7023254 A2 NI 0O 0O OO A

r~

WO 20

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
1 March 2007 (01.03.2007)

(10) International Publication Number

WO 2007/023254 A2

(51) International Patent Classification: Not classified
(21) International Application Number:
PCT/GB2006/003008

(22) International Filing Date: 11 August 2006 (11.08.2006)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
0517501.3 26 August 2005 (26.08.2005) GB
(71) Applicant (for all designated States except US): ELEC-
TROSONIC LIMITED [GB/GB]; Hawley Mill, Hawley

Road, Dartford, Kent DA2 7SY (GB).

(72) Inventor; and
(75) Inventor/Applicant (for US only): SMITH, Peter, Lionel
[GB/GB]; 14 Oakley Drive, Bromley, Kent BR2 8PP (GB).

(74) Agents: HAWKINS, Richard, Dudley et al.; David
Keltie Associates, Fleet Place House, 2 Fleet Place,
London EC4M 7ET (GB).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA,
NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC,
SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ,
UA, UG, US, UZ, VC, VN, ZA, 7ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: IMAGE DATA PROCESSING

8 16] 18: 36
8 g Transform {, 36 1 et Hotizontal {45 2 183)
3 16 Haaror 210 1§ LN MUX { .
— v Trmisforn: = 36 1o 108 ™
l [
T
e
4 6 ; 3
) f
36 |Row | 36 ¢ s 13 .) 18 36 JRow H
3 36 18 5 Single pass transform] 1 i 36 4 !
[v N o « 18 | = -
__3_3 5 .18 . | in one-diviension 4t 18 1o 36 : DOR
r2N— E atimgover a frame [36 P : DR
Cooluniii
< = .
U GG S .
108 B !
" Multi YUY block pass overiaframc
« Level | Vertical Control
- Level 2 Horizautal
- Level2 Vertical
- Level 3 Horizontol i
- Level 3 Vertical S
L Lovels Horizonal 2 ouT
- imu]\-/Icnicnl , 108
- Level 5 Horizont ’ —
© Levels Vertioal i mux
1 Packetiser Caiter 3
Network: N
N !
Completed. YUV

black fraisform

(57) Abstract: Methods of data encoding using trees formed with logic gates are described which lead to spatial compression of
image data. Data encoding is achieved using a five-level wavelet transform, such as the Haar or the 2/10 transform. A dual transform
engine is used, the first and engine being used for the first part of the first-level transform, the second part of the first-level transform
and the subsequent-level transforms being performed by the second transform engine within a time interval which is less than or equal
to the time taken by the first transform engine to effect the part-transform. Each bit plane of the resulting coefficients is then encoded
& by forming a tree structure from the bits and OR logical combinations thereof. Redundant data are removed from the resulting tree
structure, and further data can be removed by using a predetermined compression profile. The resulting blocks of compressed data
are of variable length and are packaged with sync words and index words for transmission so that the location and identity of the
transformed data blocks can be determined from the received signal.

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

IMAGE DATA PROCESSING

The present invention relates to methods of data processing, and in particular, to methods
of processing data relating to images. The invention is particularly, but not exclusively,

concerned with methods of data compression.
The Compression Problem
Assuming that an electronic image is already in a digital form, image compression is the

means by which the number of data bits required to represent the image is significantly

reduced. Typical parameters are as follows:

Color parameters 3 (e.2. RGBor YUV)

Bits per color 8 (ore.g. 4,10, 12)

Horizontal pixels 1400 (or, e.g. 720, 1024, 1600, 1920)
Vertical pixels 1050 (or, e.g. 588, 768, 1200)
Frames per second 60 (or, e.g. 24, 30, 85)

Thus an uncompressed data rate for an SXGA+ (1400x1050) image running at 60Hz,

which could be a typical requirement for a high-end product, could be:
3x8x1400x1050%60 = 2,116,800,000 bits per second

“Traditional” methods of bandwidth reduction, originally introduced in the analog era, but
in fact equally applicable today include: (a) the reduction of colour bits by using alternative
colour space (e.g. reduced chrominance information); and (b) the reduction of data per
frame (e.g. by using “interlaced” images each of half full frame resolution, but still

allowing high frame rate for motion).

Thus, a “High-Definition” image data rate (based on the so-called 1920i format) could be:

16x1920x1024x30 = 943,718,400 bits per second

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
2

However, such arrangements can, at best, only partially alleviate the problem. Clearly
much more aggressive methods are needed. Target bit rates for images ranging from video
to UXGA, with varying amounts of motion, lie in the range 0.5 — 100Mb/s, with an

emphasis on rates below 10Mb/s.
Basis of Compression

There are two types of image compression, spatial and temporal. Spatial compression
reduces the amount of information needed to describe a single image frame, and temporal
compression reduces the need to send full frame data for every frame, while still

maintaining movement in the decompressed image.

A desirable strategy for compressing a single-image frame using spatial compression is as
follows:

(a) finding a method by which the image can be described in a more efficient or
“shorthand” way; for example if a large area is colored green, simply defining the area
with a limited number of co-ordinates, and coding it “green” instead of recording every
pixel;

(b) optionally taking advantage of known characteristics of human vision, and
eliminate or reduce the data relating to aspects of the image that the human viewer may not
see; and

(c) taking the resulting numerical data and recording it more efficiently, for
example by suppressing redundant zeros, or using standard lossless data compression

techniques like run length encoding.

The principal strategy for temporal compression is to compare successive images, and to
limit the information transmitted to the changes between one image and another. When
such a method is used, there must be a method of periodically sending a full frame image

or its equivalent to ensure that the image reconstruction is working from a correct datum.

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
3

Required Attributes of a Compression System

In developing a compression system for particular applications, a number of priorities can
be identified:
(@ the system must work in real time with minimum latency;
(b) the system must be suitable for different “bit depths”; while 8-bit pixels are
typically used, it would be desirable to extend the system to 10- or 12-bit pixels for
particular applications;
(©) the system must be scaleable in respect of spatial resolution; the highest
current resolution is 1600x1200 (UXGA) but in principle the system should be able
to cope with higher resolutions as they are introduced;
(d) in hardware terms the system needs to be “symmetrical”, i.e. the cost of
realizing the encoder should not be significantly different from that of realizing a
decoder; (although it is recognized that there is also a place for a software-based
decoder for some applications);
(e) the system must be realizable using standard components (although an
ASIC version would be envisaged for high volume applications);
® it must be possible to extract a low-resolution version of a high-resolution
image or to extract part of a high resolution image, without the need to process the

whole high resolution image data: this feature is of great significance.
Choice of the Wavelet Transform

Practical spatial image compression systems require a method by which redundancy in the
image information can be easily identified and eliminated. While it is theoretically

possible to analyze the original pixel numerical data, in practice this is inefficient and

computationally intensive.

Current practice is to “transform” the original pixel data into another format. The new
format does not itself reduce the amount of data needed to represent the image, but what it
does do is to present the data in such a way that redundant information can be easily

identified and eliminated. It also presents the data in a way that can be efficiently encoded.

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

4

The idea of a transform is exemplified by the Fourier theorem that states that any complex
waveform can be reproduced by adding together a number of harmonically related sine
waves of varying amplitudes. The greater the number of harmonics used; the closer the
result is to the original waveform. Thus, for example, a “square wave” can either be
described in the “time” domain, where its amplitude is shown as changing from zero to
maximum and back again at regular intervals, or it can be described in the “frequency”
domain; where a set of coefficients is given that applies to each harmonic of the

fundamental frequency of the original waveform.

The concept of a transform is neatly illustrated by the square wave example. If the

amplitude of the harmonics is plotted against frequency, a Sinx / x function is the result.

Figure 1 shows such a “transform pair”. If the left waveform represents the amplitude with
respect to time, the right shows the distribution of frequencies, but the same is true in
reverse: if the left represents the distribution of frequencies, the right represents the

resulting amplitude with respect to time.

A characteristic of the transform pair shown is that as the left function gets narrower, the
right hand function gets wider. This is the equivalent of saying that if only a narrow range
of frequencies is involved, the resulting amplitude distribution will be “wide and flat” — at
the limit when the frequency distribution is zero, the result is a flat line of infinite length,
ie. “DC”.

An interesting point about this transform pair example is that it gives a clue as to how a
time/frequency transform can be made. If the left function represents the bandwidth of a

filter, the right function represents the filter’s impulse response.

Image compression does indeed use the idea of the frequency domain. The usual
arrangement is to divide the image into blocks, each block consisting of an array of pixels.
Each block is then reviewed for frequency distribution: “high” frequency occurs at image

“edges”, whereas an area of uniform “brightness” exhibits “low” frequency.

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
5

The best known transform for image compression is the Discrete Cosine Transform (DCT),
a special version of the Fourier transform. The principle is that of “testing” the image data
against a range of frequencies, and generating a coefficient for each. The process requires
the use of basis functions that are themselves in principle endless sine waves (but in
practice necessarily truncated). A feature of the DCT is that the frequency domain is
divided into equal increments, and a corollary of this is that the basis functions contain a

different number of cycles according to frequency.

The Wavelet Transform has gained popularity as an alternative to the DCT and is achieved
using a series of complementary high and low pass filters that divide the input bandwidth
in half, arranged in cascade. The output of each filter is down-sampled by a factor of two,
as illustrated in Figure 2, so that the output data of the cascade is the same size as the input

data. The high pass filter’s impulse response is a “wavelet”.

The characteristic of a wavelet is that, in this context, the wavelet basis functions all
contain the same number of cycles, irrespective of frequency: meaning that they are of
different length. In the cascade arrangement shown, the set of wavelets is derived from

one single wavelet that is scaled by a factor of two at each stage.

