
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2007/0242675 A1

ROmrell et al.

US 20070242675A1

(43) Pub. Date: Oct. 18, 2007

(54)

(76)

(21)

(22)

DUAL SCHEDULING FOR EFFICIENT
NETWORK TRAFFIC MANAGEMENT

Inventors: David Romrell, Hillsboro, OR (US);
Christopher Charles Ptacek,
Beaverton, OR (US)

Correspondence Address:
OCCHIUTI ROHLICEK & TSAO, LLP
10 FAWCETT STREET
CAMBRIDGE, MA 02138 (US)

Appl. No.: 11/404,049

Filed: Apr. 13, 2006

Publication Classification

(51) Int. Cl.
H04L 2/56 (2006.01)

(52) U.S. Cl. .. 370/395.4

(57) ABSTRACT

Data traffic is scheduled by, in a first scheduler, selecting a
source of traffic from a plurality of sources of traffic, each
Source being associated with a second scheduler, in a second
scheduler associated with the selected source of traffic,
selecting a type of traffic from a plurality of types of traffic
within the source selected by the first scheduler, and trans
mitting data of the selected type and source.

402

US 2007/024267S A1 Patent Application Publication Oct. 18, 2007 Sheet 1 of 7

Patent Application Publication Oct. 18, 2007 Sheet 2 of 7 US 2007/024267S A1

O
O
ves
V

s i
s

&

2

US 2007/024267S A1 Patent Application Publication Oct. 18, 2007 Sheet 3 of 7

Patent Application Publication Oct. 18, 2007 Sheet 4 of 7 US 2007/024267S A1

Patent Application Publication Oct. 18, 2007 Sheet 5 of 7 US 2007/024267S A1

S

US 2007/024267S A1

909Z09
809

029 SS30OJ) [9uun L

Patent Application Publication Oct. 18, 2007 Sheet 6 of 7

US 2007/024267S A1 Patent Application Publication Oct. 18, 2007 Sheet 7 of 7

leuun luonnsuooºo

JepeeH ?AO,uue}}

US 2007/0242675 A1

DUAL SCHEDULING FOR EFFICIENT NETWORK
TRAFFIC MANAGEMENT

TECHNICAL FIELD

0001. This description relates to dual scheduling for
efficient network traffic management.

BACKGROUND

0002. In operating a network, it is sometimes necessary
to control the flow of data from one point to another. This is
especially true in complex network topologies, such as a
tiered structure as shown in FIG. 1, with a central site 102d
and several layers of sub-networks 102a, b, 112a, b each
going through one or more links to reach the central site
102d. Previous systems for managing network traffic have
relied on class based queuing (CBQ) or other scheduling
systems to implement link level scheduling, that is, Sched
uling which of several links can send network traffic over an
uplink to another tier of the network. Other systems have
used data compression, requiring modifications to the sys
tems at either end of a compressed link. Issues in scheduling
network traffic include link oversubscription, where the
various links into a node have a higher total traffic than the
link out of the node to another part of the network, guaran
teeing bandwidth amounts to various links and various
classes of data traffic, and compensating for the effects of
compression on allocation of bandwidth.

SUMMARY

0003. In general, in one aspect, data traffic is scheduled
by, in a first scheduler, selecting a source of traffic from a
plurality of Sources of traffic, each source being associated
with a second scheduler, in a second scheduler associated
with the selected source of traffic, selecting a type of traffic
from a plurality of types of traffic within the source selected
by the first scheduler, and transmitting data of the selected
type and source.
0004 Implementations include one or more of the fol
lowing. Repeating the selecting and transmitting. The traffic
is traffic for passing over a communications link. The
selecting includes scheduling the selection of sources and
types according to characteristics of the communications
link. Selecting a source of traffic includes selecting a source
from which packets should be delivered according to a rule.
Delivering packets according to the rule includes one or
more of guaranteeing a minimum bandwidth for a source of
the plurality of sources, guaranteeing a maximum burst limit
for a source of the plurality of Sources, and guaranteeing a
service interval to a source of the plurality of sources.
Choosing a source of traffic includes allowing a user to
configure a preemptive priority for a type of traffic. In the
first scheduler, accounting for bandwidth used by each
Source of traffic. Selecting a type of traffic includes selecting
a type from which packets should be delivered according to
a rule. Delivering packets according to the rule includes one
or more of guaranteeing a minimum bandwidth to a type,
within an amount of bandwidth allocated by the first sched
uler, guaranteeing a maximum burst limit to a type, within
a burst limit allocated by the first scheduler, and guarantee
ing a service interval to a type. The types of traffic include
overlapping classifications of traffic. Before the selecting,
filtering the traffic based on routes the traffic will use. The

Oct. 18, 2007

filtering includes applying a radix tree algorithm. Determin
ing that a packet from the selected type is to be transmitted
through a tunnel, and selecting a type includes charging the
type for bandwidth usage based on an average efficiency of
the tunnel.

0005. In general, in one aspect, data traffic is scheduled
by selecting a type of traffic, and determining that a packet
from the selected type is to be transmitted through a tunnel,
in which selecting the type includes charging the type for
bandwidth usage based on an average efficiency of the
tunnel.

0006 Implementations may include one or more of the
following features. Adding the selected packet to a queue for
the tunnel. Extracting a packet from the queue for the tunnel
based on one or more of efficiency of the tunnel, respon
siveness of the tunnel, a maximum delay of the tunnel, and
a minimum buffer of the tunnel. Compressing packets in the
queue for the tunnel, updating an average compression ratio
of the tunnel, and transmitting the compressed packets
according to a scheduler that selects sources of traffic from
a plurality of Sources of traffic. Encrypting packets in the
queue for the tunnel, updating an average expansion ratio of
the encryption, and transmitting the encrypted packets
according to a scheduler that selects sources of traffic from
a plurality of Sources of traffic. Selecting a type includes
using a class-based queuing algorithm.
0007. In general, in one aspect, data traffic is scheduled
by selecting a source of traffic from a plurality of sources of
traffic using a group ratio round robin Scheduling algorithm.
0008 Implementations may include one or more of the
following features. Using a group ratio round robin Sched
uling algorithm includes defining an ordered set of groups of
Sources of traffic having similar weights, computing ratios
between total weights of the groups, repeatedly, choosing
one of the groups, within the chosen group, using a second
algorithm to choose a source of traffic, transmitting an
amount of traffic from the chosen source. The second
algorithm is a deficit round robin Scheduling algorithm.
Computing a credit for each group based on the ratios, and
after the transmitting, updating a deficit counter and a
quantum counter for the chosen group based on the amount
of traffic transmitted and the credit. Choosing one of the
groups by, if the deficit counter and the quantum counter of
the last-chosen group are above Zero, choosing the last
chosen group, if the deficit counter of the last-chosen group
is at or below zero, adding the credit to the deficit counter,
adding a quantum to the quantum counter, and choosing the
next group of the ordered set of groups, and if the deficit
counter of the last-chosen group is above Zero and the
quantum counter is at or below zero, adding a quantum to the
quantum counter for that group, and choosing the first group
in the ordered set of groups.
0009. In general, in one aspect, an amount of bandwidth
to be used by a compression tunnel is determined by
determining a pre-compression bandwidth limit for a type of
traffic, determining a post-compression bandwidth limit for
the tunnel, compressing data, including data from the type,
determining a compression ratio, based on the compression
ratio, determining an amount of pre-compression bandwidth
used by the tunnel, and determining an amount of post
compression bandwidth used by the tunnel, and communi
cating the determined amounts to a scheduling process for

