
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2004/0216046A1

Warmus et al.

US 20040216046A1

(43) Pub. Date: Oct. 28, 2004

(54)

(75)

(73)

(21)

(22)

(60)

IMPOSITION PROCESS AND APPARATUS
FORWARIABLE IMAGING SYSTEM

Inventors: James L. Warmus, LaGrange, IL (US);
Mark G. Dreyer, Aurora, IL (US); J.
Thomas Shively, Hinsdale, IL (US)

Correspondence Address:
MCCRACKEN & FRANK LLP
200 W. ADAMS STREET
SUTE 2150
CHICAGO, IL 60606 (US)

Assignee: R.R. Donnelley & Sons Company

Appl. No.: 10/703,054

Filed: Nov. 6, 2003

Related U.S. Application Data

Continuation of application No. 09/852.581, filed on
May 10, 2001, which is a division of application No.

79

CONTROL ER

COLLATOR

08/802,337, filed on Feb. 11, 1997, now Pat. No.
6,332,149, which is a continuation-in-part of appli
cation No. 08/478,397, filed on Jun. 7, 1995, now Pat.
No. 6,327,599, and which is a continuation-in-part of
application No. 08/627,724, filed on Apr. 2, 1996,
now Pat. No. 5,857,209.

Publication Classification

(51) Int. Cl." ... G06F 17/21
(52) U.S. Cl. .. 71.5/530

(57) ABSTRACT

The present invention is useful for assembling a book. The
inventive method includes the Steps of Specifying pagination
information including an indication of whether a page is to
be selectively included in the book, determining whether the
page is to be assembled into the book based on the pagina
tion information, and generating page description language
instructions for production of the book in accordance with
the pagination information.

DEMAND
PRINTER

Patent Application Publication Oct. 28, 2004 Sheet 1 of 40 US 2004/0216046A1

PUBLISHING

PRELMINARY

PREPRESS

2O

22

24

26

BOOK 28
ASSEMBLY
(CUSTOMZATION)

3O DISTRIBUTE

F. G. 1
PRIOR ART

Patent Application Publication Oct. 28, 2004 Sheet 2 of 40 US 2004/0216046 A1

36 PUBLISH NG

38 PREPRESS

CREATE MASTER
AND WARABLE
PAGE FILE(S) AND
BOOK TCKET FILE

COLLATOR
AND R P

OPERATE
DEMAND
PRNTER(S)

O9

US 2004/0216046A1

(S) ED|ABC] TOHINOO èHE HIO

9/

(S)?JELNIAJd TE OEVT (S),JELNIAJd 13 [XN||

ZZ

(S)30IAEG SD NI? JEHIV/6)

Patent Application Publication Oct. 28, 2004 Sheet 3 of 40

Patent Application Publication Oct. 28, 2004 Sheet 4 of 40 US 2004/0216046A1

DEMAND
COLLATOR PRINTER

PRESS

i

F. G. ()

US 2004/0216046A1

th

th

G 9 I

Patent Application Publication Oct. 28

Patent Application Publication Oct. 28, 2004 Sheet 6 of 40 US 2004/0216046A1

1O2 1OOO - r

1 O2 4.
1OOb-1 1OO 1OOb-r

1OOb

F. G. 6b

Patent Application Publication Oct. 28, 2004 Sheet 7 of 40 US 2004/0216046A1

P6 P7

F. G. 7b

Patent Application Publication Oct. 28, 2004 Sheet 8 of 40 US 2004/0216046A1

P13 P12

117O
P9

P16

118

117b 118

P 11

P1 O

119 b

Patent Application Publication Oct. 28, 2004 Sheet 9 of 40

START

SELECT OBJECT /10
INFILE

PACE
TEXT, DATABASE
LINE OR FIELD NAME
IMAGE 2 AT INSERTION

POINT

MAGE

INSERT DUMMY
PICTURE
FILE WITH
DATABASE
FIELD NAME

SET SUBNAME
TO FIT

US 2004/0216046A1

154

156

MORE WARIABLE
- INFORMATION IN

SELECT POSITION DOCUMENT
OF IMAGE IN BOX

N
Y

163

FINISH

F.G. 9

Patent Application Publication Oct. 28, 2004 Sheet 10 of 40 US 2004/0216046A1

170 Open Template File

172 Open Database File FIG. 10a

174 Create Database Field List

Prompt for Section Number, Simplex/Duplex and
Selective Processing Code (if any)

Select First Page 177
178

NO
- Any

Images 2

Yes

Select First image

ldentify FileName for image

184

File Yes
Name in Field

List?

176

Save image Box
Location and Field
Name and Increment
VARIABLE image

Box Counter for Page

Delete
Image Box

Save image Box
Location and

increment MASTER
Image Box Counter

for Page
Select and -

Parse First
Text Box

Any
Text Boxes

Processed
All images N

194

To block 206 CA)

Patent Application Publication Oct. 28, 2004 Sheet 11 of 40 US 2004/0216046A1

196 198

Text Box
include Field
Name(s)?

To block 178
(Fig. 10a)

Select Next
Page

No

208 Save Text BOX
Location and Field
Name and increment
VARABLE Text

Box Counter for Page

Save Text Box
Location and

increment MASTER
Text Box Counter for

Page

2O6

All P Yes Processed
P ages d All Text

rocesse Boxes

Yes 202 204

Save as
Stripped Master 210

File
214

216

Reopen Template
File and Delete

All Master Boxes
(Text & Image)

Save as
Stripped Variable

File

Generate PDL
Master Page File
(and INI Files)

212

218 Create ". VARS
File

F.G. 10b (Page/Field Name)

Patent Application Publication Oct. 28, 2004 Sheet 12 of 40 US 2004/0216046A1

(B)

MAKE WORKING COPY
OF STRIPPEO 242
VARABLE FLE

SELECT FIRST PAGE 244
HAVING VARABUE IN
FORMATION AND DELE
TE OTHER PAGES FROM

BLOCK
298,

DATABASE RECORD
254

READ DATABASE RECORD 248 SELECT NEXT
DATABASE

25O SELECTIVE 292-26G RECORD
PAGE Y (GSEsf-1S)N

PROCESSING REC9RD
256n Y

DUPLICATE 253
SELECTED PAGE FROM

LAST BLOCK
258 . SESSEE SE N 252,
N &AbA F.G. 1 Oe

Y

GO TO BLOCK
26 O 294, FIG 10e

SELECT FRST
MAGE BOX

INSERT IMAGE
DENT FED BY 262
DATABASE FIELD

F. G. 1 Oc

Patent Application Publication Oct. 28, 2004 Sheet 13 of 40

26

as 266
SUBNAMENY

T TO FIT
8

POST ON MAGE
N BOX

27O

PROCESSED N
ALL MAGE

BOXEs
Y

274
N ANY EXT

SOXEs
1y - 2

SELECT FRST
TEXT BOX

SELECT FIRST 278
NSERTON PT.

NSERT TEXT
SPECIFIED BY
DATABASE

76

282
SELECT

N NEXT
INSERTION
PT.

286
RECOMPOSE
TEXT BOX

US 2004/0216046A1

(e)

272

SELECT NEXT
IMAGE BOX

Patent Application Publication Oct. 28, 2004 Sheet 14 of 40 US 2004/0216046A1

GO (g) (h)
A. 288 29 O

, RG5SED N SELECT NEXT 4.
BOXES 2 TEXT BOX

292 Y

PROCESSED, N GO TO BLOCK 254 AL RECORDS) -> "15.
294

GENERATE POSTSCRIPT 298
AND IN FLES

RER eve COPY OF
296 STRIPPED WARIABLE

PROCESSED N 5 AND SELEC ALL PAGES 2 NEXT PAGE HAVING
VARABLE INFORMATION
AND DELETE. OTHER

Y PAGES
3O2

3OO PRESS N
CREATE PRESS v COMMAND FE cMRAND'ite Go To

X ST? BLOCK
Y 246

F.G. 10C 3O4 SELECT FRST
RECORD IN DATABASE
AND CORRESPONDING
RECORD IN PRESS
COMMAND FIUE

FND SECTION IN
PRESS COMMAND
FILE RECORD
(CREATE IF NEEDED)

fEMPLAf
FLE INCLUDES
THIS RECORD

2

Patent Application Publication Oct. 28, 2004 Sheet 15 of 40 US 2004/0216046A1

GD GD (k) 314
3O8

SELECT FIRST
PAGES PRO- PAGE IN SECTION

CESSED 316

31O SFLEX SIMPLEX
SELECT NEXT DUPEX
RECORD IN DATABASE 328
AND CORRESPONDING DUPLEX
RECORD IN PRESS
COMMAND FIUE COPY MASTER

PAGE FILE NAME
AND PG. NUMBER
AND WARIABLE
PAGE FILE NAME
AND PAGE NUMBER
(F ANY) AS SINGUE
SET PARS

COPY MASTER
PAGE FILE NAME
AND PG. NUMBER
AND WARABLE
PAGE FIUE NAME

PAGES
PROCESSED

AND PG NUMBER
(F ANY) AS

324 SNGLE SET
PARS

RECORDS 3.18
PROCESSED 322

SECT NEXT PA N
Y 326 SECTION

ESS Y GO TO BLOCK
SSCIO) 17O, FIG 1 Oo

N

F NSH

F. G. Of

Patent Application Publication Oct. 28, 2004 Sheet 16 of 40 US 2004/0216046A1

PROMPT USER TO SPECIFY INFORMATION 340
TO CREATE PAGINATION FILE:

-MAX. If PAGES
-LH/RH FLLER PAGE ID

FOREACH PAGE, SPECIFY :
-FORCE LEFT, FORCE RIGHT OR NO FORCE

-FILLER PAGE I.D. FOR FORCED PAGE
-MASTER, ALWAYS VARIABLE OR SELECTIVELY WARIABLE

OPEN PRESS COMMANDFILE 342

SELECT DATABASE FILES, 344
PAGINATION FILE, PLACEHOLDERS

FILE AND BARCODE FILES

RETRIEVE RECORDIN 346
PRESS COMMAND FILE

DETERMINE WHICH
PAGES SHOULD

PRINT
(SEE FIG. 13)

348

DETERMINE WHETHER 350
PAGES ARE LEFT OR RIGHT

(SEE FIG. 14)

"PAD" PAGES INTO 352
MULTIPLES OF "N"

(SEE FIG. 15)

GENERATE POSTSCRIPT (R) /354
INSTRUCTION SET

FIG. 11

US 2004/0216046A1

§ffffffffff??ij

*** … LE?|||N|||||||

Patent Application Publication Oct. 28, 2004 Sheet 17 of 40

Patent Application Publication Oct. 28, 2004 Sheet 18 of 40 US 2004/0216046A1

348
RETRIEVE PAGE FROM
RECORD IN PRESS
COMMAND FILE

IS PAGE FROM
A NEW FILE TO
BE IMPOSED-ON
THE-FLY WITH
OFFSETS 2

CALCULATE AND
SAVE OFFSETS OF
ALLPAGES INFILE

IS PAGE A
MASTER PAGEP
(NOVARIABLE

PLACEHOLDERS?)

MARK PAGE
AS "SHOULD

PRINT"

IS PAGE MARKED
"PRINT ALL TIMES"?

DOES PAGE HAVE
ANY PLACEHOLDERS
WITH VALID DATAP

FIG. 13

Patent Application Publication Oct. 28, 2004 Sheet 19 of 40 US 2004/0216046A1

350

380 M NITALIZE L/R
COUNTERTO "RIGHT"
(DEFAULTVALUE)

382

RETRIEVE PAGE
THAT IS MARKED
"SHOULD PRINT"

HAS USER SPECIFIED
WHETHER PAGE SHOULD
BE FORCED LEFT OR

RIGHT2

FLP-FLOP
LVR

COUNTER

DOES ORIENTATION MATCH
USER SPECIFICATION? (I.E. =

L/R COUNTER2)

390

MARKAPPROPRIATE FILLER
PAGE AS "SHOULD PRINT"

F.G. 14

Patent Application Publication Oct. 28, 2004 Sheet 20 of 40 US 2004/0216046A1

352
M

COUNT NUMBER OF PAGES ARE /?
MARKED "SHOULD PRINT"
(INCLUDING FILLER PAGES)

RETURN TO BLOCK
354 OF FIG. 11 TO

GENERATE
INSTRUCTION SET

ISTA MULTIPLE
OF 4?

ADD FILLER PAGES TO
MAKE TAMULTIPLE OF 4

FIG. 15

Patent Application Publication Oct. 28, 2004 Sheet 21 of 40 US 2004/0216046A1

Enter the page height and width of the imposed page or "flat". These will be used
as the setpagedevice parameters to the RIP.

Page Width (inches): Page Height (inches): 11

imposition Style: Get Tiff Style v

Finishing Style: in-line Finishing Y Four Pagers; stitch w

Report Field: NO SELECTION vr

Bar Code: Bottom of Sheet w Page Numbers: PageNumbers Off v

Bar Code PS File

Bar Code Content Fie

VDf MAC:Desktop Folder:VDf Jobs:longs Drugs:alohamm.vars

Pag PS file

BT Directory

Master and Variable Storage Directory:

/vardspoolfskRXnps/netqreq

FG 16

Patent Application Publication Oct. 28, 2004 Sheet 22 of 40 US 2004/0216046A1

397

Open Press
Command File

F.G. 17

Prompt User to Specify RIP Option:
Master Only, Variable Only,

Master & Variable

398

Select First Line in PCF Having 399
FileName(s)

400

Select First File Name

401

File Name Select Next
ue 2 File Name

N
Yes N

402

Add to
File List Select Next

/ PCF Line
/ Yes

4.08
RIP Files in
RIP List

to Tiff Format

YeS 409

404

Add to
RIP List

Patent Application Publication Oct. 28, 2004 Sheet 23 of 40 US 2004/0216046A1

"GET TIFF"
MPOSITION

RETRIEVE PAGE
PAIR FROM

INSTRUCTION SET

41 O

RETRIEVE
REFERENCE TO

LEFT HAND PAGEN
TIFF FORMAT

412

414 MOVE OFFSET TO

RIGHT SIDE

RETREVE
REFERENCE TO

RIGHT HAND PAGE
INTFF FORMAT

16

ADD PAGE
NUMBERS AND/OR
BAR TRACKING

CODE

418 F.G. 18

US 2004/0216046A1 Patent Application Publication Oct. 28, 2004 Sheet 24 of 40

99 17
6/

6 | ‘9 | -3 èJET]TO}}_LNO O SSB (Jej

89 l ' ZEL

Patent Application Publication Oct. 28, 2004 Sheet 25 of 40 US 2004/0216046A1

Standard Level 2
SHOWPAGE
Operator

Reason Code = 0

Call EndPage
Procedure

Transmit Contents of
Raster Memory to
Output Device
(For Rendering)

Result from
EndPage
= True 2

NITGRAPHICS
(Reset Default Matrix
and Clipping Path)

ERASEPAGE
(Clear Raster Memory)

Ysos

nCrement
Pagecount

FIG. 20

Call BeginPage
Procedure

Patent Application Publication Oct. 28, 2004 Sheet 26 of 40 US 2004/0216046A1

Redefined
NITCP.

520 522

Does
CurrentPoint

Exist?

Set P1 =
Empty Path NO

YES 524

Set P1 = Current Path Description
(Call Make Path Procedure)

Save Current (CTM)

Set Virtual (CTM)

530

Create Clipping Path Between /
Corners of Virtual Page

FIG. 21

532

Restore Saved (CTM)
and

Current Path (P1)

Patent Application Publication Oct. 28, 2004 Sheet 27 of 40 US 2004/0216046A1

Redefined
TRANSFORM

S
Matrix Operand

Supplied?

536

Yes Cal Standard TRANSFORM
Operator

(Systemdict Transform)

NO 538

Save Current (CTM)
on Stack

FG, 22
Calculate Operations Matrix) =
Current CTM) Virtual CTM-1

Set new ICTM) =
Operations Matrix) System Default Matrix)

Call Standard TRANSFORM Operator
(Systemdict Transform)

Reset Current (CTM) /
(Saved by block 538)

Patent Application Publication Oct. 28, 2004 Sheet 28 of 40

ENABLEVIRTUALDEVICE
FIG. 23

550

ls PostScript
Level 22

(setpagedevice in
systemdict?)

Yes

Load Redefined EndPage
and BeginPage Procedures
Into Current Graphics State

(call setpagedevice)

invoke DisablePage.Device Procedure
(See Fig. 24)

Set VirtualDeviceEnabled
= True

Rename Standard
Level 1 SHOWPAGE

Operator

Redefine Level 1
Showpage Operator to

Emulate Level 2
Showpage Operator

(See Fig. 20)

Execute BeginPage Procedure
for First Page

US 2004/0216046A1

554

562

Patent Application Publication Oct. 28, 2004 Sheet 29 of 40 US 2004/0216046A1

DISABLEPAGE
DEVICE

ls
PostScript
Levei 22

(setpagedevice
in systemdict?)

FIG. 24

NO (Level 1)

572

ls
PageSize
included as
Operand to

setpagedevice?

Determine Orientation
(Portrait or Landscape)
of PageSize Operand

PageSize
Orientation = invoke SetPortrait
Virtual Device Procedure (Fig.25)
Orientation?

Call Redefined initigraphics
and ErasePage Operators

Redefine Compatibility Operators
to Corrent Page Orientation

Patent Application Publication Oct. 28, 2004 Sheet 30 of 40 US 2004/0216046A1

SETPORTRAIT
FIG. 25

614

Convert Corner /
No Coordinates to

Portrait Orientation (Landscape
to Portrait)

(Portrait to Yes
Landscape) 6OO Translate Origin

/ in Positive-Y
Convert Corner Direction
Coordinates to

Landscape Orientation
618

6O2 Rotate 90 degrees /
w Clockwise

Translate Origin /
in Positive-x

Direction

62O

604 Set Virtual ICTM) for
Portrait Orientation

Rotate 90 degrees
CounterClockwise

606

Set Virtual (CTM) for
Landscape Orientation

622

Exchange Values of /
Page Width (PageX)

and Page Height (PageY)

624

Reverse Value of Portrait

Patent Application Publication Oct. 28, 2004 Sheet 31 of 40 US 2004/0216046A1

592

x
-

CU

O
&

> LJ 3 an

U 9 X
(D d
C (D

CC X
Ss ()
U g
3. Cl

s
X

Op. PAGEx—-
PORTRAIT --> LANDSCAPE

FIG. 26A

PAGE X
(NEW PAGE Y)

PAGE X
(NEWAGE Y)

LANDSCAPE --> PORTRAT

FIG. 26B

Patent Application Publication Oct. 28, 2004 Sheet 32 of 40 US 2004/0216046A1

SETVIRTUALDEVICE

630 632

NO ls
irtualDevice
Enabled F
True?

w 634

YES /
Define Virtual PageSize : Operator

invoke
EnableVirtualDevice

Procedure

PageX PageY) (See Figs. 33 & 35)
(Optional Procs. Only)

636

Define Corners of Virtual Page
Cliplx, Cliply, ClipurX, Clipury)

Set (CTM) to System Default Matrix
for Current Output Device
(systemdict initmatrix)

638 FIG. 27

Execute Scale, Translate and 640
Rotate Procedures

642 648
Save Resultant Matrix as the

Virtual ICTM)
(Stored in DefaultMatrix) Set Portrait = False

(Landscape Orientation)
644

650
Page Length? NO

(PageX <
Y 646 Page'Y?) Invoke Redefined NITCLP

Operator to Set
Clipping Path Around the
Border of the Virtual Page

\ YES
Set Portrait = True

(Portrait Orientation)

Patent Application Publication Oct. 28, 2004 Sheet 33 of 40 US 2004/0216046A1

IMPOSEJOB

invoke
EnableVirtualDevice
Procedure (Fig. 23)

FIG. 28
652

Retrieve File/List Pair
from instruction Set

656.

invoke MPOSEFILE
Procedure
(See Fig. 29)

Execute Redefined Restore /

- - - - - - Operator to Restore State Saved

by Block 654
(Optional Procs. Only)

Set Imagedone 658
= True

664

Was
SHOWPAGE
Redefined?
(Level 12)

Execute 662
systemdict showpage

Patent Application Publication Oct. 28, 2004 Sheet 34 of 40 US 2004/0216046A1

IMPOSEFLE

Pageoffset = CurrentPage
+ PageOffset + 1

F.G. 29
670

is First
Page on Flat?
(CurrentPage

= 0?)

Retrieve Entry from Entry List
(user proc) page # (operands)

{user proc

CurrentPage =
Page # from Entry

NO

Execute
User

Procedure

Pop
User

Procedure

is First invoke MakeNull Procedure
Page on Flat? (see Fig. 30)
(CurrentPage For Scaled-Down Virtual Device.

= 0?) (INITCLIP)

Find Last Page
On Flat

-686 Interpret Page Descriptions
(containing SHOWPAGE Operator)
in PostScript File Through Last Page

688

Get Next File/List Pair
from IMPOSEJOB ---------

Procedure
-

Flush File and
Close File

Patent Application Publication Oct. 28, 2004 Sheet 35 of 40 US 2004/0216046A1

Calculate and Save MidPoint 698
Of

Virtual Clipping Path
in Device Space

700

Get Virtual ICTM)
(Stored in DefaultMatrix)

702

Calculate SX and Sy /
Scale Factors

704

Scale Virtual (CTM) /

Store Scaled Virtual (CTM) /
as the New Virtual (CTM)

in DefaultMatrix

Set MidPoint of Scaled Clipping Path '
Equal to Original

MidPoint Coordinates
(Saved by Block 698)

Patent Application Publication Oct. 28, 2004 Sheet 36 of 40 US 2004/0216046A1

Redefined
EndPage FIG. 31

710

alled-b 1
SHOWPAGEP

(Reason
Code = 0?)

NO

Yes

CurrentPage
+ Page0ffset
PageCount?

Execute Second
User Procedure

(Offsets)

714.

Increment Currentindex to Get
Next Entry from Entry List

716

Currentindex
ag

Lastindex?

718 Yes

Reset Graphics State to Default
(systemdict initigraphics)

720

GetValue of Imagedone
("True" means flat is complete)

Retrieve Entry from Entry List
(Operands to setvirtualdevice)

722

invoke Setvirtual device Procedure

24

CurrentPage = Page Number from
Retrieved Entry (Next Page on Flat)

Reset imagedone to False

728
Pop User
Procedure

7

732

invoke MakeNull Procedure (Fig. 30)
(assume next page not on flat)

Patent Application Publication Oct. 28, 2004 Sheet 37 of 40 US 2004/0216046A1

Redefined
Beginage

Set Virtual ICTM)
(redefined INITMATRIX)

FIG. 32

756
752

invoke
Fig. PageCount Z. Redefined

(PageCount = NO LastPage + NO NTCLP
CurrentPage + PageOffset? Operator
Pageoffset?) (See Fig. 21)

YES 744 YES

Get Entry from STOP
Entry/List Pair "DOne With

Current File"

745

Execute User
Procedure

Invoke SetVirtualDevice
Procedure (See Fig. 27)

Blank Out Virtual Page
(Erase Any Stray Marks

from Non-Selected Pages)

Pop Page Number from
Retrieved Entry

Patent Application Publication Oct. 28, 2004 Sheet 38 of 40 US 2004/0216046A1

800

FIG. 33
Save Current (CTM)

Set (CTM) =
identity Matrix

Does
CurrentPoint

Exist?

808

Set P1 = No-op
(Empty) Path

810
804. /

YES / FirstOp = Moveto
Set P1 = Current Path (Set CurrentPoint)
(Invoke MakePath 812

Procedure)

NO

Create Unlimited
Bounding Box FirstOp F Lineto irst Up F Line (SetBigBBox)

(Add Segment to
Current Path) 814

invoke FirstOp to Append Page
Size (PageX and PageY)

Components to Current Path

818

Append Virtual (CTM)
Components to
Current Path

820

Replace laentity (CTM) with
Previously Saved (CTM)

Patent Application Publication Oct. 28, 2004 Sheet 39 of 40 US 2004/0216046A1

WRESTORE
830

Save Current (CTM) Y FG. 34
832
1.

-1

Set (CTM) = identity Matrix
834

Retrieve Current Path Operands (includes page
size & virtual ICTM) components at time of save)

836

Set ResDefaultMatrix and ResPageSize to ICTM)
and Page Size from Current Path (at time of save)

84

Set ICTM) to Value Saved
by Block 830

84

No set P1 = Path at Time of save
(without PageSize and (CTM)

838
844

O

Res
DefaultMatrix

at Current
DefaultMatrix?