At the end of the cascade, there is a heavily band-limited signal. Adding coefficients from
the previous frequency band doubles the available resolution, and if the process is
repeated, resolution is doubled again. This demonstrates three attributes of the wavelet
transform:

(a) it is naturally scaleable;

(b) the frequency domain is divided into octaves, and not equal increments; and

(c) in the image processing context, it is possible to derive a low resolution version

of the image by using only part of the available data.

To take a simple example, if 16 input samples are fed into a four-stage cascade, the first
stage will yield eight difference samples; the next four, the next two, finally a single
difference signal along with a single value derived from the sequence of low pass filters
which can be regarded as the average “brightness” of all 16 samples (DC component). The

total number of output samples is the same as that of the input, i.e.:

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

(8 +4 + 2 + 1) differences +(1) average = 16

The high-frequency components of the image are described by a large number of short

wavelets, the low-frequency parts by a small number of long wavelets.

The wavelet transform can be regarded as a series of discrete signals in time, each of which
gives a multiple resolution analysis of the image. The purpose of the transform is to
deconstruct the image into coefficients that are of greater or lesser significance.
Insignificant coefficients can then be quantised or eliminated. The wavelet transform

provides the best compaction of significant coefficients (compared to other transforms).

Electronic images are not “one-dimensional” but consist of two-dimensional pixel arrays.
Thus, in image compression it is necessary to carry out the transform process in two
dimensions. The process of single stage wavelet decomposition is shown in Figure 3. The
original image is filtered into four frequency bands; LL is the original image low pass
filtered and sub-sampled in both the horizontal and vertical directions. HL consists of the
residual vertical frequencies, i.e. the vertical component of the difference between the
original image and the LL image. Similarly, LH contains the residual horizontal
frequencies, and HH, being the high-frequency component of both vertical and horizontal

filtering, represents the residual diagonal frequencies.

In practice a multi-stage decomposition takes place. LL represents the whole image (or
section of image) at reduced resolution, so now the filtering process is applied to the LL
image to achieve a second level of decomposition. In order to achieve a lossless transform
(i.e. one where no information content is lost) it is necessary to repeat the process down to

the spatial equivalent of the individual pixel.

Thus, for example if the process is applied to a 4x4 pixel block, a “Level 1” transform can
be imagined where four coefficients are derived by applying the filter pair in both the
horizontal and vertical directions. A ‘“Level 2” transform then carries out the same process

on the one quarter of the information representing the outputs of the low pass filters, which

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
7

in spatial terms is at the pixel level. (If the block were bigger, more “levels” would be

required to achieve the lossless transform.)

The decoding of the transform (“reconstruction”) is the inverse of the encoding
(“decomposition” or “deconstruction’) process — pointing to a high degree of symmetry in
any practical execution. At the simple filter pair level, if the two input streams are up-
sampled by a factor of two, then filtered and re-combined, the result is the original spatial
data. For perfect reconstruction to take place the decoding filters must exactly match the

response of the encoding filters, and the number of “levels” must be the same.

The wavelet transform was chosen as the basis of the preferred compression method
because:

(a) it has inherent scalability;

(b) it provides the best compaction of significant transform coefficients;

(¢) it is easy to derive a low-resolution version of an image without processing the

whole image data;

(d) it is amenable to fast parallel processing;

(e) it is amenable to efficient encoding; and

(f) the encoding and decoding processes (to and from the transform) are

symmetrical.

In realizing a compression system based on the wavelet transform a number of important
practical points have to be taken into account in order to ensure that the system is

practicable to realize using standard components, and that it meets the needs of the market.

Some particular points that had a great influence on the design are:

(a) the system must be able to accommodate a wide range of spatial
compression ratios from lossless (typical achieved ratio 2:1) though visually
lossless (maybe as high as 30:1) up to lossy (50:1 and upwards);

(b) the operation of the encoding and decoding processes must be deterministic,
in the sense that they must operate within defined time cycles, independent
of the complexity of the image. Obviously they must operate in “real time”;

and

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

(©

8

the differing needs of full motion “video” images and high resolution

“graphics™ images must be fully taken into account.

A description of the overall system can be divided into sections, summarized as:

(2)
(b)
(©
(d)
(e)
®

the input system, choice of color space;
the wavelet transform engine;

the encoding of the resultant data;

the encoding for temporal compression;
the network connection; and

decoding options.

The different stages from image input to data stream output are illustrated in Figure 5.

A practical system must, as far as practicable, be based on existing standards. Thus the

“input” to the preferred system is based on current digital image standards, primarily the

DVI standard for computer graphic images, and the SDI and HDSDI standards for video

and High Definition video images. DVTI itself is practically limited to an image resolution

of 1600x1200 (24 bits per pixel) but it is possible to gang up multiple DVI signals to

describe a larger image. Clearly any practical system must be designed to adapt to higher

resolutions and new transport standards as they become available.

Electronic images are normally described by the color parameters RGB (Red, Green,

Blue). In principle, therefore, any compression system must operate in triplicate; one

“channel” for each color parameter. It can be convenient to use an alternative color space,

generally referred to as YUV, where Y is the “luminance” or “white brightness” value, and

U and V are two “color difference” values referred to collectively as the “chrominance” or

“color difference” values. Although in the basic transform from RGB to YUV there is no

reduction in the amount of data, in practice the human eye is less sensitive to chrominance

spatial resolution than it is to luminance spatial resolution; and this fact has been used as a

means of bandwidth reduction in color television since its inception.

While not limited to the use of YUV, the preferred system is based on it since this permits

differential encoding rates for chrominance and luminance information, thus taking

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

9

advantage of the human eye response to improve compression efficiency. While the
transform between RGB and YUYV is, apparently, a matter of simple arithmetic, there are

pitfalls which can result in either a degradation of the image, or an increase in the amount
of data.

The CCIR 601 standard defines component video by the following matrix:

Y 0.299 0.587 0.114 R

Cr = 0.500 -0.419 -0.081 G
Cs -0.169 -0.331 0.500 B

This matrix does not lend itself to a lossless reversible conversion, since non-integers are
used as conversion factors, and so the preferred system uses the following equations,
representing an approximation of the CCIR matrix, to achieve lossless reversible

conversion, where Y, U, and V, are the reversible luminance and chrominance values:

U=R-G G=Y,~l(U.+ V)]
V.=B—G R=U.+G
L,=G+l(U+V,)i 4] B=V,+G

In the above equations the symbol |x | is referred to as the “floor” function, and is defined
as the greatest integer which is less than or equal to x. The equations above have the
following attributes:
(a) if the input is RGB of N bits, then the lossless transform results in Y, also
having N bits, but the components U, and ¥, have N+1 bits; and

(b) when the components are then inverted the result is an RGB signal of N
bits.

Two questions arose as part of the development behind the present invention:
(8 would it be possible to absorb the creation of the extra bits in the
chrominance components when applied to the wavelet transform without

losing the lossless performance?

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

10

(b) should the equations be modified to optimize performance when lossy

compression is required?

A significant finding was that both the colour transform and the wavelet transform bit
growth for lossless operation could be eliminated by applying the combined result to the
property referred to as the property of precision preservation (PPP). Further details of this
technique can be found in “An Approach to the Integer Wavelet Transformations for
Lossless Image Compression” by Hongyang Chao, Paul Fisher and Zeyi Hua, December
1997. However, both the equations above and the PPP technique apply only to lossless

transforms.

Where lossy compression is required, an alternative technique is used. Here the aim is
simply to preserve the original range and ensure that there is no bit growth. This is

achieved using the following equations:

U =IlR-G/2/ G=Y,~ U +V)2J]
V,=[B-G)12) R=2U.+G
Y, =G+ [U+wr/ B=2V,+G

It would therefore be desirable to provide methods of image data compression, both spatial

and temporal, which permit efficient encoding of the data and which can be either lossless

or lossy.

In accordance with a first aspect of the present invention there is provided a method of
encoding an input sequence of data bits by forming a tree structure, the method
comprising:

(@) forming groups of data bits from the input sequence and logically
combining the data bits within each group to form a sequence of first-stage
logic output bits;

(b) repeating step (a) iteratively, by forming groups of logic output bits from
the first-stage logic output bits and logically combining logic output bits
within each group to form a sequence of intermediate logic output bits, until

there is a single final logic output bit;

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
11

(©) generating an encoded output bit stream comprising said final logic output
bit and any or all of the logic output bits and any or all of the data bits of the
input data sequence, in dependence on at least a first exclusion condition
that, if a given logic output bit is equal to a first predetermined value, which
uniquely defines the data bits and any logic output bits which have been
used to generate said given logic output bit, then said uniquely-defined data
bits and said uniquely-defined logic output bits are excluded from said

output bit stream.

This provides a convenient way of encoding data and which, in certain circumstances,

permits a high degree of lossless compression.

The data bits and the logic output bits may be so combined using a logical OR
combination, in which case the first predetermined value is 0. It will be appreciated that,
an alternative arrangement would be to provide a logical AND combination, in which case

the first predetermined value would be 1.

This method is particularly advantageous when the number of data bits in the sequence
which are equal to the predetermined value (e.g. 0) is expected to be sufficiently more than
the number of data bits which are equal to the logically opposite value (e.g. 1), such that
the resulting encoded output bit stream comprises fewer bits than the input sequence of

data bits. This provides an efficient method of lossless compression.

The input sequence of bits may comprise one of a plurality of rows of bits which
collectively define a bit plane of a transformed block of image data, a bit plane being
defined as a plane formed from the respective bits of equal significance within the

transformed block of image data.