US 2007/0242675 A1

the type. For each of a plurality of types of traffic, guaran
teeing an amount of bandwidth, determination of the guar
anteed amount being based on the compression ratio. Sched
uling types to use the tunnel based on the compression ratio
and the determined amounts.

0010. In general, in one aspect, for a plurality of end
points of routes through a network, pairs of endpoints that
can Support tunnels to each other are identified, and identi
fications of the identified pairs of endpoints are recorded in
a definition file. At each endpoint, the definition file is
received, the identifications of other endpoints that the
endpoint is paired with are read from the definition file, and
a tunnel is created to each paired endpoint.
0011 Implementations may include a centralized server
performing the identifying and recording.

0012. In general, in one aspect, packets to be transmitted
are received. For each packet, a class and a link are identi
fied, whether the packet should be transmitted using a tunnel
is determined, the packet is added to a queue of packets
having the same class as the packet, a class of packets is
selected, packets from the selected class which are to be
transmitted using the tunnel are added to a queue for the
tunnel, the packets in the queue are adapted for the tunnel,
producing adapted packets, adapted packets are added to a
queue of packets to be transmitted on the link identified for
the packets, a link is selected, and packets are transmitted
from the queue for that link.
0013 Implementations may include one or more of the
following. Adapting the packets includes compressing the
packets. Adapting the packets includes encrypting the pack
ets. Adapting the packets includes encrypting and compress
ing the packets. Selecting a class of packets includes deter
mining, for each class of packets, a number of bytes that
have been compressed, a number of compressed bytes that
have been transmitted, and a compression ratio, and select
ing a class based on the compression ratio and the number
of compressed bytes that have been transmitted for each
class. Adapting the packets for the tunnel includes, for each
packet, removing a network header from the packet, per
forming an operation on the packet to create an adapted
packet, and adding a network header corresponding to a
destination to the adapted packet. Receiving transmitted
packets at the destination and for each packet that was
transmitted using the tunnel, performing an inverse of the
operation on the packet, adding a second network header to
the packet, and transmitting the packet according to the
second network header.

0014 Advantages include the following. Bandwidth can
be guaranteed to each branch in an oversubscribed network
with thousands of links. Compression can be applied to a
whole pipe or on a selective basis based on classes within a
link. Certain types of traffic can be explicitly excluded from
compression. The bandwidth used by a compression tunnel
can be managed to a specified value. The bandwidth that a
particular application or class of applications uses can be
controlled to be within a specified range.

0.015 The details of one or more embodiments of the
invention are set forth in the accompanying drawings and
the description below. Other features, objects, and advan
tages of the invention will be apparent from the description
and drawings, and from the claims.

Oct. 18, 2007

DESCRIPTION OF DRAWINGS

0016 FIGS. 1 and 2 are block diagrams of a network.
0017 FIG. 3 is a block diagram of a scheduling algo
rithm.

0.018
0019)

FIGS. 4, 5, and 6 are block diagrams of schedulers.
FIG. 7 is a block diagram of a tunnel process.

DETAILED DESCRIPTION

0020. In a central site network, such as that shown in FIG.
1, multiple remote sites 102a, b and a central site 102d each
have a single connection 114a, b, d, referred to as a link,
through a network 104, such as the Internet or a private IP
network. Each site has network hardware 108a, b, d, which
facilitates connections between devices 110 and the network
links 114a, b, d, respectively. The remote sites 102a, b may
also have links 116a, b to additional remote sites 112a, b
connected through another network 104b. In such a case, the
link to the local network hardware is shown as another link
116c, sharing the link 114b back to the central site 102d with
the other remote links 116a, b. Connections between end
points on the network are referred to as links, which may
differ from actual network connections. Link 1114d con
necting the central site to the network may be a larger
capacity link than the remote site links 114a, b which feed
in to it, or it may be the same or even Smaller capacity.
Similarly, link 114b could have a higher or lower capacity
than the sum of remote links 116a-c.

0021 Another depiction of a network is shown in FIG. 2.
Viewed this way, central site link 114d is at the top of the
hierarchy. The two remote site links 114a, b are represented
by the first level rectangular boxes while local systems 110
at each remote site are represented by rounded boxes.
Second level links 116a, b to the more remote sites 112a, b
are connected through remote site link 114b. Classes of data
traffic originating from the various systems 110 are repre
sented by ovals, e.g., classes 212 for VoIP traffic, 214 for
Citrix traffic, and 216 for all other network traffic. Classes
are sometimes shown directly feeding into a link, rather than
coming through a system 110, e.g. classes 212a, 214a, 216a
connected to link 114a. At each level of the hierarchy, a link
that represents several links at the next level down is referred
to as a link group. For example, the link 114b is a link group
that carries traffic from the links 116a and 116b from the
remote sites 112a and 112b to the central site 102d via link
114d. as well as traffic on link 116c from the system 110
local to site 102b.