2

Yes 856 ls Restored Change Page
Page Orientation Orientation

. . (Invoke = Saved Page
Orientation? SetPortrait

Procedure)
Remove Page Size and Virtual

(CTM) Components from
Current Path

Yes

848

Restore Current Path 858 N Set C1 = Current Clipping Path

850 Calculate New ICTM Restore (CTM) to Value 860. w (CTM)

Execute Correct Clipping Path (C1)
852 in Virtual (CTM) Coordinate System

854 Restore Current Path (P1)
in Virtual (CTM) Coordinate System

Saved by Block 830

Patent Application Publication Oct. 28, 2004 Sheet 40 of 40

Redefined
SAVE/GSAVE

invoke WSAVE
Procedure (Fig. 33)

Invoke Renamed
Standard Save/GSave

Operator

Set (CTM) =
ldentity Matrix

Restore Current Path
(Saved in P1)

Restore ICTM) Saved by
Block 5OO of VSAVE
Procedure (Fig. 33)

874

876

878

FIG. 35

902

FG. 37

Redefined
RESTORE

892
Put Values of -1
Variables on
Operand Stack

invoke Renamed 1894
Standard Restore

Operator

896 Set Variables Equal
to Their Pre-Restore
Values (saved on
Operand Stack)

898

Invoke WRESTORE 1.
Procedure

(See Fig. 34)

FIG. 36

Redefined
GRESTORE/

GRESTOREALL

invoke Renamed Standard
Grestore/Grestoreal Operator

Invoke VRESTORE Procedure
(See Fig. 34)

US 2004/0216046A1

US 2004/0216046 A1

IMPOSITION PROCESS AND APPARATUS FOR
WARIABLE IMAGING SYSTEM

RELATED APPLICATIONS

0001. This application is a divisional of U.S. application
Ser. No. 08/802,337, filed Feb. 11, 1997, the disclosure of
which is hereby incorporated by reference, and which, in
turn, is a continuation-in-part of U.S. application Ser. No.
08/478.397, filed Jun. 7, 1995 and a continuation-in-part of
U.S. application Ser. No. 08/627,724, filed Apr. 2, 1996, now
U.S. Pat. No. 5,857,209.

TECHNICAL FIELD

0002 The present invention relates generally to repro
duction methods and Systems, and more particularly to a
method of and System for Selectively reproducing images.

BACKGROUND ART

0.003 Most printing systems in use today utilize printing
plates or cylinders which are engraved or photochemically
processed to create an image thereon. Ink is then deposited
on the plate or cylinder and the ink is thereafter transferred
to a Substrate, Such as paper. In a conventional printing
preSS, a number of pages are printed on a sheet of paper to
form a signature which is then folded and assembled with
other Signatures. The assembled Signatures are then bound,
trimmed and finished by finishing apparatus to produce
finished books, Such as magazines, catalogs or any other
printed and bound matter.
0004. Often, there is a need to produce different versions
of books and/or customized books within a Single press run.
For example, it may be desirable to produce a number of
Standard books together with a number of books having
additional and/or different Signatures or pages therein. Also,
it may be necessary or desirable to provide customized
information in the form of an address label, personalized
information or the like on the inside or outside of finished
books. In either case, conventional printing Systems are not
easily adaptable to produce books of these types.
0005 Aprinting system which has the ability to produce
differing book versions and/or books with customized infor
mation is disclosed in Riley U.S. Pat. No. 4,121,818,
assigned to the assignee of the instant application. The
printing System includes a number of packer boxes disposed
adjacent a binding chain wherein each packer box Stores a
plurality of Signatures. A control is included for controlling
the packer boxes to Selectively feed Signatures onto chain
Spaces of the binding chain So that books of varying content
can be produced. Customized information can be printed on
the Signatures by means of an ink jet printer which is
Selectively operated by the control. Other types of customi
Zation can be effectuated, Such as by inserting or onserting
cards or the like.

0006 Other systems for producing customized books are
disclosed in Abrams et al. U.S. Pat. No. 3,899,165, Wong et
al. U.S. Pat. Nos. 4,500,083 and 4,674,052, Wong U.S. Pat.
No. Re32,690 and Berger et al. U.S. Pat. Nos. 4,768,766 and
4,789,147.
0007) Image manipulating systems have been developed
which permit gathering of images in an office or home
environment. For example, conventional word processing

Oct. 28, 2004

programs, such as Microsoft(R) Word(R), WordPerfectE) and
the like, permit a user to import images into a page and also
allow a user to command which pages of a document to
print. In addition, macros (i.e., a sequence of commands) can
be assembled and executed within these programs which can
allow printing of particular document pages in a certain
order. Still further, most word processing programs have
merge capability wherein a customized image is merged
with other Standardized information and printed or dis
played. AS one example, customized information in the form
of addressee and address information may be merged with
Standardized return address information and printed on a
Series of envelopes.
0008. A different image gathering capability provided by
CAD (computer aided design) Software, Sometimes referred
to as “layering, involves the creation and Storage of a base
page and one or more layer pages. A user can issue com
mands to display or print the base page and one or more of
the layer pages simultaneously atop one another to achieve
an effect Similar to the Overlay of transparencies So that a
composite page appearance results.
0009 While the foregoing image manipulating systems
allow Some image gathering capability, none is effective to
assist in the rapid production of different book versions. Of
course, CAD Systems are primarily designed for line art and
not text or graphic images, and hence are of only limited use.
Further, if one were to use word processing Software to
produce book versions it would be necessary to issue
commands to Separately print the pages of each book version
just before Such version is to be produced. That is, a user
would have to create and Store pages to be included in a first
book version and then command the Software to print as
many copies of the first version as are needed. Thereafter,
the user would have to recall the pages of the first version
from memory, edit and Store the pages to create pages to be
included in a Second book version and then command the
System to print the required number of books of the Second
version. Similar steps would have to be undertaken for each
other book version to be produced. Alternatively, the pages
of the different book versions could be created and stored
and thereafter printed together. In either event, where many
book versions are to be produced, Such a proceSS would be
quite time-consuming. In addition, image importation and
merge routines provided as a part of word processing
Software are adapted for use on a Sub-page basis only and
hence are of only limited usefulneSS in the book production
environment. Still further, data manipulated by word pro
cessing Software are largely (if not entirely) in Symbolic
format. As a result, data to be displayed or printed must be
first rasterized by a raster image processor (RIP), which
utilizes complex and time-consuming computational rou
tines which further increase production time to an economi
cally impractical level.
0010 Recently, new printing systems have been devel
oped, called “demand printers,” which are capable of high
Speed printing of images from electronic representations
thereof. The demand printer produces high quality color (or
black and white) images using a set of fusible toners in an
electrophotographic process. More particularly, a web of
paper is passed adjacent a Series of drums, each of which has
been electroStatically charged according to an image pattern
for a particular color to be applied to the Web. The charge is
transferred to the paper and an oppositely charged toner of

US 2004/0216046 A1

the proper color is brought into contact with the paper. The
oppositely charged web and toner attract So that the toner is
held on the paper as other colors are applied thereto. The
toners and paper are thereafter heated to fuse the toners to
the paper to produce the final image. The web is then cut into
sheets (or “forms”) and the forms are further processed as
needed to produce a final product.
0.011 Unlike conventional presses which utilize engraved
or photochemically prepared plates or cylinders, demand
printers are capable of rapidly printing high quality images
of differing content owing to the fact that the images are
produced by an electrophotographic proceSS. That is, instead
of the need to replate and re-engrave a gravure cylinder
when a different image is to be printed therewith, it is only
necessary to change the charge applied to the drums of the
printer in order to make Such change. Thus, different images
can be printed by the same printer without Significant delayS.
This advantage makes the demand printer desirable for use
in certain production environments.
0012 Warmus et al. U.S. patent application Ser. No.
08/478.397, entitled “Variable Imaging Using An Electronic
Press' discloses an apparatus and method for controlling an
electronic preSS So that fixed and variable information may
be printed in a simple and effective manner. More particu
larly, first and Second Sets of template data representing
asSociated first and Second template pages, respectively, are
developed. Each Set of template data includes master data
representing fixed information and area data representing an
area of a page for variable information. A database is also
developed having a number of entries each of which repre
Sents variable information. The printer is operated in accor
dance with the Sets of template data and the entries in the
database Such that the first and Second template pages are
displayed with selected variable information.
0013 The Warmus et al. apparatus and method generates
a page definition language representation of each Single page
and thereafter generates a page definition language repre
Sentation of each imposed flat, i.e., each side of a piece of
paper to be printed with two or more pages. Such a proce
dure can be computationally expensive and may limit pro
ductivity.

SUMMARY OF THE INVENTION

0.014) According to one aspect of the present invention, a
method of assembling a book includes the Steps of Specify
ing pagination information including an indication of
whether a page is to be Selectively included in the book,
determining whether the page is to be assembled into the
book based on the pagination information, and generating
page description language instructions for production of the
book in accordance with the pagination information.
0.015 Preferably, the determining step includes the step
of analyzing variable information areas of the page. The
inventive method may further include the Step of analyzing
preSS commands directed to production of the book to
determine whether the page is to be assembled into the book.
The inventive method may still further include the step of
generating a pagination file having data representative of the
pagination information.
0016 Preferably, the pagination information includes an
indication of a maximum number of pages for the book. The

Oct. 28, 2004

pagination information may include filler page information.
The pagination information also preferably includes a speci
fication of whether the page should be forced to one of a
right side and a left side of the book.

0017. In one embodiment, the inventive method further
includes the Step of Specifying page description language
instructions to produce a barcode on the page. The barcode
may be indicative of tracking information.
0018. In another embodiment, the step of generating page
description language instructions includes the Step of gen
erating instructions for production of page numbering infor
mation on the page. The Step of generating page description
language instructions may also include the Step of generat
ing instructions for insertion of filler pages in accordance
with the pagination information.
0019 Preferably, the inventive method further includes
the Step of delivering the page description language instruc
tions to an electronic press to print the book.
0020. In yet another embodiment, the step of specifying
the pagination information includes the Step of providing a
user interface for entry of the pagination information.
0021. Other features and advantages are inherent in the
apparatus claimed and disclosed or will become apparent to
those skilled in the art from the following detailed descrip
tion in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

0022 FIG. 1 is a block diagram illustrating a prior art
method of producing books,
0023 FIG. 2 is a block diagram of a method of producing
books implementing the present invention;
0024 FIG. 3 is a block diagram illustrating an exemplary
System for implementing the method of the present inven
tion illustrated in FIG. 2;

0025 FIG. 4 is a block diagram illustrating one of the
demand printing Systems of FIG. 3 in greater detail;
0026 FIG. 5 is a generalized diagram of the steps
implemented by the method of the present invention;

0027 FIGS. 6a and 6b are elevational views of portions
of a Sample book that may be produced by the present
invention;

0028 FIGS. 7a, 7b and 8a, 8b are elevational views of
portions of other Sample books that may be produced by the
present invention;

0029 FIG. 9 is a flowchart illustrating programming that
may be executed by a user on a personal computer to create
the template files 105 of FIG. 5;
0030 FIGS. 10a–10?, when joined along similarly-let
tered lines, together represent programming executed by the
control unit 52 of FIG. 3;

0031 FIG. 11 is a flowchart illustrating the programming
implemented by the control unit 52 to generate a page
description language instruction Set specifying which pages
should be printed and how the pages should be positioned
(or imposed) for printing;

US 2004/0216046 A1

0.032 FIG. 12 is a sample window to prompt a user for
the information needed to create a pagination file;
0033 FIG. 13 is a flowchart illustrating in detail the
programming implemented by the block 348 of FIG. 11
which determines which pages should be printed for a
particular record in the preSS command file;
0034 FIG. 14 is a flowchart illustrating in detail the
programming implemented by the block 350 of FIG. 11 to
determine whether the pages should be forced to the left or
right-hand side of the book;
0035 FIG. 15 is a flowchart illustrating in detail the
programming implemented by the block 352 of FIG. 11 to
pad the pages included in the book into a multiple of the
number of pages to be printed on a sheet;
0.036 FIG. 16 is a sample window to prompt a user to
provide various information to Select imposition and print
ing styles,
0037 FIG. 17 is a flowchart illustrating the programming
implemented to RIP page files to Tiff format for use in “Get
Tiff imposition in accordance with the present invention;
0.038 FIG. 18 is flowchart illustrating the programming
implemented to impose pages using “Get Tiff imposition in
accordance with the present invention;
0039 FIG. 19 is a more detailed block diagram of the
print system 79 (shown in FIG. 4) incorporating the impo
Sition-on-the-fly procedures of the present invention;
0040 FIG. 20 is a flowchart illustrating the standard
operation of the Level 2 PostScript(R) showpage operator;
0041 FIG. 21 is a flowchart illustrating the program
steps implemented by the redefined PostScript(R) initclip
operator according to the imposition-on-the-fly procedures
of the present invention;
0.042 FIG. 22 is a flowchart illustrating the program
steps implemented by the redefined PostScript(R) transform
operators according to the imposition-on-the-fly procedures
of the present invention;
0.043 FIG. 23 is a flowchart illustrating the program
steps implemented by the EnableVirtualDevice procedure
according to the imposition-on-the-fly procedures of the
present invention;
0044 FIG. 24 is a flowchart illustrating the program
steps implemented by the DisablePage.Device procedure
according to the imposition-on-the-fly procedures of the
present invention;
004.5 FIG. 25 is a flowchart illustrating the program
StepSimplemented by the SetPortrait procedure according to
the imposition-on-the-fly procedures of the present inven
tion;
0.046 FIG. 26A is a diagram illustrating the conversion
of a portrait-oriented page to a landscape-oriented page
according to the SetPortrait procedure of FIG. 24;
0047 FIG. 26B is a diagram illustrating the conversion
of a landscape-oriented page to a portrait-oriented page
according to the SetPortrait procedure of FIG. 24;
0.048 FIG. 27 is a flowchart illustrating the program
StepSimplemented by the Setvirtualdevice procedure accord
ing to the imposition-on-the-fly procedures of the present
invention;

Oct. 28, 2004

0049 FIG. 28 is a flowchart illustrating the program
StepSimplemented by the Impose Job procedure according to
the imposition-on-the-fly procedures of the present inven
tion;
0050 FIG. 29 is a flowchart illustrating the program
StepS implemented by the Imposefile procedure according
to the imposition-on-the-fly procedures of the present inven
tion;
0051 FIG. 30 is a flowchart illustrating the program
StepS implemented by the MakeNull procedure according to
the imposition-on-the-fly procedures of the present inven
tion;
0052 FIG. 31 is a flowchart illustrating the program
StepS implemented by the redefined EndPage procedure
according to the imposition-on-the-fly procedures of the
present invention;
0053 FIG. 32 is a flowchart illustrating the program
StepS implemented by the redefined BeginPage procedure
according to the imposition-on-the-fly procedures of the
present invention;
0054 FIG. 33 is a flowchart illustrating the program
StepS implemented by the VSave procedure according to the
imposition-on-the-fly procedures of the present invention;
0055 FIG. 34 is a flowchart illustrating the program
StepS implemented by the Vrestore procedure according to
the imposition-on-the-fly procedures of the present inven
tion;
0056 FIG. 35 is a flowchart illustrating the program
steps implemented by the redefined PostScript(R) save opera
tors according to the imposition-on-the-fly procedures of the
present invention;
0057 FIG. 36 is a flowchart illustrating the program
steps implemented by the redefined PostScript(R) restore
operator according to the imposition-on-the-fly procedures
of the present invention; and
0.058 FIG. 37 is a flowchart illustrating the program
steps implemented by the redefined PostScript(R) grestore
and greStoreall operators according to the imposition-on
the-fly procedures of the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

0059 FIG. 1 illustrates a prior art method of producing
books, for example, as shown in the above-identified Riley
et al. 818 patent. During a publishing Step 20, the contents
of one or more book versions are determined. Each version
may comprise, for example, a Set of Standard or common
pages. In addition, Some of the versions may include one or
more additional pages or other customized information.
Thereafter, during a preliminary Step 22, color correction of
color images is undertaken together with undercolor
removal and Screening for halftone images. During a pre
preSS Step 24, page imposition is effected and printing
cylinders or plates are prepared. The plates or cylinders are
then used during a printing Step 26 to prepare signatures
which are loaded into packer boxes (not shown). AS noted in
the Riley et al. 818 patent identified above, the signatures
are then selectively collected on a gathering chain (not
shown) during a book assembly step 28 and the gathered

US 2004/0216046 A1

Signatures are bound and trimmed to create the books. The
books are thereafter distributed during a step 30 to users via
one or more distribution Systems, for example, the U.S.
Postal Service.

0060. As should be evident from the foregoing, customi
Zation occurs during the book assembly Step 28, inasmuch as
the choice of particular signatures to be included in a book
is made at that time. In addition, customized information can
be printed onto Selected Signatures using an inkjet printer
disposed adjacent the gathering chain. Thus, for example,
addressee information can be printed by the inkjet printer on
assembled books So that preprinted addressee labels need
not be used. Other types of customization can be effected at
this time, for example, by inserting or onserting cards into or
onto a Stack of collected Signatures, affixing a specialized or
customized cover on a gathered Stack of Signatures, or the
like. Customization at this point in the production process is
Simpler and less expensive than, for example, Separately
printing each book version with customized information.
0061 FIG. 2 illustrates a block diagram of a method 40
according to the present invention which may be used in
place of the method of FIG. 1 to produce books. The method
40 includes a step 42 which utilizes the output of publishing
and preliminary steps 36, 38 and produces books for distri
bution according to the step 30 of FIG. 1. The step 42
creates one or more master and variable page files in, for
example, a page description language (PDL) Such as Post
script(R) (Postscript(R) is a trademark of Adobe Systems, Inc.
for its page description language) representing pages to be
produced. In addition, as noted in greater detail hereinafter,
a press command file (also referred to as a “book ticket” file)
is developed which specifies the manner in which data
contained within the master and variable page files are to be
merged to produce printed pages. The format of the preSS
command file may be, for example, of the form Specified by
Barco Graphics of Gent, Belgium, which is particularly
Suited for control of a DCP-1 digital color press manufac
tured by Xeikon of Mortsel, Belgium. Alternatively, the
format of the press command file may be of the form
specified for control of a DocuPrint printer, manufactured by
Xerox Corporation. Other demand printers include the IBM
3900 or Siemens 2090 Twin or 2140 Twin. It should be noted
that the apparatus and method of the present invention are
not limited to use with a particular type of demand printer or
a particular System for controlling Such a printer, inasmuch
as the invention can be adapted for use with any type of
printer or control whether located locally or remotely.
0062) The master and variable page files and the press
command file are converted by a collator and raster image
processor (RIP) into bitmaps which may be stored in a
memory. The Stored bitmaps are used to control one or more
demand printers and/or any other type of display device,
Such as a laser printer, a CRT, an LCD display or the like So
that the device displayS pages having fixed and variable
information thereon. Alternatively, the master and variable
page files may be premerged to create a plurality of com
bined files each representing a page to be reproduced with
master and variable information. The combined files can be
then Sent to any type of printer or other display device,
whether local or remote. Also, the combined files can be
converted to a suitable format (e.g., Acrobat(R) PDF format)
and transmitted to a remote location using a facsimile
machine, e-mail, the internet/worldwide web or other trans

Oct. 28, 2004

mission medium, if desired. Advantageously, the combined
files may be transmitted over the Internet or any other
networked or linked computers, Such as a company intranet.
In this case, as electronic page containing customized data
can be sent over the Internet/intranet to a user based upon
user demographic(s), a user Search and/or any other identi
fiable user interest(s). For example, a customized internet
page could be sent with links to other web pages of interest
to a user or a customized page may be sent in response to a
user Search for information on a particular Subject. Alterna
tively, or in addition, ads could be generated and Sent as a
web page to one or more users based upon user demograph
ics. As a further example, perSonnel information concerning
a particular employee may be sent to the employee in
response to a request for information.
0063. If the pages are to be displayed by rendering the
pages on the demand printer, the assembled books may be
bound and trimmed and, if desired, further customized,
during a finishing Step.

0064 FIG. 3 illustrates a system 50 which implements
the steps 36,38 and 42 in the method 40 of FIG.2. A control
unit 52, which may be implemented by a personal computer
or another type of computer, includes a memory 53 and
Stores therein data representing images to be printed. AS
noted in greater detail hereinafter, the data may be specified
by a publisher using a personal computer 54 or any other
type of computer and may comprise one or more template
files specifying pages to be produced with master or fixed
printed information (i.e., printed information which does not
vary from book to book of the same version) and variable
printed information (which typically varies from book to
book). The variable information may be stored in a database
created by the publisher and the template file(s) specify the
locations on particular pages for variable information Stored
in the database, as noted in greater detail hereinafter.

0065. If desired, image data may be obtained from any
other type of device or devices, Such as a Scanner which
Scans input copy, data Supplied over a network or any other
Source. The control unit 52 is further responsive to control
and makeready files and causes one or more demand print
ing Systems 62 to print desired pages. While three demand
printing systems 62a-62c are illustrated in FIG. 3, it should
be understood that the control unit 52 may operate a different
number of demand printing Systems, as desired. Also, the
control unit 52 may operate a fax machine 64 and/or may
communicate with other remote devices to Send properly
converted combined files, as desired and as noted above. In
the case of other remote devices, a modem 65 may be
operated by the control unit 52 to transmit data representing
one or more pages to be displaced by a display device at a
remote location over phone lines (land lines and/or cellular)
or a combination of phone lines and the Internet. Alterna
tively or in addition, the data may be sent to a local or remote
location at least in part over an intranet or another computer
network through a direct connection therewith. The com
bined files may be printed or may alternatively be repro
ducible in a different medium and/or may comprise a non
Static image or other information, e.g., movies or audio.
0066. The pages printed by the demand printing system
62 may be Supplied to a finishing apparatuS 66 which
includes various auxiliary production devices and device
interfaces for assembling the pages to produce finished

US 2004/0216046 A1

books which are ready for distribution. The finishing appa
ratus 66 may include one or more gathering devices 70 for
gathering printed pages into books, one or more ink jet
printerS 72 for printing additional customized information,
Such as addressee information, on each book, one or more
label printers 74 for printing address labels and/or other
control devices 76. In addition, one or more detectors 78
may be provided to Sense when a defective book is pro
duced. The control unit 52 may be responsive to the output
of the detector 78 to reorder a defective book at an appro
priate point in the production Sequence thereof So that
advantage can be taken of postal discounts, if possible.
0067. One or more components of the finishing apparatus
66 may be physically located on the demand printer (i.e.
“online finishing”). Alternatively, the finishing apparatus 66
may be physically separate from the demand printer (i.e.
“offline finishing”).
0068 FIG. 4 illustrates the demand print system 62a of
FIG. 3 in greater detail, it being understood that the systems
62b and 62c are functionally similar. The system 62a
includes a print system 79 having a press controller 80, a
collator 81 and a raster image processor (RIP) 82 which are
operable in response to press commands generated by the
control unit 52. A collator is an electronic device for Storing
raster image processor files (i.e., bitmap files) and delivering
Selected files to a digital preSS in real time, Such that the
digital press can run at full Speed while processing and
printing unique page data for each book produced on the
press. The RIP 82 converts the page files to bitmap format
or any other format, Such as a Symbolic printer control
language. The collator 81 includes memory in the form of
mass Storage drives and physical memory and collates the
bitmap page files. If desired, the collator 81 and/or RIP 82
may comprise a part of the press controller 80. The control
ler 80 instructs the collator 81 to send page files to a demand
printer 84. The print system 79 may comprise the Print
Streamer System, manufactured and marketed by Barco
Graphics of Belgium, while the demand printer 84 may
comprise the Xeikon DCP-1 digital color press noted above.
Alternatively, the demand printer 84 may be a DocuPrint
printer manufactured by Xerox Corporation and the RIP 82
may be a Xerox DocuPrint RIP. It should be noted that a
different print System and/or demand printer may alterna
tively be used, Such as the Indigo printer manufactured by
Indigo Nev., of Maastricht, Netherlands, if desired.
0069 FIG. 5 illustrates in diagrammatic generalized
form the method of the present invention. For the purpose of
explaining the present invention, as an example, it will be
assumed that the demand print System 62a will be operated
to produce a number of multiple-page books in the form of
a brochure in duplex (or "saddle-stich') format. FIGS. 6a
and 6b illustrate four pages P1-P4 printed on a single sheet
of paper 100 and to be included in a brochure. The sheet of
paper 100 includes a first side 100a with printed pages P1,
P4 thereon and a second side 100b with pages P2, P3 printed
thereon. (As will become evident hereinafter, the use of
designations P1-P4 is not meant to imply that Such pages
will necessarily become pages 1, 2, 3 and 4 of the finished
book.) In addition, pages P1-P4 are imposed such that the
page P1 is placed on a right-hand portion 100a-r of the side
100a while the page P4 is placed on a left-hand portion
100a-1 of the side 100a. Further, the page P2 is placed on
a left-hand portion 100b-l of the side 100b while the page P3

Oct. 28, 2004

is placed on a right-hand portion 100b-r of the side 100b. In
this fashion, when the sheet of paper 100 is folded along a
fold line 102 with the pages P1 and P4 on the outside, the
pages P1-P4 appear in Sequence. (The format shown in
FIGS. 6A and 6B is often referred to as “Saddle Stitch
imposition and is commonly used in magazines.) Because
each book to be produced in this example includes multiple
sheets of paper (or "forms”), each folded once along a fold
line, the imposition process takes into account shingling
effects but not bottling effects. It should be noted both of that
Such effects will generally have to be taken into account
when more than two pages are to be printed on a single Side
of a sheet of paper and thereafter folded multiple times and
assembled with other multiple-folded printed sheets of paper
to create a book.

