USOORE49089E

as United States

a2 Reissued Patent
Mowshowitz

(10) Patent Number:
45) Date of Reissued Patent:

US RE49,089 E
May 31, 2022

(54)

(71)
(72)

SECURITY FOR WAP SERVERS
Applicant: F5 Networks, Inc., Seattle, WA (US)
Inventor: David Mowshowitz, Tel Aviv (IL)
(73)
2]

(22)

Assignee: F5 Networks, Inc., Seattle, WA (US)

Appl. No.: 16/785,195

Filed: Feb. 7, 2020

Related U.S. Patent Documents
Reissue of:
(64) Patent No.:
Issued:
Appl. No.:
Filed:

U.S. Applications:
(60) Division of application No. 15/482,681, filed on Apr.
7, 2017, now Pat. No. Re. 48,382, which is an

9,003,509
Apr. 7, 2015
12/332,267
Dec. 10, 2008

(Continued)
(51) Imt.CL
GO6F 7/04 (2006.01)
GO6F 21/31 (2013.01)
HO4L 9/40 (2022.01)
(52) US. CL
CPC GO6F 21/31 (2013.01); HO4L 63/1408

(2013.01); HO4L 63/1433 (2013.01); HO4L
63/04 (2013.01)

FOREIGN PATENT DOCUMENTS

WO WO00239286 *5/2002

OTHER PUBLICATIONS

Bilal Siddiqui, “Deploying Web services with WSDL: Part 17, Nov.
2001.

(Continued)

Primary Examiner — Matthew E Heneghan
(74) Attorney, Agent, or Firm — John W. Branch; Branch
Partners PLLC

(57) ABSTRACT

A method and system for improving the security and control
of internet/network web application processes, such as web
applications. The invention enables validation of requests
from web clients before the request reaches a web applica-
tion server. Incoming web client requests are compared to an
application model that may include an allowed navigation
path within an underlying web application. Requests incon-
sistent with the application model are blocked before reach-
ing the application server. The invention may also verify that
application state data sent to application servers has not been

the invention

(58) Field of Classification Search inappropriately modified. Furthermore,
CPC . HO04L 63/04; HO4L 63/1408; HO4L 63/1433; enables application models to be automatically generated by
GO6F 21/31 employing, for example, a web crawler to probe target
(Continued) applications. Once a preliminary application model is gen-
(56) References Cited erated it can be operated in a training mode. An adminis-
trator may tune the application model by adding a request
U.S. PATENT DOCUMENTS that was incorrectly marked as non-compliant to the appli-
5,867,495 A * 2/1999 Elliott et al.cc.co.. 370350 cation model.
5,930,792 A 7/1999 Polcyn
(Continued) 16 Claims, 14 Drawing Sheets
" -
-
Web Client gﬁ)
) -
A s,)
(ﬁ Area Network,

2

S

Seawerity Seroer

4

i

" 118
reed

Web Application Servsr

US RE49,089 E
Page 2

Related U.S. Application Data

application for the reissue of Pat. No. 9,003,509,
which is a continuation of application No. 10/915,
951, filed on Aug. 11, 2004, now Pat. No. 7,472,413.

(60) Provisional application No. 60/493,790, filed on Aug.
11, 2003.

(58) Field of Classification Search
USPC vieviecict e 713/156; 726/10
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,996,011 A * 11/1999 Humesccccovviene. 709/225
6,006,264 A * 12/1999 Colbycccoovvnn. HO4L 29/06
709/220

6,098,093 A 8/2000 Bayeh et al.

6,182,142 B1* 12001 Win et al. ... 709/229

6,311,278 B1 10/2001 Raanan et al.

6,360,254 B1* 3/2002 Linden etal. 709/219

7,146,422 B1 12/2006 Marlatt et al.

7,322,040 B1* 12008 Olsonet al.cccoooevnne. 726/8
2001/0039587 Al* 11/2001 Uhler et al. 709/229
2002/0023090 Al 2/2002 McGeachie
2002/0069366 Al* 6/2002 Schoettger 713/201
2003/0069975 Al* 42003 Abjanic HO4L 67/2823

709/227

2003/0126558 Al
2003/0229780 Al
2005/0050010 Al*
2008/0115200 Al1*

7/2003 Griffin

12/2003 Reamer
3/2005 Lindencccooevvvierieninnn 707/3
5/2008 Olson et al.ccoovvvrenen 726/6

OTHER PUBLICATIONS

Bilal Siddiqui, “Deploying Web services with WSDL, Part 2:
Simple Object Access Protocol (SOAP)”, Mar. 2002.

* cited by examiner

U.S. Patent May 31, 2022 Sheet 1 of 14 US RE49,089 E

| 104
98 £TYED

2

N
AN
’Q | b
LTINS 'ﬁ‘ f,___AE,;;\ z{}&

-

NN LS s
P Rl W s 4 ¥
Web Client Moune }“ e
L Nang
AT
I""\
i
&

SRl | Wide Aven
5 NetwworkdZoca!

$ Area Network 4
N 3
N j
- ;
‘\‘ ;M“I
~ -, "}:\ e
N \)\V ./,-' s

\,__, ‘_,?‘\ ; {}g
frvp)

it
Security Server
F 3

System Overpiews e
frye)

. o
= fossoegiel]
i ST

i

Web Applivation Servey

FIG. 1

U.S. Patent May 31, 2022 Sheet 2 of 14 US RE49,089 E

wait ' S
: 208 L R

Memory
(peraling) s j{iq
"] -
system
ey R !,r“'
sk defve o £
N 2IR Nefgoork
Welr qpplicalion | 7777 interface
Secserity Sysiom it
&

b
o

Frograms R

ROM

¥ -f"'fm\,

perrat TN
5

AT - T e
EEUONG Wide Aren \
s

7 : .
\ NetwoerkLocal /

Gl

¢ Area Nebwerk S
. p

FIG. 2 O
. A

pemh

i

U.S. Patent

May 31, 2022

Sheet 3 of 14

N
=y
008 1

grnsbeo ¢
e o P - i
A’ 3 o 7
¥ remannians - K
- » 4
esemoneen 2 7 '3
.
A § E 3
3 — . &
e o &
3 M e ¢
. i - i
i . #
- J’
’ i
H ¢

~,‘w‘w.w----uu«-.\,. .

i\ o

;:% {3 S o

£y { o 4
328 { Wide Area }
X NetworkLocnl I

sl Al TN
£ Aves Network &/-\"“"’ 302
: " 38
\ 4
— P
\ »

Web Orazwler

. 36
; \“ f‘

T Y Modet

3
. - E
Storage f

s

FIG.

Muodel Generwdor

-3

Model Generation
vig Web Crazvler

US RE49,089 E

U.S. Patent

May 31, 2022

Sheet 4 of 14

US RE49,089 E

404

we | Hser foe Smith |
ST N Balauces
go8 Savings Avcoant Hx XJSTAR %1,000.00
S D\Checkin Accownt 1D: £]8123 £ 0.00 410

Transfer Amouni:

402 \

[OOSR -l taae]
W | Subait

414 FIG. 4A

i

B8 e e e e e e o e

¥ sform methods' post’ action='transfer bml' />
4 <nput type~’hidden’ names'state’ values"Gx12ek87y" /> t
t <mpu§: types “hidden” name= weeri D value=" 1818 /> f
gig< | <inputtypeshidden name="sav Acotily valu EN’i 23 ,,':> 1
t <input type=hidden’ name="thkAcetily values’ 3‘%13:3 FES
[g «mgmt type=text namestnidmount value="T0040 /> !
!
% <§r1§:s zt h§3£3 ‘subait! name “!{"Bizt‘fﬁ‘t \«aibic ‘*«ubrmt ‘
43{3 & T2
FIG. 4B
432
.

oo g ot o e e e o e . o

424 ; , oo

éii TP POST “hidp ;f\www ab;ﬁ;‘ik mmf&rama?w himl® |

Faes i

& state="x12sk87y }

L userID=ISTIOY §

g6 4 1savAcciD=X]123 g

L chkAcetID="21R12¥

| o Anseunt="100.00/

A

HTITE FORM
REQUEST

FIG. 4C

U.S. Patent

May 31, 2022 Sheet 5 of 14 US RE49,089 E

§ . 502
.m:...ﬁ”mwf' \\\w & 3
{w e
- |
Web Client

&
R 504
g™ S _

S NN
S Wide dArea i ~
“"“i‘

Neqwork/Logal |
Area Network S

o s

g

{

.
.

