured to create schema

documentation including documenting a history of a schema over time.

37

WO 2004/112301 PCT/US2004/018510

8. The system of claim 2, wherein the schema generator further comprises:

a user interface configured to receive user input and to display information to the user
relating to creating, editing and normalizing schema.
9. An apparatus for creating and editing mark up language forms or documents comprising:

input logic configured to receive and process user input relating to a form or document to
be created; and

customizing logic configured to dynamically generate a use'r interface customized to the
form or document and to introduce form or document content into data entry fields of the
customized user interface based on user input entered in the user interface.
10. The apparatus of Claim 9, wherein when the customizing iogic dynamically generates the
user interface, the customizing logic places a label for a data entry field in the user interface, the
label corresponding to an element or attribute name of a schema associated with said form or
document.
11. The apparatus of Claim 9, further comprising:

form completion logic configured to generate a completed form or document based on
the form or document content introduced into the user interface.
12. The apparatus of Claim 11, further comprising:

document editing logic configured to edit the document content entered into the data
fields and to use color to designate a document node in a document being edited.
13. The apparatus of Claim 9, and wherein the form completion logic is configured to
automatically process the completed form or document in a predetermined manner to provide the
completed form or document with a particular appearance.
14. An apparatus for viewing and indexing mark up language messages, forms and
documents comprising:

input logic configured to receive and process user input relating to a search to be
performed for a mark up language message, document or form;

interface generating logic configured to generate a user interface based on one or more
schema input to the input logic, the user interface including one or more search term options; and

search logic configured to search one or more document repositories based on a selection

of one or more of said search term options.

38

WO 2004/112301 PCT/US2004/018510

15. The apparatus of Claim 14, wherein the search logic searches a plurality of document
repositories.
16. The apparatus of Claim 15, wherein the document repositories are distributed over a
distributed network.
17. The apparatus of Claim 14, wherein the interface generating logic uses schema from a
mark up language message, form or document contained in a document repository to generate
the user interface.
18. A method for creating mark up language schema, the method comprising:

creating a schema namespace to identify the schema, the schema namespace including a
category identifier that identifies a category to which the schema relates, the category identifier
providing information about where the schema associated with the namespace is stored in a
directory tree memory structure.
19. The method of claim 18, wherein the category, identifier is selected from the group
comprising a geographical region, a legal jurisdiction, an organization, an institution, an
industry, a department, an agency, a type of document, a type of form, a person, an address, a
location and a place.
20. The method of claim 18, further comprising:

publishing the schema associated with the schema namespace, wherein after an instance
document has been published, the schema associated with the namespace cannot be changed.
21. The method of claim 18, wherein the namespace further includes a version identifier that
identifies a version to which the mark up language schema corresponds.
22. The method of claim 21, wherein the namespace further is a uniform resource identifier
(URI).
23. A mark up language sbhema stored in a directory tree memory structure, the schema
having a schema namespace associated therewith, the schema namespace including a category
identifier that identifies a category to which the schema relates, and wherein the category
identifier provides information about where the schema associated with the namespace is stored
in the directory tree memory structure.
24. The schema of claim 23, wherein the category identifier identifies a genre to which the

schema associated with the namespace relates.

39

WO 2004/112301 PCT/US2004/018510

25. The schema namespace of claim 23, wherein if an instance document associated with the
schema namespace is published, the category identifier used in namespaces will be identical for
all namespaces created after publication that include the category identifier.
26. The schema namespace of claim 23, wherein the namespace further includes a uniform
resource identifier (URI) that identifies a web resource associated with the schema.
27. A method for normalizing mark up language schema, the method comprising:

receiving user input and processing the user input in accordance with a predefined
schema framework rule set to generate and normalize schema; and

archiving the normalized schema in a primary schema repository configured to archive
schema and retrieve archived schema, the schema repository having a directory tree structure,
and wherein each schema archived in the schema repository has a namespace associated with the
schema that points to a location at which the schema is archived in the schema repository.
28. The method of claim 27, further comprising:

archiving normalized schema in an additional schema repository configured to archive
schema and retrieve archived schema, the additional schema repository having a directory tree
structure, and wherein each schema archived in the additional schema repository has a
namespace associated with the schema that points to a location at which the schema is archived
in the additional schema repository, and wherein at least some of the schema archived in the
primary schema repository are also archived in the additional schema repository.
29. The method of claim 27, wherein the step of processing schema to normalize schema
includes comparing schema with one or more rules of the schema framework rule set to
determine whether the schema comply with said one or more rules, and if a determination is
made that a schema is not normalized, transforming the schema into a normalized schema.
30. A method for editing mark up language forms or documents comprising:

receiving and processing user input relating to a form or document to bé created; and

dynamically generating a user interface customized to the form or document and to
introduce form or document content into data entry fields of the customized user interface based
on user input entered in the user interface.
31. The method of Claim 30, further comprising generating the user interface through

accessing a schema namespace associated with a schema associated with said form or document.