0070. In addition to the foregoing, in the first example,
assume that the pages P1 and P4 will become the outside
front and back covers, respectively, of a finished book and
include variable and fixed information thereon. Further,
assume that the pages P2 and P3 will become the inside front
and back covers, respectively, (as must be the case if P1 and
P4 are the outside front covers) and include fixed informa
tion only thereon. For example, the page P1 may include
variable information in the form of a personalized message,
a variable image, or the like in an area 110 whereas the page
P4 may include other variable information in an area 112, for
example, postal information for mailing the brochure to an
addressee. Corresponding front and back pages of the
remaining books may include different variable information.
The remaining printed information on pages P1-P4 may be
identical to the printed information on corresponding pages
of remaining books.
0071. The books to be produced may include the same or
differing number of forms and may have the same or
differing numbers of pages. For example, the pages P1-P4
may be assembled with a first number of other forms printed
with twelve additional pages to produce a first book having
Sixteen pages. Another book to be produced in the Same run
may include Some or all of pages P1-P4 and a Second
number of forms printed with twenty other pages, Some of
which may or may not be identical to the twelve additional
pages of the first book. Filler pages may be placed in Some
or all books to cause Such book(s) to have a certain number
of pages. This may be necessary or desirable to result in a
book length which is evenly divisible by four (in the event
pages are imposed as two-page spreads) and/or to insure that
particular page(s) appear on the left-hand or right-hand Side
in the finished book.

0072. In fact, the books to be produced in the same press
run may be different in terms of page content and/or appear
ance, book length, book size (by changing page imposition
parameters), book version, etc. . . Specifically, for example,
the pages of FIGS. 7a, 7b and 8a, 8b may be produced and
assembled in different book versions together with the book
version incorporating the pages of FIGS. 6a and 6b in the
same production run or job. Pages P5-P8 of FIGS. 7a and
7b are identical to the pages P1-P4, respectively, of FIGS.
6a and 6b except that an additional area 113 is provided on
the page P5 for placement of variable information, in
addition to the areas 110 and 112. Because of the addition of
the area 113, the remaining master information appearing in
an area 114 differs from master information appearing in an
area 116 of the page P1 of FIG. 6a.

US 2004/0216046 A1

0073. The book version incorporating eight pages P9-P16
of FIGS. 8a and 8b differs from the book versions incor
porating the pages of FIGS. 6a, 6b and 7a, 7b not only in
terms of content of master and variable information, but also
number of pages and page size. Specifically, the pages P9,
P12, P13 and P16 are to be printed on a first side 117a of a
sheet of paper 118 and the remaining pages P10, P11, P14
and P15 are to be printed on a second side 117b of the sheet
118. In addition, the pages P11-P14 are printed upside down
relative to the remaining pages So that, when the sheet 118
is folded first along a fold line 119a and then along a fold
line 119b, the resulting pages P9-P16 appear in order.
Thereafter, the folded sheet 118 is trimmed to separate the
pages P9-P16. As should be evident, the pages P9-P16 are
one-half the size of the pages P1-P8, and further include
different master and variable information thereon. The
demand printer may also have multiple paper trays to Select
different paper sizes, Stocks, colors, etc. or preprinted Sheets
to be included in the finished book.

0.074 Referring again to FIG. 5, one or more template
files 106 are developed by a publisher specifying the content
(including appearance) of fixed information and the posi
tioning of all information (i.e., fixed and variable) on the
different books or book versions. A database 108 is also
developed by the publisher using the personal computer 54
Specifying the content of variable information to be placed
in variable information areas, for example, the areas 110,
112 on the pages P1, P4, respectively, of FIGS. 6a and 6b.
The database 108 further includes control information, as
noted in greater detail hereinafter.
0075. The template files 106 include data specifying the
position and content of fixed information on the pages to be
printed. Specifically, the template files 106 define template
pages wherein each template page includes data representing
any fixed information to be reproduced on corresponding
pages of the books or book versions and area data repre
Senting any area(s) on the corresponding pages where vari
able information is to be reproduced. The template files are
duplicated to create working files. One Set of working files
is Stripped of all area data relating to placement of variable
information to create Stripped master page files 120 defining
template pages having only fixed information thereon. The
Stripped master page files are then converted into PDL
master page files 122 expressed in a page description
language, Such as PostScript(R).

0.076 Optionally, the PDL master page files 122 may be
converted into two-pages spreads by a page make-up pro
gram such as QuarkXPress(R). Preferably, however, the PDL
master page files 122 are provided to the print system 79 and
imposed according to the imposition processes of the present
invention, as explained in detail below.

0077. A further set of working files is stripped of all fixed
information to create Stripped variable page files 126 defin
ing template pages having fixed information removed there
from and further having the area data defining the areas 110,
112. The data representing template pages having variable
information thereon are expanded into a set of intermediate
page files. In the example of FIGS. 6a and 6b and under the
assumption that three books are to be printed, two interme
diate page files 130, 132 are thus produced. The file 130
includes a file portion P1-a defining the position of variable
information to be produced on the page P1 for the first book.

Oct. 28, 2004

Two other file portions P1-b and P1-c define the position of
variable information to be produced on the front outside
covers of the remaining two books. In like fashion, file
portions P4-a, P4-b and P4-c represent the position of
variable information to be reproduced on the back outside
covers of the three books. At this point, data is also con
tained in each of the files 130, 132 identifying the entries in
the database 108 to be placed in the areas 110, 112 during
printing.

0078. The files 130, 132 are then converted into variable
page files 134, 136. The files 134, 136 are identical to the
files 130, 132, respectively, except that the data in each file
identifying entries in the database are replaced by the actual
data stored at Such entries. The files 134, 136 are then
converted into files 137, 138 in a PDL format, for example,
PostScript(R).

0079. Like the master PDL files 122, the variable PDL
files 137, 138 may be converted into two-page spreads by a
page make-up program Such as QuarkXPress(R. Preferably,
however, the variable PDL files 137, 138 are provided to the
print System 79 and imposed according to the imposition
procedures of the present invention, as explained in detail
below.

0080. The print system 79 operates in response to the
preSS commands in a press command file 140 and merges the
PDL master page files 122 with the PDL variable files 137,
138 to create the finished books or book versions. Alterna
tively, the master page files 122 may be premerged with the
PDL variable files 137, 138 before the files are provided to
the print system 79.
0081 FIG. 9 illustrates a flow chart of programming
executed by the personal computer 54 for creating the
template file(s) 106 of FIG. 5. The programming may be
written as an extension of QuarkXPreSSE), a page make-up
program distributed by Quark, Inc. of Denver, Colo. The
QuarkXPreSSE) program may be adapted for operation on
the Apple(R) Macintosh(R) operating System or any other
operating system, such as the Microsoft Windows(R operat
ing System. Alternatively, a different page make-up program
may be used, if desired.
0082 During the make-up process for a document con
Sisting of one or more pages, a template file is created for
each book version to be produced, or, where a book is to
include two or more parts (referred to as “sections' herein
after) a template file may be created for each Section. At a
block 150 a user may Select an area of a page for reproduc
tion of variable information therein, at which point a line
object, a text object or an image object may be Selected. A
block 152 then checks to determine which type of object has
been Selected. If a text object has been Selected, indicating
that variable text is to be inserted at a point defined by the
current cursor position on the computer display, the name of
the appropriate field in the database 108 is inserted into the
template file at the insertion point defined by the current
cursor position by a block 154. If the user wishes to
designate more areas for variable information (block 156)
control returns to the block 150 to await selection by the
user. If the user then Selects an image object, a box is defined
by the user to contain an image at a desired location on a
selected page. Control from the block 152 thereafter passes
to a block 158 which inserts a dummy picture file and an
indication of the proper database field name in the template

US 2004/0216046 A1

file for the page at the location indicated by the current
cursor position. The user will thereafter See the dummy
picture file at the insertion point on the display of the
computer 54 when the page is viewed. The dummy picture

Version Addressline1 Addressline.2 Addressline3 Addressline4

O1. William Doe 123 Elm Chicago Illinois
03 Hugh Jorgensen 56 Maple Chicago Illinois
02 Jay P. Morgan 1313 Park Chicago Illinois
O2 Joe Louis 819 En LaGrange Illinois
O3 John Smith 926 Cossit LaGrange Illinois
01 Len Johnson 882 Monroe LaGrange Illinois
O2 Janet Cizmar 916 Monroe LaGrange Illinois
O3 Jay Schroeder 88 W. 77th Brookfield Illinois
03 Danielle Johnston 129 Madison Brookfield Illinois

file will display an indication of which database field will be
used for insertion on the respective pages.

0083) Following the block 158, a block 160 prompts the
user to enter an indication of whether the image object is to
be displayed in one of Several display formats. If the image
is to be displayed in other than the original Size thereof, a
block 162 sets a subname defined for the image to “fit,”
indicating that the image is to be Scaled to fit the box. If the
image is to be displayed in the original size thereof, a block
163 prompts a user to select a position for the image at a
particular location in the box defined therefor, Such as the
upper left-hand corner, the lower right-hand corner, or the
like. If the user does not Select a position, the image is placed
in the upper left corner of the image box. Control thereafter
proceeds to the block 156.

0084. If the block 152 determines that a line object has
been selected, control returns directly to the block 150,
inasmuch as variable information cannot be entered into a
line object. The resulting page template files(s) are stored on
a storage medium, Such as an optical disc or other Storage
device, and/or the files(s) are downloaded together with the
database to the control unit 52.

0085. At any point during the page make-up process,
other functional aspects of the QuarkXPress(R program may
be invoked to both master and variable aspects as necessary
to produce finished pages.

0.086 The database 108 is assembled by creating an
ASCII file having a plurality of records wherein each record
includes one or more fields entered into the database in
tab-delimited format (i.e., the fields are separated from one
another in each record by tab keystrokes and the records are
Separated from one another by line returns) and wherein the
fields are arranged under field names of a header. Each field
may include text to be reproduced on a page or a name of an
image file Stored in the memory 53 and defining an image to
be reproduced on a page.

0087. In addition to the foregoing data, the database 108
may include an optional field designating the number of
copies of each book to be produced, an optional townsort
image field, a version identification field indicating book
version number if multiple book versions are to be produced,
an optional distribution list field, control data and the like.

Oct. 28, 2004

0088 Asample database is set out below having a header
consisting of twelve fields (i.e., “version," addressline 1,
“addressline2,” etc.) and a number of records, nine of
which are shown, each having twelve fields:

Addressline5 Price 1 Image 1 Price 2 Copies Barcode Townsort

606248923 S22.95 Shoes S21.95 1. 606248923
606248923 S21.95 Shirt S2O.95 1. 606248923
606248924 S24.95 Pants S22.95 1. 606248924
60525.1093 S19.95 Pants S18.95 1. 60525.1093
60525.1093 S19.95 Shoes S15.25 1. 60525.1093
60525.1093 S19.95 Shoes S17.25 1. 60525.1093
605251094 S24.95 Pants S21.95 1. 60525.1094
605241.391 S21.95 Shirt S19.95 1. 605241.391
605241.391 S22.95 Shirt S19.95 1. 605241391

0089. In the example of FIGS. 6a and 6b, the field names
ADDRESSLINE1 through ADDRESSLINE5, BARCODE
and TOWNSORT may appear in the area 112 and one or
more of the field names PRICE1, IMAGE1 AND PRICE2
may appear in the area 110. The COPIES field may be used
as a control code to Select the number of book copies to be
produced.
0090. Once the template file(s) 106 and the database 108
are assembled, the programming of FIGS. 10a–10f may be
executed by the control unit 52 to create the master page file
122, the final variable page files 137 and 138, and the press
command file 140. Referring first to FIG. 10a, a block 170
prompts a user to select a template file 106 and a block 172
opens the database 108. A block 174 then reads and stores
in a list the database field names for later reference and a
block 176 prompts a user to enter information indicating a
Section number and whether pages are to be printed in
Simplex (i.e., single-sided) or duplex (i.e., double-sided)
format. The section number identifies the order in which
multiple Sections are to be processed for a particular book.
The user may also be prompted to enter a Selective proceSS
ing code identifying a particular book version to process if
multiple versions are to be produced during a Single press

.

0091) Following the block 176, a block 177 begins the
process of Stripping variable information from the template
file opened by the block 170 to obtain the stripped master file
120 of FIG. 5. The block 177 selects a first page for
processing and a block 178 checks to determine whether
there are any images in the template file and, if images are
located, a block 180 selects a first image.
0092. A block 182 identifies the file name for the image
and a block 184 checks the field list to determine whether the
file name is included therein. If the file name for the image
is included in the field list, then the image comprises
variable information and a block 186 deletes the image
block. A block 187 then identifies and saves the image box
location on the page, the characteristics of the image box,
Such as the size, skew, background color and Subname and
the like and further saves the field name of the image from
the database 108. Also, a counter in the memory 53 which
tracks the number of variable image boxes on the page is
incremented.

0093. Otherwise, if the block 184 determines that the file
name is not in the field list, then the image contains only

US 2004/0216046 A1

master information. A block 188 then also saves the image
box location on the page and the characteristics of the image
box. Also, a counter in the memory 53 which tracks the
number of master image boxes on the page is incremented.
0094) A block 189 then checks to determine whether all
images have been processed. If not, a block 190 selects a
next image and control returns to the blocks 182-189.
Control remains with Such blocks until the block 189
determines that all images have been processed and control
then passes to a block 192. Control also passes to the block
192 from the block 178 should the latter determine that there
are no images in the template file.
0.095 The block 192 determines whether any text boxes
are present in the open template file. If at least one text box
is present, a block 194 Selects and parses a first text box and
a block 196 (FIG.10b) checks to determine whether the text
box includes at least one of the field names of the database
108. If so, then it has been determined that the text box
includes variable information and a block 198 deletes the
text box. A block 199 then stores the text box location, the
insertion points in the textbox at which variable information
is to be printed and the characteristics of the textbox and the
field names of the database 108 identified in Such text box
in the memory 53. In addition, a variable text box counter is
incremented representing the number of variable text boxes
appearing on each page.

0096). Otherwise, if the block 196 determines that the text
box does not include any field names from the database, then
the text box contains only master information. A block 200
stores the text box location in the memory 53. In addition,
a master text box counter is incremented representing the
number of master text boxes appearing on each page.
0097 Control then passes to a block 202, which checks
to determine whether all text boxes in the template file have
been processed. If not, a block 204 Selects and parses the
next text box in the template file and control returns to the
blocks 196-202. Control remains with Such blocks until all
text boxes have been processed, whereupon a block 206
determines whether all pages have been processed. If not, a
block 208 selects a next page and control returns to the block
178 (FIG. 10a). Otherwise, a block 210 saves the resulting
file as the Stripped master file.
0.098 Alternatively, if a page contains a lot of formatting
information (i.e. tabs, fonts, etc.), a rich text file (which
includes Such formatting information) may be created offline
from the database. The textbox may then open the rich text
file and read the information from the file. The use of the rich
text file Speeds up the processing time.

0099 Also, once a placeholder on a page has been “filled
in” with information from the database field, the program
may mark the corresponding text or image box as "touched.”
Thus, if the text or image box is "untouched, the program
can Skip processing of that text or image box, also Speeding
up the total processing time.

0100 Control also bypasses the blocks 194-202 and
proceeds directly from the block 192 to the block 206 if the
block 192 determines that there are no text boxes in the open
template file.

0101 Following the block 210, a block 212 converts the
stripped master file into the PDL master page file 122 of

Oct. 28, 2004

FIG. 5. At the same time, an initialization (or INI) file may
be created. The format and existence of the INI file depends
on the type of demand printer utilized. For example, the
DocuPrint demand printer does not require the use of an INI
file. However, the Barco RIP requires the use of an INI file.

0102) The INI file (in ASCII code) for the Barco RIP is
created according to the following format:

ale: file pathVname
pSX: dimension
psy: dimension
SSX: dimension
ssy: dimension
posX: dimension
posy: dimension
duplex: Zero or one
orientation: Zero or one
output: filename
copies: number

0103) Where “pSX' and “psy” refer to finished page sizes
in X and y directions, “SSX' and “ssy” refer to cut sheet size
in X and y directions, “posx” and “posy” refer to offsets in
X and y directions Specifying placement of each page on a
cut sheet, “dupleX' refers to Single or two-sided printing,
"orientation” refers to portrait or landscape printing, “out
put” refers to the name of the output file and “copies” refers
to the number of copies to be printed. A sample INI file
which specifies parameters for printing of a file called
MY JOB.PS is as follows:

Name: C:\jobs\myjob.ps
pSX: 8OOO
pSX: 11OOO
SSX: 115OO
ssy: 90OO
posX: 150
posy: 150
duplex: 1.
orientation: 1.
output: myjob.ps
copies: 1.

0104. In the foregoing example, one copy of the file
MYJOB.PS is to be printed in duplex and portrait formats at
an offset of 0.15x0.15 inches from a corner of a finished
sheet of paper 8x11 inches cut from a sheet originally having
dimensions of 9x11.5 inches.

0105 For the DocuPrint (or any other demand printer
which does not use an INI file), a queue is created which
contains the same parameters (and potentially additional
parameters which may invoke the functionality of an inline
finisher, or other apparatus) as the INI file.
0106 Following the block 212, a block 214 then reopens
the same template file originally opened by the block 170
and deletes all the master image and text boxes. A block 216
than saves the resulting file as the stripped variable file 126
of FIG 5.

0107 A block 218 then creates a temporary file contain
ing a table of the current page number and a number
representing the name of the database field placed by the

US 2004/0216046 A1

block 154 at the insertion point. The file is called, for
example, *.VARS (where * is a user-selected file name). The
* VARS file thus contains pairs of page numbers and data
base column numbers that indicate where in the database
variable information for the page comes from. For example,
the *.VARS file may contain the following information:

1. 7
8 43
9 44
1O 45
11 46
11 47
13 50
14 52
15 50
15 51

0108. In the example above, page 1 contains variable data
from column 7 of the database, page 8 contains variable data
from column 43 and page 11 contains variable data from
column 46 and 47. Further, the *. VARS file may contain
Separate pairings for images and text.

0109) Control then passes to block 242 (FIG. 10c) which
creates a working copy of the Stripped variable file 126. A
first page having variable data thereon is Selected and data
representing the remaining pages in the file are deleted by a
block 244. In the example of FIGS. 6a and 6b, the block 244
creates a file defining the front cover of a book with all fixed
information deleted therefrom and an area reserved for
variable information.

0110. Following the block 244, a block 246 selects a first
record in the database 108 and a block 248 reads the record.
An optional block 250 checks to determine whether a
Selective processing code has been entered by the user
indicating that the page is to undergo Selective page pro
cessing. AS noted above, the apparatus and method of the
present invention may be utilized to produce not only books
of a single version (i.e., where corresponding pages differ
only in terms of the variable information stored in the
database) but also books of different versions. In the latter
case, the books of different versions have different fixed and
variable information. The fixed and/or variable information
may vary in terms of content or appearance (i.e., style,
location, rotation, position, etc.) or both in different versions.
0111. If the block 250 determines that selective page
processing is to be undertaken, then a block 252 checks to
determine whether the database record read by the block 248
is to be utilized on the page currently under consideration.
The block 252 accomplishes this by checking the version
identification field in the database to determine if that
version is being used. If this is not the case, a block 253
checks to determine whether the record currently under
consideration is the last in the database. If So, control passes
to a block 294 of FIG. 10e. Otherwise, a block 254 selects
a next record in the database 108 and control returns to the
block 248 where the next database record is read.

0112) If the block 250 determines that selective page
processing is not to be undertaken, or if the block 252
determines that the record read by the block 248 is to be used
in the page currently under consideration, a block 256

Oct. 28, 2004

duplicates the data representing the page remaining after
execution by the block 244 to initiate development of one of
the files 130 or 132. In the first pass through the program of
FIG. 10c, and in connection with the example of FIGS. 6a
and 6b, the block 256 creates the file 130 and develops page
data representing a first version of the page P1-a and adds
further variable information to Such page data during imme
diately Succeeding passes through the program. Thereafter,
data representing the remaining pages P1-b, P1-C and P4-a
through P4-c are created and variable information is added
to Such pages Serially during Subsequent passes.

0113 Ablock 258 checks to determine whether there are
any image boxes on the page and, if So, a block 260 Selects
a first image box. A block 262 then inserts the image
identified by the database field into the image box. A block
264, FIG. 1d, checks the Subname to determine whether the
block 162 of FIG. 9 has indicated that the image should be
sized to fit the image box. If this is true, a block 266
performs the scaling. Otherwise, a block 268 positions the
image in the image box at the position Specified by the user
and a block 270 checks to determine whether all image
boxes have been processed. Control also passes from the
block 266 directly to the block 270, thereby skipping the
block 268. If not all image boxes have been processed, a
block 272 selects a next image box on the page and control
returns to the blocks 262-270 so that remaining image boxes
are Serially processed.

0114. Once the block 270 determines that all image boxes
have been processed, or immediately following the block
258 of FIG. 10c if no image boxes are found on the page,
a block 274 checks to determine whether there are any text
boxes on the page and, if so, a pair of blocks 276,278 select
a first text box and a first insertion point in such box. Blocks
280, 282 and 284 serially insert text data stored in the
database 108 at the appropriate insertion points in the text
box. Once all of the variable text data have been inserted into
the text box, a block 286 recomposes all text in the text box
So that the text obtains a neat finished appearance. The
recomposition process is automatically undertaken by the
QuarkXPress(E) program once the variable information is
inserted into each text box. The recomposition proceSS is
responsive to the user commands as applied to the template
file page, Such as left, right, center, or full justification,
hyphenation and the like. Following the block 286, a block
288, FIG. 1e, checks to determine whether there are remain
ing text boxes to be processed on the page and, if So, a block
290 selects the next text box on the page and control returns
to the blocks 278-288 to insert text information into Such
text boxes.

0115 Once the block 288 determines that all text boxes
for the page have been processed, the programming required
to produce one of the pages of the file 134 of FIG. 5 having
variable information only thereon is complete. A block 292
then determines whether all records in the database have
been considered for inclusion in additional variable pages of
the file 134 to be produced. If not all records have been
considered, control returns to the block 254, FIG. 10c,
where the next database record is identified and read. On the
other hand, if all pages of the file 134 have been produced
by considering all records in the database 108, a block 294
converts the file data into PostScript(R) or another PDL format
to create the variable page file 137 of FIG. 5. Also, an INI
file is created as before, except that the “duplex” or “twin

US 2004/0216046 A1

plex’ parameter is set to command Simplex printing only. If
necessary or desirable, should the press run length exceed a
certain limit, the programming may be modified to create
more than one variable page file for each variable page of the
template file.

0116. Following the block 294, a block 296 checks to
determine whether there are other variable pages in the
Stripped variable page file to be processed. If this is true, a
block 298 retrieves a copy of the stripped variable file,
Selects the next variable page therein and deletes remaining
pages therefrom. Control then returns to the block 246 of
FIG.10c. In the example of FIGS. 6a and 6b, the back cover
P4 and the corresponding pages of the remaining books are
now Selected for processing. In the fashion noted above, a
file representing the variable portions of Such pages is
produced by developing the file representing the pages P4-a
through P4-c and inserting the database information into
such file to obtain the variable page file 136 and the PDL
version 138.