0022. Each link may have a minimum guaranteed band
width, that is, the network is configured to assure that the
capacity on link 114d associated with traffic for other links
114a, b, 116a, b, c is allocated at least to a minimum
configured rate for that link. Links may also be configured
with an allowable burst limit, that is, a maximum rate of
traffic that the link can generate at any one time. Link
oversubscription occurs when the total bandwidth available
or used by a set of links into a system or site exceeds the
bandwidth available on that site's link to the next level of the
network hierarchy. For example, if each of links 116a, b
could allow 1 Mb/s, but the outgoing link 114b could only
provide 1.5 Mb/s, the link 114b would be oversubscribed.
With inadequate scheduling, one link may use too great a
portion of the available uplink bandwidth, preventing

US 2007/0242675 A1

another link from achieving its guaranteed minimum rate.
Conversely, if the upstream link has a larger capacity than all
the downstream links, e.g., if link 114b had a capacity of 10
Mb/s in the previous example, it could carry too much traffic
and overwhelm the downstream links 114a, b to the remote
sites 102a, b. The same problems are present in routing
traffic on remote site link 114b to and from second-level
links 116a, b. A link scheduler manages the traffic over each
link to prevent oversubscription or overflowing of links.
Such a scheduler determines which downstream link's traffic
shall be carried by the upstream link (in either direction) at
any particular time according to a link scheduling algorithm.
A single central site scheduler, e.g., at device 108d, may
operate at the top level of the network, modeling bottlenecks
at all levels of the network to assure that link scheduling at
each level is compatible with each other level. For example,
a central site scheduler will not send more traffic over link
114d that is ultimately destined for links 116a and 116b than
those links can handle, even if intermediate link 114b could
handle that much incoming traffic.
0023. In addition to actual connections between devices,
different classes of network traffic may have different guar
anteed minimum rates and burst limits. For example, VoIP
traffic 212 may have a higher minimum and a lower burst
rate than Citrix traffic 214 or regular network traffic 216. For
traffic within a link, a class scheduler determines which
actual data packets to transmit, based on their class and a
class scheduling algorithm. A single scheduler or set of
schedulers could be implemented at a high level of the
hierarchy, and their scheduling determinations cascaded
down to the classes of traffic at each remote site. As with link
scheduling, class schedulers operate on traffic flowing in
either direction. In some examples, certain classes may have
preemptive priority, in which case they not only take priority
within their link, but the link itself is temporarily given
priority over other links to assure packets for that class are
quickly transmitted. As the preemptive class and link are
satisfied the scheduler updates normal usage counters for the
class and link scheduling algorithms.
0024. In some examples, as shown in FIG. 3, a link
scheduler uses a group ratio round robin (GRRR) algorithm
to determine what order to schedule the links in. Link group
310 represents lower-level links 308af each with a different
weight based on a guaranteed or actual rate. The GRRR
algorithm uses “weight groups'302, 304, 306 to group
together links 308a–f that have similar weights. A list is
maintained of a small number of groups 302, 304, 306 of
links 308a–f having similar weights. For example, the link
group 308a is in a group 302 of its own because it has a
weight of nine. The links 308b-c are in a second group 306
because they have the same weight, two. The links 308e-f
likewise form a group 306 of links with weight one. The
groups 302,304,306 then have total weights of 9, 6, and 2
for relative ratios of 1.5 (9:6), 3 (6:2), and 1, respectively.
0.025 Groups are selected to transmit packets based on
the ratio of bandwidth needed by one group to the bandwidth
needed by each other group. Each group transmits an
amount of data determined by the algorithm in turn. Within
each group, individual links are selected to transmit packets
based on the deficit round robin (DRR) algorithm, in which
individual links are selected based on the ratio of their traffic
volume to that of the other links in the group.

Oct. 18, 2007

0026. The GRRR algorithm, as adapted to link schedul
ing, proceeds as follows, within the example of FIG. 3. A
simple weighted round robin algorithm would schedule
links 308a–f as AAAAAAAAABBCCDDEF (where letters
A-F correspond to links 308af). While this provides overall
fair bandwidth sharing, it does not provide optimal service
latency. To be specific, the link group 308a will get bursts of
congestion that cause queuing and possibly Sustained packet
loss. The other links get jitter because they wait for 308a to
exhaust its weighted portion of link group 310.

0027. The GRRR approach resolves this by spreading
weights over an entire service frame. In the example above
it will schedule these as: AABAACAADEAABAACAADF.
To achieve this, each link or link group is sorted into weight
groups 302, 304, 306 with other peers that have weights
within the same factor of 2 (e.g., rates between 2 k to 2
k+1-1). The weight groups are then Sorted based on their
total weight (i.e., the sum of the weights of the included links
and link groups). Then the ratio of the weight from one
group to the next is calculated, and a credit is assigned based
on the ratios.

0028. A pointer is kept on the current weight group being
serviced. Credits and counters are used to maintain the ratios
between the weight groups. A deficit counter is used to
determine when to move to the next weight group. A
quantum counter is used to determine when the current
weight group ratio is satisfied and move the process back to
the start. On the next invocation of the scheduler, that weight
group is serviced and the counters are decreased by the
amount of data sent. In some examples, the quantum is
defined as a power of 2 (e.g., 1024 bytes) to simplify ratios
by using a shift operation.

0029. The scheduler moves the pointer between weight
groups using the following ordered rules after servicing the
current weight group:

0030) 1. If the deficit and quantum counters are both
above Zero, then the pointer stays with current weight group.

0.031) 2. If the deficit is at or below zero, then the deficit
credit is added to the deficit counter and the quantum credit
is added to the quantum counter and then the pointer moves
to next weight group.

0032. 3. If only the quantum is at or below zero, then the
quantum credit is added to the quantum counter and the
pointer moves to (or remains at) the first weight group.

0033 Because items within a group have weights within
a power of 2 of each other, the scheduler can use simple
deficit round robin within each weight group and still
maintain good fair service latency. Table 1 demonstrates
each step for the above process (for simplicity, a quantum
size of 500 is used with simple packet sizes). In each step,
the highlighted group transmits a variable number of bytes
and the new deficit is shown in the Def column. The current
quantum amount and quantum deficit are shown in the Qu
and Qu-- columns, respectively. The two rules above are
repeatedly followed as the process moves from one row to
the next. This results in the schedule identified above.

US 2007/0242675 A1

TABLE 1.

Weight Group 302 Weight Group 304

Oct. 18, 2007

Weight Group 306
Clients: A = 9 Clients: B = 2, C = 2, D = 2 Clients: E = 1, F = 1
Weight: 9 Weight: 6 Weight: 2
Ratio: 1.5 Ratio: 3 Ratio: 1
Credit: 7SO Credit: 1500 Credit: 500

slot Def Def Sent Def Def Qu Qu-- Sent Def Def Qu Qu+ Sent

750 A. 1SOO 500 B 500 500 E
1 750 -50 A 800 1SOO 500 B 500 500 E
2 700 A. 1SOO 1100 SOO 100 B 400 500 500 E
3 700 A. 11OO 600 100 -400 B SOO 500 500 E
4 700 3OO A 400 600 1OO C 500 500 E
5 3OO -400 A 700 600 1OO C 500 500 E
6 350 A. 600 100 100 -400 CSOO 500 500 E
7 3SO -450 A 800 1OO 1OO D 500 500 E
8 300 A. 1OO -400 100 -400 D SOO 500 500 E
9 300 A. 1100 1OO B 500 O SOO O E SOO
10 3OO -3OO A 600 1100 1OO B 500 500
11 450 A. 1100 1 OOO 100 O B 1OO 500 500
12 450 -2SO A700 1OOO 500 C 500 500
13 500 A. 1OOO SOO SOO O CSOO 500 500
14 500 O ASOO 500 500 D 500 500
15 750 A. 500 O SOO O D SOO 500 500
16 750 A. 1SOO 500 B SOO 3OO SOO 300 F 200
17 750 A. 1SOO 500 B 3OO O 3OO O F300