=

.
) P

: -~
- . RU8
. V s) it A\\A._...-”/

" Externnd Gulotvay
,é’:, o~
{ & # 5318
X i : N
A ¥ i

7

Application
Model

Nowe-
covapligd

s
N
; o 8
. e
P mi
H
}

Adminstraior

Training
Mode

Request [

A

o
v

N

Paternal Galeway

X
H
H
A\
7

U.S. Patent May 31, 2022 Sheet 6 of 14 US RE49,089 E

600, S) |

Web Cliewt

1

T

YN e
ol N
{0 Wide Areg
\ NetworkLocal ¢
Area Network

,ﬁ_
7

X
% ‘_M"j
S 605

N
E &)
o
3
%

Exterual Galeway

&
i ¥
ol Now» ¥ | 10
%, e ‘/ . .
Nt Ty compliant N
Application

Reguest ;
: Model

Luens

618 1 ™
G S

=T Application e
State e sesreesnee

\:\,.,_,,w_‘ - I a i

Tnternal Gateway B

4

Security
Mode

fl6

N

}
}
}
}
A
00 T
? gm [regies)
e "} ; S
4 2
. E) {

Web Application Server

U.S. Patent

708

710

\‘-x"‘u

]
ok
-~ [3

,v\a’/l

714

o ™~
o .‘,. SNSRI X iy
X Ay Meore,

May 31, 2022

“Web Crawlermakes

"k Record HITE

T
{ Staer }
RS

Sheet 7 of 14

HITPEREQUEST v
Web Applivation

2

¥

REQUEST
properties

Fowroeard HYTP
REQUEST ¢ Wab

L AppHcalion Server

¥

Sevperssvule HITPR

Web Applivation

RESPONSE

¥
. Model Ganeraior
exanines and vecords
propertiss of HITP

RESPONSE

¥

TN Formard Web

Application Sarper

P TP RESPONSE to

Wb Craweley

%
o \‘\'

g

S Pages? M.x"

, Ve
\\J j{,

f__.“«-«»vu,u S

- ‘ N
{ Retwrn
\m &

Yes

P

US RE49,089 E

liminagry Model

Generation using

Web Craeler

U.S. Patent May 31, 2022 Sheet 8 of 14 US RE49,089 E

T . e

p
{ Stasrt /} FNL

Y Wel Client seveds
HYTE REQUEST to
Web Application

- ¥
Tntereept HYTP
REQUEST with

External Gateony

3 Esaploy Seorily
Systom foAnalyse
the reguest and
816 HITP fields §28

kY t"...
\\W‘ i‘ ‘5\
TN . y o N
} v \ >
-

Stove vepord of moe- .
SR Ay rrmepeern™e Ve Forgnpd REQUEST
compliant REQUEST | Ne 5{5&&.&3&?\3% N 3(”
_ oo - el fyp Welt AppHoation |

for Infer analysis by o, compliand? Seroes i
\ o s - SErUEY s
Adninstrator - ! :

e v
H
{o
. e
el i‘ag
¥ 3 PO, 3
=

. AR S RN “_l e N 3 i S o B
Forgpand REGUEST Web Application Serverdsgues

o e i 833 . g g v
Lo Wel Application 7~/ ‘ REQPGNSE for Wel Ulient
Hereer '

B4 .
o B ® ek CARTTY
e PMntercept RESPONSE and
record applivation Siate

Web Application Server] 814
ssnes RESPONSE fo 7] N\
Web Olend

18 RI6 Forgard RESPONSE
F Ao N fo Web Clan
wovd RESPONSE

froms o fhe Model

Inforceptand
V foy lpferaddy

Forvard RESPONSE \,«
fo Web (Hent

FIG. 8

Training Mode Web
Client Reguest

U.S. Patent May 31, 2022 Sheet 9 of 14 US RE49,089 E

i o .

p .
{ Sfart \j LA
)

o Web Chient serds
HETP REQUEST o
Web Application
Serper
+

04 .
N Nipfercept REQUEST

ueith Externnd
Gatereay

U 1
X AR ¥ NP
= Bnploy Security
System fo Annlyze
N the REQUEST and
i HYTP fields 414
4 - e i

) I

A SN H)

Y ; ’< .r""’“. \', 5 e ‘\, gy g e

Storevecord of now- | Ny T o yes | Forward REQUEST

copmplinnt e N -# fo Web Application

“gomptianils o

REQUIESTY N Sevuey

S—— ALy
S48

¥ 916 Web Application
N ek

Block Web Client | Servevsemds
REQUEST and send RESPONSE to Web

Statss Code Client

K

;
S,

&
Q%‘g e Intercept
=T RESPONSE and
recovd applicgtion
Sfate

Securify
Mode Web 9283
{js g S s TR Fareard

A8 RESPONSE {0 Web

Reguest Cliesst

V (“ g e Fo,
FIG, RN

! &
L1 k)

U.S. Patent

il

May 31, 2022

o FETECTDE HOH-
&Y

Sheet 10 of 14

e .

o - \‘
{ St j

e

Administator

pompliant
REQUEST gud
RESPONSE

08¢
a7

\a.vl‘x‘

Examine REQUESRT

and RESPONSE v

detersine if Model
reguires updaiing

1008
{

Fonsimirinna,

N

DHscard
REQUESY
RESPUNSE

oy

/ N g
S o . I} Qg

_ No ~Add o
@_m“‘u-,-.‘-,..n,..

l 1006

AN
o o
S Model? s
EONN
N
v

‘
‘
R oS
i Yew
‘

}
!
k-

igig
N

-+ Update Model to

reffect REQUESTY
RESPONSE pair

FIG. 10

W SN
WS Conttmue

|

.-"/ K
K
Yoz

2,

Oreniening e
N

US RE49,089 E

1000

N Tuning Process

No |
AN
b
b

b
b
§

{“‘;ﬂ"m‘“ - “\,\‘»\
mwxg\ Hetam p

[

Flow

U.S. Patent May 31, 2022 Sheet 11 of 14 US RE49,089 E

1186

T

- - NI S
pravc e v it 3
) — hotoseced s S S
1164 = == == =1
o frow b oo = i
\\\”" a RS 4 §
i
J

%

~ Persaitted Antecedent Pages

1182

TR
Current Page

1106

kY

Vd
X

HiliIIx

:

H

Heeansoccaiaon,

Perniitted Subsequent
Pages

‘ﬁ.

FIG. 11

U.S. Patent May 31, 2022 Sheet 12 of 14 US RE49,089 E

1206

BN o)

- S - 3204
1 | Encrypted Web dpplication State & ¢

Identification Token Irformation

o

g b
s

135 SIA BT HdaW N P
[o ghlkAcotii= 5
- xAmount={}, money |

useri=
2aGEIIKEIW it s -

i»}\g i} (\‘Zi\xﬁ&u(‘tif ,.b“% T
e tordmoune={}, money
e | ;

Web Application
State Table

FIG. 12

U.S. Patent May 31, 2022 Sheet 13 of 14 US RE49,089 E

1302
¢+ Regefve BN

N Request

k ‘ . 3364
Smt'zmiw ‘?‘wsiw@ irziwf‘é;;is*’ N

.....

Ra{g iiif S f{

Use application smodel to
perily thatl veferving pageis
& permifted antecedent page

A 13e8

“ "»,-“' \\ e 0
Nf} e ‘\Q*’
i’a‘ws:ri‘e P
\\\ L o
\\,\ ,.»""

13ig . 3312

; . S
by ¥ Retrivos reeovded page state §
; ustng encrypled shate
Revord nov-compliant Ui “;:3 o
: identification foken

HITP REQUEST and
block transachon and |
send Status Oode

Cowpare recorded page stale
R mwmmg g{‘ 2o shate

PO —

1316
{\m‘ __,*r‘ L \j
e iamg@?;;m .f‘

‘}'i &

Fosmard HTTP REQUEST {J
tn Web Application Server

Test Incoming
Reguest

FIG. 13

U.S. Patent

May 31, 2022 Sheet 14 of 14 US RE49,089 E

¢ Rex z@e%?\a Nﬁ“‘

\ 1’&;;&{5 fod /

a

Forward HUEP REQUEST to f\@@

Web Applivation Server

2
Web A ;}pfzmrmw Server ; 466
Processes HTTP REQUESTY
and returns HITE
RESPONSE

Security Sysiem -
futercepts HITE, \“} &
RESPONSE L

A

Save response field values | 141U
and applicatiom state e | ™
gssociate with encrypled

state identification token

Forwward HTTP fNS£ 2

RESPONSE to
wek oHent

& \'\
i Retury |

RESPONSE

FIG. 14

US RE49,089 E

1
SECURITY FOR WAP SERVERS

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

CROSS-REFERENCE TO RELATED
APPLICATIONS

[This application] The present application is a Reissue
Divisional of U.S. patent application Ser. No. 15/482,681
filed on Apr. 7, 2017, and is also a Reissue application of
U.S. Pat. No. 9,003,509. U.S. patent application Ser. No.
15/482,681 filed on Apr. 7, 2017, is a Reissue application of
U.S. Pat. No. 9,003,509. U.S. patent application Ser. No.
12/332,267 filed on Dec. 10, 2008, issued as U.S. Pat. No.
9,003,509 on Apr. 7, 2015. U.S. patent application Ser. No.
12/332,267 filed on Dec. 10, 2008, is a continuation appli-
cation of U.S. patent application Ser. No. 10/915,951 filed
on Aug. 11, 2004 entitled “Improved Security for WAP
Servers,” which claims the benefit of U.S. Provisional
Application, titled “Improved Security for WAP Servers,”
Ser. No. 60/493,790 filed on Aug. 11, 2003, the benefits of
the filing dates of which are hereby claimed under 35 U.S.C.
§§119(e) and 120, and which are each further incorporated
herein by reference in their entirety.

FIELD OF THE INVENTION

The present invention relates generally to computing
software and systems for managing internet website and web
application security and for preventing website and web
application users from causing harm.

BACKGROUND OF THE INVENTION

The internet has enabled the deployment of complex web
applications that organizations employ to offer location
transparent services. Customers of organizations that
employ web applications benefit from the convenience of
accessing needed services without leaving their homes or
offices.

However, deploying complex web applications has also
provided opportunities for malicious hackers to create
havoc. Hackers can cause severe damage to both the infra-
structure and goodwill of the target organizations by exploit-
ing web applications. For example, hackers have been know
to exploit web applications to steal user information, includ-
ing credit card data, bank account information, retirement
plan data, and the like. Furthermore, as the number of web
applications increase the threat posed by hackers will
increase.

In response to hackers, organizations employ a variety of
methods, systems, and protocols, in an attempt the limit the
damage that hackers can do to their applications. Much of
this effort has been oriented towards preventing external
attackers from breaking into the web application and its
parent computer system. However, attacks from “insiders”
are also very common. These “insiders” are persons with
malicious intentions who have genuine accounts which give
them access to target web applications. Similarly, once an
“outside” hacker breaks into a web application the hacker
often takes on the appearance of a bona-fide customer.