In this case, steps (a) and (b) may be applied to each of the rows of said bit plane, thereby
generating, for each row, a respective single final logic output bit which constitutes a row

output bit, and the method further comprises forming a further row tree structure by:

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

12

() forming groups of said row output bits and logically combining the row
output bits within each group to form a sequence of first-stage row logic
output bits;

(ii) repeating step (i) iteratively, by forming groups of row logié output bits
from the first-stage row logic output bits and logically combining the row
logic output bits to form a sequence of intermediate row logic output bits,
until there is only a single final row logic output bit; and

wherein the resulting output bit stream comprises:
said final row logic output bit;
any or all of the first-stage or intermediate row logic output bits; and
any or all of the row output bits,

in dependence on a second exclusion condition that, if a given row logic output bit

is equal to said first predetermined value, which uniquely defines the row logic output bits
and any row output bits which have been used to generate said given logic output bit, then
said uniquely-defined row logic output bits and said uniquely-defined row output bits are

also excluded from said output bit stream.

Each group of said row output bits comprises five row output bits. This provides a
particularly efficient method of encoding, since five row output bits can effectively by

processed in parallel.

However, not all of the row output bits are necessarily formed into groups, in which case
those row output bits which are not so grouped are combined with other row logic output

bits within the row tree structure.

The resulting output bit stream preferably additionally comprises some or all of the non-
grouped row output bits, in dependence on an additional exclusion condition that, for each
non-grouped row output bit, if the row logic output bit, which results from the logical
combination of that non-grouped row output bit with the other row logic output bits with
which they are combined in the row tree structure, is not equal to said first predetermined
value, then that non-grouped row output bit is excluded from the output bit stream, but alt

of the intermediate logic output bits which were logically combined to form that non-

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
13

grouped row output bit are included. Again, this provides an efficient way in which the

data can be compressed during encoding.

If the transformed block of image data has been transformed using a multi-level wavelet

transform, the row output bits may be grouped in step (i) in accordance with the level of

the transform to which they relate.

In this case, the row output bits of the first and second levels may be grouped together in
step (i), and the row output bits of the third level may be grouped with the first-stage row
logic output bits.

In accordance with a further aspect of the present invention there is provided a method of
encoding a transformed image data block which comprises an array of transformed image
coefficients configured as a plurality of bit planes, by forming the data bits from each bit
plane as a respective sequence of data bits and applying such a method to the bit sequences
of each bit plane, starting with the most significant bit plane and ending with the least
significant, so as to derive an encoded output bit stream representing the entire transformed
data bock.

The transformed image data block may additionally comprise a bit plane in which the signs
of the transformed image data have been encoded, and wherein the method further
comprises incorporating in said output bit stream bits representing the respective signs

associated with the most significant data bit of each of the transformed image coefficients.

This method may be subject to a further exclusion condition that, for each logic value
which is equal to a second predetermined value, such as 1, the corresponding logic values
in the same position within the corresponding row tree structure associated with each
succeeding bit plane are excluded from the encoded output bit stream, but wherein the
logic values or data bits immediately preceding said corresponding logic values are

retained, even if they would otherwise have been excluded by said first exclusion

condition.

This provides a further efficient way of compressing the data in a lossless manner.

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

14

The encoded output bit stream is preferably additionally subject to a compression
exclusion condition in which bits occupying predetermined positions within the or each
tree structure are excluded from said encoded output bit stream in accordance with a
predetermined compression profile. This enables a predetermined lossy compression to be

applied within the encoding process.

The compression profile may be defined for each of said bit planes so as to exclude a
greater number of bits from the bit planes of lower significance than those from the bit

planes of greater significance.

Alternatively, or in addition, the compression profile may be defined so as to exclude a
greater number of row logic output bits generated in earlier stages of step (ii) than those

generated in the later stages thereof.

The output bit stream may comprise, for each bit plane in sequence starting with the bit
plane of greatest significance and ending with the bit plane of least significance: the non-
excluded row output bits, followed in sequence by: (a) the row logic output bits; (b) the
non-excluded intermediate logic output bits; and (c) the non-excluded data bits. This

feature enables the data to be decoded efficiently.

In this case, the output bit stream preferably further comprises, for each bit plane: (d) the
bits representing the respective signs associated with the most significant data bit of each

of the transformed image coefficients.

The invention extends to a method of decoding a bit stream which has been encoded using
the above method in which the bits which have been excluded by any exclusion condition
are regenerated so as to recreate the original input sequence of data bits from which the bit

stream has been encoded.

In accordance with a further aspect of the present invention there is provided a method of
preventing the creation of blocking artefacts during the transmission of image data, the

method comprising: receiving an original set of data relating to an image in the form of an

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
15

array of adjoining blocks; and processing the data of each block, together with data of each
immediately adjacent block within the array, in accordance with a predetermined
transformation algorithm, thereby to create a respective block of transformed data which is

substantially devoid of block boundary artefacts.

The transformed data in each of the blocks are preferably compressed separately. This, in
turn, means that the resulting compressed blocks can be decompressed separately, and this

permits a selection of only some compressed blocks to be made for decompression.

The method preferably further comprises transmitting sequentially the blocks of

compressed data.

The present invention extends to receiving the transmitted blocks of compressed data and

sequentially decompressing each block to recreate said transformed data.

The method preferably further comprises processing said recreated transformed data in

accordance with a reverse algorithm so as to recreate the original set of data.

The original set of data may constitute the pixels of an entire frame of an image signal,

wherein each block may comprise 1,024 pixels.

In accordance with a further aspect of the present invention there is provided a method of
recreating an original set of data relating to an image in the form of an array of adjoining
blocks which has been processed in accordance with the above method to create blocks of
transformed data, the method comprising processing each block of transformed data in
accordance with an algorithm which is an inverse of said predetermined transformation
algorithm, thereby to recreate the data of each block, together with data of each

immediately adjacent block within the array, and combining the resulting processed blocks

thereby to recreate the original image.

The predetermined transformation algorithm may comprise a wavelet transform, such as
the 2/10 transform.

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

16

In accordance with a further aspect of the present invention there is provided a method of
performing a first transformation on each of a first and a second data group to generate first
and second transformed data groups respectively, and performing a plurality of subsequent
transformations on each of the first and the second data group, the method comprising, in
sequence: performing said first transformation on said first data group using a first
transform engine; and performing all of said subsequent transformations on said
transformed first data group using a second transform engine within a time interval which
at least partly overlaps a time interval within which said first transform engine performs

said first transformation on said second data group.

This provides a particularly efficient method of effecting a multi-level transform, since

only two transform engines are required.

The time taken to perform all of said subsequent transformations on a transformed data
group is preferably less than or equal to the time taken to perform the first transformation
thereon. This provides the advantage that the subsequent transformation steps do not give

rise to any delay in the overall multi-level transformation method.

The method preferably further comprises storing the transformed data resulting from each
transformation on said first data group in a first memory storage area, and storing the
transformed data resulting from each transformation on said second data group in a second
memory storage area, and, when applied to a plurality of further data groups, the data
resulting form each transformation on the or each further odd-numbered data group are
preferably stored in the first memory storage area, and the transformed data resulting from
each transformation on the or each further even-numbered data group are preferably stored
in the second memory storage area. Such an arrangement requires only two memory

storage areas, even though a multi-level transform is performed.

After each of said subsequent transformations the resulting transformed data are preferably
stored in their respective memory storage area so as to overwrite at least some of the data

already stored therein resulting from one or more previous transformations.

10

15

20

25

WO 2007/023254 PCT/GB2006/003008

17

In accordance with a further aspect of the present invention there is provided a method of

performing a plurality of transformations on first and second data groups, the method

comprising, in sequence:

(2)

(®)

(©)

@

(e

performing a first transformation on said first data group using a first
transform engine, so as to generate a first once-transformed data group;
storing said first once-transformed data group in a first memory storage
area;

reading said first once-transformed data group from said first memory
storage area;

performing a second-stage transformation thereon using a second transform
engine, thereby generating a first twice-transformed data group; and

writing said first twice-transformed data group into said first memory

storage area so as to overwrite said first once-transformed data group;

the method further comprising, in sequence:

®

(®

®

®

®

performing said first transformation on said second data group using said
first transform engine, so as to generate a second once-transformed data
group;

storing said second once-transformed data group in a second memory
storage area;

reading said second once-transformed data group from said second memory
storage area; |

performing said second-stage transformation thereon using said second
transform engine, thereby generating a second twice-transformed data
group; and

writing said second twice-transformed data group into said second memory

storage area so as to overwrite said second once-transformed data group;

wherein step (f) commences after the completion of step (a) but before the

completion of step (e).

30 Step (f) preferably commences before the completion of step (c).

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

18

Steps (a) to (j) may be repeated using a multiplicity of data groups, in which case steps (a)

to (e) are applied to odd-numbered data groups and steps (f) to (j) are applied to even-

numbered data groups.

The method preferably further comprises, in sequence, after step (e):

(e1) reading a sub-group of said first twice-transformed data group from said
first memory storage area;

(e2) performing a third-stage transformation thereon using said second transform
engine, thereby generating a first three-times-transformed data sub-group;
and

(e3) writing said first three-times-transformed data sub-group into said first
memory storage area so as to overwrite said sub-group of said first twice-
transformed data group;

and, after step (j):

(1) reading a sub-group of said second twice-transformed data group from said
second memory storage area;

(G2) performing a third-stage transformation thereon using said second transform
engine, thereby generating a second three-times-transformed data sub-
group; and

(is) writing said second three-times-transformed data sub-group into said second

memory storage area so as to overwrite said sub-group of said second twice-

transformed data group.

The time taken to perform the combination of steps (c) to (es3) is preferably less than or

equal to the time taken to perform step (2), and the time taken to perform the combination

of steps (h) to (j3) is less than or equal to the time taken to perform step (f).