0.117) Following generation of the variable page files 134,
136, and 137, 138 control passes to a block 300 which
checks to determine whether a press command file has
already been created. If not, a file is created by a block 302
having placeholder comments indicating where in the preSS
command file individual preSS commands are to be placed
for each book to be produced. The preSS command file may
also include data from one or more fields of the database 108
identifying an intended recipient of each book to be pro
duced to assist in reproducing books found to be defective
or to produce Sample books. At this point, the preSS com
mand file for the example of FIGS. 6a and 6b may be as
follows (using data from the sample database set out above):

RECORD1
;:WILLIAM DOE:606248923
ENDRECORD
RECORD2
;:HUGH JORGENSEN:606248923
END RECORD
RECORD3
;:JAY P. MORGAN:606248924
END RECORD

0118 Following the block 300 (if the press command file
already exists) or the block 302 a block 304 selects the first
database record and a corresponding first record in the preSS
command file. A block 306 then checks to determine
whether the template file currently being processed includes
the selected database record. If not, a block 308 determines
whether all pages have been processed, and if this is not the
case, the next record in the database 108 and a correspond
ing record in the preSS command file are Selected. Control
then returns to the block 306. If the block 306 ascertains that
the template file includes the selected record, a block 312
inserts an indication of the Section number in the preSS
command file at an appropriate point if the Section number
is not already present. If the Section number is present
already, the preSS command identified by the Section number
entered by the user at the block 176 is identified to be
overwritten at a later point. The preSS command file now
appears as follows for the example of FIGS. 6a and 6b:

Oct. 28, 2004

RECORD1
;:WILLIAM DOE:606248923
SECTION 1
ENDSECTION
ENDRECORD
RECORD2
;:HUGH JORGENSEN:6062488923
SECTION 1
ENDSECTION
END RECORD
RECORD3
;:JAY P. MORGAN:606248924
SECTION 1
END SECTION
END RECORD

0119). Following the block 312, a block 314, FIG. 10?,
Selects a first page of the Section and a block 316 checks the
state of a flag stored in the memory 53 to determine whether
a simplex or duplex job has been requested. If a Simplex job
has been requested, the file name and page number of the
master page file and, if variable information is to appear on
the page, the file name and page number of the variable page
file for the Selected page are Stored as a single Set pair in the
memory 53 by a block 318. The determination of whether
variable information is to appear on the Selected page is
accomplished by Summing the contents of the variable
image box counter and the variable text box counter as
incremented by the blocks 220 and 234 of FIG. 10b.

0120 Ablock 320 checks to determine whether all pages
have been processed and, if not, the next page is Selected by
a block 322 and control returns to the block 316 for
processing of Such page. If all pages have been processed,
control passes to a block 324 which determines whether all
database and preSS command records have been processed.
Control also passes to the block 324 if the block 308
determines that all pages have been processed. If not all
records have been processed at this point, control returns to
the block 310 where the next records in the database and
preSS command file are Selected.

0121) If the block 324 determines that all records for the
current Section have been processed, a block 326 determines
whether another Section is to be processed and, if So, control
returns to the block 170 of FIG. 10a. If there is not another
Section to be processed, the preSS command file has been
fully assembled, and hence the process terminates.

0122) If the block 316 determines that a duplex job is to
be effected, control passes to a block 328 which stores in the
memory 53 a command identifying the file names and page
numbers of the master page file (as well as corresponding
information relative to variable page files, if variable infor
mation is to appear) as two-Set pairs. Control from the block
328 then passes to the block 320 described above.

0123. The result of the programming of FIGS. 10a–10f is
a press command file having a Sequence of press commands
which cause printing of pages in a desired order. In order to
print the sample pages of FIGS. 6a and 6b, the press
command file would read as follows:

US 2004/0216046 A1

BOOKA
RECORD1
;:WILLIAM DOE:606248923
SECTION
“file.m1(a)"file.v11“file.m”2
“file.m'3"file.m'4(a)"file.v41
ENDSECTION
ENDRECORD
RECORD2
;:HUGH JORGENSEN:606248923
SECTION
“file.m1(a)"file.v12"file.m”2
“file.m'3"file.m'4(a)"file.v42
ENDSECTION
ENDRECORD
RECORD3
;:JAY P. MORGAN:606248924
SECTION
“file.m1(a)"file.v13“file.m”2
“file.m'3"file.m'4(a)"file.v43
ENDSECTION
ENDRECORD
ENDBOOK
PRINTRUN
BOOKA
ENDPRINTRUN

R

0.124. In the foregoing example, “file.m” is a file name
identifying the master page file 122 and “file.V1' and
“file.V4' are file names identifying the variable page files
137 and 138, respectively. The number following each file
name designates a particular page of the file identified by the
file name. Thus, for example, “file.m'1 designates the first
page of the master file “file.m” and “file.V12 designates the
Second page of the variable page file "file.V1. The (G) Sign
means to associate the pages of the files linked by Such sign
(i.e. overlay the variable pages on the master pages). The
vertical line in the commands indicates that the page(s) on
the left side of the vertical line are to be printed on the front
Side of a piece of paper whereas the page(s) on the right Side
of the vertical line are to be printed on the reverse side of the
piece of paper. In an example of Simplex printing, no file
name would appear to the right of the vertical line in each
command.

0.125 FIG. 11 illustrates the programming implemented
by the control unit 52 to generate a page description lan
guage instruction Set specifying which pages should be
printed and how the pages should be positioned (or imposed)
for printing. The page description language instruction Set
may be incorporated into the press command file 140 or may
be provided as a separate file to the print system 79. For
purposes of illustration, the page description language
instruction set is written in PostScript(R) in the format dictated
by the Xerox DocuPrint printer. Further, the instruction set
is directed to books printed in “saddle stitch” imposition
format (i.e. 2 pages on each side of sheet) as explained in
connection with FIGS. 6-8. It is understood, however, that
the invention could easily be modified for use with a
different demand printer (i.e. the Xeikon Barco printer)
and/or imposition format (i.e. 4 pages on each side of sheet).
0.126 Referring to FIG. 11, the programming begins at a
block 340 which prompts a user to specify certain informa
tion to be used to paginate the book. A variable (“MAX
PGS) representing the maximum number of Supplied pages
that may or may not be assembled into a single book during

11
Oct. 28, 2004

the job is specified together with the identification of a filler
page that may or may not be printed and assembled in a book
either on a left-hand or a right-hand portion thereof. Also,
the user is prompted to specify for each page whether Such
page will be forced to be on the left side of a book, the right
side of a book or will not be forced to a particular book side.
In the event a page is to be forced to a side, the user is
prompted to Specify the page file name and page number for
a filler page to precede the forced page. Still further, the user
is prompted to specify for each page whether Such page is:

0127 1) A Master Page-contains the same infor
mation and is included in every book;

0128 2) An Always Variable Page-contains vari
able information and is included in every book, or

0129. 3) A Selectively Variable Page-contains
variable information and is Selectively included in
Selected books.

0.130. In so specifying the foregoing, the user creates a
pagination file (called, for example, *.PAG, where * indi
cates a file name Selected by the user). A Sample window
generated by the block 340 to prompt a user for the infor
mation needed to create the pagination file is shown in FIG.
12.

0131 Referring again to FIG. 11, following the block
340, a block 342 opens the press command file 140 and a
block 344 Selects the appropriate database files, including
the variable information file (*.vars), the pagination file
(*.pag), and (optionally) a barcode file. As set forth above,
the *.VarS file is a temporary file of pairs of page numbers
and database column numbers that indicate where in the
database variable information for the page comes from.
0132) The barcode file is a page description language file
(for example, a PostScript(R) file) which contains instructions
for printing the Sequential page numbers and/or a tracking
bar code on the pages of the completed book. The barcode
file will be explained in detail below.
0133. The programming then proceeds to the loop con
taining blocks 346, 348, 350, 352 and 354. The block 346
takes each record (or book) in the press command file 140
in sequential order. For each record, the block 348 deter
mines which pages should be printed to generate that
particular book. Next, the block 350 determines whether the
pages to be printed should be forced to the right hand or left
hand side of the book and the block 352"pads” the pages to
be printed to be a multiples of the number of pages to be
printed on a sheet (in our example, 4) by adding appropriate
filler pages. Next, the block 354 generates the PostScript(R)
instruction Set and the programming returns to the block 346
to retrieve the next record in the press command file 140.
The loop repeats for each record in the preSS command file
140.

0.134 FIG. 13 illustrates in detail the programming steps
implemented by the block 348 of FIG. 11, which determines
which pages should be printed for a particular record in the
press command file 140. A block 360 first retrieves the first
page in the record. A decision-making block 362 then
determines whether the page is from a new file that is to be
“imposed-on-the-fly with offsets.” (Imposition-on-the-fly
with offsets is one of the imposition formats of the present
invention, which will be explained in detail below). If yes,

US 2004/0216046 A1

a block 364 calculates and saves the offsets for all the pages
in the file. After the block 364 calculates and Saves the
offsets or if the block 362 is false, a decision-making block
366 then determines whether the page is a master page (i.e.
does not include any variable information placeholders). If
the page is a master page, the page should always be printed
and a block 368"marks” the page to be printed. The block
368 may “mark' the page by adding it to a page print array.
The page print array contains the page number and a marker
to indicate the disposition of the page. For example, pages
that should not be printed are designated with a “0”; master
pages (always printed) are designated with a “1”; and
variable pages to be printed are designated with a "2.

0135) If the block 366 determines that the page is not a
master page (i.e. it's a variable page), a decision-making
block 370 determines whether the variable page should be
printed at all times. (This was designated by the user at the
block 340 in FIG. 11 during creation of the pagination file).
If yes, the block 368 marks the page to be printed. If no, a
decision-making block 372 determines whether the page has
any variable placeholders with valid data. In other words,
the block 372 determines whether there is any variable
information from the database to be printed on the page. If
yes, the block 368 marks the page for printing. The program
then returns to the block 360 to retrieve the next page from
the record until all the appropriate pages have been marked
for printing.

0.136 FIG. 14 illustrates in detail the programming Steps
implemented by the block 350 of FIG. 11 to determine
whether the pages should be forced to the left or right hand
side of the book. A block 380 first initializes a left/right
(L/R) counter variable to its default value of right because it
is assumed that the first page of the book will be one the right
side. Next, a block 382 retrieves the first page from the
record that is marked “should print” and a block 384
determines whether the user has specified whether the page
should be forced to the left or right side. (This was desig
nated by the user during creation of the pagination file at
block 340 of FIG. 11). If the user has not specified that the
page should be forced, a block 386 flip-flops the L/R counter
Such that if it was Set to right it is changed to left and if it
was set to left, it is changed to right and the program returns
to the block 382 to retrieve the next “should print” page in
the record.

0137 Alternatively, if the block 384 determines that the
user has Specified that the page should be forced left or right,
a block 388 determines whether the user specification
matches the orientation of the page (i.e. is it the same as the
L/R counter). If yes, the block 386 flip-flops the L/R counter
and returns to the block 382 to retrieve the next “should
print” page in the record. Otherwise, a block 390 marks an
appropriate filler page (which was identified by the user
during creation of the pagination file) to be printed and the
program returns to the block 382 to retrieve the next “should
print page in the record.

0138 FIG. 15 illustrates in detail the programming steps
implemented by the block 352 of FIG. 11 to “pad” the pages
into a multiple of the number of pages to be printed on a
sheet. In our example, using "saddle Stitch' imposition, four
pages are printed on a sheet (2 pages per side). Therefore,
filler pages may need to be added to ensure that the total
number of pages in the book is a multiple of 4. A block 392

Oct. 28, 2004

first counts the number of pages in the record that have been
marked to print. This includes all the master and variable
pages that were marked by the block 368 of FIG. 13 as well
as any filler pages that were marked by the block 390 of
FIG. 14. Next, a block 394 determines whether the total
number of pages is a multiple of 4. If not, a block 396 adds
the appropriate number of filler pages to make the total
number of pages a multiple of 4. For example, if the block
392 determines that 18 pages are marked to print, the block
396 will add 2 filler pages to make the total number of pages
in the book equal to 20 (a multiple of four). The program
then returns to the block 354 of FIG. 11 which generates the
PostScript(R) instruction set.
0.139. The PostScript(R) instruction set specifies how the
pages marked to print should be positioned (or imposed) for
printing. In our example, for a "Saddle-Stitch' imposition
format, and assuming a 12 page book, the block 354
generates an instruction Specifying that the pages should be
positioned as shown in the following table:

Sheet No. Side No. Left Side Right Side

1. 1. Page 12 Page 1
1. 2 Page 2 Page 11
2 1. Page 10 Page 3
2 2 Page 4 Page 9
3 1. Page 8 Page 5
3 2 Page 6 Page 7

0140. It is understood that a different instruction set could
be generated (by an imposition program) to impose and print
the pages in a different format (i.e. four pages per Side) or
alternatively, a different number of total pages.
0.141. After the block 354 generates the imposition
instruction Set, the pages are imposed and printed according
to an imposition procedure of the present invention. The first
imposition procedure of the present invention utilizes an
artificial PostScript(R) operator called “GetTIFF", which is
recognized by the Xerox DocuPrint RIP, wherein page files
are preprocessed to TIFF ("tagged image file format')
format before being provided to the RIP. The second impo
Sition procedure of the present invention (referred to as
“imposition-on-the-fly”) involves downloading imposition
programs to the RIP which redefine various PostScript(R)
operators to automatically position pages while each page is
being interpreted.
0142. A user is prompted to specify various information
needed for imposition and printing, including the sheet size
(i.e. 11x17), imposition style (imposition-on-the-fly or Get
TIFF), finishing style (online or offline), the output device
(i.e. Xerox DocuPrint or Barco Xeikon) and the name of the
directory where the master and variable page files are Stored.
A Sample window to prompt a user to provide this informa
tion is shown in FIG. 16.

0143 GetTIFF Imposition
0144. ATIFF (tagged image file format) file is a bitmap
representation of a page in the same Screen format as the
print engine. Several commercially available RIPs (such as
Image Alchemy or TranverterPro) process pages represented
in a page description language format to TIFF format. The
Xerox DocuPrint RIP recognizes an artificial PostScript(R)

US 2004/0216046 A1

operator called “GetTIFF' which retrieves a specified TIFF
file and quickly processes the file for rendering by the
DocuPrint demand printer. (Other demand printer RIPs,
including the Barco Xeikon, may also be modified to rec
ognize a GetTIFF-type operator).
0145. In a preferred embodiment of the present invention,
the master page PDL files 122 and the variable page PDL
files 137, 138 are preprocessed to TIFF format. Because the
Xerox DocuPrint system allows for only one input data
Stream (as opposed to the Barco Xeikon System which
allows two data streams-master and variable), the master
page PDL files 122 and the variable page PDL files 137, 138
may be premerged. This may be accomplished by forcing all
of the master data onto the variable template files. After the
master and variable pages are merged, the instruction Set and
GetTIFF operator are used to quickly impose and proceSS
the pages for printing.
0146 Alternatively, the master and variable data streams
may be overlayed by first processing the master pages and
then overlaying the variable pages onto the master pages.
0147 FIG. 17 illustrates programming which may be
executed to facilitate conversion of the page files into TIFF
format. The programming begins at a block 397 which opens
the press command file stored in the memory 53. A block
398 then prompts a user to specify options which are
available. The options include the ability to convert only
master page files, only variable page files or both master and
variable page files into bitmap format. A block 399 then
Selects the first line in the press command file having at least
one file name therein. Thereafter, a block 400 selects a first
file name and a block 401 checks a file list stored in the
memory 53 to see if the file name has been previously placed
in the list. If this is not the case, then this is the first time the
file name has been encountered in the programming of FIG.
17. Thus, a block 402 adds the file name to the file list and
a block 403 checks the user-specified options set by the
block 398 to determine whether the file should be converted
into TIFF format. If so, a RIP list stored in the memory 53
is updated by adding the file name thereto (block 404) and
control passes to a block 405. Control also passes to the
block 405 from the block 403 (bypassing the block 404) if
the file is not to be converted into TIFF format, and from the
block 401 if the file name currently under consideration is
already in the file list.
0148. The block 405 checks to determine whether the end
of the current line in the press command file has been
reached. If not, a block 406 selects the next file name in the
line and control returns to the block 401.

0149) If the block 405 determines that the end of the
current line in the preSS command file has been reached, a
block 407 checks to determine whether the end of the press
command file has been reached. If not, a block 408 selects
the next line in the press command file having at least one
file name and control returns to the block 400. On the other
hand, if the end of the file has been reached, a block 409
causes the RIP 82 (or another RIP) to convert the files
identified in the RIP list into TIFF format.

0150. The programming of FIG. 17 thus facilitates con
version of files to TIFF format as required by the print
system 79.
0151 Referring to FIG. 18, if the user specified GetTIFF
imposition and after the page files have been RIPped to TIFF

Oct. 28, 2004

format by the programming of FIG. 17, a block 410
retrieves the first page pairing from the instruction Set (in our
example, page 12 as the left hand page and page 1 as the
right hand page). A block 412 then retrieves a reference to
the page description of the left hand page in TIFF format
from the page file and provides it to the RIP 82. Assuming
the default offset is positioned at the left side of the sheet, the
left hand page is positioned on the left Side of the sheet.
0152. A block 414 then moves the offset to position the
next page onto the right side of the sheet. A block 416
retrieves the reference to the page description in TIFF format
of the right hand page from the page file and provides it to
the RIP82. Next, a block 418 may add page numbers and/or
a bar tracking code to the sheet, as explained below. The
program then returns to the block 410 to retrieve the next
page pair from the instruction Set and the program repeats
until all pages and all books have been processed.
0153. After all pages have been processed, they are
RIPped and printed by the demand printer 84 in accordance
with the initialization (INI) file, which was created by the
block 212 (FIG. 10b).
0154) If, for example, the demand printer is a DocuPrint

(i.e., no INI file was created), the pages are Submitted to the
queue (which contains the same parameters as the INI file)
for RIPping and printing.

O155 Apartial PostScript(R) instruction set for printing the
12-twelve page brochure in accordance with the table above
implementing the GetTIFF imposition according to FIG. 18
is set forth below:

<<

/PageSize 1224792 % set sheet size
>> setpagedevice % (11 x 17)
(VERON12.VO1 dirf % get left page

VERON12.VO1.00000002.tiff) GetTIFF
612 O translate % move to right
(VERONO1.VO1 dirf % get right page

VERONO1.VO1.00000002.tiff) GetTIFF
showpage
(VERONO2.M dirf % get left page

VERONO2.M.00000002.tiff) GetTIFF
612 O translate % move to right
(VERON11.VO1 dirf % get right page

VERON11. V01.00000002.tiff) GetTIFF
showpage

(VERONO6.M dirf % get left page
VERONO6.M.00000004.tiff) GetTiff

612 O translate % move to right
(VERONO7.V03 dirf % get right page

VERONO7.VO3.00000003.tiff) GetTiff
showpage % reset to left

0156. In the instruction set, the “VERON*.* dir/
VERON*.*” indicates the directory and filename where the
page descriptions are located. The Suffix "...M' indicates a
master page and the Suffix ".V indicates a variable page
(with the version number of the variable page to be printed).
The suffix “?tiff is the file name created by the RIP which
converted the page files to TIFF files and indicates that the
files are in TIFF format. The artificial
PostScript(R“GetTIFF" operator interprets the TIFF files.

US 2004/0216046 A1

The “6120 translate” command moves the offset to the right
hand side of the sheet (block 414) and the PostScript(R)
showpage operator transmits the page to the demand printer
84 for rendering, prepares for interpreting the next page
description and resets the offset to the lefthand side.
O157 Optionally, the block 418 may print page numbers
and/or a bar tracking code onto the sheets printed by the
demand printer 84. This may be accomplished by adding the
following additional PostScript(R) code before the showpage
operator in the instruction Set shown above:

fC39P24Dm 24 selectfont
30 4.5 sub 18 translate 90 rotate
0 0 moveto

(1.12) show

% add bar code info
% position on
% side of sheet

% indicates sheet 1 of 12
%

fHelvetica 12 selectfont
32O 780 moweto

% add page numbers
% center in middle of left page

(12) show % print page “12
-32O 780 moveto % center in middle of right page
(1) show % print page “1”

0158. The first section of code provides the command for
printing a bar code (indicating for example, the page number
and the total number of pages in the book). The Second
Section of the code prints page numbers centered at the
bottom of each page. A Similar technique could be used to
do any "post page' modifications, Such as Watermarking
Samples or QC books, adding variable printerS marks or the
like.

0159) Imposition-on-the-Fly

0160 The user may also specify that the pages be
imposed and printed using the imposition-on-the-fly tech
nique of the present invention. This technique positions the
pages while the pages are being interpreted by the RIP. FIG.
19 is a more detailed block diagram of the print system 79
shown in FIG. 4. The PDL master page files 122 and the
PDL variable page files 137, 138 may be combined into
merged PDL files (such as merged PostScript file(s) 450),
which are then provided to the print system 79, comprised
of RIP 82, collator 81, press controller 80 and demand
printer 84. The press command file 140, which includes the
instruction Set for Specifying how pages should be imposed,
is also provided to the print system 79.

0.161 Alternatively, as described above, the master page
files 122 and the variable page files 137, 138 may be
provided separately to the print system 79 and overlayed.

0162 The print system 79 may also include a raster
memory 452 associated with the RIP 82 and the demand
printer 84. The RIP 82 generates a raster description of the
“current page', being interpreted, which may be Stored in
the raster memory 452 or provided to the demand printer 84
for rendering. The demand printer 84 physically renders
pages 454 from the merged PostScript(R) file 450 onto a “flat'
(or other medium) 456.
0163 For purposes of illustration, it is assumed that the
RIP 82 interprets the widely used Postscript(R) PDL lan
guage. (PostScript(R) is a registered trademark of Adobe
Systems, Inc.) The PostScript(R) language is fully described
in the postscript(RLanguage Reference Manual, Second Edi

Oct. 28, 2004

tion (1990), from Adobe Systems, Inc., which is incorpo
rated herein by reference. Certain imposition-on-the-fly pro
cedures 454 according to the present invention are
downloaded to the RIP82. (The procedures 454 include, for
example, Impose Job, Imposefile and various redefined
PostScript(R) operators which are described in detail below).
The imposition-on-the-fly procedures 454 will be used by
the RIP 82 to process the instruction set and the page
descriptions contained in the merged PostScript(R) files 450 to
efficiently transmit pages for rendering by the demand
printer 84. (For ease in illustration, it is assumed the master
and variable page files were premerged into merged file 450.
It is understood, however, that the master and variable page
files could also be overlayed.)
0164 PostScript(R) Background

0.165. In order to facilitate the explanation of imposition
on-the-fly procedures of the present invention, Some back
ground regarding the PostScript(R) language is provided.
Further background details may be found in the PostScript(R)
Language Reference Manual, Second Edition (1990), from
Adobe Systems, Inc., which was previously incorporated by
reference.

0166 The RIP 82 manages four different stacks, which
are “last-in-first-out” (LIFO) data structures. These stacks
include:

0167 (1) an Operands Stack which holds (i) the
input operands to various PostScript(R) operators, and
(ii) the results of the operations;

0168 (2) an Execution Stack which is controlled by
the RIP 82 and which holds executable objects (i.e.
procedures and files) that are in Stages of execution;

0169 (3) a Dictionary Stack which includes (i) a
read only dictionary (“systemdict”) which defines
the implementation of the various PostScript(R)
operators, (ii) a writable dictionary (“userdict')
which stores all other definitions, and (iii) Special
ized dictionaries created by the user (e.g., an impo
Sition dictionary); and

0170 (4) a Graphics State Stack which is used to
Store graphics information, Such as the parameters of
the demand printer 84.

0171 The PostScript(R) language is device independent
Such that the page descriptions contained in the merged
PostScript(R) file 450 are specified in a coordinate system
(called “user space') that is independent of the particular
demand printer 84. The coordinate system (called “device
Space”) used by the demand printer 84 varies depending on
the particular demand printer 84 (the “current device')
which is specified for rendering the current page. In order to
render the pages described in the merged PostScript(E) file
450, the page descriptions (specified in user space) may be
transformed to the current device Space by a Current Trans
formation Matrix (CTM).
0172 The PostScript(R) language uses the Current Trans
formation Matrix (CTM) to describe scaling, rotation, and
translation of the page from user Space to device Space. For
mapping the point (x, y) in user space to the point (x, y) in
device Space:

US 2004/0216046 A1

(FileName)
user procedure 1 }
pageff { operands to setvirtualdevice
{ FileObject offset setfileposition

user procedure 1 p
pageff { operands to setvirtualdevice
{user procedure 2 - barcodes, watermarks, etc. }

0173 where a, b, c, and d determine the extent of scaling
and rotation and where t, and t determine the extent of
translation.

0.174. The RIP 82 also maintains a data structure, called
the "graphics State,” that holds various graphics control
parameters, including the ICTM). The graphics State also
includes (i) a clipping path, which defines the rendering area
in the raster memory 452 for the current page; (ii) font and
line definitions; (iii) a color space (Such as Device Gray,
RGB, CMYK or CIE); and (iv) other graphics control
parameterS.

0.175. The PostScript(R) language includes several opera
tors for setting up the current demand printer 84 to fulfill the
processing requirements of the page descriptions contained
in the merged PostScript(R) file 450. The current device setup
includes establishing the Current Transformation Matrix
(ICTM) for the current demand printer 84. The default
transformation from user Space to device Space for the
current device is specified by a “system default matrix.' The
system default matrix may be generated by the PostScript(R)
language, for example, by a defaultimatrix operator. The
CTM may be considered an alteration of the system default
matrix.