10

15

30

40

45

2

“Insider” attacks can be difficult for organizations to defend
against because aggressive internal security procedures may
alienate valuable customers.

BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting and non-exhaustive embodiments of the
present invention are described with reference to the fol-
lowing drawings. In the drawings, like reference numerals
refer to like parts throughout the various figures unless
otherwise specified.

For a better understanding of the present invention, ref-
erence will be made to the following Detailed Description of
the Invention, which is to be read in association with the
accompanying drawings wherein:

FIG. 1 illustrates one embodiment of a system overview
in which the invention may be practiced;

FIG. 2 illustrates a functional block diagram of one
embodiment of a network device in which the invention may
be practiced;

FIG. 3 illustrates one embodiment of a model generation
embodiment;

FIGS. 4A, 4B, and 4C illustrates an example a web page;

FIG. 5 illustrates an embodiment in learning mode;

FIG. 6 illustrates an embodiment in security mode;

FIG. 7 shows one embodiment of a flowchart for model
generation;

FIG. 8 shows one embodiment of a flowchart of an active
mode web client requests;

FIG. 9 shows one embodiment of a flowchart of a learning
mode web client request;

FIG. 10 shows one embodiment of logic flow of a tuning
process;

FIG. 11 illustrates one embodiment of a single page point
within an application model;

FIG. 12 is one embodiment of a table showing application
state information;

FIG. 13 shows one embodiment of a flowchart of logic to
handle an incoming request; and

FIG. 14 shows one embodiment of a flowchart of logic to
handle an outgoing response, in accordance with the inven-
tion.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention now will be described more fully
hereinafter with reference to the accompanying drawings,
which form a part hereof, and which show, by way of
illustration, specific exemplary embodiments by which the
invention may be practiced. This invention may, however,
may be embodied in many different forms and should not be
construed as limited to the embodiments set forth herein;
rather, these embodiments are provided so that this disclo-
sure will be thorough and complete, and will fully convey
the scope of the invention to those skilled in the art. Among
other things, the present invention may be embodied as
methods or devices. Accordingly, the present invention may
take the form of an entirely hardware embodiment, an
entirely software embodiment or an embodiment combining
software and hardware aspects. The following detailed
description is, therefore, not to be taken in a limiting sense.

“WAP,” in this specification, is defined as meaning, “web
application process.” “WAP” is not intended to be limited to
“wireless application protocol.” A “web application process”
is equivalent to a “web application” which may be deployed
on a “web application server.”

US RE49,089 E

3

Briefly stated, the present invention is a method and
system for improving the security and control of internet/
network web application processes, such as web applica-
tions. The invention enables the validation of requests from
web clients before the request reaches the web application
server. An embodiment can compare incoming web client
requests to an application model that represents the allowed
navigation paths within the underlying web application.
Accordingly, requests inconsistent with the application
model may be blocked before reaching the web application
server.

In addition to validating the navigation of clients within
applications, the invention may verify that application state
data sent to application servers has not been inappropriately
modified by a client. An embodiment may record application
state data transmitted to the client in order to verify that this
data is not inappropriately altered in subsequent client
requests. This aspect of the invention may be especially
useful for improving the security of web applications
because application state data is routinely sent to web clients
where it can be vulnerable.

Furthermore, the present invention enables application
models to be automatically generated by employing web
crawlers, and similar applications, to probe a target appli-
cation. Once a preliminary application model has been
generated, the invention can be operated in a training mode,
which enables the new model to be tested and verified.
Accordingly, the invention enables an administrator to
review a collection of non-compliant requests in order to
tune the application model. Administrators may, for
example, tune the application model by adding requests that
were incorrectly marked as non-compliant, to the applica-
tion model.

An embodiment of the invention may be employed for
improving security and control of internet/network applica-
tions including, but not limited to, web application pro-
cesses, web applications, web services, web pages, wireless
application protocol services, MMS applications, service-
oriented architecture (SOA), XML, RPC, SOAP, and the
like.

An embodiment of the present invention can automati-
cally generate an application model of the target application.
One embodiment may use a “web crawler” to automatically
survey and process the target application. The invention may
generate an application model by examining and recording
the web crawler’s HTTP requests and monitoring and
recording the web application’s HTTP responses. As the
web crawler probes each web page and web service of the
target application, an application model representing valid
interconnections and allowable input and output parameters
may be developed.

In one embodiment of the invention, HTTP requests from
users are intercepted and compared against the application
model. The user’s activity may be validated by referring to
the application model and an application state database.
From this information an embodiment may determine if the
current incoming HTTP request is compliant with the active
application model. The invention may compare the incom-
ing request with the current list of allowable compliant
requests for the user’s current state in the application. At
least one embodiment of the invention enables HTTP
request field values to be examined to ensure that they are
compliant with the application model and application state.
In general, the present invention may operate to prevent
unauthorized adding, removing, or altering of application
field values.

10

15

20

25

30

35

40

45

50

55

60

65

4

For example, it is common for web applications to employ
hidden field values to maintain application state information.
These hidden field values are submitted back to the web
application when the user sends a HTTP request. The web
application may then depend on this data to reconstruct the
user’s application state. However, this method of relying on
data from a user’s web client to determine application state
has at least two problems: (1) it is not difficult for web
application users to visually inspect hidden fields using a
“view source” function in their web clients; and (2), some
web clients, or customized web user-agents, can be
employed to inappropriately alter the values of data fields
when sending a request back to the web application.

At least one embodiment of the invention can be
employed to record and monitor the outgoing and incoming
field values for a web application. The present invention
enables altered, added, and removed fields to be detected
before the HTTP request reaches the web application server.
At least one embodiment of the invention enables non-
compliant requests to be blocked.

At least one embodiment of the invention records the
values of the hidden fields as they are sent to the user’s web
client. The invention may record the hidden values in a
database indexed with an encrypted state token. This
encrypted state token may be stored in a HITP cookie or
injected into the HTTP response using a variety of mecha-
nisms. If the user submits data back to the web application,
the encrypted state token may be sent back to the web
application server along with the HTTP request. The
expected values for the hidden fields, associated with the
user’s HT'TP request, can be retrieved using the encrypted
state token. If the hidden values in the incoming submitted
HTTP request are not compliant with the hidden data values
retrieved from the application state database, the incoming
request may be blocked before it reaches the web application
server(s).

At least one embodiment of the invention records values
of certain visible fields as they are sent to the user’s web
client. For example, a list of valid account number choices
may be sent from the web application to the web client. If
the user selects one of the account number choices and
submits the request back to the web application the present
invention is employed to verify that the user selected one of
the allowed account number. This may prevent a malicious
user from substituting an unauthorized value other than the
ones that were originally sent to the user. If the field values
included within the incoming submitted request are not
compliant with the recorded data values the incoming
request may be blocked before it reaches the web application
server(s).

At least one embodiment of the present invention can be
deployed in a “training mode.” Once an application model
has been generated it can be tested by operating the present
invention in the “training mode.” If in “training mode,” the
invention may continue to monitor incoming and outgoing
requests; however, it might not block non-compliant
requests. In contrast to operating in secure mode, the inven-
tion, while operating in training mode, may allow non-
compliant requests to pass-through to the web application
unmodified. Non-compliant requests encountered while
operating in training mode may be recorded in a non-
compliant request queue.

At least one embodiment of the invention enables an
administrator to review the non-compliant requests that were
detected while operating in training mode. If the adminis-
trator determines that a request was found to be non-
compliant because, for example, the application model was

US RE49,089 E

5

incomplete, then the administrator can modify the request to
the application model. This enables the administrator, at
least, to fine tune the application model, correct for mistakes
made when the web crawler automatically generated the
application model, and perform similar modifications.

At least one embodiment of the invention enables the
invention to be deployed as a standalone network device that
is employed to monitor incoming requests and outgoing
responses for, at least, one web application server.

At least another embodiment of the invention may prac-
tice the invention as part of a single integrated network
device wherein the network device performs a multitude of
network services in addition to the claimed invention. In this
configuration, the invention operates as a number of pro-
cesses and programs on a network device computer that is,
at least, monitoring the inbound requests and outbound
responses for, at least, one web application server.
Exemplary Operating Environments

FIG. 1 illustrates an overview 100 of an environment in
which the invention operates and in which multiple web
clients 104 can be in communication with at least one web
application server 110, and one claimed web application
security server 108 over network 102. Although FIG. 1
refers to web client 104 as a web client device, other types
of client devices may be employed with the invention. For
example, multiprocessor systems, microprocessor-based or
programmable consumer electronics network PC’s, PDA’s,
wearable computers, and the like. These client devices may
also include devices that typically connect to network 100
using a wireless communications medium, e.g., mobile
nodes 106, smart phones, pagers, walkie-talkies, radio fre-
quency (RF) devices, infrared (IR) devices, integrated
devices combining one or more of the proceeding devices,
and the like.

FIG. 2 illustrates a functional block diagram of an
embodiment of a network device in which the invention may
be practiced. It will be appreciated that not all components
of network device 200 are illustrated, and that network
device 200 may include more or fewer components than
those shown in FIG. 2. Network device 200 may operate, for
example, as a router, bridge, firewall, gateway, traffic man-
agement device, distributor, load balancer, server array
controller, or proxy server. The communications may take
place over a network, such as network 222, the Internet, a
WAN, LAN, or some other communications network.

As illustrated in FIG. 2, network device 200 includes a
central processing unit (CPU) 202, mass memory, and a
network interface unit 210 connected via a bus 204. Network
interface unit 210 includes the necessary circuitry for con-
necting network device 200 to network 222, and the like, and
is constructed for use with various communication protocols
including the TCP/IP and UDP/IP protocol. Network inter-
face user 210 may include or interface with circuitry and
components for transmitting messages and data over a wired
and/or wireless communications medium. Network interface
unit 210 is sometimes referred to as a transceiver.