The method preferably further comprises, in sequence, after step (e3):

(e4)

(es)

reading said first three-times-transformed data sub-group from said first
memory storage area;
performing a fourth-stage transformation thereon using said second

transform engine, thereby generating a first four-times-transformed data

sub-group;

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
19

(es) writing said first four-times-transformed data sub-group into said first
memory storage area so as to overwrite said first three-times-transformed
data sub-group;

and, after step (js):

(Gs) reading said second twice-transformed data group from said second
memory storage area,

(Gs) performing a fourth-stage transformation thereon using said second
transform engine, thereby generating a second four-times-transformed data
sub-group; and

(j§) writing said second four-times-transformed data sub-group into said second
memory storage area so as to overwrite said second three-times-transformed

data sub-group.

The time taken to perform the combination of steps (c) to (es) is preferably less than or
equal to the time taken to perform step (a), and the time taken to perform the combination

of steps (h) to (je) is less than or equal to the time taken to perform step (f).

The method preferably further comprises repeating steps (e3) to (es) and steps (j3) to (je)
plurality of times, using the transformed sub-groups stored in the respective memory
storage areas, wherein each even-numbered transformation is performed on only a sub-
group of the data stored in the memory and each odd-numbered transformation is

performed on all of the data generated in the preceding even-numbered transformation

step.

The data groups may be subjected to ten transformations, which will be the case with a
five-level wavelet transform, in which each level requires two separate transformation

steps.

The plurality of transformations may collectively comprise a multi-level wavelet

transform, such as the Haar wavelet transform or the 2/10 wavelet transform.

Each data group may comprise a frame of image data.

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
20

In accordance with a further aspect of the present invention there is provided a method of
performing a plurality of reverse transformations on first and second data groups which
have been transformed in accordance with a method as defined above, the method
comprising, in sequence: performing all but the last one of the reverse transformations on
said first transformed data group using a first reverse transform engine; and performing the
last reverse transformation on said first transformed data group using a second reverse
transform engine within a time interval which at least partly overlaps a time interval within
which said first reverse transform engine performs all but the last one of the reverse

transformations on said second transformed data group.

The time taken to perform said all but the last one of the reverse transformations on said
first transformed data group is preferably less than or equal to the time taken to perform the

last reverse transformation on said first data group.

In accordance with a further aspect of the present invention there is provided a method of
transmitting data comprising: grouping the data into a sequence of frames comprising a
first frame and at least one subsequent frame, each frame comprising a predetermined
plurality of data blocks; transmitting the first frame in its entirety; and transmitting only
those data blocks within the or each subsequent frame which are significantly different
from the corresponding data block within the first frame.

This method provides an enormous advantage over existing systems of transmitting image
data, in which information concerning the difference between sequential image frames is
transmitted in order to reconstruct the desired image frames. In the event of a transmission
error, the error would in this case continue until a further complete frame is transmitted. In
contras, with the above method, only those blocks which have changed between
consecutive frames are transmitted, and these are used to create the desired subsequent

frames.

The method preferably further comprises: processing each of said data blocks in
accordance with a predetermined algorithm to evaluate a parameter for that data block; for
each data block within the or each subsequent frame, determining if the value of the

associated parameter is significantly different from the corresponding data block of the

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
21

preceding frame within the sequence; wherein the step of transmitting only those data
blocks which are significantly different comprises transmitting only those data blocks
within the or each subsequent frame for-which there has been a positive determination.
This feature effectively provides a method of “thresholding” the measured differences
between blocks of sequential frames, so that only those blocks which exhibit a significant

difference are transmitted.

The step of grouping the data may comprise grouping the data into a plurality of said

sequences, each containing »n frames, where 7 is a predetermined number, such that at least

one entire frame is transmitted within each sequence of # consecutive frames of data.

The method preferably further comprises transmitting an additional entire frame at regular

intervals.

The method preferably further comprises transmitting an additional entire frame on receipt

of a demand signal.

The present invention extends to a similar method in which the data are compressed, the
method comprising grouping the data into a sequence of frames comprising a first frame
and at least one subsequent frame, each frame comprising a predetermined plurality of data
blocks; compressing the first frame in its entirety; and compressing only those data blocks
within the or each subsequent frame which are significantly different from the

corresponding data block within the first frame.

If the data to be compressed has been subjected to a wavelet transform, the parameter may
usefully be evaluated on the basis of only the most significant coefficient within each sub-
band in each data block. In this case, the parameter is preferably evaluated on the basis of
the position within the data block of the most significant coefficient, and may be evaluated
on the basis of only the n most significant coefficients selected from the group comprising
the most significant coefficient within each sub-band in each data block, where n is a

predetermined number. In this case, » may be equal to 8.

The wavelet transform may be a five-level transform resulting in 16 sub-bands.

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

22

The method preferably further comprises transmitting only the compressed data.

If the data comprises colour image data, then it is preferable that only the luminance

component of the colour image data is processed in order to evaluate said parameter.

Preferably only those components of the data within each data block having values higher

than a predetermined threshold are processed to evaluate the parameter for that data block.

In accordance with a further aspect of the present invention there is provided a method of
configuring a plurality of variable-length data blocks into a data stream from which each
data block can subsequently be retrieved, the method comprising: for each data block,
forming a respective indexed data block comprising: a sync word which is identical for
each indexed data block; an index number which uniquely identifies the data block within

said plurality of data blocks; and the respective data block.

This method enables variable-length blocks to be recreated from a data stream without the

need for the length of each block to be defined in a header section.

Each indexed data block preferably comprises, in sequence, said sync word, said index

number and said respective data block.

The sync word preferably comprises a sequence of 16 bits and/or a sequence of bits equal
to 1.

Preferably all of the index numbers comprise bits sequences of equal length, such as 11

bits in length, which enables 2048 different data blocks to be uniquely identified.

Each of the data blocks may comprise a data block which has been transformed in

accordance with a wavelet transform.

The present invention extends to a method of retrieving variable-length data blocks from a

data stream, the data blocks having been configured in accordance with the above method,

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
23

the method comprising locating said sync word within said data stream thereby to identify

said data blocks; and retrieving the resulting identified data blocks from said data stream.

Each of the data blocks may have a characteristic which enables it to be verified as a valid
data block, in which case the data stream is searched sequentially for a data sequence
which is identical to said sync word, thereby to identify a potential indexed data block
comprising a potentially valid data block, and validating said data block only: (a) if it is
verified by said characteristic to be a valid data block; and (b) if the potential indexed data
block is followed immediately within the data stream by a further potential indexed data

block comprising a data sequence which is identical to said sync word.

The method preferably further comprises selecting for a subsequent processing step only
those data blocks which have been validated. If the data stream comprises data
corresponding to an image to be displayed, then the processing step comprises displaying

the resulting selected data blocks.

The present invention extends to a method of selecting a region of interest from within a
plurality of variable-length data blocks which have been retrieved in accordance with the
above method, in which only those retrieved variable-length data bocks which are
associated with one or more predetermined index numbers are selected. This provides a
particularly advantageous way in which data, such as relating to a particular position

within an image, can be selected, e.g. for display, from a data stream.

Preferred embodiments of the present invention will now be described in detail, with

reference to the accompanying drawings, in which:
Figure 1 illustrates an example of a “transform pair™;

Figure 2 illustrates how the wavelet transform is achieved using a set of filters in

cascade;

Figure 3 shows a single-stage wavelet decomposition;

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
24

Figure 4 shows a single-stage wavelet reconstruction in a decoder;
Figure 5 illustrates processes within the preferred encoder;

Figure 6 illustrates five-level decomposition;

Figure 7 illustrates a block-based Haar transform;

Figure 8 shows an example of a pixel array for illustrating the operation of the

transforms;

Figure 9 illustrates the result of applying Equations 1 and 2 to the array of Figure 8

in which the equations have been solved in the ranger=0...9and c=0... 4;
Figure 10 illustrates the result of applying Equations 5, 6, 9 and 10 to the horizontal
transform data shown in Figure 9 in which the range is r = 0 ... 4 and ¢ = 0 ... 4,

representing the Haar Transform for the example pixel array;

Figure 11 illustrates the results of applying the 2/10 transform equations to the

sample pixel array;

Figure 12 is a block diagram showing the architecture of the entire encoding

system,;
Figure 13 illustrates the preferred transform engine in detail;
Figure 14 illustrates successive re-writing in memory;
Figure 15 illustrates the CKL-tree showing how the coefficient data are analyzed;

Figure 16 illustrates an L-tree made up from 64 L-types, in which 24 are shown as

“L boxes” on the diagram, the other 40 being implied as children of the Level 3 LH and
HH L-types);

10

15

20

25

30

WO 2007/023254

25

PCT/GB2006/003008

Figure 17 illustrates the concept of eliminating coding loss by examining all eight

data planes as a composite;

Figure 18 illustrates the concept of the weighting factor applied to a five-level

transform, in which typically a=2;

Figure 19 illustrates how the organisation of the coefficient data in one bit plane is

related directly to the wavelet transform;

Figure 20 illustrates the preferred L encoder;

Figure 21 illustrates the preferred CS encoder;

Figure 22 illustrates the LKCS pass;

Figure 23 is a diagrammatic representation of the preferred temporal encoding

Process;

Figure 24 illustrates the IEEE 802.3 frame format used in standard Ethernet;

Figure 25 illustrates the translation of the compressed image stream into IP packets;

and

Figure 26 shows a part of the bit stream, showing two consecutive image blocks

with their associated sync words and index numbers that identify the block position within

the image.

The wavelet transform engine

A significant advantage of the preferred design is that it is able to use the same “engine”

for both deconstruction and reconstruction of the image.

It uses an architecture that

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
26

consists of a single filter bank that carries out a five-level transform in two dimensions in

real time.