0034. In some examples, a network includes thousands of a simple bitwise shift left or right). This calculation of
links, but there will generally only be 3-8 weight groups. In
most cases, most of the links will have similar rates (e.g., a
typical network may have 400 links at 256 kb/s, 500 links at
512 kb/s, 8 links at 1.5 Mb/s, and 2 links at 3 Mb/s). Since
weight groups are defined as weights within a power of 2.
there are a maximum of 32 groups possible to cover all link
types between 1 b/s (2) and 2 Gb/s (2). In other words,
adding the GRRR mechanism to a link scheduler requires
minimal memory overhead, as it requires minimal process
ing time while providing a very good ability to guarantee
rates and fair service latency. Such a link scheduler is
referred to as order O(1), meaning that the amount of
computation necessary to operate it is Substantially insensi
tive to the number of links being scheduled. The original
GRRR algorithms were designed for process Scheduling,
and assume work units of fixed size, an assumption that is
not necessarily true for packet schedulers.
0035. By adding deficits as described above, each group
has the to exceed its ratio during one transmission (e.g., the
deficit of -50 in step 1) but this will decrease the volume of
data that group can send by that amount the next time it
comes to be serviced. This error is bounded by the maximum
packet size or quantum size (whichever of the two is
smaller) per service interval.
0036) The variable size of packets is also the reason for
the addition of the “quantum” measurements into the
weighted group Scheduler. This ensures that groups sending
small packets will still get their fair ratio of bandwidth. As
a weight group is serviced, the scheduler maintains the
quantum deficit to assure the previous weight group ratio is
satisfied. When the algorithm is moved to a new weight
group, it is recharged with a new quantum (e.g., another 500
bytes is added). Any excess or Surplus is taken into account
during the next quantum (i.e., it is slightly less then it would
normally be). The size 500 was used for simplicity of
illustration. A size of 1024 is often used and is significant
because it allows for efficient multiplication and division (by

transition credits when weight groups are created or adjusted
accounts for links becoming active/idle. In some examples,
a quantum of 1024 bytes provides a good point in tuning the
performance of the scheduler between efficiency and preci
Sion. A Smaller quantum (e.g., 512 bytes) may have less error
because it finds the best group to service next. This can help
ensure the best service interval for links with small packet
sizes (e.g., mostly voice or MTU limited traffic). However,
this may come at the expense of efficiency in looping
through groups until the quantum is large enough for one to
send. Other O(1) packet schedulers use a quantum of the
maximum packet size (e.g., 1600 bytes). The error intro
duced from the quantum is bounded to be less then a
quantum difference per service interval.

0037. In some examples, the GRRR algorithm assumes
that all links within each weight group are active. If a group
contains idle or over-limit links then the unused bandwidth
from each such link would be given up by that link for the
current service frame. It does this by assuming it did its DRR
credit amount of work. The work is updated in both the DRR
and GRRR deficits and the algorithm continues as if it was
actual work done. This efficiently distributes the idle work
done across all links and link groups. Each weight group
maintains a list of active links and idle links. As a first packet
is queued into an idle link, the link is moved to the tail of a
DRR list and the weight is increased for the weight group.
If not already set, then a pointer is set to the current location
in the DRR list. Despite becoming active, the deficits are still
tracked from before (i.e., they are not reset). This ensures
that links that oscillate from active to inactive are not
allowed to cheat at bandwidth. As the scheduler exhausts a
link, (removes the last packet) it continues to leave it in the
DRR until the next round. As the scheduler visits a link that
is still exhausted on a second pass, it will then remove it
from the DRR active list and put it into the idle list. It will
also update the total weight of the weight group.

US 2007/0242675 A1

0038. At the end of the service frame, the scheduler
recalculates the ratios and credits for the effected groups. If
the group does not shift in its sorted location then only the
credit for the current group and the one that has larger weight
needs to be updated. In some cases the order of the list may
change because the adjusted weights for this group cause it
to exceed the total weight of group in front of or behind it
in the original list. In this case the credit needs to be updated
on three groups (the two listed in the previous paragraph,
plus the one above the previous location since its ratio is
now to the group that had been behind us).
0039. In some examples, this algorithm is performed
even less frequently (i.e., every N times through the DRR
cycle, or for multiple GRRR frames). On average the
penalty for a delay before increasing the credit for new
activation should be balanced by a similar delay before
decreasing credit for idle link removal. The effect of a
slightly low credit is a missed frame for the group but the
per-item error is distributed between the items so they only
loose a bit on the service latency. Conversely, when the
credit is slightly high, the group may be given an extra slot
in the frame, and this is also distributed as a slight boost to
the service latency per link.
0040. In some cases a weight group will only have one or
two links within it. If those links go idle then the entire
weight group should not take any slots from the frame. To
do this the weight group is flagged as idle and will give up
its slot by crediting either its quantum or next weight group
credit (whichever is smaller). This maintains the ratio of
work done with other weight groups. At the end of the frame
this weight group is removed. The ratios and credits from the
group in front of where it had resided are recalculated. When
the link within the weight group becomes activated again,
the weight group is moved back into the correct location and
adjusts the ratios/credits for the group in front of it and for
itself.

0041. The above examples were of a single link group.
This will be typical of most branch policies that will have
root level link group with one or two links (e.g., a link to
headquarters and a link to the Internet). In some examples,
like that shown in FIG. 2, there are policies that can have
nested link groups in a hierarchy (below 114b). As shown in
the above example, the link group 308a was given a frac
tional guarantee in the same way that links are given fraction
guarantee. Within this link group, the central scheduler adds
another GRRR scheduler to manage all of its children. The
schedulers are run independently of each other but ensure
precise service intervals for all items within the overall
scheduler.

0042. The weight groups and DRR algorithms provide
fair bandwidth sharing and fair service latency based on
guarantees. However, it has no concept of rate limiting
which is a requirement, in some implementations, to repre
sent the physical capacity of a link (so as not to exceed its
rate, causing congestion). The rate limiting is done in a
similar manner to class based queuing (CBQ). Each link and
link group object is calculated to have an average time spent
per byte for when it is running at its limit. Using this the
scheduler tracks the next time to send, and an "average idle
time' variable tracks the variance with the actual next time
data is sent. If the next time is past (or not set) then the link
or link group is not rate limited and can send. Otherwise, it
has exceeded its rate and is skipped.