The mass memory generally includes random access
memory (“RAM”) 212, read-only memory (“ROM”) 214,
and one or more permanent mass storage devices, such as
hard disk drive 208. The mass memory stores operating
system 216 for controlling the operation of network device
200. The operating system 216 may comprise an operating
system such as UNIX, LINUX™, Windows™, and the like.

In one embodiment, the mass memory stores program
code and data for implementing web application security
system 218, and related program code and data, in accor-
dance with the present invention. The mass memory may

25

30

35

40

45

6

also store additional programs 220 and data for performing
the functions of network device 200. Programs 200 may also
include applications that are employed by web application
security system 218 to handle complex, high-level protocols,
including, but not limited to, compression, and Secure
Socket Layer (SSL) operations on packets. In addition,
programs 220 may include a web server program, reverse
proxy program, and the like, that are employed by the web
application security system for handling requests from web-
clients and responses from web applications.

In one embodiment, the network device 200 includes one
or more Application Specific Integrated Circuit (ASIC)
chips 206 connected to the bus 204. As shown in FIG. 2, the
network interface unit 210 may connect to the bus through
an ASIC chip. The ASIC chip 206 includes logic that
performs some of the functions of network device 200. For
example, in one embodiment, the ASIC chip 206 performs
a number of packet processing functions, to process incom-
ing packets. In one embodiment, determined actions of web
application security system 218 are performed by the ASIC
chip 206, a similar hardware device, and the like. In one
embodiment, the network device 200 includes one or more
field-programmable gate arrays (FPGA) (not shown),
instead of, or in addition to, the ASIC chip 206. A number
of functions of the network device can be performed by the
ASIC chip 206, by an FPGA, by the CPU 202 with the logic
of program code stored in mass memory, or by a combina-
tion of the ASIC chip and the CPU.

Computer storage media may include volatile and non-
volatile, removable and non-removable media implemented
in any method or technology for storage of information, such
as computer readable instructions, data structures, program
modules or other data. Examples of computer storage media
include RAM 212, ROM 214, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, mag-
netic tape, magnetic disk storage or other magnetic storage
devices, or any other medium that can store the information
and that can be accessed by a computing device.

Network device 200 may also include an input/output
interface (not shown) for communicating with external
devices or users.

Network device 200 can also be implemented as one or
more “blades” where the term “blade” refers to one of
multiple electronic circuit boards or cards that are installed
in a hardware chassis with a backplane. An exemplary blade
may include one or more processors, volatile and non-
volatile memory, interfaces suitable for communicating
information to and from the blade, and other components for
enabling the operation of one or more applications. A blade
may also include a specialized interface for the backplane
and other interfaces, such as a USB port, FIREWIRE port,
serial port, RF interface, IR interface, Ethernet interface,
IDE controller, and the like. An application running on a
blade may employ any of these interfaces to communicate
information to other applications running on other blades
and/or devices coupled to the blade server. Network device
200 can also be implemented as a combination of blades and
additional components in the chassis.

FIG. 3 illustrates a functional block diagram of an
embodiment of the invention configured for automated
application model generation. In order to automate the
application model generation the claimed invention may
employ web crawler 304 that will automatically probe the
target web application 312.

In one embodiment of the invention, web application
server 310 may include, at least, one computer running a

US RE49,089 E

7

network operating system that may comprise operating
systems such as, Windows 2000, Windows XP, Sun Solaris,
Linux, UNIX, and the like. Web application servers may also
employ one of a variety of web server software programs,
including, but not limited to, Apache Web Server, Microsoft
Internet Information Server, Apache Tomcat, IBM Web-
Sphere, IBM Lotus Domino Server, SUN Java System Web
Server, and the like. Also, the web application server com-
puter may include a variety of additional applications and
networking programs as determined by the particular needs
and resources of the system owners.

As illustrated in FIG. 3, web crawler 304 may transmit
HTTP requests over a network 302 to web application server
310. Web application server 310 will respond to the request
from web crawler 304 by serving up web pages from target
web application 312. For example, web crawler 304 may
request top level web pages 314 of the web application.
From parsing top web page 314, the web crawler may
determine links to down-level web pages 316 and 318 and
automatically make requests to fetch the contents of those
pages as well. Web crawler 304 may deterministically make
a request for each web page it can find in the application.
Also, web crawler 304 may detect active code elements in
the web page that provides multiple choices or options. For
example, HTML elements such as radio button groups and
select lists, and the like may be detected within a web page.
Web crawler 304 may make multiple requests for the subject
page until the available options on the web page have been
exhausted. For example, if web crawler 304 detects a five
option radio button group on a HTML form, web crawler
304 may send at least five requests to the web application
server, one request for each radio button option.

Web crawler 304 may be at lest one computer program
running on, at least, one computer. Web crawler 304 may
request web pages from target web application 312. Web
crawler 304 may examine each requested web page looking
for navigation elements that can lead to other pages within
the application. In general, web crawler 304 may start with
at lest one URL to visit. As it visits URLs, web crawler 304
may identify the hyperlinks in the page and add them to a list
of URLs to visit.

As illustrated in FIG. 3, web crawler 304 may forward the
requests it makes and the subsequent responses received
from web application server 310 to application model gen-
erator 306. Application model generator 306 may employ
the information provided by web crawler 304 to generate an
application model for the target web application. Applica-
tion model generator 306 may employ the web application
URL’s and HTTP field values to construct the application
model. The application model detail may be stored in model
storage database 308 for later use.

It may be helpful to discuss the some underlying security
problems inherent in a web application so that the present
invention may be more fully appreciated.

FIG. 4A illustrates one embodiment of a fully rendered
web page or a simple banking web application. This page
402 represents a HTML form used for transferring balances
between a savings account and a checking account. The user
can see his name, account name, ID, and balances 404, 406,
and 408. There is also a field for entering an amount to be
transferred 410. Finally, there is button 412 for submitting
the form.

FIG. 4B illustrates some of the underlying HTML source
414 that makes up the form shown in FIG. 4A. Form tag 416
indicates which HTML target the form information is to be
posted to when the user selects submit. Hidden fields 418 are
fields that may include important application specific state

10

15

20

25

30

35

40

45

50

55

60

65

8

information that normally is not visible to users. However,
users can view the hidden fields using the “view source”
feature of their web client. Hidden fields 418 may include
important information such as account numbers. Field 420 is
the HTML for the submit button.

Hidden fields 418 may include sensitive information that
may be considered safe to send to the web client because the
web application assumes that only the owner of the infor-
mation will have access to the rendered form as well the
underlying source code. This is a reasonable assumption
since banking web applications usually require the user to
login with a username and password before accessing sen-
sitive information. In addition, the HTTP connection is
likely encrypted using SSL (Secure Sockets Layer), or some
similar encryption protocol, which may prevent interception
of the sensitive data. Therefore, the owner/developer of the
web application may not be concerned about putting sensi-
tive data in the hidden fields of the HTML form.

FIG. 4C illustrates HT'TP POST operation 422. The HTTP
POST command 424 may be sent when a user selects the
submit button on a HTML form. Basic command 424
includes the name of the command, “HTTP POST,” fol-
lowed by, at least, the URI of the target. In addition, all of
the form fields are sent as a collection of (name, value)
2-tuples 426.

A security problem may arise because a malicious user
can alter the values of the form fields 426, before submitting
them to the web application server. This can, at least, be
accomplished by using custom network programming tools
such as perl, python, and java. For example, a malicious user
may alter the account number fields in order to surrepti-
tiously transfer money from another user’s account. This
type of malicious exploit can be challenging for web appli-
cation developers to prevent since at this point the user is
usually considered to be trusted.

FIG. 5 illustrates functional block diagram 500 of an
embodiment of the invention operating in training mode.
Web application security system 506 is configured to inter-
cept incoming messages from network 504 and, also inter-
cept outgoing messages from the web application server
516. Incoming requests from the web clients 502 may be
automatically routed through web application security sys-
tem 506 before they are forwarded to web application server
516. In general, web clients 502 may be unaware that the
requests and responses are routed through the web applica-
tion security system 506.

Incoming requests may be initially handled by external
gateway 508. External gateway 508 may be employed to
parse incoming requests and validate them against applica-
tion model 510. Requests found to be non-compliant may be
recorded in non-compliant request queue 512. Non-compli-
ant request queue 512 may be employed to store the non-
compliant requests until they can be reviewed by adminis-
trator 518. Internal gateway 514 may maintain the
connections to actual web application server 516. Internal
gateway 514 may, at least, intercept responses from web
application server 516 to record values of form fields and
query values that are sent to the web client. After processing,
the web application server response may be forwarded to
web client 502 that made the original request.

An embodiment may enable administrator 518 to review
non-compliant request queue 512. Administrator 518 may
determine which non-compliant requests should be added to
the application model 510 and which requests should be
discarded. Administrator 518 may be able to perform the
following functions including, but not limited to, viewing
lists of non-compliant request and response pairs, viewing

US RE49,089 E

9

form field data, viewing query string data, adding request/
response pairs to the application model, configuring valid
data types for form fields and query string values, config-
uring valid data ranges for form fields and query strings, and
the like.

At least one embodiment of the invention may have the
sub-components of web application security system 506
installed in a single computer with the sub-components
implemented on software. Each sub-component may include
at least one program, or entire system 506 could be imple-
mented as single computer software program.

Another embodiment of the invention may have the
sub-components of web application security system 506
installed in a single computer with one or more of the
subsystems implemented in hardware and the remaining
sub-components implemented by computer software pro-
grams.