40

WO 2004/112301 PCT/US2004/018510

32. The method of Claim 30, further comprising placing a label for a data entry field in the
user interface, the label corresponding to an element or attribute name of a schema associated
with said form or document, when dynamically generating the user interface.
33. The method of Claim 30, further comprising generating a completed form or document
based on the form or document content introduced into the user interface.
34. ' The method of Claim 30, and further comprising storing or retrieving a form or document
stored in a document repository.
35. A method for indexing and searching mark up language messages, forms and documents
comprising:

receiving and processing user input relating to a search to be performed for a mark up
language message, document or form;)

generating a user interface based on one or more schema input to the input logic, the user
interface including one or more search term options; and

searching one or more document repositories based on a selection of one or more of said
search term options.
36. The method of Claim 35, wherein the searching further comprises searching a plurality of
document repositories.
37. The method of Claim 36, wherein the document repositories are distributed over a
distributed network.
38. The method of Claim 35, wherein the generating a user interface further comprises using
schema from a mark up language message, form or document contained in a document

repository to generate the user interface.

41

PCT/US2004/018510

WO 2004/112301

| X |
| § “
|
| N HOLVHINIO "
i K VINIHOS |
1 L 1__
| IINAOW x szl — & “
i ONITI4-3 N |
I | |
| gl — | i
_ X _
| I {
! 'l |
| |
| | AdOLISOdTY QEvZIM | 11, | yoLvyanao SHHOMANYYA | |
m AIN3NNO0a HOLIO I 3009 VINTHOS m
| 0oL — Gvl — 1 Joer— sl |
|
| B "
| _ _
. v !
| H3AXIANI K |
“ / 43IMIIN N v i
! X |
' osl— x AMOLISOdTY |
| i |
m NOLLYOIddY | ! INILOS |
| . I !
_ T T |
oL —" soL —

PCT/US2004/018510

WO 2004/112301

SININND0Aa SIWYO4
6Lz —" i 0Lz —
“
|
|
|
|
|
}
{
{
|
[
|
1
|
|
|
|
|
“
" SaLNAIYLLY
|]
" sz —
|
|
|| AMYINEYOOA SINInI T3 S1ONYLSNOD
|
| 09z — 052 — Sz —
! P A DI
VYINGHOS
00z —
N mU_u_ MHOMINVYHA VINTGHOS

S3OVSSdN

SNOILYHVY103d

ovz —

SVYN3HOS
ONIZ3344

sez —

1VINHOA

ocz —

TOHLINOD
NOISHIA

u

szz —

JOVdS3INVN

gL —

PCT/US2004/018510

WO 2004/112301

37

AYVNOILDIA

V AHO1ISOd3d
ININNDO0d

vslLe —

V 1SITONITIVIN

volL€

NOILO310dd
A4OMSSVd

oL —

V AHOLISOd3d-9Ns

vs0e —

Vv.iva M3IA
gge —~
SIAOWIOVd ANV | |
m . mv_ u_ YW3IHOS AVYOTINMOQd
05 —
NOILdIYOSIA MIIA
ge —
NOILVINIWNO0A | |
M3IIA
ove —
|] g9 AHOLISOd3y
YIWIHOS M3IA INSNA50d
gee — asLe —
VINIHOS HOYVAS g 1SI1 ONITIVIN
0ge — a0Ls —
HITIMVYHD JOV4YILINI ¥3ISN g AHOLISOd3y-ans
09 — gze — asos —
_ | _ [
ozl _/ AHOLISOdad VINTGHOS

PCT/US2004/018510

WO 2004/112301

a/7

¥ "Old

VINIHOS 373344

v — |

VYIW3IHOS HSINaNnd

oy — |

NOILVININNOO0Ad
ANV YINIHOS
JOWMIOVd

sop — |

S3IVYNOILLOIA
v1iva 31v3do

ooy — |

NOILVININNOO0d
VINIHOS 31v3dO

VINIHOS 1ia3]

osy —

VINIHOS AdOD [

oy —

VINTGHOS dNXJVE

opy —

VINIHOS 3ZITVINHON
ANV JLvanvAa

sey —

VINIHOS 31LVIONNY
ANV LNJWND0d

ocy —

VWNIHOS MIIAN |

szy —

S3AFVYNOILOId
v1ivad 1d40dNI

oz —

VIN3IHOS
H3IHLO 1HOdNI

sy —"

VINIHOS FOVNVIN

Ol IDOV4HILINI ¥3sN
sov — |

HOLVYHINIO VINIHOS

VINIHOS 31v3d0

oLy —

PCT/US2004/018510

WO 2004/112301

517

SIN3INNO0d
JONVLSNI dITVA

526 —

G "Old

3002 d3NdNOD [—
ges —
3400 I0UNOS —
0es —~
NOILVY.LNINWNO0A 103rodd |

JOV4HALNI ¥3SN

506 —

HO1VHINIO
3400

geL — A

VINIHOS
a3ZiNvINEON

00z —

WO 2004/112301

_—200

NORMALIZED
SCHEMA

e/7

—215

PCT/US2004/018510

VALID INSTANCE
DOCUMENT

v

— 140

WIZARD

e e ————————— — ————— — ————— —— — — — o —

DYNAMICALLY
CREATES USER
INTERFACE

_—610

CREATE AND EDIT
MESSAGES AND
FORMS

_— 615

CREATE AND EDIT
TEMPLATES

VALID INSTANCE
DOCUMENT

PCT/US2004/018510

WO 2004/112301

77

A E

SIMOYULSAIA

SdiL 1001

- NOILVYZIHO10D

sL.—"

oLL—"

c0L —"

d0.11d4

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