0176) Once the current demand printer 84 has been set
up, the RIP 82 can begin to interpret the page descriptions
in the merged PostScript(R) file 450. For each page in turn,
everything that is to appear on that page (including text,
graphics, and images) is "painted” into the raster memory
452 and stored and/or rendered by the demand printer 84.
0177. In the merged PostScript(R) file 450, each descrip
tion of a page to be rendered includes a PostScript(R) show
page operator. The Showpage operator, which is generally
included at the end of each page description, is used to
transmit the raster description of the current page (saved in
the raster memory 452) to the demand printer 84 for physical
rendering of the current page. In general, the Showpage
operator transmits the contents of the raster memory 452 to
the demand printer 84, then erases the current page from the
raster memory 452 and partially resets the graphics State in
preparation for interpreting the next page description in the
merged Postscript(R) file 450.

0178. In level 2 PostScript(R) implementations, the func
tion of the showpage operator is controlled by an EndPage
procedure and a BeginPage procedure that are defined
according to the current demand printer 84. In general, the
EndPage procedure specifies the disposition of the current
page in the raster memory 452 and the BeginPage procedure
Sets up and marks the beginning of the next page description
to be interpreted. These procedures may be defined, for

15
Oct. 28, 2004

example, by a level 2 Setpagedevice operator which Sets up
the graphics State for the current demand printer 84 (the
“current graphics State').
0179. During normal operation, the level 2 showpage
operator provides two operands to the EndPage procedure:
a reason code and Pagecount. The reason code operand
Specifies whether the EndPage procedure is being called by
the Showpage operator, by a copypage operator, or during a
device deactivation. When the EndPage procedure is called
by the showpage operator, the reason operand is Set to 0. The
Pagecount operand is the number of executions of the
showpage operator that have occurred since the current
device was activated, not including the present execution.
Thus, Pagecount is equal to the number of pages that have
been rendered prior to the current page. After the EndPage
procedure is executed, Pagecount is incremented by one and
is provided as an operand to the BeginPage procedure.

0180. The operation of the level 2 showpage operator is
illustrated in the flowchart of FIG. 20. A block 500 first Sets
the reason code operand equal to Zero to Specify that the
EndPage procedure is being called by the Showpage opera
tor. A block 502 then calls the EndPage procedure, which
consumes the reason code and Page Count operands and
returns a boolean result that Specifies the disposition of the
current page in the raster memory 452. During normal
operation, the EndPage procedure returns true during execu
tion of the showpage or copypage operators (causing a
physical page to be produced) and returns false during
device deactivation. A decision-making block 504 deter
mines whether the result returned from the EndPage proce
dure is true or false.

0181. If the EndPage procedure returns “true”, a block
506 transmits the contents of the raster memory 452 to the
demand printer 84 for rendering. A block 508 then clears the
raster memory 452 by executing a procedure Similar to a
PostScript(R) erasepage operator. Under normal operation,
the EndPage procedure returns true if it is called by the
showpage or copypage operator. Thus, the showpage and
copypage operators cause the contents of the raster memory
452 to be transmitted to the demand printer 84 for rendering.

0.182) If the EndPage procedure returns a “false', the
showpage operator does not perform either of the functions
of the blocks 506 and 508 (i.e., no page is rendered), but
skips to a block 510. The block 510 executes a procedure
Similar to a PostScript(R) initgraphics operator which resets
the ICTM, the clipping path, and other graphics parameters
to the default values for the current demand printer 84, thus
Setting up the graphics State for composing the next page.
The clipping path defines the rendering area for the current
page Stored in the raster memory 452.

0183) A block 512 then increments the Pagecount oper
and by one and a block 514 calls the BeginPage procedure
with Pagecount as an operand. The BeginPage procedure
marks the beginning of the next page in the merged Post
script(R) file 450 to be interpreted by the RIP 82.

0.184 The standard operation of the level 2 showpage
operator illustrated in FIG. 20 may be represented by the
following PostScript(R) pseudo code:

US 2004/0216046 A1

fshowpage {
freason O def % reason = 0 for

% showpage
% call EndPage
% procedure
% W do these lines
% \ only
% f if Endpage
% f returns true
% set default graphics
% state
% increment
% pagecount

% call BeginPage
% procedure

pagecount reason EndPage

{ transmit contents of
raster memory to
demand printer
erasepage 3 if

initgraphics

/pagecount pagecount 1 add def

pagecount BeginPage

def

0185. The Imposition-on-the-Fly Procedures
0186 The imposition-on-the-fly procedures of the
present invention create a layer on top of the demand printer,
called a “virtual device.” The desired position (scale, ori
entation and size) of a page to be printed by the demand
printer is specified by a procedure (called “Setvirtualdevice')
which establishes the virtual device for that page. Thus, from
the standpoint of the PostScript(R) program, the CTM) is the
Same as the System default matrix and every page begins
with a CTM mapping user space coordinates to the lower
left corner of the output device. The ICTM can be explicitly
manipulated as if each PostScript(R) page were imaged on a
distinct, but identical, physical page.
0187 Thus, when imposing and rendering a selected
page from the merged PostScript(R) file 450, the current
output device (i.e. the demand printer 84) is defined as the
Virtual device. In general, the Virtual device for a Selected
page is the same size as the page and is positioned at the
place on the flat 456 where the page is to be rendered.
0188 The virtual device is established by setting the
current transformation matrix (ICTM) to properly position
the page. A clipping path, which defines the rendering area
in the raster memory 452, is then created around the border
of the page. Thus, the RIP 82"sees” the position where the
page is to be rendered as the current output device.
0189 For pages in the merged PostScript(R) file 450 that
will not be rendered on the current flat 456 (i.e. are not
included in the current book), the current output device (the
demand printer 84) is defined as a scaled-down virtual
device for the next page to be imposed and rendered on the
flat. The Scaled-down virtual device allows any intervening
pages not to be imposed on the flat to be quickly interpreted
by the RIP 82.
0190. The imposition-on-the fly procedures include the
setvirtualdevice procedure, which establishes the virtual
device for the next page to rendered on the flat 456 and an
EnableVirtualDevice procedure which sets up the showpage
operator to Support Virtual devices. The EndPage and
BeginPage procedures that are invoked by the Showpage
operator are also redefined. These procedures will be
described in detail below.

0191 The Imposition-on-the-Fly Instruction Set:
0.192 Preferably, the instruction set for implementing
imposition-on-the-fly by creating the Virtual device for

16
Oct. 28, 2004

pages to be rendered on the flat are input to the RIP82 in the
below-described format. However, the present invention
may be modified to properly impose different instruction Set
formats.

0193 The imposition-on-the-fly instruction set contains
the name(s) of the merged PostScript(R) file(s) 450 that will
be interpreted by the RIP 82 and rendered by the demand
printer 84. These file names are associated with entry lists
(Stored in arrays) containing one or more entries, wherein
each entry contains the following information:

0194 1) A first user procedure- The user procedure
may contain various instructions, including com
ments, printer's marks (Such as barcodes or water
marks) or other information. (The user procedure
may also be null and is not essential to the imposi
tion-on-the-fly procedures of the present invention).

0195 2) A page number The page number is the
Sequential number of the page description in the
merged PostScript(R) file 450 of the page to be ren
dered on the flat 456. The merged PostScript(R) file
450 is assumed to contain page descriptions in
Sequential order, wherein the first page description is
page “0.”

0196) 3) Operands to the setvirtualdevice proce
dure-AS explained in detail below, the Setvirtualde
Vice procedure establishes the appropriate virtual
device as the current output device for a particular
page. The Setvirtualdevice procedure requires the
following three operands, which are included in each
entry in the entry list:

0197) i) the scaling, translation and rotation fac
tors which will be used to generate a “virtual
CTM' which will properly position the selected
page on the flat 456. These factors are listed as
follows: Scale x scale y translate X translate y
rotate;

0198 ii) the user space coordinates of the lower
left and upper-right corners of the actual rendering
area of the next page to be rendered on the flat 456.
These corner coordinates will be used to generate
a clipping path around the border of the page in the
raster memory 452. The corner coordinates are
listed as follows: CliplX CliplTY ClipurX
Clipur Y; and

0199 iii) the size (width and length) of the page
to be rendered on the flat. The page Size is listed
as follows: PageX PageY). (The page size is not
necessarily equivalent to the clipping path defin
ing the rendering area of the page, as many
demand printers are unable to place marks at the
extreme edges of the page).

0200 4) A second user procedure (“offsets"): Like
the first user procedure, the Second user procedure
may contain comments, printer's marks (barcodes,
watermarks, etc.) or other information or may be
null. In a preferred embodiment, however, for the
first page on the flat, the Second user procedure is
used to “offset the program to the next page to be
rendered on the flat.

US 2004/0216046 A1

0201 For example, the merged PostScript(R) file generally
contains many, many pages because it includes Separate
page descriptions for each variable page. ASSume a simple
four page book with three master pages and only one
variable page. The book may be sent to 1,000 different
people, with different variable information for each perSon.
Thus, the merged PostScript(R) file contains 1,003 page
descriptions-3 master pages and 1,000 variable pages.
Imposition-on-the-fly with offsets allows for quick printing
of the books because it "skips over” (i.e. does not RIP) the
999 variable pages that will not be included in each book.
0202 For imposition-on-the-fly with offsets, the second
user procedure for the first entry in the instruction Set
contains a file object, an offset position and the PostScript(R)
Setfileposition operator. The offset position points to the next
page description in the file that is to be included on the flat.
(The offset positions were calculated and saved by the block
364 of FIG. 13.) The setfileposition operator reopens the
current merged PostScript(R) file 450 to that offset position.

0203 Thus, the PostScript(R) instruction set format for
imposition-on-the-fly imposition of the present invention is
as follows:

(FileName)
user procedure 1 }
pageff { operands to setvirtualdevice
{FileObiect offset setfileposition :

user procedure 1 p
pageff { operands to setvirtualdevice
{user procedure 2 - barcodes, watermarks, etc. }

0204. A sample imposition-on-the-fly with offsets
instruction Set is attached as Appendix I. The Appendix I
instruction Set also includes code in certain Second user
procedures to print a barcode.

0205 Explanation of Variables:

0206. The variables used by the imposition-on-the-fly
procedures may be conveniently defined and Stored in a user
dictionary (called, for example, “impositiondict”). These
variables include:

0207 1) PageOffset-the cumulative number of
pages from any previous PostScript(R) files that have
been interpreted in accordance with the imposition
on-the-fly procedures of the present invention. Ini
tially, PageOffset is set to -1 (no previous files (or
pages) have been interpreted).

0208. 2) CurrentPage-the number of the next page
in the current merged PostScript(R) file 450 that is to
be rendered on the current flat 456. CurrentPage is
initially set to 0.

0209 3) LastPage-the number of the last page in
the current merged PostScript(R) file 450 that is to be
rendered on the current flat, which is equal to the
page number in the last entry of the entry list.
LastPage is initially Set to 1 and is used to determine
how many page descriptions in the merged Post

Oct. 28, 2004

Script(R) file must be interpreted in order to properly
render all of the Selected pages on the current flat.

0210 4) Page Count-the number of times that the
showpage operator has been executed (initially 0). In
level 2 PostScript(R) implementations, Page Count is
stored and incremented internally by the RIP 82
through the Showpage operator. However, in level 1
PostScript(R) implementations, the Page Count vari
able must be explicitly defined and incremented to
emulate the operation of the level 2 showpage opera
tOr.

0211 5) PageList-the list of entries (page numbers
and imposition procedures) contained in the entry
list.

0212) 6) Currentindex-an index into the PageList.
0213 7) LastIndex-the number of entries in the
entry list.

0214) 8) DefaultMatrix-used to store the value of
the ICTM) describing the virtual device (the “virtual
ICTM). The scaling, translation and rotation com
ponents of the virtual ICTM) are supplied as oper
ands to the Setvirtualdevice procedure.

0215 9) PageX and PageY-the width and height
respectively of the page to be rendered on the flat
456. The values of PageX and PageY are provided in
each entry of the entry list as operands to the
Setvirtualdevice procedure.

0216) 10) DefaultPageX and DefaultPageY—the
default values of the page width and height, respec
tively. Their values are initially set to 8%." (612) and
11" (792), respectively.

0217 11) Cliplx, CliplY, ClipurX and ClipurY
the user Space coordinates of the lower-left and
upper-right corners, respectively, of the clipping path
defining the border of the virtual device. The values
of these variables are also included as operands to
the Setvirtualdevice procedure.

0218 12) Portrait-a boolean variable used to
describe the page orientation of the current page. If
Portrait is true, the current page has a portrait ori
entation (page width.<page height). If Portrait is
false, the current page has a landscape orientation
(page width&page height).

0219) 13) DefaultPortrait—the default value for the
page orientation, which is initially set to true (por
trait orientation).

0220 14) VirtualDeviceEnabled-a boolean vari
able used to determine whether a procedure called,
for example, “EnableVirtualDevice,” has been
executed. AS explained in detail below, the
EnableVirtualDevice procedure sets up the standard
postScriptO Showpage operator to Support Virtual
devices.

0221) 15) ImageDone-a boolean variable used to
specify when the current flat 456 has been com
pleted. ImageIDone is initially and normally Set to
false, indicating that the current flat 456 has not been
completed.

US 2004/0216046 A1

0222 A further description of the variables used is
included in the following postScript(R) code, which creates
the impositiondict dictionary and initializes the variables:

?impositiondict 200 dict def % create dictionary
% impositiondict begin

% used as input to setmatrix
% dummy matrix for temp storage
% dummy matrix for temp storage
% dummy matrix for temp storage
% dummy matrix for temp storage
% default page width (X) and
% page length (Y) (8/2" x
%. 11")

% assume page orient =
% portrait

% first file - no previous

/Identity matrix def
fMatrix matrix def
fMatrix2 matrix def
fMatrix3 matrix def
fMatrix.4 matrix def
/DefaultPageX 612 def
/DefaultPageY 792 def

fDefaultportrait true def

/PageOffset –1 def
% pages

fCurrentPage 0 def % initial value of page to
% impose

fCurrentIndex 0 def % initial value of page to
% impose

/LastPage 2147483.647 def % initial value is highest
% number

/PageCount 0 def % used in level 1 only
fDefaultMatrix matrix % the “default matrix for the

currentmatrix def % current virtual device
fVirtualDeviceEnabled false def % allow normal

% operation
% not done with current media
% Set initial job defaults

% default to portrait
% mode

/PageX DefaultPageX def % initial page size
/PageY DefaultPageY def %
fClipliX 0 def % initial lower left

/Image.Done false def

fPortrait DefaultPortrait def

fCliply 0 def % and upper right
fClipurX DefaultPageX def % corners of
fClipurY DefaultPageY def % clipping path

0223) The Redefined PostScript(R) Operators:
0224. Also, before executing the imposition-on-the-fly
procedures of the present invention, several PostScript(R)
operators must be redefined for compatibility with the
EnableVirtualDevice and setvirtualdevice procedures,
which will be described in detail below. The virtual device,
in effect, “shields” the PostScript(R) program and RIP from
where the pages are being painted into the raster memory
452 through the CTM). Thus, in general, the PostScript(R)
operators that affect the ICTM must be redefined to also
“shield” the PostScript(R) program and RIP from the final
mapping of the page description from user Space to device
space coordinates. The PostScript(R) operators which must be
redefined include:

initmatrix transform
initclip itransform
setmatrix dtransform
current matrix idtransform
erasepage nulldevice
initigraphics copypage

0225. The standard operation of these, and all other
PostScript(R) operators, is fully described in the PostScript(R)
Language Reference Manual, Second Edition (1990), from
Adobe Systems, Inc., which was previously incorporated by
reference.

Oct. 28, 2004

0226. The first step in redefining the above-listed Post
Script(R) operators is to rename the Standard operator, for
example, “systemdict operator, because its definition is
Stored in the Systemdict dictionary. This may be imple
mented by the following code:

fsystemdict initmatrix systemdict finitmatrix get def
fsystemdict initclip systemdict finitclip get def
fsystemdict setmatrix systemdict fsetmatrix get def
fsystemdict erasepage systemdict ferasepage get def
fsystemdict initigraphics systemdict finitgraphics get def
fsystemdict currentmatrix systemdict ?currentmatrix get
def
fsystemdict transform systemdict ?transform get def
fsystemdict itransform systemdict filtransform get def
fsystemdict dtransform systemdict fatransform get def
fsystemdict idtransform systemdict ?idtransform get def

0227 AS explained below, the standard nulldevice and
copypage operators are not renamed because their Standard
operation will never be used in connection with the present
invention. The new definitions of the operators, described
below, are then loaded into the userdict dictionary.
0228. The Redefined initmatrix Operator:
0229. The standard PostScript(R) initmatrix operator sets
the CTM) to the system default matrix for the current
device. The initmatrix operator is redefined to set the CTM)
equal to the virtual ICTM which defines the virtual device.
0230. The virtual ICTM may be stored in the variable
DefaultMatrix.

0231. The PostScript(R) initmatrix operator may be rede
fined by the following code:

finitmatrix {
impositiondict begin
DefaultMatrix
systemdict setmatrix

end
bind def

0232) The Redefined initclip Operator:
0233. The clipping path normally corresponds to the
boundary of the maximum imageable area for the current
output device (the demand printer 84). The standard Post
Script(R) initclip operator replaces the current clipping path in
the graphics State with the default clipping path for the
current demand printer. The initclip operator is redefined to
replace the current clipping path in the graphics State with a
clipping path defining the border of the virtual device page.

0234. The flowchart of FIG. 21 illustrates the program
StepS implemented by the redefined initclip operator. A
decision-making block 520 determines whether a current
path exists by checking for the existence of a currentpoint.
If no currentpoint is defined, a block 522 Stores an empty
path in a variable called, for example, "p1.” Alternatively, if
a currentpoint is defined, a block 524 invokes a previously
defined utility routine called, for example, “MakePath,” that
creates a path description from the current path. The block
524 then saves the current path description in the variable

US 2004/0216046 A1

p1. The MakePath procedure, which may be stored in the
impositiondict dictionary, is similar to the level 2 Post
Script(R) upath operator and may be implemented by the
following code:

/MakePath {
{/moveto cvx} {/lineto cvX} {/curveto cvx}

{/closepath cvX pathforall cvX
bind def

0235) Next, a block 526 saves the current (CTM) and a
block 528 sets the CTM) to the virtual CTM). Ablock 530
then creates a clipping path between the corners of the
virtual device, which were specified by the values of the
CliplX, Cliplly, ClipurX and Clipur Y variables provided as
operands to the setvirtualdevice procedure. Ablock 532 then
restores the CTM which was saved by the block 526 and
the current path Saved in the variable p1.
0236. The PostScript(R) initclip operator may be redefined
by the following code:

finitclip
impositiondict begin

{ currentpoint stopped
{ ?p1 { } def} % p1 = empty path
{ pop pop ?p1 MakePath def} % p1 = current

% path
ifelse

matrix systemdict currentmatrix
initmatrix
systemdict initclip
newpath
ClipliX Cliply moveto
ClipurX Cliply lineto
ClipurX ClipurY lineto
ClipliX ClipurY lineto
closepath
clip
newpath
systemdict setmatrix
p1 % restore current

end % path
bind def

% create clippath

0237) The Redefined setmatrix Operator:
0238. The standard PostScript(R) Setmatrix operator
replaces the current ICTM in the graphics State with a
matrix that is Supplied on the Operands Stack. The matrix
Supplied on the Operands Stack (“the operand matrix”) can
be considered the result of the concatenation of the System
default matrix with an operations matrix.
0239). The setmatrix operator is redefined to calculate the
operations matrix by concatenating the operand matrix with
the inverse of the system default matrix. Thus,

operand matrix=operations matrixsystem default
matrix, and
operations matrix=operand matrixsystem default
matrix'.

0240 Once the operations matrix is calculated, it is
concatenated with the virtual ICTM (stored in DefaultMa
trix) and saved as the new ICTM). Thus,

new ICTM=operations matrixvirtual CTM).

Oct. 28, 2004

0241 The PostScript(R) Setmatrix operator may be rede
fined by the following code:

fsetmatrix {
impositiondict begin
Matrix defaultimatrix
Matrix2 invertmatrix
Matrix3 concatmatrix
DefaultMatrix
Matrix4 concatmatrix
systemdict setmatrix
end

bind def

0242. The Redefined Currentmatrix Operator:
0243 The standard currentmatrix operator replaces the
matrix Supplied on the Operands Stack with the current
CTM in the graphics state.
0244. The current CTM can be considered the result of
concatenating the virtual ICTM (saved in DefaultMatrix)
with an operations matrix. The redefined currentmatrix
operator calculates the operations matrix by concatenating
the current (CTM) with the inverse of the virtual ICTM as
set forth below:

current CTM=operations matrixvirtual CTM, and
operations matrix-current CTMIvirtual CTM'.

0245. The operations matrix is then concatenated with
the System default matrix and the resultant matrix is Stored
in the matrix on the Operands Stack.
0246 The PostScript(R) currentmatrix operator may be
redefined by the following code:

fcurrentmatrix {
impositiondict begin
Matrix systemdict currentimatrix
DefaultMatrix
Matrix2 invertmatrix
Matrix3 concatmatrix
Matrix4 defaultimatrix
3-1 roll
concatmatrix
end

bind def

0247 The Redefined Erasepage Operator:
0248. The standard erasepage operator erases the entire
current page Stored in raster memory by painting the page
white. The erasepage operator is redefined to erase only the
Virtual device page, which is the area defined by the next
page to be rendered on the current flat.
0249. The erasepage operator is redefined by calling the
redefined initclip operator, described above, which estab
lishes a clipping path around the border of the virtual device
page. The area inside the clipping path is then painted white.
The standard PostScript(R) gsave operator (described in detail
in connection with the optional imposition-on-the-fly pro
cedures of the invention) is called immediately before the
redefined initclip operator to Save the current graphics State,
including the current clipping path, gray level, etc. Also,
after the virtual device page has been painted white, the

US 2004/0216046 A1

standard PostScript(R) grestore operator (also described in
detail in connection with the optional procedures) is called
to restore the current graphics State.
0250) The PostScript(R) erasepage operator may be rede
fined by the following code:

ferasepage {
impositiondict begin
gSave % systemdict gsave for optional procs
initclip
clippath 1 setgray fill
grestore % systemdict grestore for optional

% procs
end

bind def

0251 (In the optional imposition-on-the-fly procedures,
the Standard PostScript(R) gSave and greStore operators are
redefined. Thus, in the optional procedures, the erasepage
operator is redefined by calling the Systemdict gSave and
Systemdict greStore operators, as specified above.)
0252) The Redefined initgraphics Operator:
0253) The standard PostScript(R) initigraphics operator
resets Several values in the graphics State, including the
CTM, the current path and the clipping path, to their
default values. The Standard initgraphics operator is equiva
lent to the following PostScript(R) language Sequence:

0254 initmatrix new path initclip

0255 1 setlinewidth 0 setlinecap 0 setlinejoin

0256 0 setdash 0 setgray 10 setmiterlimit
0257 The initigraphics operator is redefined to perform
the above listed Sequence. However, the redefined initgraph
ics calls the redefined initmatrix and initclip operators,
which were described above. Thus, the redefined initigraph
ics operator resets the ICTM and the clipping path to their
default values for the virtual device.

0258. The PostScript(R) initigraphics operator may be rede
fined by the following code:

finitgraphics {
initmatrix newpath initclip
1 setlinewidth 0 setlinecap 0 setlinejoin

O setdash 0 setgray 10 setmiterlimit
bind def

0259. The Redefined “Transform” Operators:
0260 The standard PostScript(R) transform operator trans
forms a Supplied user space coordinate (x,y) to the corre
sponding device space coordinate (x,y) as Specified by the
CTM). Since the CTM is altered during the imposition
process, the transform operator is redefined to perform the
transformation as if the CTM had not been altered.
0261) If a matrix operand is supplied to the standard
transform operator, the transformation from user to device
Space is performed according to the Supplied matrix. Thus,

Oct. 28, 2004

if a matrix operand is Supplied, the transform operator is also
redefined to perform the transformation according to the
Supplied matrix.
0262 The PostScript(R) language includes three other
“transform” operators (dtransform, itransform and idtrans
form) which are redefined in the same manner as the
transform operator.
0263. The standard PostScript(R) dtransform operator
Specifies a “distance' transformation of a coordinate from
user to device Space according to the CTM or a Supplied
matrix operand. In a distance transformation, the translation
components (tx and ty) of the ICTM) are not used.
0264. The standard PostScript(R) itransform operator
Specifies a transformation of a coordinate in device Space
(x,y) to user space (x,y) according to the inverse of the
CTM or a supplied matrix operand. The standard idtrans
form operator Specifies a distance transformation from
device Space to user Space according to the inverse of the
CTM or a supplied matrix operand.
0265 FIG. 22 illustrates the program steps implemented
by the redefined transform operator. The other transform
operators are redefined in the same way. A decision-making
block 534 first determines whether a matrix operand was
Supplied to the transform operator. If a matrix operand was
supplied, a block 536 simply calls the standard transform
operator (now renamed "Systemdict transform”) to perform
the transformation according to the Supplied matrix. (For the
other transform operators, the block 536 calls systemdict
dtransform, Systemdict itransform or Systemdict idtrans

form).
0266 Alternatively, if the block 534 determines that a
matrix operand was not supplied, a block 538 first saves a
copy of the current CTM in the graphics state on the
Operands Stack.
0267 AS explained previously, the current CTM can be
considered the result of the concatenating the virtual ICTM)
(saved in DefaultMatrix) with an operations matrix. Ablock
540 thus calculates the operations matrix by concatenating
the current CTM) with the inverse of the virtual ICTM).
0268 Next, a block 542 sets a new ICTM equal to the
operations matrix concatenated with the System default
matrix. The new ICTM is now equal to what the CTM)
would have been if the setvirtualdevice and imposition
procedures were not implemented.