From the above, it can be seen that the use of a five-level transform results in data that
describe a 32x32 pixel block. However, if this were literally the case at the encoding
stage, the end result could be “blocky” images (especially at high compression ratios). In
order to ensure that data relating to pixels at the edge of a block fully takes into account the
energy of pixels in a neighboring block, the transform process must “sweep” across the
whole pixel array. Thus, while the resulting data is, indeed, formatted as representing a

series of 32%32 blocks, the image information so derived is not itself block-based.

Figure 6 shows the aim of the five-level transform process. There are 16 coefficients at
Level 3, four at Level 4 and one at Level 5. There are several ways wavelet transforms can
decompose a signal into various sub-bands. These include uniform decomposition, octave-
band decomposition, and adaptive or wavelet-packet decomposition. Out of these, octave-
band decomposition is the most widely used. This is a non-uniform band splitting method
that decomposes the lower frequency part into narrower bands and the high-pass output at

each level is left without any further decomposition.

In order to allow the system to be optimized to different source material, the preferred
system is set up to use two different wavelet transforms. The Haar transform is used for
material where the definition of sharp discontinuities or “edges” needs to be precise, and
the “Two/Ten” or TT transform is provided as an alternative for moving video images

where a “smooth” result is more pleasing.

The Haar transform is best for the compression of graphics images where it is of great
importance that the integrity of sharp discontinuities (in practice thin lines etc.) is
maintained. When moving video images are involved, there are benefits in using a
different transform, and the preferred system allows a choice between the Haar transform

and the “Two - Ten” (or TT, or 2/10) transform depending on the type of images being

used.

10

15

20

25

30

35

WO 2007/023254 PCT/GB2006/003008
27

Under severe compression there is a tendency for image artifacts to appear at block
boundaries when the image is reconstructed. The 2/10 transform processes more pixels in
the high pass filter, and this has the effect of “smoothing” the image, giving a visually

more acceptable result on video content.

In the block-based Haar transform the image is processed in 32 x 32 pixel blocks, with one
block for each of Y, U and V. This is shown pictorially in Figure 7. In practice the pixels
are processed as 16 x 16 non over-lapping blocks each of 2 pixels x 2 pixels. The actual

processing, and its similarity to that required for the 2/10 transform is described below.

In both transforms a two-stage process is used. In the first stage two coefficients L and H
are derived from the pixel data in a one-dimensional transform; in the second stage a two-
dimensional transform derives the LL, LH, HL, and HH values. In fact the equation for
the initial low pass filtering is the same for both transforms. The high-pass filtering is
similar, however, for the 2/10 transform there is an additional “predictor” value derived
from looking at existing derived low pass values. This has the effect of “smoothing” the

resulting image.

In the following equations P is used to represent the original pixel data. The suffixes ¢

represent the row and column coordinates respectively, and p indicates a predictor.

Equation 1. Derivation of L for both Haar and 2/10 transforms:

P + P
L = ﬂoo{ (r,2-c) r,(2~c)+l]
T,c 2

Equation 2. Derivation of H in the Haar Transform:

B o=Pq 2.0~ Pr oo

Equation 3. Derivation of the predictor pH in the 2/10 transform.:

- (r,c- (r,c- (r,ct1)
PH(r’ % ﬂootl: ' o

3L ooy~ 2L oy 22 =3 gy 32]

10

15

20

25

30

35

40

WO 2007/023254 PCT/GB2006/003008

28
Equation 4. Derivation of H in the 2/10 Transform:

Hr,c = P(r, 2¢) Pr, 2o+t pI-I(r,c)

Equation S. Derivation of LL for both Haar and 2/10 transforms:

L +L
1L = floo (2:r,¢) (2-r+1),c
(r,0 2

Equation 6. Derivation of LH in the Haar Transform:

LH .= [L(Z-r, o~ L[(2-r)+1,c]]

Equation 7. Derivation of the predictor pLH in the 2/10 Transform:

o BLL o =21y o+ 2200, o =3LL o+ 32
P, T 1O 64

Equation 8. Derivation of LH in the 2/10 Transform:

LH

r,c = L(2-r, 0 L[(2~r)+1,c] + pLH

(r,0)

Equation 9. Derivation of HL for both Haar and 2/10 transforms:

H +H
HL = floo (2-1,0) (2:)+1,¢
(r,0) 2

Equation 10. Derivation of HH in the Haar Transform:

HH, = [H(Z-r, o ~Hr @241, c]]

Equation 11. Derivation of the predictor pHH in the 2/10 Transform:

pHH — ﬂoo‘{:}m‘(r—z,c) - 22'HL(r—l,c) + 22'HL(r+1,c) - 3'HL(r+2,c) +32
(r,0) " 64

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
29

Equation 12. Derivation of HH in the 2/10 Transform:

HH =H,. o~ Hape,q TP, o

Example of the Transform Equations in Action

The operation of the above equations is best understood by example. Figure 8 shows a
pixel array of 10X10 pixels with some arbitrary values for P. The layout is purely for
example to draw attention to the workings of the 2/10 and Haar transforms. The 10x10
array is the minimum that can be used to demonstrate the 2/10 and has no other

significance.

If Equations 1 and 2 are applied to the array of Figure 8, the result is as shown in Figure 9.
Here the points to notice are:

(a) the transform process halves the number of columns (the equations are solved
for r=0....9 and c= 0...4);

(b) the overall quantity of image data has, however, remained the same (by virtue

of having the two sets of coefficients L and H).

Figure 9 results represent the first pass “one-dimensional” horizontal transform. When the
results of Figure 9 are applied to Equations 5, 6, 9 and 10, the second “two-dimensional”
vertical transform is completed. The overall result is the complete Haar transform and is of
the form shown in Figure 10. Notice how now both row and column data have been

halved, but once again the amount of data overall remains the same.

While the Haar transform can be seen to apply to the whole array, the situation with the
2/10 transform is quite different. The Haar transform operates on 2x2 pixel blocks, but the
2/10 requires data from many more pixels — in fact for the example it can only give valid

results for the four center pixels in the array (i.e. the ones shown with values 80, 48, 45,
110 in Figure 8).

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
30

Applying Equations 1, 3, and 4 in the range ¢ = 4..5 and r = 2 produces the 2/10 values for
L and H; then if Equations 5, 7, 8, 9, 11 and 12 are solved, the 2/10 values for LL, LH,
HL and HH are derived.

Figure 11 shows these solutions for the example. On the left are shown the solutions for L
and H, and, on the right, are shown the solutions for LL, LH, HL and HH. Note that the
information on the right-hand side of Figure 11 is the minimum that must be transmitted to

ensure that it is possible to recover the original pixel data.
The Reverse Transforms

Both the Haar and the 2/10 transforms are reversible and are suitable for both lossless and
lossy compression. However, in using the equations above in the form stated, there is bit
growth in the “detail” outputs (there is no bit growth in the LL or “smooth” output). For
this reason, in the preferred system, the output transform data is operated on using the
principle of “Property of Precision Preservation” already referred to above, and which
results in no bit growth while retaining a lossless performance. (The PPP applied in this
way is due to Hongyang, Fisher and Zeyi.)

An important point to appreciate with respect to the transform equations is they are all
operated in the integer domain, and yet produce lossless results. The insight here is due to

Pearlman and also to Gormish et al. from Ricoh.

The equation set for carrying out the wavelet transforms have been provided above. There
now follow the corresponding equations to reverse the process and to recover the pixel
data.

If the transform results shown in Figures 10 and 11 were to be fed into the equations that

follow (operated over the appropriate ranges), the pixel data emerging would be exactly as

shown in Figure 8.

WO 2007/023254 PCT/GB2006/003008
31

Equation set 13. Vertical reverse Haar transform to recover L and H:

LHr c+ 1
L =LL 4+ flooff ———
r2,Cc T,C 2

5
LHr c
L1'.2~1-1,c :=LLr,c = floo T
HHr ot 1
H, =HL + floo ——’2—-—
10 2 >
H =HL -1l e
r2+1,¢” 1,6 00 2
Equation set 14. Horizontal reverse Haar transform to recover pixels:
15 ,
Hr-2 o 1
Pr.?_’c.2 = Lr-2,c + floo: —-———-2
H
r2,c
20 TR IRt ﬂ°°{ 5)

H + 1
r-2+1,c
Pr-2+1,c-2:=Lr-2+1,c+ﬂoo‘(2)

H
r2+1,c
25 Pr-2+1,<:-2+1 = I"r‘2+1,c_ floo{ 2)

WO 2007/023254

32

Equation set 15. Vertical reverse 2/10 transform to recover L and H:

LH -pLH + 1)
c r,C

L =LL +ﬂ00\{ L
5 I, ¢ T,C 2

LHr c pLHr c
LL - flooff —¥———~

Lr+1,c:= T,C 2
po T PHE T 1
10 H :=HL + floo 2 :
T, C T,c 2

re” Porc
H =HL - flooff ————
r+1,c T,C 2

15 Equation set 16. Horizontal reverse2/10 transform to recover pixels:

T, > 2
20
H -pH
r,C 2:r,C
Pr,c—l—l = Lr,c - ﬂoor(—-—*—:-z-———)
Hr+1,c— pI-12-r+1,c+ 1
25 Pr+1,c:=Lr+1,c+ﬂo0 2
P <L f Hr+1,c_pH2-r+1,c
1,041 Tl,e” 10)
Operation of the transform engine
30

PCT/GB2006/003008

The essence of the practical realization of the transform engine is breaking the task down

into a number of simple steps, each one of which operates in a completely deterministic

way. Some of the problems that must be solved are:

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
33

(2) dealing with the “out of block” pixel data required by the 2/10 transform (the
32%32 block can be processed on its own in respect of the Haar transform, but the 2/10
requires data from pixels that are from a whole block and a partial block to complete the
32%32 transform);

(b) simplifying the tasks in such a way that the transform engine components do not
have to “know” whether they are dealing with vertical or horizontal data — each element
should just carry out a simple arithmetical task; and

(c) finding a way to reduce the processing time: implicit in the five-level 2D
transform process is the need to carry out a succession of operations resulting in a multiple
of the time taken to process a single frame’s worth of pixel data; clearly it is necessary to
ensure that the entire process of transforming and encoding a frame can all be carried out

in a time that is less than the original frame time.