Oct. 18, 2007

0043. Within a selected link, a class scheduler is used to
determine which data packets actually get transmitted over
the link. Packets may be classified based on the application
that generated them, priorities assigned by an application, or
other factors. CBQ is one algorithm for scheduling traffic
based on class. In CBQ. packets are scheduled according to
relative priorities based on the type of data represented. For
example, VoIP data needs low latency, while regular IP
traffic can tolerate reduced latency but may require higher
accuracy. In such an example, VoIP packets would be
scheduled to be transmitted frequently and promptly, but not
in large clusters. This sort of scheduling is greater than order
O(1), meaning that the amount of computation necessary to
operate a scheduler varies linearly with the number of
classes, which may not be manageable for large networks.
0044) Link-based scheduling and class-based scheduling
can be combined as shown in FIG. 4 to achieve benefits of
each without requiring burdensome amounts computation
resources. A link scheduler 402 is used to select which link
to allocate capacity to, but doesn’t actually queue traffic to
be transmitted. Rather, it simply selects which class sched
uler 404a, b (there being one for each link) to take traffic
from. The selected class scheduler 404a or 404b then selects
packets from classes 406a, b and delivers them to the link
scheduler to be transmitted. The link scheduler transmits
packets provided by the class schedulers into the network
410, for example, by sending them to a network interface of
the machine on which the scheduler is operating. This
process may be repeated at each stage of a hierarchical
network like that shown in FIG. 2, or may be done centrally
and communicated to the responsible hardware at each site.
0045. The typical packet filter to determine the class
queue for a packet can be based on many packet attributes
(address, port, type of service, packet flags, etc). However,
mixing these filtering attributes allows filters to overlap so
they are stored and searched in precedence order, which is
O(N). On networks containing hundreds or thousands of
links with many classes per link this is not generally
scalable. The packet filtering shown in 606 of FIG. 6 uses a
route based pre-filtering based on the link subnet definition
to determine the link a packet will use. This pre-filtering can
use routing algorithms like radix tree to allow an O(log(N))
search. A link only has a few classes, so within the link a
normal O(N) precedence search can be done on rules to
select the class a packet within the link should use. The class
and link determination is then cached as part of a flow table,
as disclosed in U.S. Pat. No. 7,010,611, which is incorpo
rated here by reference. So when scheduling future packets
the scheduler can do a quick hash to find flow and the
previous class and link determination. In some cases this
allows O(1) class and link determination.
0046) Another method of regulating network traffic is to
route some traffic through “tunnels.” Tunnels are virtual
connections between endpoints that operate within the actual
network topology and that may provide additional features
not provided by the network topology itself. Two common
types of additional features provided by tunnels are com
pression and encryption. In a compression tunnel, packets
are compressed so that they take up less bandwidth over the
actual link used to transmit them. In an encryption tunnel,
packets are encrypted so that network elements and users not
privy to the encryption tools cannot read or understand
intercepted data. Encryption tends to increase the size of

US 2007/0242675 A1

packets, and consequently the amount of bandwidth needed
to transmit them. In both cases, packets are typically recon
figured (compressed or encrypted) for the tunnel at a stage
prior to transmission, producing new packets which are then
transmitted, and the process is reversed at the receiving end.
In some examples, compression and encryption can be
combined in a single tunnel. Both compression and encryp
tion tunnels can complicate network management, since
schedulers like those described above may be unable to
determine the actual Volume of data being transmitted or
what class packets belong to. This may lead to inequitable
scheduling, for example treating a particular link as if it had
exceeded its share of bandwidth, when in fact all its traffic
had been compressed after it was scheduled. In the alterna
tive, a scheduler located downstream from the tunnel can
take into account actual bandwidth used, but packets are
obscured by the tunnel and accounting can’t be based on the
original classes of the packets.
0047. To address these limitations, the combined sched
uler discussed above may be combined with a feedback
loop, as shown in FIG. 5. Class schedulers sort incoming
packets according to both their classification and whether
they should go through a tunnel. Packets going through the
tunnel are marked as such but they are still scheduled
according to their classification. When selected by the class
scheduler, they are placed in a queue 502a, b of packets
destined for the tunnel. The tunnel processor 506a, b extracts
packets from the queues 502a, b. This may include a series
of packets based on minimum response time, maximum
buffer, or other responsiveness controls. The queued packets
are modified by the tunnel processor 506a, b, as appropriate
to the type of tunnel, for example, they are compressed or
encrypted, generating tunnel packets ready to be transmitted.
By queuing packets and processing them together rather
than compressing or encrypting them one at a time as they
come through, greater compression efficiencies can be real
ized. This also avoids wasting bandwidth or CPU time when
tunnel demands exceed capacity, and the resulting conges
tion can be managed by the schedulers. In other cases the
tunnel processing may be performed on per-packet invoca
tions without queues 502a, b and 508a, b and are then
immediately transmitted onto the network 410.
0.048. The compression ratio (or equivalently, a data
expansion ratio) or other measure of tunnel performance that
was achieved by the tunnel processes 506a, b is fed back to
the class schedulers 404a, b, so they can determine an
estimate of the bandwidth that will actually be used by the
packets of each class, despite the fact that the original class
of the packets may not be recognized when they are ulti
mately transmitted. The tunnel packets carrying the origi
nally sent data packets are then returned to the beginning of
the process, where they are identified as having already been
processed for the tunnel. These packets then skip the class
scheduler, since the original packets which make up the
tunnel packets were already handled by that scheduler, and
go directly to a queue 508a, b for the outgoing link sched
uler. When the link scheduler next selects that link for
transmission, it transmits both those packets in the post
tunnel queue 508a, b, and those provided to it by the class
scheduler 404a, b. Links are scheduled based on the actual
bandwidth they use, after compression or encryption of their
tunnel packets, rather than on the amount of bandwidth they
appeared to need before the packets were processed for the
tunnel. Classes, meanwhile, are scheduled based on both the

Oct. 18, 2007

actual amount of raw data belonging to the class and the
actual amount of post-tunnel-processing data that was trans
mitted.

0049 Since tunnel packets are processed a second time
by the link scheduler, it can treat them as their own queue,
and by allocating a particular share of the corresponding
links bandwidth, the maximum bandwidth used by the
tunnel can be controlled. Both the amount of data going into
the tunnel and the amount of data actually used by the tunnel
can be monitored and regulated. This process also allows
classes to be set up prior to the tunnel and yet for the
compression to be taken into account when scheduling
particular classes. This may allow a class to exceed its
allocated link bandwidth. For example, if a class is allocated
a bandwidth of 1 Mb/s, but it put through a tunnel with a
compression ratio of 2x, the class can be allowed to transmit
2 Mb/s without exceeding its allocation.