At least one embodiment of the invention may have one
or more, of the sub-components of the web security appli-
cation system 506 installed, on one or more, separate
computers. This may enable each sub-component to scale
independently of the other. Such scaling may be accom-
plished by deploying bottleneck sub-components on addi-
tional computers. Also, an embodiment may locate sub-
components in more than one physical location.
Furthermore, the sub-components may be implemented in
hardware or software.

FIG. 6 illustrates functional block diagram 600 of an
embodiment of the invention operating in security mode.
Web application security system 606 may be configured to
intercept incoming messages from the network 604 and
outgoing messages from web application serer 616. Incom-
ing requests from web clients 602 may be automatically
routed through web application security system 606 before
they are forwarded to web application server 616. In general,
web clients 602 may be unaware that the requests and
responses are routed through the web application security
system 506.

Incoming requests may be initially handled by the exter-
nal gateway 608. External gateway 608 may be employed to
parse incoming requests and test them against application
model 610. Requests found to be non-compliant may be
recorded in non-compliant request queue 612. Non-compli-
ant request queue 612 may be employed to store the non-
compliant requests until they can be reviewed by an admin-
istrator. If a request is found to be non-compliant it may not
be forwarded to internal gateway 614. Internal gateway 614
may maintain the connections to actual web application
server 616. Internal gateway 614 may intercept responses
from web application server 616 to record values of form
fields and query values that may be sent to the web client.
After the application state is recorded in application state
database 618, the web application server response may be
forwarded to web client 602 that made the original request.

At least one embodiment of the invention may have the
sub-components of the web application security system 606
installed in a single computer with the sub-components
implemented in software. Each sub-component may include
at least one program, or entire system 606 could be imple-
mented as single computer software program.

Another embodiment of the invention may have the
sub-components of web application security system 606
installed in a single computer with one or more of the
subsystems implemented in hardware and the remaining
sub-components implemented by computer software pro-
grams.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

At least one embodiment of the invention may have one
or more of the sub-components of web security application
system 606 installed, on one or more, separate computers.
This may enable each sub-component to scale independently
of'the other. Also, it may enable the various sub-components
to be located in more than one location. Furthermore, the
sub-components may be implemented in hardware or soft-
ware.

Preliminary Model Generation

The application model employed to verify and validate
user requests can be generated automatically by employing,
for example, a web crawler software program to probe and
map the target web application. This may enable the mod-
eling of large and complex websites for which modeling
would otherwise be difficult or impossible because of the
sheer size and complexity of the web application. If the web
application is simple an auto-generated application model
may be sufficient for production use. However, complex web
applications may include additional tuning to complete a
production quality application model.

FIG. 7 illustrates logical flow 700 of automated model
generation for an embodiment of the invention. The web
crawler may be seeded with at least one Uniform Resource
Locator (“URL”) for the target application.

Processing begins, after a start block, at block 702 where
the web crawler makes a HTTP REQUEST using the
supplied URL. Processing flows next to block 704, where,
before the request is forwarded to the target web application
the application model may record the complete HTTP
request, including, but not limited to, the URL query path,
query values, cookies, meta data, and the like.

Next processing flows to block 706, where once the HTTP
request data has been recorded the HTTP request may be
forwarded to the web application server. The web applica-
tion server may process the request as it would for any
regular client request. For example, the web application may
render HTML pages suitable for the requesting web user-
agent. After the request has been processed, processing
flows to block 708 where the web application server may
send a HTTP response back to the requesting web client.

Flowing next to block 710, the web application server’s
response may be intercepted by the internal gateway. The
intercepted HTTP response may be examined and recorded.
Also, the request/response pair may be added to the pre-
liminary application model. Processing continues to block
712, where the web application’s HTTP response may be
forwarded to web crawler. See also, FIG. 6.

Processing continues to decision block 714, where after
receiving the response from the web application the web
crawler may parse the response looking for any additional
navigation paths (“links™). If at decision block 714, there are
links within the web application that have not been visited
by the web crawler the web crawler may select the next
available link and the logic flow may loop back to block 702,
where the web crawler may make another HTTP request.
The processing may continue until the web crawler can find
no other links to visit or an administrator intervenes and
stops the mapping. In which instance, process 700 returns to
a calling process to perform other actions.

Training Mode Web Client Requests

Training mode enables the detection and recording of
request/response pairs that may not have been correctly
mapped by the web crawler. In training mode, the web
application security system may be configured so non-
compliant requests are recorded and then passed through to
the web application server. See FIG. 5. In training mode,
users may interact with the application as they would under

US RE49,089 E

11

normal circumstances. Any requests that are not compliant
with the active application model may be recorded so they
can later be added to the application model. Once the
training period is determined to be complete, an adminis-
trator can examine the non-compliant requests and deter-
mine if they should be added to the application model.

FIG. 8 illustrates logical process 800 of a web client
request when an embodiment of the invention is operating in
training mode. Process 800 begins, after a start block, at
block 802, where a web client may send a standard HTTP
request to the web application. For a HT'TP application, this
request may typically be either a GET or POST.

Processing next flows to block 804, where the HTTP
request may be intercepted by an external gateway compo-
nent, such as external gateway component 508 of the web
application security system of FIG. 5.

Next, processing continues to block 806, where the web
application security system may examine the incoming
request in order to determine if the request is compliant. A
request may be considered compliant if the URL is regis-
tered in the active application model and the request is
coming from a valid referring URL. Also, if an encrypted
application state token is present in the request, the associ-
ated application state information may be retrieved to vali-
date the incoming request. Application state validation may
include, but is not limited to, comparing the number of form
fields returned in the current request versus the number of
fields sent in the previous server response, the values of the
hidden fields that were sent to web client in the previous
response, cookie values, session values, user-agent identifi-
cation strings, and the like.

Process 800 continues to decision block 808, where if the
request is deemed compliant processing branches to block
820. At block 820, the complaint requests may be allowed to
continue on the web application server. Processing continues
to block 822, where the web application may prepare a
response to the web client’s request and send it back to the
web client. Continuing to block 824, the response may be
intercepted by an internal gateway, such as internal gateway
514 of FIG. 5, before it is transmitted to the web client. At
this point the names and values of outbound fields and
parameters may be recorded to maintain a record of the
application state. Processing next flows to block 826, the
web application server’s response may be forwarded to the
requesting web client. Upon completion of block 826,
processing returns to a calling process to perform other
actions.

Alternatively, at block 808, requests deemed non-compli-
ant flow to block 810, where they may be recorded in the
non-compliant request queue. See also, FIG. 5, 512. Once
the request has been recorded the logic flows to block 812
where the request may be forwarded to the web application
server. Continuing to block 814, the web application server
may form a response to the request and send it to the
requesting web client.

Flowing next to block 816, the response may be inter-
cepted and the HTTP response information may be recorded
in the non-compliant request queue so it can be reviewed by
an administrator. Processing continues to block 818, where
the web application’s response may be forwarded to the
requesting web client. Upon completion of block 818,
processing returns to a calling process to perform other
actions.

Security Mode Web Client Requests

Security mode enables the detection, recording, and
blocking of non-compliant requests. In security mode, the
web application security system may be configured so

10

15

20

25

30

35

40

45

50

55

60

65

12

non-compliant requests may be blocked before they reach
the web application server. Also, requests not compliant with
the active application model may be recorded so they can
later be added to the application model. See FIG. 6.

FIG. 9 illustrates logical process 900 of a web client
request when an embodiment of the invention is operating in
security mode. Process 900 begins, after a start block, at
block 902, where a web client may send a standard HTTP
request to the web application. Flowing next to block 904,
the HTTP request may be intercepted by an external gateway
component, such as external gateway component 608 of the
web application security system of FIG. 6. Next, the process
continues to block 906, where the web application security
system may examine the incoming request in order to
determine if the request is compliant.

Flowing next to decision block 908, a determination is
made whether the request is compliant. If the request is
deemed complaint, processing branches to block 914, where
the complaint request may be allowed to continue to the web
application server. Processing continues to block 916, where
the web application may prepare a response to the web
client’s request and send it to the web client. Flowing next
to block 918, the response may be intercepted by an internal
gateway, such as internal gateway 514 of FIG. 5, before the
request is transmitted to the web client. At this point the
names and values of outbound fields and parameters may be
recorded to maintain a record of the application state.
Processing next flows to block 920, where the web appli-
cation server’s response may be forwarded to the requesting
web client. Upon completion of block 920, processing
returns to a calling process to perform other actions.

Alternatively, at block 908, if the request is deemed
non-compliant, processing flows to block 910, where the
non-compliant request may be recorded in the non-compli-
ant request queue. See also, FIG. 6. Once the request has
been recorded the logic flows to block 912 where the
invention may respond directly to the web client’s non-
compliant request by sending a responsive HTTP Status
Code (e.g., HTTP codes 401,403, 404, and the like). Note,
that the non-compliant request may be safely blocked before
it reaches the web application server. Processing then returns
to the calling process to perform other actions.

Tuning the Model

The present invention enables a method for tuning the
application model. Administrators may review the collected
non-compliant requests. If the administrator determines that
a request was inadvertently omitted from application model
then the administrator may add the request to application
model. Non-compliant request lists may be collected during
formal testing cycle(s), such as when the invention is
operating in training mode. Also, non-compliant requests
may be detected and recorded during normal security mode
operations.

FIG. 10 is a logical flowchart showing the tuning process
1000 for an embodiment of the invention. Process 1000 may
be conducted, for example, by an administrator or operator
of the system. The administrator is not required, or intended
to be, a network administrator. However, the administrator
may be familiar with the web application being tuned, to
make appropriate decisions regarding the application model.

Process 1000 begins, after a start block at block 1002,
where the administrator may review non-compliant requests
and responses. In at least one embodiment, the administrator
may view a complete list of non-compliant requests and
select one to review. In another embodiment of the inven-
tion, the administrator can tune the web application security
system remotely by employing a web browser. If the admin-

US RE49,089 E

13

istrator has selected a non-compliant request to review then
the process flow continues to block 1004, where the request
and response pair, may be examined by the administrator to
determine if they should be added to the application model.