0269. A block 544 then calls the standard transform
operator to perform the transformation from user to device
Space according to the new ICTM). (Again, for the other
transform operators, the block 544 calls the standard dtrans
form, itransform, or idtransform operator).
0270. Lastly, a block 546 resets the CTM) equal to the
current CTM saved on the Operands Stack by the block
538.

0271 The PostScript(R) transform operators may be rede
fined by the following code:

?transform {
impositiondict begin

US 2004/0216046 A1

-continued

dup type farraytype eq {
systemdict transform % or systmdict dtransform

% or
% systemdict itransform

% or systemdict idtransform

Matrix systemdict currentmatrix
dup 41 roll
DefaultMatrix
Matrix2 invertmatrix
Matrix3 concatmatrix
Matrix2 defaultimatrix
Matrix4 concatmatrix
systemdict setmatrix
systemdict transform % or

% systemdict dtransform
% or systemdict itransform
% or systemdict idtransform

3-1 roll systemdict setmatrix
ifelse

end
bind def

0272. The Redefined Nulldevice Operator:
0273. The standard PostScript(R) nulldevice operator
installs a “null device” as the current output device. The
standard PostScript(R) nulldevice operator produces no
physical output and has no associated raster memory. How
ever, any graphics or font operations executed will be saved
in the current graphics state. The PostScript(R) nulldevice
operator also sets the ICTM to an identity matrix (1 001
00) and establishes the clipping path as a single point at the
Origin.

0274 The standard PostScript(R) nulldevice operator,
however, is not suitable for use with this invention because
is not a page device operator and, therefore, has no EndPage
and BeginPage procedures associated with it. Thus, the
nulldevice operator is redefined to set the CTM) to the
identity matrix and establish a one point clipping path
without altering the current page device.

0275. The postScript(R) nulldevice operator may be rede
fined by the following code:

/nulldevice {
impositiondict (Identity get
systemdict setmatrix
newpath
clip

bind def

0276 The Redefined Copypage Operator:

0277 Under normal operatiH the standard PostScript(R)
copypage operator transmits one copy of the current page to
the demand printer without erasing the current page or
changing the graphics State. Like the showpage operator, the
operation of the copypage operator depends on the EndPage
and BeginPage procedures, which are redefined by the
present invention. In the present invention, the EndPage and
BeginPage procedures are redefined So that the copypage
operator has no affect. The EndPage and BeginPage proce
dures could be redefined to check for the copypage operator

21
Oct. 28, 2004

(by comparing the reason code to one). Alternatively, the
operation of the copypage operator can Simply be nulled by
the following code:

fcopypage { } def

0278. The EnableVirtualDevice Procedure:
0279. The EnableVirtualDevice procedure, which is
called by the Impose Job procedure at the end of the instruc
tion Set, Sets up the showpage operator to Support Virtual
devices. FIG.23 is a flowchart illustrating the program steps
implemented by the EnableVirtualDevice procedure. A
block 550 first determines whether the RIP 82 implements
level 1 or level 2 PostScript(R) by determining whether the
PostScript(R) Setpagedevice operator is defined in the Sys
temdict dictionary. If the RIP 82 implements the level 2
PostScript(R) language, a block 552 loads the redefined
EndPage and BeginPage procedures into the current graph
ics State for the demand printer 84 by calling the Setpagede
vice operator. As described in detail below, the EndPage and
BeginPage procedures are redefined to define the current
output device as a virtual device for pages to be rendered or
as a Scaled-down Virtual device for non-rendered pages.
0280. The blocks 550 and 552 of the EnableVirtualDe
Vice procedure may be implemented by the following code:

/EnableVirtualDevice {
fsetpagedevice where {

pop
2 diet begin
fEndPage impositiondict (EndPage get def
fBeginPage impositiondict (BeginPage get
def
currentdict end
setpagedevice

% level 2

0281 Alternatively, if the block 550 determines that the
RIP 82 implements level 1 PostScript(R), a block 554
renames the Standard level 1 showpage operator and a block
556 redefines the showpage operator to emulate the opera
tion of the level 2 showpage operator as illustrated in FIG.
20. Next, a block 558 executes the BeginPage procedure for
the first page (page “0”) in the merged PostScript(R) file 450.
(This was done automatically in the level 2 implementation
by the block 552 by calling the setpagedevice operator).
0282. The blocks 554-558 may be implemented by the
following code:

{ impositiondict isystemdict showpage % rename
systemdict (showpage get put % showpage

fshowpage { % emulate
impositiondict begin % level 2
PageCount O EndPage
systemdict showpage

systemdict initigraphics
/PageCount PageCount 1 add def
PageCount fBeginPage load end exec

US 2004/0216046 A1

-continued

def
0 impositiondict (BeginPage get exec

ifelse

0283) Next, a block 560 invokes a procedure (called, for
example, “DisablePageDevice') which was previously
stored in the impositiondict dictionary. The DisablePage.De
Vice procedure redefines the PostScript(R) Setpagedevice
operator and all other compatibility operators that call the
Setpagedevice operator. Disabling these operators ensures
that the raster memory 452 (which may contain the raster
descriptions of previously processed pages to be rendered on
the flat 456) is not erased by the setpagedevice operator. The
DisablePage.Device procedure is described in detail below in
connection with FIG. 24.

0284. After the block 560 invokes the DisablePageDe
vice procedure described above, a block 562 sets the boolean
variable called “VirtualDeviceEnabled” to true to indicate
that the procedure has been completed and the Showpage
operator is set up to Support Virtual devices.

0285) The blocks 560 and 562 of the EnableVirtualDe
Vice procedure may be implemented by the following code:

impositiondict (DisablePageDevice get exec
impositiondict (VirtualDeviceEnabled true put
bind def

0286 The DisablePageDevice Procedure:
0287 FIG. 24 is a flowchart illustrating the program
StepS implemented by the DisablePage Device procedure,
which is invoked by the block 560 of the EnableVirtualDe
Vice procedure. Because Setpagedevice is a level 2 operator,
a block 570 determines whether the RIP 82 implements the
level 1 or the level 2 PostScript(R) language by determining
whether the Setpagedevice operator is defined in the SyS
temdict dictionary. If the RIP 82 implements the level 2
PostScript(R) language, blocks 572-580 redefine the set
pagedevice operator to correct the page orientation of the
output device, if necessary.

0288. During normal level 2 operation, a dictionary oper
and containing input media Selection entries is provided to
the PostScript(R) Setpagedevice operator and the Setpagede
Vice operator establishes the current output device according
to the information contained in the current graphics State and
the dictionary operand. The dictionary operand may contain,
for example, an entry for PageSize, which is an array of two
numbers indicating the width and height of the current page.
Thus, a call to the Setpagedevice operator may alter the page
size, which is critical in Setting up the virtual device.
0289. The block 572 of the redefined setpagedevice
operator first determines whether an entry for PageSize was
included in the dictionary operand to the Setpagedevice
operator. If so, the block 574 then determines whether the
PageSize Specified in the entry is portrait or landscape
orientation by comparing the page width to the page height
Supplied in the PageSize entry. (AS explained above, for

22
Oct. 28, 2004

purposes of the invention, if the page width is less than the
page height, the orientation is referred to as portrait and the
variable Portrait is Set to true. If the page width is greater
than the page height, the orientation is referred to as land
scape and the variable Portrait is set to false).

0290. A block 576 then compares the page orientation of
the PageSize entry (determined by block 574) to the page
orientation of the virtual device (stored in the variable
Portrait). If they are not the same, a block 578 invokes a
procedure called, for example, "SetPortrait,” which changes
the orientation of the virtual device from portrait to land
scape, or vice versa. (The SetPortrait Procedure is described
in detail below). Next, for consistency with the normal
operation of the setpagedevice operator, a block 580 calls the
redefined initgraphics and erasepage operators. Alterna
tively, if the block 576 determines that the page orientation
of the PageSize entry is the same as the virtual device, or if
the block 572 determines that PageSize was not included in
the dictionary operand to the Setpagedevice operator, the
program skips directly to the block 580, which completes the
redefinition of the Setpagedevice operator.

0291. The blocks 570-580 of the DisablePage.Device
procedure may be implemented by the following code:

/DisablePageDevice {
fsetpagedevice where {

pop
userdict
fsetpagedevice {

dup /PageSize known {
fPageSize get
impositiondict begin
aload pop
lt Portrait ne {

SetPortrait
} if

end
} {
pop

ifelse
initgraphics
erasepage

} Put
} if

0292. After the block 580 calls the redefined initgraphics
and erasepage operators, or if the block 570 determines that
the RIP 82 implements level 1 PostScript(R), a block 582
redefines the compatibility operators, which are defined in
either the Statusdict dictionary or the userdict dictionary,
which call the Setpagedevice operator or perform Similar
level 1 operations.

0293 For compatibility operators that change the page
orientation, the block 582 redefines the operator to set the
orientation of the virtual device equal to the orientation of
the page specified by the operator and to initialize the Virtual
device. These operators may be redefined by a utility routine
called, for example, “SetPageSize,” which is a similar to the
blocks 576-580 described above. The SetPageSize routine
may be implemented by the following code:

US 2004/0216046 A1

/SetPageSize {
It Portrait ne { % correctorientation of virtual

SetPortrait % device, if necessary
} if

initgraphics % initialize virtual device
erasepage % (emulate setpagedevice)

bind def
For compatibility operators that do not affect the

page orientation, the block 582 simply disables or nulls
the operators. The block 582 of the DisablePageDevice
procedure, which redefines or disables the compatibility
operators, may be implemented by the following code:
statusdict begin % operators in statusdict
fa3tray impositiondict begin 842 792 SetPageSize end
def
fa4
def
fledgertray impositiondict begin 1224792 SetPageSize
end def
fsetpage pop pop pop def
fsetpagestackOrder pop def
fsettumble pop def
/11x17tray impositiondict begin 792 1224 SetPageSize
end def
/b5tray impositiondict begin 516 729 SetPageSize end
def
/legaltray impositiondict begin 612 1008 SetPageSize
end def
fsetdefault timeouts pop} def
fsetduplexmode pop def
fsetmargins pop pop def
fsetpagemargin pop} def
?lettertray impositiondict begin 612 792 SetPageSize
end def
fsetmirrorprint pop def
fsetpageparams pop pop pop pop} def
fsetresolution pop def
CC

ray impositiondict begin 595 842 SetPageSize end

% operators in userdict
{impositiondict begin 842 1191 SetPageSize end def
{impositiondict begin 516 729 SetPageSize end def
er impositiondict begin 612 792 SetPageSize end

fa3
fb5
flet
def
/lettersmall impositiondict begin 612 792 SetPageSize
end def
/legal impositiondict begin 612 1008 SetPageSize end
def
fledger impositiondict begin 1224792 SetPageSize end
def
/11x17 impositiondict begin 792 1224 SetPageSize end
def
fa4 impositiondict begin 595 842 SetPageSize end def
fa4small impositiondict begin 595 842 SetPageSize end
def
/note { } def

0294 The SetPortrait Procedure:
0295) The SetPortrait procedure, which is invoked by the
block 578 of the DisablePage.Device procedure, changes the
orientation of the Virtual device from portrait to landscape or
vice versa. FIG. 25 illustrates the program steps imple
mented by the SetPortrait procedure. A block 590 first
determines whether the variable Portrait is true (indicating
the page is portrait) or false (indicating the page is land
Scape).
0296 If Portrait is true, the orientation of the device must
be converted from portrait to landscape. AS illustrated in
FIG. 26A, a portrait-orientated page 592 is represented in a
cartesian coordinate System with an origin at point Op. The
portrait-orientated page 592 has a width PageX and a height
PageY. The rendering area on the page 592 is bordered by a

23
Oct. 28, 2004

clipping path 594, which may be defined by the coordinates
of its lower-left corner (lx, lly) and the coordinates of its
upper-right corner (urX, ury).

0297. The portrait-oriented page 592 is converted to a
landscape-oriented page 596 by translating the origin O of
the page 592 in the positive x-direction and then rotating the
coordinate System 90 degrees counterclockwise, resulting in
the landscape-orientated coordinate System of the page 596
with an origin O. Although the device Space coordinates of
the clipping path 594 are unchanged, the clipping path 594
must be redefined with respect to the new landscape coor
dinate System.

0298 Referring again to FIG. 25, after the block 590
determines that the orientation of the device must be con
verted from portrait to landscape, a block 600 redefines the
corner coordinate variables as follows:

Portrait Coordinate Landscape Coordinate

ClipliX ClipliY
ClipliY PageX - ClipurX
ClipurX ClipurY
ClipurY PageX - Cliply

0299 Next, blocks 602 and 604 create matrices which
will translate the origin Or by the page width (PageX) in the
positive X-direction and then rotate the portrait coordinate
System 90 degrees counterclockwise about the origin O. A
block 606 then concatenates the matrices with the current
virtual ICTM) to create the new virtual ICTM), which
Specifies the device in landscape orientation.

0300. The blocks 590 and 600-606 of the SetPortrait
procedure may be implemented by the following code:

|SetPortrait {
Portrait {

/tmp ClipliX def
fCliply PageX ClipurX sub def
fClipurX ClipurY def
fClipurY PageX timp sub def
90 Matrix rotate
PageX 0 Matrix2 translate
DefaultMatrix
Matrix3 concatmatrix
DefaultMatrix concatmatrix
pop

0301 If the block 590 determines that the variable Por
trait is false, the orientation of the device must be converted
from landscape to portrait. Referring also to FIG. 26B, a
landscape-oriented page 608 is specified in a Cartesian
coordinate System with an origin O. The rendered area on
the page 608 is bordered by a clipping path 610 defined by
the coordinates of its lower-left and upper-right corners. The
landscape-oriented page 608 is converted to a portrait
oriented page 612 by translating the origin Olin the positive
y-direction and then rotating the coordinate System 90
degrees clockwise about the origin O. This generates a
portrait-oriented coordinate System with an origin O.

US 2004/0216046 A1

0302 Similar to the above-described portrait to land
Scape procedure, a block 614 first redefines the corner
coordinates of the clipping path as follows:

Landscape Coordinate Portrait Coordinate

ClipliY ClipliX
ClipliX PageY - ClipurY
ClipurY ClipurX
ClipurX PageY - ClipliY

0303) Next, blocks 616 and 618 create matrices to trans
late the origin O in the positive y-direction and then rotate
the origin O 90 degrees clockwise. A block 620 then
concatenates the matrices with the current virtual ICTM) to
generate the new virtual ICTM), which specifies the device
in a portrait coordinate System.

0304) The blocks 614-620 of the SetPortrait procedure,
which convert from landscape to portrait orientation, may be
implemented by the following code:

?tmp ClipliY def
fCliply ClipliX def
fClipliX PageY ClipurY sub def
fClipurY ClipurX def
fClipurX PageY timp sub def
-90 Matrix rotate
O PageY Matrix2 translate
DefaultMatrix
Matrix3 concatmatrix
DefaultMatrix concatmatrix
pop

ifelse

0305 After the clipping path corners are redefined and
the new virtual ICTM is generated, a block 622 exchanges
the values of PageX and PageY. Thus, for example, when
converting from portrait to landscape, the portrait page
width becomes the landscape page height and the portrait
page height becomes the landscape page width. Lastly, a
block 624 changes the value of the variable Portrait. Thus,
if Portrait was initially true (indicating portrait orientation),
it is Set to false to indicate that the device is now in landscape
orientation. Conversely, if Portrait was initially false (indi
cating landscape orientation), it is set to true to indicate that
the device is now in portrait orientation.

0306 The blocks 622-624 may be implemented by the
following code:

/tmp PageX def
/PageX PageY def
/PageY tmp def
fPortrait Portrait not def

bind def

0307 The SetPortrait procedure described above com
prises an optional part of the present invention and is not
necessary for use with PostScript(R) applications which do
not alter the page orientation.

24
Oct. 28, 2004

0308 The Setvirtualdevice Procedure:
0309 The setvirtualdevice procedure establishes the cur
rent transformation matrix (CTM), the clipping path, and
the page size Such that the current output device is Specified
as a virtual device. The virtual device is defined to be the
Size of the next page to be rendered, with the origin and page
boundary at the position on the flat 456 where the page is to
be rendered.

0310. The setvirtualdevice procedure requires the follow
ing three "operands,” which are provided in the instruction
set list:

0311 1) the imposition procedure, which includes
the Scaling, translation and rotation factors
Scale X Scale y translate X translate y rotate);

0312 2) the user space coordinates of the lower-left
and upper-right corners of the rendering area of the
page to be imposed, which will be used to generate
a clipping path around the border of the Virtual page
in the raster memory 22-clip Il X clip Illy
clip ur X clip_urly); and

0313 3) the page width and page length-pag
e_size X page_size_yl.

0314 FIG. 27 illustrates the program steps implemented
by the setvirtualdevice procedure. A block 630 first deter
mines whether the variable VirtualDeviceEnabled is set to
true, indicating that the EnableVirtualDevice procedure has
been executed and the showpage operator is set up to support
virtual devices. If the block 630 determines that VirtualDe
viceEnabled is false, a block 633 invokes the EnableVirtu
alDevice procedure. (A block 6333, which is implemented
only in connection with the optional imposition-on-the-fly
procedures, will be described below.)
0315) Next, a block 634 defines the variables PageX and
PageY as the width and height of the virtual device, respec
tively. Similarly, a block 636 defines the variables CliplX
and Cliply as the X and y coordinates of the lower-left
corner of the virtual device and the variables ClipurX and
Clipur Y as the X and y coordinates of the upper-right corner
of the virtual device.

0316 A block 638 then calls the standard PostScript(R)
initmatrix operator (renamed “systemdict initmatrix”),
which sets the CTM) to the system default matrix for the
current output device. A block 640 then executes the scale,
translate and rotate operators with the operands to the
Setvirtualdevice procedure. These Scale, translate and rotate
operations alter the System default matrix to specify the
virtual ICTM). A block 642 saves the resultant virtual
CTM) in the variable DefaultMatrix. The virtual ICTM)
Specifies that the origin of the virtual device is at the position
on the flat where the next page is to be rendered on the flat
456.

0317. A decision-making block 644 then compares the
page width (PageX) to the page height (PageY). If PageX is
less than PageY, a block 646 sets the variable Portrait to true
(indicating portrait orientation). Alternatively, if PageX is
greater than PageY, a block 648 sets the variable Portrait to
false (indicating landscape orientation).
0318) Next, a block 650 calls the redefined initclip opera
tor to Set the clipping path around the border of the Virtual
page. (See FIG. 21).

US 2004/0216046 A1

03.19. The setvirtualdevice procedure may be imple
mented by the following code:

fsetvirtualdevice {
impositiondict begin
VirtualDeviceEnabled not
aload pop
/PageY exch def
/PageX exch def
aload pop pop
fClipurY exch def
fClipurX exch def
fClipliY exch def
fClipliX exch def
systemdict initmatrix
aload pop
5-2 roll scale
3-2 roll translate
rotate

DefaultMatrix systemdict currentmatrix pop % set
% CTM)

{ EnableVirtualDevice if

% set page size

% set clipping path corners

% execute scale, translate
% and rotate

/Portrait PageX PageY It def
initclip
end

bind def

% set clipping path

0320. The Impose.Job Procedure:
0321) The Impose Job procedure is invoked after refer
ences to the merged PostScript(R) files 450 and the instruction
Set have been placed on the Operands Stack. Further, the
above-described procedures and variables have been loaded
into the impositiondict dictionary.
0322 FIG. 28 is a flowchart illustrating the program
StepS implemented by the Imposejob procedure according to
the imposition-on-the-fly procedures of the present inven
tion. A block 652 invokes the EnableVirtualDevice proce
dure, described above in connection with FIG. 23, to set up
the showpage operator to Support Virtual devices.
0323) A block 654 then retrieves the first file/list pair
(containing the name of the merged PostScript (E) file and the
corresponding entry list with the user procedures, page
numbers and operands for the Setvirtualdevice procedures
for the current flat 456) from the instruction set. The file/list
pair is Stored in an array that was placed on the Operands
Stack prior to calling the Imposejob procedure.
0324 For each file/list pair, a block 656 invokes the
Imposefile procedure, described below, which retrieves
each entry from the entry list and determines which pages
described in the merged PostScript(R) file 450 should be
rendered on the flat 456. Assuming more than one file/list
pair is contained in the array, the blocks 654 and 656 are
implemented in a loop which individually retrieves each
file/list pair from the array and invokes the Imposefile
procedure to process each file/list pair.
0325 After every file/list pair from the instruction set has
been processed by the Imposefile procedure, a block 658
Sets the boolean variable ImageIDone to true. ImageIDone
will be used to instruct the RIP82 that the imposition job is
complete and the flat 456 can be ejected. The value of
ImageIDone at this point could be determined by a global
variable. ImageIDone could also be set to true in the user
procedure in the last entry of the last instruction Set list.
0326) Next, a block 660 determines whether the show
page operator was redefined to emulate level 2. If So, a block

25
Oct. 28, 2004

662 executes the Standard level 1 showpage operator
(renamed “systemdict showpage') in order to transmit the
contents of the raster memory 452 to the demand printer 84
for physical rendering of the flat 456. In the level 2 imple
mentation, the flat 456 is automatically rendered by the
showpage operator when the redefined EndPage procedure
returns a “true.” (See FIG. 20). If the showpage operator
was not redefined, a block 664 ends the program.
0327. The blocks 652-662 of the Impose.Job procedure
may be implemented by the following code:

/Impose.Job % Impose pages from each input file
{

impositiondict (EnableVirtualDevice get exec
{ % Call ImposeFile for

aload pop pop % each file in instruction
% set

impositiondict (ImposeFile get
CXCC

forall
impositiondict (ImageDone true put
impositiondict (systemdict showpage
known { % Did we redefine showpage

impositiondict isystemdict showpage
get eXec % If yes, execute it.

} if
def

0328 (Blocks 653 and 657 of the Impose.Job procedure,
which are implemented only in connection with the optional
imposition-on-the-fly of the invention, will be described
below.)
0329. The ImposeFile Procedure:
0330 FIG. 29 illustrates the program steps implemented
by the Imposefile procedure of the imposition-on-the-fly
procedures of the invention. When the Imposefile procedure
is invoked, the Imposejob procedure has placed a file/list
pair from the instruction Set on the Operands Stack. The
file/list pair contains a list of entries (the “PageList”),
wherein each entry Specifies:

0331 1) a first user procedure;

0332 2) the number of the page to rendered on the
flat 456;

0333 3) the operands to the setvirtualdevice proce
dure (which generates the virtualCTM) for properly
positioning the page on the flat 456); and

0334 4) a second user procedure (specifying off
Sets).

0335) A block 670 sets the variable PageOffset=Cur
rentPage--PageOffset--1. CurrentPage (representing the
number of the next page in the current merged PostScript(R)
file 450 that is to be rendered on the flat 456) is initially 0
and Page Offset (representing the cumulative number of
pages from previous files processed) is initially -1. There
fore, on the first pass of the Imposefile procedure, PageOff
Set is equal to 0 (indicating that no previous files have been
processed). A block 672 then uses the pointer Currentindex
to retrieve the first entry from the entry list received from the
Impose Job procedure. A block 673 then retrieves the page
number from the entry and Sets CurrentPage equal to its

US 2004/0216046 A1

value. Thus, CurrentPage now specifies the number of the
first page in the current merged PostScript(R) file that should
be rendered on the flat.