0050. When the transmitted packets reach their destina
tion, tunnel packets are processed to extract the original
packets from which they were composed. These packets are
then sent along to their ultimate destination, which may
include processing through another set of Schedulers and
transmission over yet another uplink to another tier of the
network.

0051 Components of the schedulers can be reused for
both pre-tunnel and post-tunnel packets, as shown in FIG. 6.
As packets enter the scheduling process, a flow classifier 602
classifies the packets and attaches a description of the packet
including a reference to which flow (link, class, etc.) it was
a part of. Both original packets and packets that have been
through the tunnel processing once already go through the
same flow classifier. The flow classifier and filtering deter
mines whether a particular incoming packet should be
routed through the tunnel, and includes that in its descrip
tion. The fact that a packet has already been processed for
the tunnel is another of the factors that goes into the
classification and description of the packet. As packets move
on to the next stage, they retain a reference to the flow they
are a part of. Original packets are shown going through one
pathway 604a and tunnel packets through another pathway
604b, though this distinction is merely for purposes of
illustration. In a filtering stage 606, packets are filtered
according to their routes, classes, and whether they are to be
excluded from the tunnel. Packets may be excluded from the
tunnel because of the nature of the data or the priority of the
application generating them, or because they have already
been processed for the tunnel. For example, low-latency
packets for VoIP may not be routed through a compression
tunnel, because the time taken to compress the packets and
route the tunnel packets back through the schedulers would
violate the latency requirements of that class of data. Filtered
packets retain their class identification as they pass on to the
neXt Stage.

0052 Filtered packets next pass through a transforming
stage 608 where additional actions may be performed, such
as redirecting/hijacking packets to other processes, caching,
rate-shaping, TOS (type of service) setting, imposing ses
sion limits, etc. This stage intercepts packets that have
already been processed for the tunnel and directs them to the
link scheduler, bypassing the class scheduler. New packets
are queued in class queues 610 to be processed by the class
scheduler 612. The class scheduler 612 then directs packets

US 2007/0242675 A1

destined for the tunnel to a tunnel queue 502. The tunnel
process 620 will later extract these packets. Directing pack
ets to the tunnel queue does not use the outbound link, so
while the tunnel process is taking packets from the tunnel
queue 502, the link scheduler takes packets from the post
tunnel queue 508 and requests packets from the class
scheduler 612 for the selected link (path 614). Once it has
sent the appropriate number of packets on to the outbound
link, the link scheduler 616 moves on to the next link
according to the scheduling algorithm. The link scheduler
616 may take into account whether a packet is a tunnel
packet or a regular packet in selecting a packet to transmit
on the network. For example, the link scheduler may be
configured to interleave tunnel and non-tunnel packets to
limit congestion within the network for each link being
traversed. The scheduler can prevent a run of packets on an
individual link from overwhelming that link.

0053 Packets for the tunnel are queued as discussed
above, processed by tunnel processor 620, and returned to a
network process 622, for example, a TCP/IP, UDP, IP-TUN,
IP-SEC, or SNP process, as if they were new packets to be
transmitted. The network process 622 sends the packets to
the flow classifier 602. Since a single set of components can
be used for both new and tunnel-processed packets, the
feedback loop may be maintained without adding additional
components. The class scheduler 612 tracks the amount of
traffic for each class that it has directed to the tunnel, and
receives feedback from the link scheduler 616 on how much
bandwidth the tunnel packets actually used. This informa
tion is used by the class scheduler 612 to accurately account
for the amount of bandwidth used by each class. Traffic can
be managed based on the real classification of all packets,
but each class accounted for based on the actual amount of
data transmitted, including the tunnel savings.
0054) This system has the advantage of a packet sched
uler running prior to the tunnel so that it is allowed to
manage traffic in classes before they are obscured, i.e.,
encrypted, or aggregated, i.e., compressed. For example, all
database traffic can be scheduled at 10 Mb/s, and because of
the compression tunnel, the total throughput can be up to 15
Mb/s, if either all traffic is compressed at a ratio of 1.5x or
half the traffic is compressed at 2x. By sharing traffic
management mechanisms, monitoring can be performed to
show the relationship of pre-compression traffic usage and
post-compression usage.

0055. This system also has the advantage that if a tunnel
was not established when network connections were initi
ated, or fails once established, packets destined for the
tunnel can simply be transmitted like any other packet, and
the class scheduler can schedule packets from each class
according to the full amount of bandwidth used by each
class.

0056. In some examples, processing packets for inclusion
in the tunnel includes the process shown in FIG. 7. Packets
identified for the tunnel are essentially hijacked out of their
intended data pathway and routed into a tunnel process 702.
When packets enter the tunnel process 702, they have a
header which includes network routing information, such as
the MAC (media access control) address of the next device
704 in the network that was expected to process the packet.
Since the packet will be combined with others into a tunnel
packet, and unpacked farther along the network to continue

Oct. 18, 2007

to its final destination, Some of that routing information, e.g.,
the MAC address, has become moot and is removed from
the original packet before the packet is processed and
incorporated into a tunnel packet. A header is added to the
tunnel packet, which directs the tunnel packet along the
network and may be the same as the header that was
removed from each of the constituent packets. At the receiv
ing end 706 of the outbound link, a complementary process
708 to the outgoing tunnel process 702 unpacks the tunnel
packets (for example, decompressing or decrypting them)
and restores the original packets. At that point, the process
returns the packets to the network kernel, which looks up
new routing information, including the MAC address of the
next machine each packet should be sent to, and uses that to
create a new header. The packet is then sent on its way.
0057. In some examples, tunnels are defined when the
network is first initialized, and information about them is
used in the above processes. A definition file is created
which identifies all routes through the network, that is, all
the pairs of machines that can transfer data between each
other. This includes an identification of which pairs of
machines should serve as endpoints of tunnels, for example,
by compressing and decompressing some or all of the
packets that travel between them, and the attributes of those
tunnels. This definition file is communicated to all of the
machines participating in routing traffic over the network.
Each machine takes from this file the information that is
relevant to it, such as identification of other machines to
which it can create tunnels. The machine then sets up the
tunnels expected of it, for example, by configuring the
components necessary to process packets sent to the tunnel
by the link scheduler in the processes described above. A
centralized provisioning server can be provided to define all
of the tunnels for a network and generate the definition file.
0058. The techniques described herein can be imple
mented in digital electronic circuitry, or in computer hard
ware, firmware, software, or in combinations of them. The
techniques can be implemented as a computer program
product, i.e., a computer program tangibly embodied in an
information carrier, e.g., in a machine-readable storage
device or in a propagated signal, for execution by, or to
control the operation of data processing apparatus, e.g., a
programmable processor, a computer, or multiple comput
ers. A computer program can be written in any form of
programming language, including compiled or interpreted
languages, and it can be deployed in any form, including as
a stand-alone program or as a module, component, Subrou
tine, or other unit Suitable for use in a computing environ
ment. A computer program can be deployed to be executed
on one computer or on multiple computers at one site or
distributed across multiple sites and interconnected by a
communication network.