Processing continues to decision block 1006, where if the
administrator determines that the application model should
be updated to include the request under reviews, the logic
flows to block 1010. At block 1010, the administrator may
add the request/response pair to the application model. In at
least one embodiment, the administrator may have access to
configuration tools that may enable defining of constraints
that may be applied when an incoming request is validated
by the application model. For example, certain form fields
may be assigned a constraint requesting the fields to include
numbers. In any event, processing continues to decision
block 1012, where if there are more requests to review the
logic flow may loop back to 1002. Otherwise, processing
returns to a calling process to perform other actions.

Alternatively, at block 1006, if the administrator deter-
mines that the non-compliant request should not be added to
the application model, the logic flows to block 1008. At
block 1008, the non-compliant request may be discarded. In
at least one embodiment, a particular request can be added
to a do-not-record list. Non-compliant requests that may be
in the do-not-record list may not be recorded in the non-
compliant request queue; they may be automatically dis-
carded without requiring review. In another embodiment of
the invention, patterns and regular expressions may be
employed to determine if a non-compliant request is to be
automatically discarded without requiring review. Next,
logic flows to decision block 1012, where if there are more
requests to review the logic flow will loop back to 1002;
otherwise processing returns to the calling processing to
perform other actions.

Application Model

The application model may be employed as a basis for
validating inbound user requests. In general, the application
model may be a logical structure that maintains rules and
constraints that may be used for determining whether a
particular user can access a particular part of the application
from another particular part of the application. The appli-
cation model can also be thought of as a map that includes
allowable navigation paths to get from one part of an
application to another.

Once a suitable application model can be deployed the
invention may prevent a user from “jumping” around within
an application. The only navigation paths allowable may be
ones that comply with the application model. This feature
may be particularly useful for web applications where users
are capable of entering the application at any point by simply
typing in a URI into a web browser. For example, a web
application developer may expect a user to navigate through
the application starting with ‘A’, then moving to page 13',
and finally ending on page ‘C’. Unfortunately for the web
application developer, the user can go to page ‘B’ first by
simply typing the URI on page ‘B’ into his or her web
browser. Then the user can navigate to page ‘A’ using the
same method, and so on.

In an embodiment of the present invention those requests
that comply with the application model may be allowed. In
an embodiment of the invention non-compliant requests may
be blocked and prevented from reaching the web application
server. An embodiment of the invention may use a database
to store a list of compliant referring URL’s for each page/
part of the web application. Then those requests that may be
from an allowable referrer URL may be considered compli-
ant. Another embodiment of the invention may use a graph

10

15

20

25

30

35

40

45

50

55

60

65

14

data structure where the application web pages may be the
vertices and the compliant links may be the edges. In this
embodiment, a page/part of a web application may only be
accessed if in the corresponding map model there may be a
path from the vertex that represents the current page of the
application to the vertex that represents the intended desti-
nation page.

FIG. 11 illustrates part of an application model for an
embodiment of the invention. FIG. 1100 shows part of an
application model that may be used for controlling the
navigational flow for accessing particular web pages. For
any given page 1102, there may be a defined set of pages
1104 from which users may be allowed to navigate to target
page 1102. If the user attempts to navigate to page 1102 from
a page that is not in set 1104 the user’s HTTP request may
be determined to be a non-compliant with the application
model and subsequently blocked. Likewise, for navigation
from page 1102, there may be defined pages 1106 that may
accept navigation from page 1102. In other words, the set of
pages 1106 may be defined by the application model as the
compliant destinations for a user navigating from page 1102.

In addition to modeling how a user may navigate through
the web application, at least one embodiment of the inven-
tion allows additional rules to be defined and associated with
the various parts/pages of the application model. These rules
can include, but are not limited to, requiring specified
HTML elements to be present in the request, requiring
specific form fields to be present in the request, requiring
specific query string parameters to be present in the request,
requiring particular values for specified form fields and
query string fields to be present in the request, requiring
specified form fields and query string values, and the like.
Also, rules can be defined that restrict fields to include
values of a particular data type, restricting specified fields to
include values that match defined rules, patterns or regular
expressions, and the like.

In at least one embodiment, the application model can
employ the application state information to at least deter-
mine if the incoming HTTP request may include data that
has been inappropriately altered.

FIG. 12 illustrates a table of an application state for an
embodiment. The table 1200 may include the application
state information for a plurality of users. An embodiment
may have an application state table that has a column for
storing the encrypted state token 1202, and one or more
columns for storing the application state data 1204. Each
user may have a unique encrypted state token 1206 and
1210. Encrypted state tokens 1206 and 1210 may be
employed as indices to actual state data 1208 and 1212.

Encrypted state token ‘01Abx07sHd4W’ 1206 corre-
sponds to the data in table cell 1208. Table cell 1208 may
include all of the pertinent information related to a web
application server’s response that was sent to a user. The
data shown in cell 1208 may correspond to the web form
depicted in FIG. 4A-B. The form field information has been
captured and saved before the HTML depicted by FIG. 4B
may be received by the client. Note that, cell 1208 includes
a record of each hidden field that was sent to the web client.
Also, the cell 1208 includes a place holder that may indicate
that an input field named ‘trx Amount” may be expecting a
money value. This application state information may help
prevent a user from exploiting the web application.

An embodiment may prevent exploits by examining a
user’s request and comparing the hidden field values sent by
the user with the hidden field values recorded in the appli-
cation state table. For example, when a user submits a form
POST that includes encrypted state code ‘01 Abx07sHd4W’

US RE49,089 E

15
1206, an embodiment of the invention may be able to verity
that the ‘userID’, ‘savAcctID’ , and ‘chkAcctID’ values
1208 are unchanged. If an embodiment detects that these
fields have been altered then the request may be deemed
non-compliant and subsequently blocked. The second row
of table 1200, illustrates how a second user may have a
unique encrypted state code 1210 that may correspond to a
different application state 1212.

FIG. 13 is a logical flowchart showing incoming HTTP
request logic for an embodiment of the invention. The
process starts at 1302 where a web client sends a HTTP
request. Flowing next to block 1304, the web application
security system may intercept the incoming HTTP request.

Next, the process flows to block 1306, where the appli-
cation model may be employed to test if the request is
coming from an allowed URL. Referring to FIG. 11, as an
example, if the target of the request is page 1102 then the
user should be coming from one of the pages in the set 1104
in order for the request to be compliant with the navigation
rules of the application model.

Thus, moving to decision block 1308, a determination is
made whether the request is complaint. If the request is
compliant then the logic may flow to block 1312.

Atblock 1312, the application state for the request may be
retrieved by using the encrypted state code that expected to
be present in the web client HTTP request. If the encrypted
state code is expected and is not present then the HTTP
request may be blocked. If the encrypted state code is
present then the corresponding application state data can be
retrieved. Moving next to block 1314, the retrieved appli-
cation state data may be compared to the data submitted by
the user in the HTTP request.

Alternatively, at block 1308 if the navigation is not
permitted, the logic flows to block 1310, where the non-
compliant request may be recorded and the user’s HTTP
request may be blocked from reaching the web application
server. The web application security system may send a
responsive HTTP Status Code indicating that the request
was not successful (e.g., HT'TP codes 401, 403, 404, and the
like).

Moving next to decision block 1316, if the data in the
HTTP request is compliant with the application state then
the logic flow may continue to block 1318, where the
compliant HTTP request may be forwarded to the web
application server for additional processing. Processing then
flows to block 1320 where the process returns to a calling
process.

Alternatively, at block 1316, if the data submitted in the
user’s HTTP request is not compliant with the application
state data, the logic may flow to block 1310, where the
non-compliant request may be recorded and the user’s
HTTP request may be blocked from reaching the web
application server. The web application security system may
send a responsive HTTP Status Code indicating that the
request was not successful (e.g., HTTP codes 401, 403, 404,
and the like).

After a user’s request has been validated by the web
application security system it may be forwarded to the web
application server. Once the web application has processed
the user’s request it may formulate and transmit a response
back to the user’s web client. The web application security
system may intercept the response in order to record the state
of the application for validating subsequent user requests.

In at least one embodiment, the web application security
system acts as a HT'TP reverse proxy. This enables the web
client’s internet address to be hidden from the web appli-
cation. The web application server may receive only the

5

10

15

20

25

30

35

40

45

50

55

60

65

16

network addresses of the web application security system.
Deploying the web application security system as a reverse
proxy enables it to operate without requiring any changes or
modification to the web application server.

FIG. 14 is a logical flowchart showing incoming HTTP
response logic for an embodiment of the invention. Process-
ing begins, after a start block, at block 1402, where the
request may have been validated by the web application
security system. Next, flowing to block 1404, the request
may be forwarded to the web application server. Continuing
to block 1406, the web application server processes the
user’s request and formulates and transmits a HTTP
response. Continuing to block 1408, the web application
security system may intercept the outbound HTTP response.

The process of FIG. 14 continues next to block 1410,
where once the HTTP response has been intercepted the
invention may parse the response to extract application state
information. This state information may be used to validate
the subsequent user requests. An embodiment may designate
different kinds of information as important for validating the
subsequent user requests, including, but not limited to,
hidden form values, regular form fields, client-side script
functions, client-side script variables, query string values,
web user-agent strings, session values, cookies, and the like.

After the applicable state information has been identified
and extracted from the web application server’s HTTP
response, an embodiment may create an identifying token
that may be employed to index the state information for the
outbound response. An embodiment may store the appli-
cable application state information in a database. The
encrypted state token may be employed as an index to be
used for retrieving the state information. There are a mul-
titude of ways to construct an encrypted state token and
many ways to employ them to retrieve application state
information.