Figure 12 is a block diagram of the entire encode system architecture, although only items
1 to 7 will be described at this stage. The YUV transform process has already been
described above. The encoder and the packetiser are described below. The principal
processes in the transform engine proper, which actually consists of two transform engines

and a large memory, are now described.

1. Image data enters the transform engine two pixels at a time and the first task is the
Level 1 Horizontal transform. This generates the L and H data according to Equation 1,
and either Equation 2 or Equation 4. It can be seen that the H equations are the same with
the exception of the predictor, so it is possible to use a single set of equations, with p being
set to zero for the Haar transform. Figure 13 shows how the data for a typical pixel » is
derived. The filter equations for deriving the values of s(n) and d(n) are shown below.
Figure 13 shows how the predictor p is derived for the 2/10 transform. The transform
engine is not itself interested in co-ordinates, so the equations are expressed in a simplified
form showing the s or “smooth” component, and the d or “detail” component. At this stage

these correspond to L and H.

s(n) = [(x(Zn) + x(2n+1))/2_/

d(n) =x(2n) —x(2n+1) + p(n)

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

34

2. Figure 12 assumes 8-bit color, so the input to the transform engine is shown as 48
bits wide (two pixels are read in at a time). When it emerges it is 54 bits wide because of
the addition of a sign. The “18 to 36” box converts the data to 108 bits wide by combining
the data of four transform coefficients. This is a stratagem for shortening the time taken to
load the memory, and therefore allowing time for the multiple pass access to the memory

needed for the succeeding two-dimensional transform.

3. The two transform engines 1, 5 are supported by a large DDR (Double Data Rate)
memory 3. The input and output of the memory 3 are equipped with multiplex switches
(MUX). The one on the input side selects between data from the output of the two
transform engines, and the one on the output sends data either to the second transform
engine or to the Coder. The memory 3 is large enough to contain the equivalent of two
image frames of data. The transform data from odd-numbered frames in a sequence are
stored in a first section of the memory 3, and even-numbered frames are stored in a second

section.

4. The data from the output of the first transform is read out of the memory 3 in
32x32 block format. To carry out the succeeding levels of transform requires the data to
undergo multiple passes through the second transform engine. In order that the engine
itself can be “dumb” and not be concerned as to whether it is processing row or column
data, row and column control is provided external to the transform engine. Prior to

arriving at the transform engine, the data is re-ordered back to 54-bit wide.

5. The idea of using external row and column control allows the second transform
engine (5) to be identical to the first one. It only works in a single dimension itself, but
produces the two-dimensional transform by treating the row and column data in sequence.
To produce the five-level transform the YUV block data must have multiple passes
through the transform engine. The reason that this is possible within the frame time is that
the Level 1 transform takes the great majority of the time (about 75%). The succeeding
levels, although requiring multiple passes, actually take up much less time because the
number of coefficients is much smaller (see Figure 6). Note that, in order to carry out the

2/10 transform, the recirculated data must include “out of block” coefficients.

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

35

6. The output of the second transform engine is re-ordered back to 108-bit
wide before going back into the memory. Figure 14 shows the idea of successive re-
writing in memory. On the left is the result of the Level 1 transform; when the Level 2
transform is completed, only the LL part of the Level 1 data is over-written with Level 2
data. It is clear from this figure why the amount of re-circulated data reduces as each level
of transform is completed. Once the Level 1 two-dimensional transform has been
completed the coefficients are stored according to the left of the diagram. The LL
coefficients are then overwritten by the new set of coefficients for Level 2. These occupy

exactly the same space in memory, as depicted on the right. The process is repeated up to
Level 5.

7. The completed YUV block transform data is released by the MUX to the encoder

section.

It is important to note: first that confirmation that the original YUV data is essentially
lossless with respect to the RGB original, and that ALL this data goes forward to the
transform process. This is equivalent to saying that all processing is “4:4:4” in
professional video terms, and ensures that there is no color spill at “edges”; and secondly,
that, at the transform stage, the idea of saving the 2/10 coefficients between blocks
achieves the numerical equivalent of a frame based transform. Thus the end result is an |
image fidelity that is blockless. However, all transform management and all the
subsequent coding is done in the block domain which is the key to efficient and

deterministic operation.
Encoding the Resultant Data

As stated above, the initial effect of a transform is not to reduce the amount of data, but

only to present it in a form that allows more efficient compression.

Data compression can be effected using standard mathematical methods (that are quite

independent of the application), but better results can be obtained when advantage is taken

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
36

of the nature of the underlying data. Wavelet transform data lends itself well to efficient

lossless and lossy compression when the data is organized into a “tree” structure.

The fundamental idea behind the use of “trees™ is that neighboring pixels in an image are
likely to be similar. In the transform domain this is expressed in a different way. If the
magnitudes of the wavelet coefficients in a higher sub-band of a decomposition are
insignificant relative to a particular threshold, then it is likely that wavelet coefficients
having the same spatial location, but relating to lower sub-bands will also be insignificant.
Furthermore when proceeding from the highest to the lowest levels of the wavelet
“pyramid” the variations in the wavelet coefficients decrease. This leads to the idea that
the coding of a large number of insignificant wavelet coefficients can be done very

efficiently.

Known methods include the Spatial Orientation Tree or SOT (Shapiro) and the Set
Partitioning in Hierarchical Trees SPIHT (Pearlman). The problem with both of these
methods is that they require the data to be visited more than once. The preferred method
also uses the tree principle, in the form of a “Quadtree”, but does so in a way that requires
the data to be visited only once. This allows the production of a real time single-pass

compression engine that carries out its task in a precisely defined cycle.

The aim of the system is to code two different types of information; one is the “control” or
coding information, and the other is the “data”. The coding information is sent ahead of
the data, so the decoding system knows in advance how to treat the data that follows. The
basic coding system is lossless; but lends itself very well to precisely defined levels of

lossy compression.
The LKCS Encoding

Data relating to an individual image is partitioned into blocks of 32x32 wavelet
coefficients. This block data is then separated into nine planes, eight data planes and one

sign plane. Each plane is then rearranged as 64 rows of 16 bits, as shown in Figure 19 and

described in more detail below.

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
37

Figure 15 shows how one such row is encoded into a “CKL-Tree”. For simplicity, the data
bits of the 16 coefficients are shown in a line, but it must be remembered they actually
refer to a two-dimensional array. These 16 coefficients are divided into four sets, each set
connected to a “K-type” tree. If all the coefficients in a set are zero, then the
corresponding K-type is also zero, and it is only necessary to retain the K-type. If the set is
not zero, then it is necessary to retain the original coefficient data and the K-type. (In
Boolean terms the K tree is an OR gate with four inputs. If output is 0, then only the
information K=0 is retained. If output is 1, then both the information K=1 and the four

individual data bits must be retained.)

The four K-types also form a set and follow the same probability laws, so it is possible to
repeat the tree idea. The K-type set forms a tree to an L-type. Thus if a K-type set is zero
only the L-type needs to be retained.

The next step is to encode the L-type trees within the individual bit plane. Each L-type
represents a row within a 64 row block, and this fits perfectly into an L tree structure of 64
L-types. Figure 16 shows how this happens and also shows how the L-types relate to the
original transform data (HL, LH and HH). The figure show 20 L-types for HL at Levels 1
and 2 and the four final L-types at Levels 3, 4 and 5. There are also 20 L-types for each of
LH and HH at Levels 1 and 2 as indicated in the diagram.

The L-tree again capitalises on the likelihood of similarity. Encoding is performed from
the bottom of the tree (Level 1) up to Level 4/5. In hierarchical terms, Level 4/5 can be
considered the “parent”, and Levels 3, 2 and 1 have a “child” relationship to it. The

encoding procedure is the same as before.

The exact operation of the encoding “node” is shown in Figure 16. The process can be
illustrated by considering the node marked L2 0. Here the Boolean operation is of a five-
input OR gate, with four of the inputs being the L1_0 through L1_3 data, and the fifth
input being the L2 0 data. As before, if the output of the gate is 1, then both the L-type
and the preceding data must be retained, but if it is 0, then only the L-type is retained. The

process is then repeated at the Level 3 nodes and thence to Level 4/5.

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
38

It can be seen that very large coding gains are achieved when there are large areas with
zero coefficients ~ in the extreme case if all the coefficients in a bit plane are zero, only

level 4/5 is retained.

Now it can be seen that, while the coding process can result in a considerable reduction in
the data, there an overhead where L and K values have to be retained. The L and K bits
themselves are additional to the original data, i.e. while the tree process is reducing
original data, it can also be adding control data. Some of the coding gain is being lost, and
it is desirable to minimize this loss. This can be done by taking an overview of all eight
data planes. Figure 17 shows the idea of the planes with Plane 7 being the most significant
and Plane 0 the least significant. By virtue of the wavelet transform Plane 7 contains the
most zeros, and therefore on this plane the K and L structure will be at its most efficient in

terms of coding gain as most of the coefficients will be zero.

A way of looking at K- and L-types is that they provide a record of the significance of
coefficients in a plane. This record can be passed from one plane to another, and can be
used to determine when a corresponding K- or L-type became significant (i.e. became = 1).
Once this has been detected it is no longer necessary to store the type for succeeding planes

(since the data is being retained anyway). This procedure eliminates redundant L-types

and K-types.