0059 Method steps of the techniques described herein
can be performed by one or more programmable processors
executing a computer program to perform functions of the
invention by operating on input data and generating output.
Method steps can also be performed by, and apparatus of the
invention can be implemented as, special purpose logic
circuitry, e.g., an FPGA (field programmable gate array) or
an ASIC (application-specific integrated circuit). Modules
can refer to portions of the computer program and/or the
processor/special circuitry that implements that functional
ity.

US 2007/0242675 A1

0060 Processors suitable for the execution of a computer
program include, by way of example, both general and
special purpose microprocessors, and any one or more
processors of any kind of digital computer. Generally, a
processor will receive instructions and data from a read-only
memory or a random access memory or both. The essential
elements of a computer are a processor for executing
instructions and one or more memory devices for storing
instructions and data. Generally, a computer will also
include, or be operatively coupled to receive data from or
transfer data to, or both, one or more mass storage devices
for storing data, e.g., magnetic, magneto-optical disks, or
optical disks. Information carriers Suitable for embodying
computer program instructions and data include all forms of
non-volatile memory, including by way of example semi
conductor memory devices, e.g., EPROM, EEPROM, and
flash memory devices; magnetic disks, e.g., internal hard
disks or removable disks; magneto-optical disks; and CD
ROM and DVD-ROM disks. The processor and the memory
can be supplemented by, or incorporated in special purpose
logic circuitry.

0061. A number of embodiments of the invention have
been described. Nevertheless, it will be understood that
various modifications may be made without departing from
the spirit and scope of the invention. For example, other
network topologies may be used. Accordingly, other
embodiments are within the scope of the following claims.

What is claimed is:
1. A method of scheduling data traffic comprising

(a) in a first scheduler, selecting a source of traffic from a
plurality of Sources of traffic, each Source being asso
ciated with a second scheduler,

(b) in a second scheduler associated with the selected
Source of traffic, selecting a type of traffic from a
plurality of types of traffic within the source selected by
the first scheduler, and

(c) transmitting data of the selected type and Source.
2. The method of claim 1 also comprising repeating steps

(a)-(c).
3. The method of claim 1 in which the traffic is traffic for

passing over a communications link.
4. The method of claim 3 in which the selecting comprises

scheduling the selection of Sources and types according to
characteristics of the communications link.

5. The method of claim 1 in which selecting a source of
traffic comprises selecting a source from which packets
should be delivered according to a rule.

6. The method of claim 5 in which delivering packets
according to the rule comprises one or more of

guaranteeing a minimum bandwidth for a source of the
plurality of Sources,

guaranteeing a maximum burst limit for a source of the
plurality of Sources, and

guaranteeing a service interval to a source of the plurality
of Sources.

7. The method of claim 1 in which choosing a source of
traffic comprises allowing a user to configure a preemptive
priority for a type of traffic.

Oct. 18, 2007

8. The method of claim 1 also comprising in the first
scheduler, accounting for bandwidth used by each Source of
traffic.

9. The method of claim 1 in which selecting a type of
traffic comprises

selecting a type from which packets should be delivered
according to a rule.

10. The method of claim 9 in which delivering packets
according to the rule comprises one or more of

guaranteeing a minimum bandwidth to a type, within an
amount of bandwidth allocated by the first scheduler,

guaranteeing a maximum burst limit to a type, within a
burst limit allocated by the first scheduler, and

guaranteeing a service interval to a type.
11. The method of claim 1 in which the types of traffic

comprise overlapping classifications of traffic.
12. The method of claim 1 also comprising, before the

selecting, filtering the traffic based on routes the traffic will
SC.

13. The method of claim 12 in which the filtering com
prises applying a radix tree algorithm.

14. The method of claim 1 also comprising
determining that a packet from the selected type is to be

transmitted through a tunnel, and
in which selecting a type includes charging the type for

bandwidth usage based on an average efficiency of the
tunnel.

15. A method of scheduling data traffic comprising
selecting a type of traffic, and
determining that a packet from the selected type is to be

transmitted through a tunnel,
in which selecting the type includes charging the type for

bandwidth usage based on an average efficiency of the
tunnel.

16. The method of claim 15 also comprising adding the
selected packet to a queue for the tunnel.

17. The method of claim 16 also comprising extracting a
packet from the queue for the tunnel based on one or more
of

efficiency of the tunnel,
responsiveness of the tunnel,

a maximum delay of the tunnel, and
a minimum buffer of the tunnel.
18. The method of claim 15 also comprising
compressing packets in the queue for the tunnel,
updating an average compression ratio of the tunnel, and
transmitting the compressed packets according to a sched

uler that selects sources of traffic from a plurality of
sources of traffic.

19. The method of claim 15 also comprising
encrypting packets in the queue for the tunnel,
updating an average expansion ratio of the encryption,

and

US 2007/0242675 A1

transmitting the encrypted packets according to a sched
uler that selects sources of traffic from a plurality of
sources of traffic.

20. The method of claim 1 in which selecting a type
comprises

using a class-based queuing algorithm.
21. A method of scheduling data traffic comprising

Selecting a source of traffic from a plurality of Sources of
traffic using a group ratio round robin scheduling
algorithm.

22. The method of claim 21 in which using a group ratio
round robin Scheduling algorithm comprises

defining an ordered set of groups of Sources of traffic
having similar weights,

computing ratios between total weights of the groups,
repeatedly,

choosing one of the groups,
within the chosen group, using a second algorithm to

choose a source of traffic,

transmitting an amount of traffic from the chosen
SOUC.

23. The method of claim 22 in which the second algorithm
is a deficit round robin Scheduling algorithm.

24. The method of claim 22 also comprising
computing a deficit credit and quantum credit for each

group based on the ratios, and
after the transmitting, updating a deficit counter and a
quantum counter for the chosen group based on the
amount of traffic transmitted and the credits.