0336 Next, a decision-making block 674 determines
whether the first page in the current PostScript(R) file (page
number 0) should be rendered on the flat by comparing
CurrentPage to 0. If CurrentPage is equal to 0, the first page
in the merged PostScript(R) file 450 should be imposed and
rendered on the flat, and a block 675 executes the first user
procedure contained in the current entry retrieved by the
block 672. Alternatively, if the block 674 determines that the
first page is not on the flat, a block 676 pops the first user
procedure from the retrieved entry from the Stack.
0337 After the block 675 has executed the user proce
dure or after the block 676 pops the user procedure, a block
678 executes the setvirtualdevice procedure, which was
described in detail above in connection with FIG. 25. The
setvirtualdevice procedure sets the virtual ICTM and the
clipping path according to the operands included in the
retrieved entry.
0338. The blocks 670-678 of the ImposeFile procedure
may be implemented by the following code:

/ImposeFile {
impositiondict begin
/PageOffset CurrentPage PageOffset add 1 add def
/PageList exch def
fCurrentIndex 0 def
PageList CurrentIndex get
aload pop pop
5 -2 roll dup
fCurrentPage exch def

% get entry

% get page number for 1st
% page

O eq { % if 1st page is on flat
CXCC % execute user procedure
} {
pop % if 1st page is not on

% flat
ifelse % pop user procedure

setvirtualdevice % call setvirtualdevice

0339 Next, a decision-making block 680 determines
whether the first page in the current PostScript(R) file (page
number 0) should be rendered on the flat by comparing
CurrentPage to 0. If CurrentPage is not equal to zero (i.e. the
first page should not be rendered on the flat), a block 682
invokes a procedure called, for example, “MakeNull.” The
MakeNull procedure, which is described in detail below in
connection with FIG. 30, creates a scaled-down version of
the virtual device for the next page to be rendered on the flat.
The MakeNull procedure will be used to quickly interpret
pages included in the merged PostScript(R) file 450 that will
not be rendered on the current flat 456. The block 682 also
calls the redefined initclip operator (see FIG. 21).
0340. After the block 682 executes the MakeNull proce
dure, or, alternatively, if the block 680 determines that
CurrentPage is equal to Zero (i.e. the first page should be
rendered on the flat), a block 684 sets the variable LastPage
equal to the page number of the last page in the PostScript(R)
file to be rendered on the flat. The last page is determined by
defining LastIndex as the number of entries in the instruction
Set minus one. The entries are indexed Starting with Zero
(i.e., 0,1,2,3,) such that the last of four entries will be entry

26
Oct. 28, 2004

number 3). LastIndex is then used to retrieve the page
number from the last entry in the entry list, which is stored
in the variable LastPage. The block 684 thus determines the
number of page descriptions in the current merged Post
Script(R) file 450 that need to be interpreted in order to
properly render all of the selected pages on the flat 456.
0341 The blocks 680-684 of the ImposeFile procedure
may be implemented by the following code:

fCurrentPage One {
MakeNull

% if page is not on flat
% execute MakeNull

% procedure
initclip
} if

fLastIndex PageList length 1 sub def
fLastPage PageList LastIndex get 1 get def

0342. A block 686 then opens the current merged Post
script(R) file 450, if necessary, and defines a file object (i.e.
“TheFile”) to access the current merged PostScript(R) file
450. The block 686 then interprets the current merged
PostScript(R) file 450, which contains various page descrip
tions, including the Selected pages to be rendered on the
current flat 456. Each page description includes the show
page operator, which will invoke the redefined EndPage and
BeginPage procedures of the present invention.
0343 Preferably, the block 686 executes the merged
PostScript(R) file 450 in stopped mode, which dictates that
the execution will Stop once the last page that needs to be
processed for the flat 456 is executed (determined by the
value of LastPage). Once execution is complete, a block 688
flushes and closes the current PostScript(R) file and a block
690 returns to the block 654 of the Impose Job procedure
(FIG. 26) to retrieve the next file/list pair from the instruc
tion Set.

0344) The blocks 686-690 of the ImposeFile procedure
may be implemented by the following code:

dup type 1 string type eq (r) file if
dup (TheFile exch def

end
stopped count O eq dup not

{ pop dup (done with current file) ne if
{ stop pop ifelse

impositiondict (TheFile get dup flushfile
closefile

bind def

0345) The MakeNull Procedure:
0346) The MakeNull Procedure is invoked by the block
682 of the Imposefile procedure before processing pages
that will not be rendered on the current flat 456. The
MakeNull Procedure creates a low resolution (scaled-down)
replica of the Virtual device for the next page to be rendered
on the flat. This low resolution virtual device allows for fast
processing of the non-rendered pages. The non-rendered
pages are processed using a low resolution replica of the
Virtual device for the next page to be rendered on the flat to
ensure that any marks generated by the processing do not
overwrite a portion of the flat 456 that is already imaged.

US 2004/0216046 A1

0347 The MakeNull procedure creates a low resolution
replica of the Virtual device by Scaling the components of the
virtual ICTM). Further, the MakeNull procedure positions
the scaled-down virtual device in the middle of the original
virtual device. This ensures that the scaled-down virtual
device will be completely contained within the clipping path
defining the original virtual device.
0348 AS explained earlier, by definition, the virtual
ICTM) contains the components a b c dt, t) and specifies
a transformation of the coordinates (x, y) in user space to the
coordinates (x, y) in device space as follows:

0349 The PostScript(R) language includes a scale opera
tor which creates a temporary matrix from Supplied X and y
Scale factors and concatenates the temporary matrix with the
current CTM). The scale operator then replaces the current
CTM) with the resultant matrix.
0350 Invoking the PostScript(R) scale operator with X and
y Scale factors (SX and S) as operands, the Scaled ICTM=sa
Sb Syc Sydt, ty). Thus, the new transformation from user to
device space specified by the scaled ICTM is given by:

0351) The exact scale factors sands, may vary accord
ing to the type of PostScript(R) RIP 82 used. However, a 1 to
1 ratio between user and device Space coordinates leads to
Significantly faster processing of pages over normal proceSS
ing on a high resolution device. Also, the PostScript(R)
nulldevice operator installs a CTM) with a 1 to 1 ratio of
user to device coordinates. Therefore, although the Scale
factors could be tuned for optimal performance on a given
PostScript(R) RIP82, it is assumed that a 1 to 1 ratio between
user and device Space coordinates will run with reasonable
efficiency on any PostScript(R) RIP82. Thus, the scale factors
S. and S, used by the MakeNull procedure are preferably
calculated to achieve a 1 to 1 ratio between user and device
Space as follows.
0352 To achieve a 1 to 1 ratio between user and device
Space coordinates with only the Scale factors, the unit vector
in user space from coordinate points (0,0) to (1,0) and from
(0,0) to (0,1) must have unit length in device space. There
fore,

0353 From equations (1) and (3),
(ssa+ts, Sb+ty)-(to ty)=1
(ssa, Sb)=1
((sa)^+(sb))'=1

0354) Thus, s–1/(a+b).
(0355) Similarly, s–1/(c-d)'.
0356 FIG. 30 illustrates the program steps implemented
by the MakeNull procedure. A block 698 first determines
and Saves the device Space coordinates of the midpoint of the
Virtual clipping path. The midpoint (mpX, mpy) is deter
mined by first retrieving the corner coordinates of the virtual
clipping path, which are Stored in the variables CliplX,

27
Oct. 28, 2004

ClipurX, Cliply, and ClipurY. The X-axis midpoint (mpx) is
calculated by adding the lower left and upper right X-axis
corner coordinates (Cliplx and ClipurX) and dividing by
two. Similarly, the y-axis midpoint (mpy) is calculated by
adding the y-axis corner coordinates (Cliply and ClipurY)
and dividing by two. After the midpoint is calculated, the
standard PostScript(R) transform operator (renamed “system
dict transform”) is executed to convert the user space coor
dinates to device Space coordinates.

0357 Next, a block 700 gets the virtual ICTM which is
stored in the variable DefaultMatrix. A block 702 then

calculates the scale factors, Sands, as specified above and
a block 704 applies the scale factors to the virtual ICTM). A
block 706 then saves the scaled virtual ICTM as the new
virtual ICTM) in the variable DefaultMatrix.
0358) A block 708 then sets the midpoint of the scaled
clipping path (specified by the new virtual ICTM) to
correspond with the coordinates of the midpoint of the
original clipping path (saved by the block 698). The block
708 determines the difference between the saved midpoint
coordinates and the new midpoint coordinates and then
translates the new coordinates by that difference.
0359 The MakeNull procedure may be implemented by
the following code:

/MakeNull {
impositiondict begin
ClipliX ClipurX add 2 div Clilly ClipurY add 2 div

systemdict transform
fmpy exch def
fmpx exch def
Default Matrix
dup
dup dup
dup O get dup mul
exch 1 get dup mul
add 1 exch div sqrt dup 1.0 gt

{ pop 1.0 if exch
dup 2 get dup mul
exch 3 get dup mul
add 1 exch div sqrt dup 1.0 gt

{ pop 1.0 } if
Matrix scale
exch. Matrix2 concatmatrix
systemdict setmatrix

% calculate
% midpoint

% compute a
% compute b?
% computes

% compute c?
% compute d’
% compute sy

% scale matrix
% save as the new
% virtual default
% matrix

ClipliX ClipurX add 2 div Cliply ClipurY add 2 div
systemdict transform

fmpy exch mpy Sub neg def % translate
fmpx exch mpx sub neg def % midpoint
mpx impy systemdict idtransform translate
systemdict currentmatrix pop

end
bind def

0360. The Redefined EndPage Procedure:
0361 The page descriptions contained in the merged
PostScript(R) file 450 all include the showpage operator,
which will invoke the redefined EndPage and BeginPage
procedures.

0362. The redefined EndPage procedure updates the Cur
rentPage variable, which represents the number of the next
page in the merged PostScript(R) file 450 that should be
imposed and rendered on the flat. The redefined EndPage

US 2004/0216046 A1

procedure also calls the setvirtualdevice and MakeNull
procedures for the pages to be interpreted.
0363 FIG. 31 is a flowchart illustrating the program
StepS implemented by the redefined EndPage procedure. A
block 710 determines whether the EndPage procedure was
called by the showpage operator by determining whether the
reason code is 0. A block 712 compares CurrentPage plus
Page Offset to Page Count to determine whether the current
page in the PostScript(R) file should be imposed and rendered
on the flat 456.

0364) Assuming both of the blocks 710 and 7122 are true,
a block 713 set ups the default environment by calling the
Standard initgraphics operator (now renamed “systemdic
t initgraphics”). The block 713 then retrieves and executes
the Second user procedure (containing, for example, the
offset instructions) from the current entry. If the second user
procedure contains offset instructions, the PostScript(R) file
will be repositioned to the Start of the next page to be
included in the book, thereby skipping processing of any
irrelevant pages. If the Second user procedure contains other
instructions (Such as barcodes, watermarks, etc.), they will
also be executed.

0365 Next, a block 714 increments the pointer Cur
rentindex, which will be used to retrieve the next entry from
the entry list (PageList). The decision-making block 716
then determines whether there is another entry in the instruc
tion Set by comparing CurrentindeX to LastIndex.
0366 If CurrentIndex is less than or equal to LastIndex,
a block 718 resets the graphics state to its system default
value by calling the standard PostScript(R) initigraphics
operator (now renamed "Systemdict initgraphics”). A block
720 then uses Currentindex to retrieve the next entry in the
entry list to place the operands for the Setvirtualdevice
procedure on the Operands Stack and a block 722 invokes
the Setvirtualdevice procedure.
0367 A block 724 then sets CurrentPage equal to the
number of the page from the retrieved entry. CurrentPage is
now updated to contain the number of the next page from the
merged PostScript(R) file 450 that should be imposed and
rendered on the flat 456.

0368 Next, a block 726 invokes the MakeNull procedure
to set up the low resolution virtual device for processing of
non-rendered pages. The MakeNull procedure is called
because it is assumed that the next page in the merged
PostScript(R) file 450 will not be rendered on the flat 456. (If
the next page should be rendered on the flat, the redefined
BeginPage procedure, described in detail below, will estab
lish the virtual device for that page). A block 728 then
removes the user procedure (which is contained in the
retrieved entry) from the Operands Stack.
0369. If any of the blocks 710, 712 or 716 are false, or
after the block 728 pops the user procedure, a block 730
places the value of the variable ImageIDone on the Stack. If
ImageIDone has the value of true, indicating that the flat is
completed, the calling of the EndPage procedure (i.e., by the
showpage operator or for new device activation) will auto
matically transfer the contents of the raster memory 452 to
the demand printer 84 to physically render the selected
pages on the flat 456. (See FIG. 19).
0370. A block 732 then resets ImageDone to false to
Specify that the flat is not completed and the contents of the

28
Oct. 28, 2004

raster memory 452 will not yet be transferred to the demand
printer 84 for physical rendering.

0371 The redefined EndPage procedure may be imple
mented by the following code:

/EndPage {
impositiondict begin
O eq
exch
CurrentPage PageOffset add eq
and {

systemdict initgraphics
PageList CurrentIndex get
5 get exec
fCurrentIndex CurrentIndex 1 add def
CurrentIndex LastIndex le {

systemdict initgraphics
PageList CurrentIndex get
aload pop
setvirtualdevice
fCurrentPage exch def
MakeNull
pop
} if

} if
ImageDone
/ImageDone false def
end

bind def

0372 The Redefined BeginPage Procedure:
0373 FIG. 32 is a flowchart illustrating the program
StepS implemented by the redefined BeginPage procedure. A
block 740 first calls the redefined initmatrix operator to set
the virtual ICTM).
0374 Referring also to FIG. 20, the BeginPage proce
dure receives PageCount as an operand from the showpage
operator. A decision-making block 742 compares Cur
rentPage (which was updated by the block 724 of the
redefined EndPage procedure of FIG. 31) to PageCount.
CurrentPage contains the number of the next page in the
PostScript(R) file to be rendered on the flat 456. Thus, if
CurrentPage and Page Count are equal, the current page in
the merged PostScript(R) file 450 should be imposed and
rendered on the flat 456 and a block 744 retrieves the next
entry (containing the user procedures, page number and
Setvirtualdevice operands) from the entry list.
0375. Ablock 745 then executes the user procedure from
the retrieved entry and a block 746 invokes the setvirtualde
Vice procedure to set up the virtual ICTM and clipping path
for the virtual device (see FIG. 27). A block 748 then pops
the page number from the retrieved entry.
0376) Next, a block 750"blanks out” the virtual page by
coloring the area inside of the clipping path white. This is
necessary to erase any Stray marks that may have been
placed on the page when the non-rendered pages were
processed using the MakeNull procedure.

0377 Alternatively, if the block 742 determines that the
next page in the merged PostScript(R) file 450 should not be
rendered on the flat (i.e. CurrentPage is not equal to Page
Count), a decision-making block 752 compares Page Count
to LastPage plus Page Offset. If Page Count is greater than
LastPage plus PageOffset, Subsequent pages in the Post

US 2004/0216046 A1

Script(R) file do not need to be interpreted because they are
beyond the last page that should be rendered on the flat 456.
Thus, a block 754 stops the execution of the merged
PostScript(R) file 450. As explained earlier, the Imposefile
procedure executes the merged postscript(R) file 450 in
Stopped context. In order to distinguish between the
expected Stop in the block 754 and an unexpected Stop
caused, for example, by a PostScript(R) error, the String "done
with current file” is generated by the block 754 of the
redefined BeginPage procedure. Referring also to FIG. 27,
the block 386 of the Impose File procedure checks for the
“done with current file” string to determine when to proceed
to the However, referring to FIG. 26, after all the file/list
pairs from the instruction Set have been processed by the
Imposejob procedure, the block 658 sets ImageIDone to true
to indicate that the flat is completed. Also, the user procedure
contained in the last entry in a file/list pair in the instruction
Set could include an instruction to Set Image Done to true to
Specify that the current flat is completed.
0378. The Image.Done variable is used by the redefined
EndPage procedure. Referring to FIGS. 20 and 31, the
block 730 of the redefined EndPage procedure returns the
value of Image.Done to the block 502 of the showpage
operator. If Image.Done is true, the block 504 transmits the
contents of the raster memory to the demand printer to
render the current flat.

0379 The Image.Done variable may be utilized to allow
for multiple flats to be rendered by a single file/list pair in the
instruction set (see Appendix I Sample instruction Set).
0380. The Showdevice Procedure:
0381. The imposition-on-the-fly procedures may include
an additional procedure, called, for example, "Showdevice,
which uses the ImageIDone variable to allow a user to render
the flat at any time. The Showdevice procedure Sets Image
Done to true and then calls the showpage operator, which
will invoke the redefined EndPage procedure and render the
current flat, as described above.
0382. The showdevice procedure may be implemented
by the following code:

fshowdevice {
impositiondict (ImageDone true put
showpage

def

0383 block 688 to flush and close the merged Post
Script(R) file 450.
0384 Alternatively, if the block 752 determines that
Page Count is less than or equal to LastPage plus Pageoffset
(i.e. the current page is before the last page to be rendered
on the flat), a block 756 calls the redefined initclip operator
to reset the virtual clipping path. (See FIG. 20).
0385) The redefined BeginPage procedure may be imple
mented by the following code:

/BeginPage {
initmatrix
impositiondict begin

29
Oct. 28, 2004

-continued

dup
CurrentPage PageOffset addeq { % page on flat

pop % pop PageCount
PageList CurrentIndex get % get entry
aload pop
5-1 roll
CXCC % execute user procedure
setvirtualdevice
pop % pop the page number

% blank out virtual
% page

clippath 1 setgray fill

O setgray newpath
bind { % page not on

% flat
LastPage PageOffset add gt {

end (done with current file) stop if
initclip

ifelse
end

bind def

0386 The ImageDone Variable:

0387 AS explained earlier, the variable Image.Done is a
boolean variable used to indicate when all the pages for the
current flat 456 have been interpreted and painted into the
raster memory 452 Such that the flat 456 can be physically
rendered by the demand printer 84. Image.Done is initially
and normally set to false, indicating that the current flat 456
has not yet been completed.

0388. The showdevice procedure will normally be used
when a user implements the Setvirtualdevice (and related)
procedures in a non-imposition application in which the
Impose Job and Imposefile procedures are eliminated. For
example, the Showdevice procedure could be implemented
to render any selected page(s) contained in the merged
PostScript(R) file 450.

0389 Optional Imposition-on-the-Fly Procedures:

0390 Optionally, additional procedures may be included
in the imposition-on-the-fly procedures which will allow the
proper imposition of page descriptions using the Post
Script(R) Save and restore operators.

0391 The postScript(R) save operator takes a “snapshot’”
of the state of virtual memory, which stores all values of
composite objects, Such as Strings and arrayS. Many of the
variables used by the imposition-on-the-fly procedures of
the present invention are Stored in Virtual memory. The Save
operator also Saves the current graphics State by pushing a
copy of the current graphics State onto the Graphics State
Stack. The PostScript(R) restore operator restores the virtual
memory and the current graphics State to the State at the time
the corresponding Save operator was executed.

0392 The PostScript(R) gsave operator pushes a copy of
the current graphics State onto the Graphics State Stack and
the PostScript(E) greStore operator pops the Saved graphics
State from the Graphics State Stack and restores it as the
current graphics State. The PostScript(R) greStoreal operator
restores either the bottom-most graphics State Stored on the
Graphics State Stack or the first graphics State that was
Stored by the save operator (as opposed to the gSave opera
tor). The elements of the current graphics State affected by

US 2004/0216046 A1

these operators includes the current ICTM), clipping path
and, current path. However, they do not affect the contents
of the raster memory 452.
0393. The PostScript(R) save and restore operators may
adversely affect the imposition-on-the-fly procedures of the
present invention, as well as on other imposition methods.
The problem arises if a page description in the merged
PostScript(R) file 450 invokes a save operator, which will
save the ICTM) that specifies the desired position for that
page on the device. If a Subsequent page description invokes
a restore operator, the ICTM for the prior page will replace
the CTM for the Subsequent page. Thus, the subsequent
page will be incorrectly positioned on the flat 456.

0394. To overcome this problem, two new procedures
(Vsave and Vrestore) are used in connection with the above
described procedures. The Vsave and Vrestore procedures
will be used to redefine the PostScript(R) Save and restore
operators such that they do not interfere with the other
imposition-on-the-fly procedures of the present invention.

0395. The Vsave Procedure:
0396 Generally, the Vsave procedure appends the page
size components (PageX and PageY) and the virtual ICTM)
components (which define the virtual device) to the current
path, which will be saved by the PostScript(R) Save operator.
Later, the Vrestore procedure will retrieve these compo
nents, remove them from the current path, and use them to
generate the correct clipping path, page orientation and
CTM for the restored page.
0397 FIG. 33 is a flowchart illustrating the program
StepSimplemented by the optional VSave procedure. Ablock
800 saves a copy of the current (CTM) and then a block 801
sets the ICTM equal to an identity matrix (10 0 1 00).
0398. The identity matrix is used because all points used
to describe the current path are specified in user Space
coordinates. However, at the time a PostScript(R) program
enters a point into the current path, each coordinate is
transformed into device space according to the ICTM).
Thus, the identity matrix will be used when adding the
components to the current path to avoid any round off errors
that may occur in this conversion from user Space to device
Space.

0399. A decision-making block 802 then determines
whether a currentpoint is defined. If a currentpoint is
defined, a block 804 sets the variable p1 equal to the current
path. This may be accomplished by invoking the previously
defined MakePath procedure, which creates a description of
the current path in the current coordinate System. (The
MakePath procedure was described above in connection
with the block 524 of the redefined initclip operator of FIG.
20).
0400. A block 806 then defines a variable called, for
example, “firstop” to be the PostScript(R) lineto operator. By
definition, the PostScript(R) lineto operator adds a straight
line Segment to the current path by connecting the previous
current point to the new one.

04.01 Alternatively, if the block 802 determines that no
currentpoint exists, a block 808 Sets p1 equal to an empty
path. A block 810 then defines firstop to be the PostScript(R)
moveto operator, which establishes a new currentpoint.

30
Oct. 28, 2004

0402. After firstop is defined by either the block 806 or
the block 810, a block 812 creates an “unlimited' bounding
box for the current path. Abounding box, which is normally
established by the PostScript(R) setbbox operator, defines the
area in which the current path coordinates must fall. The
operands to the Setbbox operator are the user Space coordi
nates of the lower-left and, upper-right corners of the bound
ing box. Since the page size and ICTM components will be
added to the current path during the VSave procedure, the
bounding box must be set large enough to encompass the
"points' defined by those components. Thus, a previously
defined procedure called, for example, “SetBigBBox,” may
be invoked to Set the bounding box to be the largest possible.
The SetBigBBox procedure may be implemented by the
following code:

/SetBigBBox fsetbbox where {
pop {

-2147483.648-2147483.648 2147483.648 2147483.648
setbbox
bind def

} {
{
def

ifelse

0403. After the large bounding box is set, a block 814
invokes the firstop operator (defined by the block 806 or the
block 810) to append the page size components (PageX and
PageY) to the current path. Next, a block 818 appends the
virtual ICTM) components (stored in the variable Default
Matrix) to the current path. A block 820 then replaces the
identity CTM) with the CTM) that was saved by the block
800.

04.04 The Vsave procedure may be implemented by the
following code:

/Vsave {
Matrix systemdict currentimatrix
dup
Identity systemdict setmatrix % CTM =

% identity
{ currentpoint stopped { % no current

% point
?p1 { } def % define empty

% path
firstop moveto def
} { % current point
pop pop % create real

% path
?p1 MakePath def
firstop { lineto def

ifelse
SetBigBBox
PageX PageY firstop % append page

% size
DefaultMatrix
aload pop
lineto % append ICTM
lineto
lineto
systemdict setmatrix

bind def

US 2004/0216046 A1

04.05) The Vrestore Procedure:

0406. The Vrestore procedure retrieves the page size and
virtual ICTM components (which defined the virtual
device) appended to the current path by the Vsave procedure
and uses them to generate the correct clipping path, page
orientation and virtual ICTM for the restored page.
04.07 FIG. 34 is a flowchart illustrating the program
steps implemented by the Vrestore procedure. A block 830
saves the current CTM and a block 832 then sets the
CTM) to an identity matrix. As in the Vsave procedure, the
use of the identity CTM will avoid any round off errors
when transforming coordinates from user Space to device
Space in the current path.

0408. A block 834 then retrieves the elements of the
current path by calling the PostScript(R) pathforall operator,
which pushes the user Space coordinates of each path
element onto the Operands Stack. The retrieved elements
will include the page size and virtual ICTM components
that were appended to the path by the VSave procedure. A
block 836 then performs various stack manipulation opera
tions to place the page size and virtual ICTM components
on top of the stack. The block 836 then stores the compo
nents in variables called, for example, “ResDefaultMatrix,
“ResPageX' and “ResPageY,” which represent the page
size and virtual ICTM at the time that the PostScript(R) Save
operator was called.