The process of scanning the successive planes is also used to code the sign plane (Plane 8).
In the transform process the 8-bit pixel data becomes 9-bit, indicating a range of 255. In
the sign plane the 1024 coefficients are designated positive by 0, and negative by 1. The
sign data is coded on the basis of significance, so when the significance scan is done (for
eliminating redundant K and L types) only those coefficients that are significant have their
sign data encoded (since clearly it would be redundant to code sign data to zero

coefficients that have already been discarded).

The whole encoding process can now be summarized as the generation of LKCS data,

where each plane is coded in a sequence of four sections, and where:

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
39
L = L-type tree
K = K-type tree
C = Coefficient Data
S =Sign

For lossless encoding it is necessary to plan the encoded data for the “worst case”, i.e. the
case where the original image is so complex that there is actually no coding gain. The
process is, therefore, as follows:

(a) The L-tree is coded with up to 64 bit data, corresponding to the L-types.
While these are themselves derived from knowledge of K-types, this section must be first
in the bit stream. This is because the decoder needs to know ahead of time which rows are
being sent and which rows are not sent (insignificant). The L-type bits, together with the
compression profile (see below) allow the decoder to reconstruct the L-type tree.

(b) K-types are coded next with up to 256 bit data corresponding to the 256 K-
types. The decoder uses the reconstructed L tree to decode the map of the K-types.

(¢) The original coefficient data C is coded next with up to 1024 bits. The
decoder uses the reconstructed L- and K-types to decode the map of the C data.

(d) The sign data S are coded last with up to 1024 bit data. The decoder uses
the reconstructed C data to decode the map of the S data.

The whole LKCS process is repeated for each of the 8 image planes.
Encoding for Spatial Compression

Clearly once the process described above has been completed there is a situation where the
actual encoded data is of variable length. While it is statistically improbable (even
impossible) that there would ever be a situation where there was a coding loss (i.e. the
coding process actually resulted in an increase in the data) it is the case that the lossless

coding results in a variable outcome which would be difficult to manage in the intended

real time applications.

In order to achieve a more predictable outcome, in terms of bit rate, and to introduce lossy

compression with high coding gains, the LKCS data is subject to a compression profile. In

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

40

principle this is no more than removing data based on resolution and bit-plane number.

This profile is sent as a header to the bit stream, so that the decoder knows in advance what
has been deleted.

The trend of successive profiles is to apply the most aggressive deletion to Plane 0 and
Level 1, and to progressively reduce the deletion with rising levels and planes. In practice
the compression profile is applied at the time of coding the CKL and L trees, meaning that
both the unwanted coefficient data and the corresponding K- and L-types are deleted. This
is important since it results in both the original data and the control information being
compressed — otherwise there would be a situation where at high compression levels the

control information would become dominant.
Compression Profile

The compression profile uses a weighting method that exploits the visual perception
characteristics of the human eye. In principle the human eye is less sensitive to the loss of
high frequencies, so any compression scheme starts by eliminating the high-frequency

components and by ensuring that the effect of quantization noise is also eliminated.

The weighting scheme is aligned to the sub-band levels of the wavelet transform, and the
idea is shown in Figure 18 (which should be compared with Figure 6). Another way of
putting it is that the compression is applied to the L-tree, not to the original data.

In Figure 18 an easy (and typical) example is to take “a” as a=2. Then it can be seen that
HH at any }evel has twice the compression (half the data) of the corresponding LH and
HL; further that progressively less compression is applied at the higher levels where the

more significant information resides.

The preferred weighting method is to vary the value of “a” to obtain a range of
compression ratios. Figure 18 is conceptual, in that it conveys the relative notional weights
applied; but in practice the range of compression is in the form of a set of individual
profiles that are applied at the encoder. The user can select one of the given profiles or

even define a custom profile.

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

41

In defining a profile the aim is to ensure that the re-constructed image has minimum errors,
and at the same time has the highest perceptual quality (i.e. the image is perceived by the
viewer as “natural”). This necessarily results in some compromise, and in practice

perceptual quality is more important at lower bit rates.

The weighting scheme is simple, efficient and independent of the actual image. It is
effected by a 16-bit Profile parameter that relates directly to one bit-plane of an L-type
tree. This is shown in Table 1; if a bit is equal to 0, the data is removed, if the bit is equal
to 1, the data is retained. The process can be described as “pruning the L-tree” and is

achieved by a logical AND operation with the L-type bit or bits.

For example if Bit 10 = 0, then all four bits of L_LH2 would be zeroed, but if Bit 10 =1,
then only those bits of L_LH2 with value 1 would be retained.

The presence of “spare bits” needs explaining. In the original structure space was allowed
for the individual components of L. 4/5. In practice this is redundant for all normal
images, but the facility has been retained in case later developments (possibly involving
very large images) require these extra bits. The chip design retains the facility for using

them, but the scheme does not result in the redundant data being sent.

The control of the L-type tree provides very efficient compression, since when more zeroes

are formed, both data and control are removed by the profile parameter.

Examples of Profiles

Table 2 and Table 3 show examples of compression profiles. Table 2 is an actual example
of a compression profile that provides a visually lossless image. By studying the bits set to
1 or 0 it is possible to get an idea of the weighting of the profile, and it is immediately clear
that significant planes and levels have no compression applied. Such a profile can give a

spatial compression ratio in the range 20:1 to 30:1.

10

15

20

25

WO 2007/023254 PCT/GB2006/003008
42

Table 3 shows an example of heavy compression, in the range 50:1 to 100:1, and it is
obvious that much more of the data has been discarded. Notice that I_4/5 data is retained
for all planes, since any loss of this data would have a serious effect on image quality,

while only providing a marginal reduction in bit rate.

When defining a profile it is important that the removal of data is done in a way that
ensures all data relating to a particular resolution level is removed within a bit plane, since
otherwise the resulting image would have a non-uniform spatial quality. The eye is
sensitive to this potential artifact: for example when viewing a human face the eye expects

a uniform quality, but is troubled if different parts of the face have different qualities.

The Encoding Engine

The description of the encoding process so far given has described a number of discrete
processes. In Figures 12 and 13 the concept of a “transform engine” to carry out the
wavelet transform was shown in some detail; but in Figure 12 the coding process was

simply shown as a function within the block diagram, without any detail as to how the

encoder worked.
Re-arranging the Transform Data

The result of the transform process is image coefficient data in 32%32 blocks (there are
three sets of such blocks, Y, U and V) and within the blocks the coefficient data is ordered,
starting with the Level 5 data, and ending with the Level 1 data.

For each bit plane the data is first re-arranged to 64 rows each of 16 bits, since this
facilitates the derivation of the L tree. The organisation and its relationship to the

coefficient data is clearly seen in the following diagram.

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

43
The L-Encoder

As mentioned above, the L-tree is derived first, since this is both needed first in the decode
process, and results in the discarding of the largest amount of coefficient data. The task of
the “L-tree coding engine” is quite complex, since it must work in three dimensions:

(a) a logical AND operation must be carried out on the data to impose the desired
compression profile;

(b) deriving an L-type is itself quite simple because this is a logical OR operation
on a single row of data, working from Row 63 to Row 0;

(c) but it is redundant to designate an L-type if it is already known that coefficient
data is significant, so the process must work downwards from the most significant plane;

(d) the desired end result is the discarding of all insignificant coefficient data, the
retention of the remaining coefficient data; and a compact description of the location of all
L-types; and

(e) the engine must work on a single pass basis in that it must not be required to

“re-visit” data.

Figure 20 shows the process in block diagram form. L FORMAT builds the 64 Ls from
the 64 x 16 coefficient bits in one plane.
The L TREE produces eight planes of: L_CUR[63..0], L _MSKJ63..0] and L _SIG [3..0]
working from the most significant Plane 7 to the least significant Plane 0. Note how the
compression profile is applied at this stage.These items represent the “output” of the L
encoder. Here:

L_CUR[63..0] is the L tree state of the current plane;

L_MSKJ63..0] is the mask determining which L._CUR bits are not sent; and

L_SIG [3..0] is L SIGNIFICANCE and is used by the K, C and S passes; it

indicates which rows are not sent.

L ACC produces I, ACC[63...0] which is a record of the current ORed state of all previous

planes.

10

15

20

WO 2007/023254

44

The equations used in the L encoder are as follows:

Definitions of L_CUR and L._SIG

L_cur[0] =1A4/5

L cur{1] =L3 IH
L_cur{2] =13 HL
L_cur[3] =13 HH

L cur{7.4] =12 LH[3.0]
L cur{11..8] =12 HL[3..0]
L_cur[15..12] = L2_HH[3..0]

L_cur[31..16]=L1_LH[15..0}
I cur[47..32] =L1_HL[15..0]
I cur[63..48] = L1_HH[15..0]

L _sig[3..0],
is the L significance for one 64-way row (total = 64 * 16)

PCT/GB2006/003008

Compression Profile

C_prof[15..0]

LL5 = [0]
LH5 =[1]
HL5 = [2]
HHS = [3]
LH4 = [4]
HLS5 = [5]
HHS = [6]

LH3 =[7]
HL3 = [8]

HH3 = [9]

LH2 =[10]
HL2 =[11]
HH?2 = [12]
LH1 =[13]
HL1 = [14]
HHI = [15]

10

15

20

25

30

35

40

WO 2007/023254 PCT/GB2006/003008
45
Logic equations for calculating L CUR[63..0] the UP Ltree.
Equations Comment

L cur[0]=(L{0] #L cur[3] #L_cur[2] #L_cw1]) & C_prof[0];