An embodiment of the invention may create a single
encrypted state token that may be active for the duration of
the user’s interchange with the web application. The appli-
cation state associated with the token may updated for each
HTTP response sent the user. An embodiment may utilize a
database to provide long-term storage for the application
state history. In another embodiment, the application state
may be overwritten each time a response is sent to the user.

Another embodiment of the invention may create an
encrypted state token that may be active only for a single
response. Each time a HTTP response is intercepted by the
web application security system a new encrypted state token
may be constructed. Also, an embodiment may assign an
expiration date/time to each encrypted state token to facili-
tate the detection and removal of state encrypted state
tokens.

Another embodiment of the invention may create an
encrypted state token that may be assigned to a user, for the
lifetime of the user. An embodiment may employ the user’s
“account 1d”, “user id” or another similar value as a com-
ponent of the encrypted key. Another embodiment of the
invention can save historical application state information
for a predefined time for the user. An embodiment could use
such historical information to enable auditing of sensitive
systems.

In any event, processing continues to block 1412, where
the HTTP response may be forwarded back to the requesting
user’s web client. Upon completion of block 1412, process-
ing returns to a calling process.

US RE49,089 E

17

Embodiments of the invention may ensure that the
encrypted state token is sent back to the web application
security server when the user sends HTTP subsequent
requests.

An embodiment of the invention may send the encrypted
state token back to the web client in a HTTP cookie. An
embodiment may inject a cookie designated to include the
encrypted state token into the HTTP response, in this way,
cookies specific to the web application itself may not be
affected by the encrypted state token.

Another embodiment of the invention may add the
encrypted state token to an existing cookie that is being used
by the web application. This may be appropriate, for
example, if the underlying web application is using a well
known cookie, such as a session cookie that may present
during each response made by the web application.

Another embodiment of the invention may inject a hidden
form field that includes the encrypted state token for all
HTTP responses that include a form. This method may
ensure that any form submitted by the user may be submitted
with a field including the encrypted state token.

Another embodiment of the invention may inject the
encrypted state token into the query string for all HTML
links that are included in a HTTP response. For example, a
web application may send the following HTML link (an-
chor) element in a HTTP response:

<a href “usermenu.html”>View User Menu

An embodiment of the invention that injects the encrypted
state token into query strings may intercept and rewrite the
HTML link (anchor) element as follows:

<a

href “usermenu.html/TOKEN=0CFRE4EGT6”>View
User Menu

Embedding the encrypted state token in the query strings
may ensure that the correct application state may be
retrieved if the user requests the pages using a HTML link.

Another embodiment of the invention may embed the
encrypted state token in all of the URL paths of the web
application. For example, an embodiment could rewrite all
outbound application URL’s to include an additional path
level that may be used to identify the encrypted state token.
An embodiment could take a URL, such as:

http//www.home.net/and
rewrite is as follows:

http//www.home.net/OCFRE4EGT6/Thus

Thus the encrypted state token, 0CFRE4EGT6, may be
injected into the URL path of web application.

It will be understood that each block of the flowchart
illustrations discussed above, and combinations of blocks in
the flowchart illustrations above, can be implemented by
computer program instructions. These program instructions
may be provided to a processor to produce a machine, such
that the instructions, which execute on the processor, create
means for implementing the actions specified in the flow-
chart block or blocks. The computer program instructions
may be executed by a processor to cause a series of
operational steps to be performed by the processor to
produce a computer-implemented process such that the
instructions, which execute on the processor, provide steps
for implementing the actions specified in the flowchart block
or blocks.

Accordingly, blocks of the flowchart illustration support
combinations of means for performing the specified actions,
combinations of steps for performing the specified actions
and program instruction means for performing the specified
actions. It will also be understood that each block of the
flowchart illustration, and combinations of blocks in the

10

15

20

25

30

35

40

45

50

55

60

65

18

flowchart illustration, can be implemented by special pur-
pose hardware-based systems which perform the specified
actions or steps, or combinations of special purpose hard-
ware and computer instructions.

The above specification, examples, and data provide a
complete description of the manufacture and use of the
composition of the invention. Since many embodiments of
the invention can be made without departing from the spirit
and scope of the invention, the invention resides in the
claims hereinafter appended.

What is claimed as new and desired to be protected by
Letters Patent of the United States is:

[1. A network device for managing a communication over
a network, comprising:

a transceiver configured to intercept an incoming message
from a client device and an outgoing message from a
server device, wherein an application resides on the
server device; and

a processor configured to perform actions including:
intercepting a request from the client device to the

application residing on the server device for content
from the application;
determining when the request for content is compliant
based on a comparison of hidden fields by perform-
ing actions, comprising:
examining the request for an encrypted state token;
decrypting the encrypted state token;
extracting from the state token a hidden field;
comparing the extracted hidden field to values of
hidden fields from an application state data store;
and
when the extracted hidden field is determined to be
non-compliant based on the comparison, blocking
the request from being forwarded to the applica-
tion; and
determining whether the request for content is compli-
ant by comparing the request to a list of allowable
complaint requests determined by a current state of
the client device with the application and an appli-
cation model of the application, the application
model being automatically generated in part based
on a probe of interactions with the application, the
probe of interactions being separately generated by
the network device absent use of the incoming
message from the client device or a response from
the server device to the incoming message to obtain
responses to the probes that are used to identify at
least the list of allowable compliant requests includ-
ing allowable navigation paths within the applica-
tion;
when the request for content is determined to be
compliant based on the comparison of the request,
forwarding the request for the content to the appli-
cation; and
when the request is determined to be non-compliant
based on the comparison of the request, blocking the
request from being forwarded to the application.]
[2. The network device of claim 1, wherein the processor
is configured to perform actions, further including:
receiving a response to the request from the application;
storing information about selected hidden fields that are
not visible within a display of the response;
forwarding the response to the client device;

receiving another request from the client device, the other

request being in response to the received response;

US RE49,089 E

19
examining the other request to determine when it includes
the selected hidden fields and when the included
selected hidden fields are modified from the stored
selected hidden fields;
when the other request is absent of the selected hidden
fields or when one of the hidden fields in modified from
the stored selected hidden fields, determining that the
other request is noncompliant; and
when the other request is noncompliant, blocking for-
warding of the other request to the application.]
[3. The network device of claim 1, wherein comparing the
request further comprises:
examining the request to determine when a field within
the request has been altered improperly; and
when a field is determined to be altered improperly,
determining that the request is noncompliant, and
inhibiting forwarding of the request to the application.]
[4. The network device of claim 1, wherein the application
model is tunable during a training period based on a col-
lection of non-compliant requests obtained during the train-
ing period.]
[5. The network device of claim 1, wherein comparing the
request further comprises:
examining the request for selected visible fields;
comparing values in the selected visible fields to values
obtained by the network device from a prior commu-
nication to the client device from the application; and
when the values in the selected visible fields are deter-
mined to be non-compliant based on the comparison,
blocking the request from being forwarded to the
application.]
[6. A system for managing a communication over a
network, comprising:
a client device configured to provide requests and receive
responses over the network;
a server device that is configured to host a network based
application; and
a security server device that is interposed between the
client device and server device and is configured to
perform actions, including:
intercepting a request from the client device to the
application residing on the server device for content
from the application;
selectively forwarding the request to the application
based on determining that the request for content is
compliant based on a comparison of the request to
compliant requests that are determined from a cur-
rent state of the client device with the application and
an application model of the application device, the
application model being automatically generated in
part based on a probe of interactions with the appli-
cation, the probe of interactions being separately
generated from the intercepted request or a response
to the intercepted request to obtain responses to the
probe that are used to identify a list of allowable
complaint requests usable by the application model
including allowable navigation paths within the
application;
intercepting the response to the request from the appli-
cation on the server;
extracting values from selected fields within the response,
at least one selected field being a hidden field that is not
currently visible:
forwarding the response to the client device forwarding
the response to the client device, wherein an
extracted value is extracted from the hidden field

10

20

25

30

35

40

45

50

55

60

65

20

within the response, and wherein forwarding the
response further comprises:

generating an encrypted state token associated with the

extracted value from the hidden field; and

inserting the encrypted state token into the response:

within a hidden form field of the response, when the
response includes a form;
wherein a query string of the response, when the
response includes a link; or
within a Uniform Resource Locator (URL) path within
the response, when the response includes a URL; and
receiving a second request from the client device; and
selectively forwarding the second request to the applica-
tion based on a comparison of information within the
second request to the extracted values from the selected
fields within the response.]

[7. The system of claim 6, wherein selectively forwarding
the second request further comprises:

examining the second request for an encrypted state token

within the hidden form field; and

when a value of the state token when decrypted is

determined to be different from the extracted values,
blocking the second request from being forwarded to
the application.]
[8. The system of claim 6, wherein extracting values from
selected fields further comprises extracting values from
visible fields that include a user selection from the visible
field.]
[9. The system of claim 6, wherein selectively forwarding
the request further comprises:
determining when a field within the request is improperly
modified based on information stored from a prior
response to the client device from the application; and

when the field is determined to be improperly modified,
blocking the forwarding of the request to the applica-
tion.]

[10. The system of claim 6, selectively forwarding the
request further comprise:

extracting from a state token within the request a hidden

field value;

comparing the extracted hidden field value to a value of

hidden fields from an application state data store; and
when the extracted hidden field value is determined to be

non-compliant based on the comparison, blocking the

request from being forwarded to the application.]