25. The method of claim 22 in which choosing one of the
groups comprises

if the deficit counter and the quantum counter of the
last-chosen group are above Zero, choosing the last
chosen group,

if the deficit counter of the last-chosen group is at or
below zero, adding the deficit credit to the deficit
counter, adding a quantum credit to the quantum
counter, and choosing the next group of the ordered set
of groups, and

if the deficit counter of the last-chosen group is above Zero
and the quantum counter is at or below zero, adding a
quantum credit to the quantum counter for that group,
and choosing the first group in the ordered set of
groups.

26. A computer-readable medium comprising instructions
to repeatedly cause

a first scheduler to select a source of traffic from a
plurality of Sources of traffic, each Source being asso
ciated with a second scheduler,

a second scheduler associated with the selected source of
traffic to select a type of traffic from a plurality of types
of traffic within traffic from the source selected by the
first scheduler, and

data of the selected type and source to be transmitted.

Oct. 18, 2007

27. A device for scheduling data traffic comprising
a first scheduler configured to select a source of traffic

from a plurality of Sources of traffic, each Source being
associated with a second scheduler, and

a second scheduler, associated with the selected Source of
traffic, configured to select a type of traffic from a
plurality of types of traffic within traffic from the source
selected by the first scheduler.

28. A method comprising
determining an amount of bandwidth to be used by a

compression tunnel,
determining a pre-compression bandwidth limit for a type

of traffic,
determining a post-compression bandwidth limit for the

tunnel,
compressing data, including data from the type,
determining a compression ratio,
based on the compression ratio,

determining an amount of pre-compression bandwidth
used by the tunnel, and

determining an amount of post-compression bandwidth
used by the tunnel, and

communicating the determined amounts to a scheduling
process for the type.

29. The method of claim 28 also comprising
for each of a plurality of types of traffic, guaranteeing an

amount of bandwidth, determination of the guaranteed
amount being based on the compression ratio.

30. The method of claim 28 also comprising scheduling
types to use the tunnel based on the compression ratio and
the determined amounts.

31. A computer-readable medium comprising instructions
to cause a device to

determine an amount of bandwidth to be used by a
compression tunnel,

determine a pre-compression bandwidth limit for a type of
traffic,

determine a post-compression bandwidth limit for the
tunnel,

compress data, including data from the type,
determining a compression ratio,
based on the compression ratio,

determine an amount of pre-compression bandwidth
used by the tunnel, and

determine an amount of post-compression bandwidth
used by the tunnel, and communicate the determined
amounts to a scheduling process for the type.

32. A device for scheduling data traffic configured to

determine an amount of bandwidth to be used by a
compression tunnel,

determine a pre-compression bandwidth limit for a type of
traffic,

US 2007/0242675 A1

determine a post-compression bandwidth limit for the
tunnel,

compress data, including data from the type,
determining a compression ratio,
based on the compression ratio,

determine an amount of pre-compression bandwidth
used by the tunnel, and

determine an amount of post-compression bandwidth
used by the tunnel, and communicate the determined
amounts to a scheduling process for the type.

33. A method comprising
for a plurality of endpoints of routes through a network,

identifying pairs of endpoints that can Support tunnels
to each other,

recording in a definition file identifications of the identi
fied pairs of endpoints, and

at each endpoint,
receiving the definition file,
reading from the definition file the identifications of

other endpoints that the endpoint is paired with, and
creating a tunnel to each paired endpoint.

34. The method of claim 33 in which the identifying and
recording is performed by a centralized server.

35. A computer-readable medium comprising instructions
to cause a device to

for a plurality of endpoints of routes through a network,
identify pairs of endpoints that can Support tunnels to
each other,

record in a definition file identifications of the identified
pairs of endpoints, and

at each endpoint,
receive the definition file,
read from the definition file the identifications of other

endpoints that the endpoint is paired with, and
create a tunnel to each paired endpoint.

36. A device configured to
for a plurality of endpoints of routes through a network,

identify pairs of endpoints that can Support tunnels to
each other,

record in a definition file identifications of the identified
pairs of endpoints, and

at each endpoint,
receive the definition file,
read from the definition file the identifications of other

endpoints that the endpoint is paired with, and
create a tunnel to each paired endpoint.

37. A method comprising
receiving data packets to be transmitted,
for each packet,

identifying a class and a link,
determining whether the packet should be transmitted

using a tunnel, and

Oct. 18, 2007

adding the packet to a queue of packets having the same
class as the packet, selecting a class of packets,

adding packets from the selected class which are to be
transmitted using the tunnel to a queue for the tunnel,

adapting the packets in the queue for the tunnel, produc
ing adapted packets

adding adapted packets to a queue of packets to be
transmitted on the link identified for the packets,

selecting a link, and
transmitting packets from the queue for that link.
38. The method of claim 37 in which adapting the packets

comprises compressing the packets.
39. The method of claim 37 in which adapting the packets

comprises encrypting the packets.
40. The method of claim 37 in which adapting the packets

comprises encrypting and compressing the packets.
41. The method of claim 37 in which selecting a class of

packets comprises

determining, for each class of packets,
a number of bytes that have been compressed,
a number of compressed bytes that have been trans

mitted, and
a compression ratio, and

Selecting a class based on the compression ratio and the
number of compressed bytes that have been transmitted
for each class.

42. The method of claim 37 in which adapting the packets
for the tunnel comprises, for each packet,

removing a network header from the packet,
performing an operation on the packet to create an

adapted packet, and
adding a network header corresponding to a destination to

the adapted packet,
the method also comprising

receiving transmitted packets at the destination, and
for each packet that was transmitted using the tunnel,

performing an inverse of the operation on the packet,
adding a second network header to the packet, and
transmitting the packet according to the second net
work header.

43. A computer-readable medium comprising instructions
to cause a device to

receive data packets to be transmitted,
for each packet,

identify a class and a link,
determine whether the packet should be transmitted

using a tunnel, and
add the packet to a queue of packets having the same

class as the packet, select a class of packets,
add packets from the selected class which are to be

transmitted using the tunnel to a queue for the tunnel,

US 2007/0242675 A1

adapt the packets in the queue for the tunnel, producing
adapted packets

add adapted packets to a queue of packets to be trans
mitted on the link identified for the packets,

Select a link, and
transmit packets from the queue for that link.
44. A device configured to
receive data packets to be transmitted,
for each packet,

identify a class and a link,
determine whether the packet should be transmitted

using a tunnel, and

11
Oct. 18, 2007

add the packet to a queue of packets having the same
class as the packet, select a class of packets,

add packets from the selected class which are to be
transmitted using the tunnel to a queue for the tunnel,

adapt the packets in the queue for the tunnel, producing
adapted packets

add adapted packets to a queue of packets to be trans
mitted on the link identified for the packets,

select a link, and

transmit packets from the queue for that link.

k k k k k