04.09 Next, a decision-making block 838 compares the
ResDefaultMatrix (at time of save) to the current virtual
ICTM (at time of restore), which is saved in the variable
DefaultMatrix. The equivalency of the matrices may be
easily determined by using a previously defined utility
routine, called, for example, "EqualMatrix,” which performs
a component-by-component comparison of the two matri
ces, allowing for a slight floating point round-off error. If the
two matrices are equivalent, the EqualMatrix routine returns
a true on the Stack; if they are not equivalent, the Equal
Matrix routine returns a false. The EqualMatrix routine may
be implemented by the following code:

/EqualMatrix {
true
impositiondict begin
fCount O def
6 1 index Count get 3 index Count get

eq
sub abs .0001. It and
fCount Count 1 add def} repeat

31 roll pop pop
end

bind def

0410) If the block 838 determines that the restored
CTM) and current CTM) are not equivalent, it is assumed
that the Save operator was called during interpretation of one
page and the restore operator was called during interpreta
tion of another page. A block 840 then sets the CTM back
to the value saved by the block 830. Next, a block 842 calls
p1, which contains the current path at the time the Save
operator was called. The block 842 then removes the page
size and ICTM components that were added to the current
path and Sets p1 equal to the remaining path elements.

Oct. 28, 2004

0411] The blocks 830-842 of the Vrestore procedure may
be implemented by the following code:

/Vrestore {
Matrix systemdict currentmatrix
Identity systemdict setmatrix
mark
{ } { } { } { } pathforall
62 roll
42 roll
mark 71 roll
I/ResDefaultMatrix exch def
/ResPageY exch def
/ResPageX exch def
cleartomark
DefaultMatrix ResDefaultMatrix EqualMatrix not

systemdict setmatrix
fp1 mark
MakePath aload pop
pop pop pop
pop pop pop
pop pop pop
pop pop pop
cvX def

0412 Next, a decision-making block 844 determines the
orientation of the restored page by comparing ResPageX to
ResPageY. If ResPageX is greater than ResPageY, a variable
called ResPortrait is Set to false to indicate a landscape
orientation. Alternatively, if ResPageX is less than
ResPageY, the variable ResPortrait is set to true to indicate
a portrait orientation. The block 844 then compares ResPor
trait (the restored page orientation) to Portrait (the saved
page orientation). If the page orientation has changed
(ResPortrait and Portrait are not equal), a block 846 calls the
SetPortrait procedure to change the orientation of the device.
(See FIGS. 25 and 26A&B).
0413) The blocks 844 and 846 of the Vrestore procedure
may be implemented by the following code:

ResPageX ResPageYgt {
fResPortrait false def

fResPortrait true def
ifelse

ResPortrait Portrait ne {
SetPortrait
} if

0414. If the block 844 determines that the orientation is
the same, or after the block 846 corrects the orientation, a
block 848 saves the procedures for generating the current
clipping path in a variable called, for example, “c1, by
calling the MakePath procedure.
0415) A block 850 then calculates the new ICTM) by
determining the accumulation of operations applied on the
restored virtual ICTM and applying those operations on the
current virtual ICTM). The block 850 calculates the new
CTM) by first getting the current CTM), which may be
considered the result of the restored virtual ICTM (i.e., the
virtual CTM restored from the save operator) concatenated
with an operations matrix. The block 850 then calculates the
operations matrix by concatenating the current CTM) with
the inverse of the restored virtual ICTM). The operations

US 2004/0216046 A1

matrix is then concatenated with the current virtual ICTM)
to generate the new ICTM). Thus, the block 850 assumes
that:

current CTM=operations restored virtual CTM).

0416) Further, the block 850 performs the following
operations:

operations=current CTM restored virtual CTM';
and

new CTM=operations current virtual CTM).

0417. The blocks 848 and 850 of the Vrestore procedure
may be implemented by the following code:

clippath
fe1 MakePath def
Matrix systemdict currentimatrix
ResDefaultMatrix
Matrix2 invertmatrix
Matrix3 concatmatrix
DefaultMatrix Matrix4 concatmatrix

systemdict setmatrix

% generate clip path procedures

% calculate new
% CTM)

0418. A block 852 then regenerates the clipping path
(saved in c1) and a block 854 regenerates the current path
(saved in p1) in the new coordinate System specified by the
new ICTM). The blocks 852 and 854 may be implemented
by the following code:

systemdict initclip
newpath
c1
clip newpath
p1 }

0419) Alternatively, if the block 838 determines that the
restored virtual ICTM is equivalent to the current virtual
ICTM (i.e., the save and restore operators were called on
the same page), a block 856 Simply removes the page size
and virtual ICTM) components from the current path. A
block 858 then restores the current path and a block 860 sets
the CTM) back to the value saved by the block 830.
0420. The blocks 856-860 may be implemented by the
following code:

{
fp1 mark
MakePath aload pop
pop pop pop
pop pop pop
pop pop pop
pop pop pop
cvX def

newpath
p1
systemdict setmatrix

ifelse
bind def

32
Oct. 28, 2004

0421) The Redefined PostScript(R) Save Operators:
0422 The PostScript(R) save operators (which include
Save and gSave) are redefined to invoke the Vsave proce
dure. Before the operators are redefined, however, they are
renamed ("systemdict operator,” for example) because their
normal operation is defined in the Systemdict dictionary. The
Save operators may be renamed by the following code:

fsystemdict save systemdict /save get def
fsystemdict gsave systemdict ?g.save get def

0423. The PostScript(R) save and gsave operators are then
redefined. FIG. 35 is a flowchart illustrating the program
StepS implemented to redefine to PostScript(R) Save opera
tors. A block 872 first invokes the Vsave procedure, which
was described above in connection with FIG.33. The Vsave
procedure Saves the current path in p1 and then appends the
page size and virtual ICTM components to the current path.
0424) Ablock 874 then invokes the standard PostScript(R)
Save (or gSave) operator (now renamed “systemdict Save”
or "systemdict gSave”). The Save operator performs its
Standard function of Saving the current State of Virtual
memory and the current graphics State, including the current
path (which now includes the page size and virtual ICTM)
components). The gSave operator performs its standard
function of Saving the current graphics State.
0425) Next, a block 876 sets the CTM) to an identity
matrix. As before, this will eliminate any round off errors in
the current path. A block 878 then restores the current path
to the path Stored in p1 (the path without the added page size
and virtualCTM) components) and a block 880 restores the
CTM) back to the virtual ICTM).
0426) The blocks 870-880 for redefining the PostScript(R)
Save operator may be implemented by the following code:

/save {
impositiondict begin
Vsave
systemdict save
Identity systemdict setmatrix
newpath
p1
exch systemdict setmatrix
end

bind def
Similarly, the PostScript (R) gsave operator may be

redefined by implementing the following code:
/gsave {

impositiondict begin
Vsave
systemdict gsave
Identity systemdict setmatrix
newpath
p1
systemdict setmatrix
end

bind def

0427. The Redefined Postscript(R) Restore Operators:
0428 The postScript(R) restore operator must also be
renamed and redefined to invoke the Vrestore procedure.

US 2004/0216046 A1

Like the Save operators, the restore operator is renamed, for
example, "Systemdict restore, by the following code:

fsystemdict restore systemdict frestore get def
Because the PostScript (E) save and restore operators

0429 affect the contents of virtual memory and the
graphics State, the values of many variables used during the
imposition and Setvirtualdevice procedures may be inadvert
ently altered by the use of these operators. However, Simple
values stored on the Operands Stack are not affected. There
fore, the PostScript(R) restore operator is redefined to protect
the values of the variables stored in virtual memory by
Saving them on the Operands Stack before calling the
standard PostScript(R) restore operator.

0430 FIG. 36 is a flowchart illustrating the program
StepSimplemented by the redefined restore operator. Ablock
892 places the values of all the imposition variables stored
in Virtual memory on the Operands Stack So their values are
not overwritten by the restore operator. Then, a block 894
calls the Standard restore operator (now renamed “system
dict restore”). A block 896 then puts the values of the
variables on the Operands Stack back to their pre-restore
values. Lastly, a block 898 invokes the Vrestore procedure.

0431) The blocks 892-898 of the redefined restore opera
tor may be implemented by the following code:

frestore {
impositiondict begin
ImageDone
CurrentIndex
CurrentPage
PageCount
Portrait
PageX
PageY
ClipliX
ClipliY
ClipurX
ClipurY
mark DefaultMatrix % put ICTM components on
aload pop % stack
19-1 roll
systemdict restore % call standard restore operator

fDeaultMatrix exch def
fClipurY exch def
fClipurX exch def
fCliply exch def
fClipliX exch def
/PageY exch def
/PageX exch def
fPortrait exch def
/PageCount exch def
fCurrentPage exch def
fCurrentIndex exch def
fImageDone exch def
Wrestore
end

bind def

% put variables on stack

% replace variables with
% pre-restore values

% invoke Vrestore procedure

33
Oct. 28, 2004

0432) The Redefined PostScript(R) Grestore Operators:
0433. The standard PostScript(R) grestore or grestoreall
operators, are renamed, for example, “systemdict operator.”
This may be implemented by the following code:

fsystemdict grestore systemdict ?grestore get def
fsystemdict grestoreal systemdict ?grestoreall get

0434 def
0435 Because the PostScript(R) grestore and grestoreall
operators affect only the graphics State, it is not necessary to
protect the values of any variable Stored in Virtual memory.
Thus, the greStore or greStoreall operators are more simply
redefined.

0436 FIG. 37 is a flowchart illustrating the program
steps implemented by the redefined PostScript(R) grestore
and grestoreall operators. A block 902 invokes the renamed
Standard greStore or greStoreall operator and then a block
904 invokes the Vrestore procedure, which will calculate the
correct ICTM and correct the page orientation and clipping
path.
0437. The blocks 902-904 for redefining the PostScript(R)
greStore operator may be implemented by the following
code:

/grestore {
impositiondict begin
systemdict grestore
Wrestore
end

bind def
Similarly, the grestoreal operator may be redefined

by implementing by the following code:
/grestoreall {

impositiondict begin
systemdict grestoreall
Wrestore
end

bind def

0438. The Postscript(R) Level 2 Gstate Operators:
0439 Level 2 PostScript(R) implementations support the
following three additional operators that affect the current
graphics state (and therefore the ICTM) and that may
interfere with the imposition procedures of the present
invention: gState, currentgState and SetgState. The Post
Script(R) gState operator creates a new graphics State object
(whose initial value is the current graphic State) and pushes
it on the Operand stack. The PostScript(R) currentgstate
operator replaces the value of the gState object with the
current graphics State. The PostScript(R) SetgState operator
replaces the current graphics State with the value of the
gState object.
0440 Similarly to the gsave and grestore operators
described above, the gState operators are renamed and
redefined to invoke the Vsave the Vrestore procedures. The
gState operators may be renamed by the following code:

/gstate where { % is this level 2
pop

US 2004/0216046 A1

-continued

fsystemdict gstate systemdict /gstate get def
fsystemdict setgstate systemdict fsetgstate get

def
fsystemdict currentgstate systemdict

fcurrentgstate get def
} if

0441 Similar to the redefined gsave operator described
above in connection with FIG. 35, the gstate and currentg
State operators are redefined to first invoke the VSave
procedure and then to call the renamed Standard gState or
currentgState operator. The redefined operators then restore
the current path without the page size and ICTM compo
nents and reset the virtual ICTM).
0442. Also, like the redefined grestore operator described
above in connection with FIG. 37, the setgstate operator is
redefined to first call the renamed SetgState operator and then
to invoke the Vrestore procedure.
0443) The PostScriptOR level 2 gState operators may be
redefined by the following code:

/gstate where { % is this level 2
pop
fgstate { % redefine gstate operator

impositiondict begin 76 (like gsave operator)
Vsave
systemdict gstate
Identity systemdict setmatrix
newpath
p1
exch systemdict setmatrix
end
bind def

fcurrentgstate {
impositiondict begin

% redefine currengstate operator
% (like gsave
% operator)

Vsave
systemdict currentgstate
Identity systemdict setmatrix
newpath
p1
exch systemdict setmatrix
end
bind def

fsetgstate {
impositiondict begin

% redefine setgstate operator
% (like grestore
% operator)

systemdict setgstate
Wrestore
end
bind def

} if

0444 These optional procedures are used when it is
anticipated that the page descriptions in the merged Post
Script(R) file 450 may include a save operator in one page
description and a restore operator in a Subsequent page
description. If the optional procedures are used, a slight
modification should be made to the Setvirtualdevice proce
dure, described above in connection with FIG. 27. Referring
to FIG. 27, an additional block 633 invokes the redefined
Save operator and then pops the Save object from the
Operands Stack after the block 6322 invokes the EnableVir
tualDevice procedure. This is necessary because the greStore

34
Oct. 28, 2004

and greStoreall operators can be called without a correspond
ing Save or gSave operator. If greStore is called without a
gSave operator, it restores the graphics State from the top of
the graphics State Stack. If greStoreall is called without a
gSave or Save operator, it restores either the graphics State
from the bottom of the graphics State Stack or the graphics
State Saved by the last Save operator. If the topmost Save
object was created prior to the redefinition of the Save
operator, the Saved current path will not include the addi
tions of the page size and ICTM components and, therefore,
will not operate properly with the redefined greStore and
greStorall operators. Thus, invoking the redefined Save
operator at the block 633 of the setvirtualdevice procedure
ensures that the greStore and greStoreall operators will
always restore a Saved graphics State compatible with the
present invention.
0445. The blocks 630-633 of the setvirtualdevice proce
dure for the third embodiment of the invention may be
implemented by the following code: VirtualDeviceEnabled
not {EnableVirtualDevice save pop} if
0446. Also, in some PostScript(R) applications, interpret
ing different PostScript(R) files consecutively may interfere
with the operation of the invention. For example, two
different PostScript(R) files may use the same name for
variables with different definitions. If the second PostScript(R)
file interpreted does not explicitly initialize the variable, the
definition of the variable from the first PostScript(R) file will
be used, interfering with proper interpretation of the Second
PostScript(R) file. To overcome this problem, the Imposejob
procedure (FIG. 28) may be altered.
0447 Referring to FIG. 28, blocks 653 and 657 are
added to the Impose Job procedure to save the state of virtual
memory (which includes many variable definitions) before
retrieving a file/list pair from the instruction Set and restor
ing that Saved State before retrieving the next file/list pair.
Specifically, the block 653 executes the redefined save
operator and Stores the Saved State in a variable called, for
example, “SavedState.” The blocks 654 and 656 then
retrieve a file/list pair from the instruction Set and invoke the
Imposefile procedure to process the file/list pair, as
described above. However, after the Imposefile procedure
finishes processing each entry in the file/list pair, the block
657 retrieves the saved State stored in the variable Saved
State and executes the redefined restore operator to restore
that state. The block 657 thus initializes the virtual memory
before the block 654 retrieves the next file/list pair from the
instruction Set.

0448. The blocks 650-662 of the Impose.Job procedure
incorporating the blocks 653 and 657 may be implemented
by the following code:

/Impose Job % Impose pages from each input
% file

impositiondict (EnableVirtualDevice get exec
{

aload pop pop
impositiondict (SavedState

save put % save state
impositiondict /ImposeFile

get % call ImposeFile for each
CXCC % file in instruction set

US 2004/0216046 A1

-continued

% cleardictstack
clear
impositiondict (SavedState get

restore % restore saved state
forall

impositiondict (ImageDone true put
impositiondict (systemdict showpage
known { % Did we redefine showpage

impositiondict (systemdict showpage
get eXec % If yes, execute it.
} if

def

0449 Further, as explained earlier, for compatibility with
the optional procedures, the PostScript(E) erasepage operator
is redefined by calling the Systemdict gSave and greStore
operators. All of the remaining imposition-on-the-fly proce
dures are compatible with the optional procedures.

0450 Numerous modifications and alternative embodi
ments of the invention will be apparent to those skilled in the
art in View of the foregoing description. Accordingly, this
description is to be construed as illustrative only and is for
the purpose of teaching those skilled in the art the best mode
of carrying out the invention. The details may be varied
Substantially without departing from the Spirit of the inven
tion, and the exclusive use of all modifications which are
within the Scope of the appended claims is reserved.

1-13. (Cancelled)
14. An apparatus for controlling an electronic preSS

wherein the press includes a controller responsive to preSS
commands, comprising:

first means for developing template data defining pages to
be printed with fixed information common to all of the
pages and variable information unique to each page;

a database having entries therein each representing Vari
able information to be printed;

Second means responsive to the first developing means for
developing master page data from the template data
wherein the master page data define the fixed informa
tion; and

means responsive to the database and the first and Second
developing means for converting the template data and
the database into press commands Specifying Sequence
and content of page production by the preSS.

15. The apparatus of claim 14, wherein the converting
means includes means for copying the template data to
create copy data and means for Stripping data representing
the fixed information from the copy data to obtain interme
diate variable page data.

16. The apparatus of claim 15, wherein the intermediate
variable page data include variable area data representing an
area of each page to be printed with variable information and
wherein the converting means further includes means
responsive to the variable area data for inserting entries from
the database into the intermediate variable page data to
obtain final variable page data.

17. The apparatus of claim 16, wherein the converting
means further includes means for creating the press com
mands from the final variable page data and the master page
data.

35
Oct. 28, 2004

18. The apparatus of claim 16, wherein the final variable
page data include text data representing text to be printed on
a page and wherein the inserting means includes means for
composing the text data.

19. An apparatus for controlling an electronic press
wherein the press includes a controller responsive to press
commands, comprising:

a database having entries therein each representing vari
able information to be printed;

first means for developing a plurality of template data Sets
each defining associated pages to be printed with and
having first data defining fixed information common to
all of the associated pages wherein at least one of the
template data Sets further includes Second data defining
a particular area in each associated page for the printing
of variable information therein unique to Such page and
third data identifng at least one of the database entries,

Second means responsive to the first developing means for
developing a master page data Set from the template
data Set wherein the master page data Set includes data
defining the fixed information only; and

means responsive to the database and the first and Second
developing means for deriving press commands Speci
fying Sequence and content of page production by the
preSS from the template data Sets and the database.

20. The apparatus of claim 19, wherein the deriving
means includes means for copying each template data Set to
create a copy data set and means for Stripping data repre
Senting the fixed information from each copy data Set to
obtain an intermediate variable page data Set.

21. The apparatus of claim 20, wherein each intermediate
variable page data Set includes variable area data represent
ing an area of a page to be printed with variable information
and wherein the deriving means further includes means
responsive to the variable area data for inserting entries from
the database into each intermediate variable page data Set to
obtain final variable page data Sets defining content and
position of variable information to be printed on associated
pageS.

22. The apparatus of claim 21, wherein the deriving
means further includes means for creating the press com
mands from the final variable page data Sets and the master
page data Set.

23. The apparatus of claim 8, wherein at least one of the
final variable page data Sets includes text data representing
text to be printed on a page and wherein the inserting means
includes means for composing the text data.

24. A method of controlling an electronic press wherein
the press includes a controller responsive to press com
mands, comprising:

developing template data defining pages to be printed
with fixed information common to all of the pages and
Variable information unique to each page,

assembling a database having entries therein each repre
Senting variable information to be printed;

developing master page data from the template data
wherein the master page data defines the fixed infor
mation; and

converting the template data, the database, and the master
page data into preSS commands Specifying Sequence
and content of page production by the press.

US 2004/0216046 A1

25. The method of claim 24, wherein the step of convert
ing includes the Steps of copying the template data to create
copy data and Stripping data representing the fixed informa
tion from the copy data to obtain intermediate variable page
data.

26. The method of claim 25, wherein the intermediate
variable page data include variable area data representing an
area of each page to be printed with variable information and
wherein the Step of converting further includes the Step of
inserting entries from the database into the intermediate
variable page data responsive to the variable area data to
obtain final variable page data.

27. The method of claim 13, wherein the step of convert
ing further includes the Step of creating the press commands
from the final variable page data and the master page data.

28. The method of claim 13, wherein the final variable
page data include text data representing text to be printed on
a page and wherein the Step of inserting includes the Step of
composing the text data.

29. A method of developing a data Set representative of a
page from a template data Set and a database data Set,
wherein the template data Set includes data representing
fixed information to be reproduced on the page and data
representing a position for variable information on the page
and wherein the database includes data representing variable
information to be reproduced at the position on the page, the
method comprising the Steps of

developing a first data Set from the template data Set,
wherein the first data Set includes the data representing
the fixed information;

developing a Second data Set from the template data Set,
wherein the Second data Set includes the data repre
Senting the position for the variable information on the
page,

developing a third data Set from the Second data Set and
the data in the database; and

developing a fourth data Set that specifies a manner of
combining the first and third data Sets to produce the
data Set representative of the page.

30. The method of claim 29, wherein each of the devel
oping Step is undertaken using a desktop publishing appli
cation.

31. The method of claim 29, wherein the step of devel
oping the first data Set includes the Steps of opening a
working copy of the template data Set and Stripping the data
representing the position for the variable information there
from.

32. The method of claim 31, wherein the step of stripping
includes the Steps of comparing the data in the template data
Set with the data in the database and, based on the compari
Son, removing only the variable information from the work
ing copy of the template data Set.

33. The method of claim 32, wherein the step of com
paring includes the Steps of identifying images within the
template data Set, wherein each image has a name, and
deleting any image having a name corresponding to a field
name of the database from the working copy of the template
data Set.

34. The method of claim 32, wherein the step of com
paring includes the Steps of identifying text boxes within the
template data Set, wherein each text box includes a word,

36
Oct. 28, 2004

and deleting the any text box having a word corresponding
to a field name of the database from the working copy of the
template data Set.

35. The method of claim 29, wherein the step of devel
oping the Second data Set includes the Steps of opening a
working copy of the template data Set and Stripping the data
representing the fixed information therefrom.

36. The method of claim 35, wherein the step of stripping
includes the Steps of comparing the data in the template data
Set with the data in the database and, based on the compari
Son, removing only the fixed information from the working
copy of the template data Set.

37. The method of claim 36, wherein the step of com
paring includes the Steps of identifying images within the
template data Set, wherein each image has a name, and
deleting any image having a name that does not correspond
to a field name of the database from the working copy of the
template data Set.

38. The method of claim 36, wherein the step of com
paring includes the Steps of identifying text boxes within the
template data Set, wherein each text box includes a word,
and deleting any text box that does not have a word
corresponding to a field name of the database from the
working copy of the template data Set.

39. The method of claim 29, wherein the step of devel
oping the Second data Set includes the Step of Storing data
representing attributes of the variable information in the
Second data Set.

40. The method of claim 39, wherein the step of devel
oping the third data Set includes the Steps of extracting the
data representing variable information from the database,
formatting the extracted data using the data representing
attributes, and inserting the formatted data into the Second
data Set in place of the data representing the position for
variable information.

41. An apparatus for controlling an electronic press,
comprising:
means for developing first and Second Sets of template

data representing associated first and Second template
pages, respectively, each Set of template data having
master data representing fixed information to be printed
and position data representing a position on a page at
which variable information is to be printed; and

means responsive to the developing means and to a
database having a number of entries each of which
represents variable printed information for causing the
electronic press to print output pages with the fixed
information and Selected variable printed information
wherein the causing means comprises means for Sepa
rating the master data from the position data for each
Set of template data in preparation for rasterization.

42. The apparatus of claim 41, wherein the causing means
includes means for converting the Sets of template data and
the database into commands for the electronic preSS Speci
fying Sequence and content of page production.

43. The apparatus of claim 41, wherein the Separating
means includes means for generating from the Sets of
template data master data Sets containing master data and
intermediate variable page data Sets having position data.

44. The apparatus of claim 43, wherein the Separating
means further includes means responsive to the database and
the intermediate variable pages data Sets for deriving final
variable page data Sets having content data representing
variable printed information.

US 2004/0216046 A1

45. The apparatus of claim 44, wherein the causing means
further includes Second means for developing commands for
the electronic preSS Specifying Sequence and content of page
production from the master page data Sets and the final
variable page data Sets.

46. The apparatus of claim 44, wherein at least one of the
final variable page data Sets includes text data representing
text to be printed on a page and wherein the deriving means
includes means for composing the text data.

47. The apparatus of claim 41, wherein auxiliary produc
tion devices are coupled to the causing means and wherein
the database includes control information for controlling at
least one of the electronic preSS and the auxiliary production
devices.

48. The apparatus of claim 41, wherein the first set of
template data and the Second Set of template data are

37
Oct. 28, 2004

different So that the first and Second template pages are
different and wherein the database Stores entries identifying
which of the first and Second template pages to display.

49. The apparatus of claim 41, wherein the variable
printed information comprises an image.

50. The apparatus of claim 41, wherein the causing means
further includes means for controlling a further electronic
preSS Such that a first portion of the output pages is printed
by the further electronic press and a Second portion of the
output pages is printed by the first-named electronic press.

51. The apparatus of claim 41, wherein the master data
defines a first version and a Second version Such that the
fixed information of the first version differs from the fixed
information of the Second version.