[11. A non-transitory machine readable storage medium
that is configured to store instructions and data that when
installed on a machine that is interposed between a client
device and a server device enable the machine to perform
actions, including:

intercepting a request from the client device to the appli-

cation residing on the server device for content from
the application;

selectively forwarding the request for content to the

application based on determining that the request is
compliant based on a comparison of the request to
allowable requests determined by a current state of the
client device with the application and a model of the
application; device, the model being automatically gen-
erated in part based on probe interactions with the
application, the probe of interactions being separately
generated by the machine absent use of the intercepted
request or a response to the intercepted request to
obtain responses to the probe that are used to identify
at least the list of allowable compliant requests usable
to generate the model including allowable navigation
paths within the application;

US RE49,089 E

21

intercepting the response to the request from the applica-
tion hosted on the server

extracting values from selected fields within the response,
the selected fields including at least one hidden field
that is not visible;

forwarding the response to the client device, wherein an
extracted value is extracted from the hidden field within
the response, and wherein forwarding the response
further comprises:
generating an encrypted state token associated with the

extracted value from the hidden field; and

inserting the encrypted state token into the response:

within a hidden form field of the response, when the
response includes a form;

within a query string of the response, when the
response includes a link; or

within a Uniform Resource Locator (URL) path
within the response, when the response includes a
URL; and

receiving a second request from the client device; and

selectively forwarding the second request to the applica-
tion based on a comparison of information within the
second request to the extracted values from the selected
fields within the response.]

[12. The non-transitory machine readable storage medium
of claim 11, wherein selectively forwarding the request
further comprises:

determining when a field within the request is improperly
modified based on information stored from a prior
response to the client device from the application; and

when the field is determined to be improperly modified,
blocking the forwarding of the request to the applica-
tion.]

[13. The non-transitory machine readable storage medium
of claim 11, wherein the selected fields comprises at least
one visible field.]

[14. The non-transitory machine readable storage medium
of claim 11, wherein the selected fields includes a visible
field having at least one user selectable option provided by
the application.]

[15. The non-transitory machine readable storage medium
of claim 14, wherein selectively forwarding further com-
prises: comparing the user selectable option provided by the
application to a provided user selected option in the second
request, and when the provided user selected option in the
second request is determined to be inconsistent with the user
selectable option provided by the application, blocking
forwarding of the second request to the application.]

[16. The non-transitory machine readable storage medium
of claim 11, wherein the model is automatically generated
by:

examining a set of test requests to the application;

monitoring responses to the test requests;

recording the test requests, monitored responses, and a
current state of another client device with the applica-
tion based on a sequence of test requests; and

identifying a set of allowable requests for a given state of
the other client device with the application based on the
test requests and monitored responses.]

17. A network device for managing communication over

a network, comprising:

a transceiver configured to be capable of intercepting an
incoming message from a client device and an outgoing
message from a server device, wherein an application
resides on the server device; and

one or more processors configured to be capable of
performing actions, including:

25

40

45

65

22

intercepting a vequest in an incoming message, from the
client device to the application vesiding on the server
device, for content from the application;

automatically generating an application model of the
application in part based on a probe of interactions
with the application, the probe of interactions being
separately generated by the network device without
employing the incoming message or a response from
the server device to the incoming message to obtain
responses to the probes, wherein the probe responses
are used to identify at least a list of allowable compli-
ant requests including allowable navigation paths
within the application, and wherein the list is based in
part on a current state of the client device with the
application and the application model;

determining that the request for content is compliant

based on a comparison of information in the request
with the application model of the application by per-
forming actions, comprising:

examining the request for a protected state token;

unprotecting the protected state token;

extracting a first value from the unprotected state token;

comparing the extracted first value to data in an appli-

cation state data store, or comparing the request to the
list of allowable compliant requests, to indicate that the
request is either compliant or non-compliant with the
application model; and

forwarding the request for the content to the application

based on the request being compliant with the appli-
cation model;

blocking the request from being forwarded to the appli-

cation based on the request being non-compliant with
the application model;

operating the application in a training mode that records

one or more requests for content from the application
that are determined to be non-compliant; and

adding the one or more non-compliant requests to the

application model.

18. The network device of claim 17, wherein the protected
state token is encrypted and the unprotected state token is
unencrypted.

19. The network device of claim 17, wherein the one or
move processors arve further configured for blocking the
non-compliant request further comprises one of recording
the non-compliant request, or discarding the non-compliant-
request.

20. The network device of claim 17, wherein the one or
move processors arve further configured for blocking the
request further comprises responding to the request with an
indication that the request was unsuccessful.

21. The network device of claim 17, wherein the one or
move processors are further configured for actions further
comprising employing one or more of a pattern or a regular
expression to automatically identify each non-compliant
request that is to be discarded without being reviewed.

22. The network device of claim 17, wherein the probe of
interactions is automatically performed by one or more
software programs.

23. The network device of claim 17, wherein the appli-
cation model is employed to control a flow of the navigation
paths to one or move defined pages.

24. A system for managing communication over a net-
work, comprising: a client device that is configured to
capable of providing requests and receive responses over the
network;

a server device that is configured to be capable of hosting

a network based application; and

US RE49,089 E

23

a security server device that is configured to be capable

of performing actions, including:
intercepting a vequest in an incoming message, from the
client device to the application rvesiding on the server
device, for content from the application;

automatically generating an application model of the
application in part based on a probe of interactions
with the application, the probe of interactions being
separately generated by the network device without
employing the incoming message or a response from
the server device to the incoming message to obtain
responses to the probes, wherein the probe responses
are used to identify at least a list of allowable compli-
ant requests including allowable navigation paths
within the application, and wherein the list is based in
part on a current state of the client device with the
application and the application model;

determining that the request for comtent is compliant

based on a comparison of information in the request
with the application model of the application by per-
forming actions, comprising:

examining the request for a protected state token;

unprotecting the protected state token;

extracting a first value from the unprotected state token;

comparing the extracted first value to data in an appli-

cation state data store, or comparing the request to the
list of allowable compliant requests, to indicate that the
request is either compliant or non-compliant with the
application model; and

forwarding the request for the content to the application

based on the request being compliant with the appli-
cation model;

blocking the request from being forwarded to the appli-

cation based on the request being non-compliant with
the application model;

operating the application in a training mode that records

one or more requests for content from the application
that are determined to be non-compliant; and

adding the one or more non-compliant requests to the

application model.

25. The system of claim 24, wherein the protected state
token is encrypted and the unprotected state token is unen-
crypted.

26. The system of claim 24, wherein the one or more
processors are further configured for blocking the non-
compliant request further comprises one of recording the
non-compliant request, or discarding the non-compliant
request.

27. The system of claim 24, wherein the one or more
processors are further configured for blocking of the non-
compliant request further comprises rvesponding to the
request with an indication that the request was unsuccessful.

28. The system of claim 24, wherein the one or more
processors are further configured for actions further com-
prising employing one or more of a pattern or a regular
expression to automatically identify each non-compliant
request that is to be discarded without being reviewed.

29. The system of claim 24, wherein the probe of inter-
actions is automatically performed by one or more sofiware
programs.

30. The system of claim 24, wherein the application model
is employed to control a flow of the navigation paths to one
or more defined pages.

31. A non-transitory machine readable storage medium
that is configured to store instructions and data for manag-
ing communication over a network, wherein when the

5

10

15

20

25

30

35

40

50

55

60

65

24

instructions and data ave installed on a computer that is
enabled to execute the instructions to perform actions,
comprising:
intercepting a rvequest in an incoming message, from a
client device to an application vesiding on a server
device, for content from the application;

automatically generating an application model of the
application in part based on a probe of interactions
with the application, the probe of interactions being
separately generated by the network device without
employing the incoming message or a response from
the server device to the incoming message to obtain
responses to the probes, wherein the probe responses
are used to identify at least a list of allowable compli-
ant requests including allowable navigation paths
within the application, and wherein the list is based in
part on a current state of the client device with the
application and the application model;

determining that the request for content is compliant

based on a comparison of information in the request
with the application model of the application by per-
forming actions, comprising:

examining the request for a protected state token;

unprotecting the protected state token;

extracting a first value from the unprotected state token;

comparing the extracted first value to data in an appli-

cation state data store, or comparing the request to the
list of allowable compliant requests, to indicate that the
request is either compliant or non-compliant with the
application model; and

forwarding the request for the content to the application

based on the request being compliant with the appli-
cation model;

blocking the request from being forwarded to the appli-

cation based on the request being non-compliant with
the application model;

operating the application in a training mode that records

one or more requests for content from the application
that are determined to be non-compliant; and

adding the one or more non-compliant requests to the

application model.
32. A method for managing communication over a net-
work, wherein a computer that is configured to enable
execution of the method, performs actions, comprising:
intercepting a rvequest in an incoming message, from a
client device to an application vesiding on a server
device, for content from the application;

automatically generating an application model of the
application in part based on a probe of interactions
with the application, the probe of interactions being
separately generated by the network device without
employing the incoming message or a response from
the server device to the incoming message to obtain
responses to the probes, wherein the probe responses
are used to identify at least a list of allowable compli-
ant requests including allowable navigation paths
within the application, and wherein the list is based in
part on a current state of the client device with the
application and the application model;

determining that the request for content is compliant

based on a comparison of information in the request
with the application model of the application by per-
forming actions, comprising:

examining the request for a protected state token;

unprotecting the protected state token;

extracting a first value from the unprotected state token;

US RE49,089 E

25

comparing the extracted first value to data in an appli-
cation state data store, or comparing the request to the
list of allowable compliant requests, to indicate that the
request is either compliant or non-compliant with the
application model; and

forwarding the request for the content to the application
based on the request being compliant with the appli-
cation model;

blocking the request from being forwarded to the appli-
cation based on the request being non-compliant with
the application model;

operating the application in a training mode that records
one or more requests for content from the application
that are determined to be non-compliant; and

adding the one or more non-compliant requests to the
application model.

#* #* #* #* #*

10

15

26