L curf1)=(L[1] #L cur[7] # L _cur[6] #L_cur[5]#L_cur[4]) & C_prof[7];
L curf2]=(L[2] #L_cur[11]1#L_cur[10] # L cur[9] #L_cur[8]) & C_prof[8];
L _cur[3]= (3] #L_cur[15]# L _cur[14}# L cur[131# L _cur[12])& C_prof[9];

L_cur[4]=(L{4] #L_cur[191# L_cur{18] # L_cur[17] # 1. cur[16])& C_proi]10];
L cur[5] = (L[5] #1L_cur[23]# L cur[22]1# L cur[21] # L _cur[20])& C_proff10];
L _cwr[6] = (L[6] #L cur[27) #L cur[26] #L_cur[25] #L_cur[24])& C_prof{10];
L cwrf7]1=Q[7] #L cw[31}#L cur[30] #L cur[29]#L_cur{28])& C_prof[10];

L_cur{8] = (L{8] #L cur[351#L cur{34] #L cur[33] #L_cur[32])& C_prof[11];
L _cur[91=(L[9] #L_cur[391#L_cur[38] # I._cur[37] #1_cw[36])& C_proff11];
L _cur[10}= (L[10] # L_cur[43] # L,_cur[42] # L,_cur[41] # L,_cur[40])& C_prof[11];
L cur[11}= (L[11] #1,_cwr[47]1 # L_cur[46] # L_cur[45] #L _cur[44])& C_prof[11];

L cur[12]= (L[12] # L _cur[51]1# L _cur[50] # I_cur[49] # L _cur{48])& C_prof[12];
L _cur[13}= (L[13] # L_cur[551 # L_cur[54] # L_cur[53] #L_cur[52])& C_prof[12];
L_cur[14]= (L[14]1 # L cw[59]1 #L_cur[58]1# L cur[57] #L curf56D& C prof[12];
L _cur[15}= (L{151 # 1L _cur[63] # L _cur[62] # 1, cur[61] #L_cur[60])& C_prof[12];

L _cur[19..16]=1[19..16] & C prof[13];
L_cur[23..20] =1[23..20] & C_prof[13];
L_cur[27..24] = 1[27..24] & C_prof[13];
IL_cur{31..28]=1L[31..28] & C_prof[13];

L cur[35..32] =1[35..32] & C_prof[14];
L _cur{39..36] = 1[39..36] & C_prof[14];
L_cur[43..40] = 1[43..40] & C_prof[14];
L_cur{47..44]=L1[47..44] & C_prof[14];

L _cur[51..48] =1][51..48] & C_prof[15];
L cur[55..52] = L[55..52] & C_proi[15];
L _cur[59..56] = L[59..56] & C_prof[15];
L_cur[63..60] = L[63..60] & C_prof[15];

(LA/5 L[0] or child)

(L3_LH)
(L3_HL)
(L3_HH)

(L2_LH[0])
(L2_LH[1])
(L2_LH[2])
(L2_LH[3])

(L2_HL[0])
(L2_HL[1D)
(L2_HL[2])
(L2_HL[3])

(L2_HH[0])
(L2_HH[1))
(L2_HH[2])
(L2_HH[3])

(L1_LHJ[3..0])
(L1_LH[7..4))
(L1_LH[11..8])
(L1_LH[15..12])

(L1_HL[3..0])
(L1_HL[7.4])
(L1_HL[11..8])
(L1_HL[15..12])

(L1_HH[3..0])
(L1_HH[7..4])
(L1_HH[11..8]]
(L1_HH[15..12]]

L_cur{63..0] =L cur [63..0] & !I._acc[63..0]; L _cur[n] can only be significant for 1 plane (transition
to significance); note that that L coding stops beyond

the point of becoming significant,

10

15

20

25

30

35

40

WO 2007/023254

Logic equations for calculating I._SIG

PCT/GB2006/003008

46

L SIG is used by K, C and S passes and indicates
which rows are not sent. A row is not sent when an
Ln XX sig=0. Lsig[3..0]} maps to 4 rows i.e. there is
a sequence of 16 sets for processing the 16 cycle K, C
and S passes where sel[0] to sel[15] selects the
sequence.

14 sig = (L_cur[0] # L_acc[0]) & C_profl0];
L3 LH sig =(L_cur[1]#L_acc[1]) & C_prof[7];
L3_HL sig =(L_cur[2] # L _acc[2]) & C_prof]8];
L3 HH sig = (L_cur[3]#L_acc[3]) & C_prof[9];
L2 IH sig[3..0] = (L _cur[7..4] #L_acc[7.4]) & C_prof[10];

L2_HL sig[3..0]

= (L_cur[11..8] #1, acc[11..8]) & C_prof[11];

12 HH sig{3..0] = (L_cur[15..12] # L_acc[15..12]) & C_prof[12};

1L1_LH sig[15..0]

(L_cur[31..16] # L_acc{31..16]) & C_prof[13];

L1 HIL sig[15..0] = (L_cur[47.32] # L_acc[47..32]) & C_proff14];

L1_HH_sig[15..0]

(L_cur{63..48] # L_acc[63..48]) & C_prof[15];

L _sig[3..0] passes 4 significance values to each (4*16)
K,C,S word. There are 3 passes of 16 for each type
(K,C,S)

1_sig[3..0]= ((L3_HH_sig, L3 HI, sigl.3 LH sig,l4 sig) & sel[0]) #

(L2_1LH_sig[3..0] &sel[l1]) #
(L2_HL sig[3..0] & self2]) #
(L2_HH sig[3..0] & sel[3]) #
(L1_LH sig[3..0] &sel[4]) #
(L1_LH sig[7.4} & sel[5]) #
(L1_LH sig[11..8] & sel[6]) #
(L1_LH sig[15..12]& sel{7]) #
(L1_HL sig[3..0] & self8]) #
(L1_HL sig[7.4] &sel[9) #
(L1_HL sig[11..8] & sel{10]) #
(L1_HI, sig[15..12]& sel[11]) #
(L1_HH sig[3..0] & sel{12]) #
(L1_HH sig[7..4] & sel[13]) #
(L1_HH sig[11..8] & sel[14]) #
(L1_HH sig[15..12]& self15]).

10

15

20

25

30

35

40

45

WO 2007/023254

47

Logic equations for calculating I. MSK

PCT/GB2006/003008

Comment

This is used to decide which L bits of L_cur[63..0] are
not sent. An L-bit is not sent when its parent is 0 or its
C _proff] is 0. It incorporates a down L-tree (top to
bottom). Each pass is a plane and done from most
significant to least significant (plane 7 to 0)

L, mskf0] = !'L_acc[0] & C_prof]0];

L _msk{1]= L _acc[1] & C_prof[7] & (L_cur[0] # L_acc[0]);
L msk{2]= L _acc[2] & C_prof[8] & (L_cur[0] # L_acc[0]);
L_msk[3]= L _acc[3] & C_prof[9} & (I._cur[0] # L_acc[0]);

L_msk[7..4]=11_acc[7.4] & C_prof[10] & (L_cur[11# L _acc[1]);
L _msk[11..8} =11, acc[11..8] & C_prof]11] & (L_cur{2]# L_acc{2]);
L _msk[15..12] =L _acc[15..12]1& C _prof{12] & (L_cur[31# L _acc[3]);

L_msk{19..16]= !L_acc[19..16] & C_prof[13]& (L_cur[4]# L._acc[4]);
L msk[23..20]= 1, accf[23..20} & C_prof[13]& (L_cur[S5]# L_acc[5]);
L _msk[27..24]= 1L _acc|27..24] & C_prof[13]& (L_cur[6]# L,_acc[6]);
L_msk[31..28]=!L_acc[31..28] & C_prof[13]1& (L._cur[71# L_acc[7]);

L_msk[35..32]= IL,_acc[35..32] & C_prof[14]1& (L_cur[8]# L _acc[8]);
L_msk[39..36]= !II._acc[39..36] & C_prof[14]& (L_cur[9]# L,_acc[9]);
L mskj43..40]= 'L _acc[43..40] & C_prof[14]& (L_cur{10]# L_acc[10]);
L_msk{47.44]='L,_acc[47..44] & C prof[14]& (L_cur{11]# L _acc[11]);

L_msk[51..48]=!I.,_acc[51..48] & C_prof[15]& (I_cur{12]# L, acc[12]);
L_msk{55..52]=!L_acc[55..52] & C_prof[15]& (L_cur[13}# L _acc[13]);

L_msk[59..56]= 'L_acc[59..56] & C_prof[15]& (L_cur[14]# L_acc[14]);
L_msk[63..60]= 'I._acc[63..60] & C_prof[15]& (L_cur[151# L _acc[15]);

The CS Encoder

Figure 21 shows the CS Encoder. Within this:

(LA/5)

(L3_LH ()=parent)
(L3_HL)

(L3_HH)

(L2_LH)
(L2_HL)
(L2_HH)

(L1_LH[3..0])
(L1_LH[7.4])
(L1_LH[11.8])
(L1_LH[15..12])

(L1_HL[3..0])
(L1_HL[7.4])
(L1_HL[11..8])
(L1_HL[I5..12])

(L1_HH[3..0])
(L1_HH[7..4])
(L1_HH[11.8]) .
(L1_HH[15..12])

CS FORMAT converts the original 16 bit row format [15..0] to a x4 row format, i.e.

[63..0]. This is done to conform the data to 64 bits, so the final part of the encoding engine

can work only on a 64 bit basis.

The sign data is replicated in parallel for all coefficient planes. This is necessary for the

next stage which requires the sign to be available for every C plane.

C ACC records the point at which each coefficient becomes significant, and is used by the

next stage to determine when a sign should be encoded.

10

15

20

25

WO 2007/023254 PCT/GB2006/003008
48
The LKCS Pass

Figure 22 shows the whole encoding engine. Here L. ENCODE and CS ENCODE are the

processes already described above.

MX LDPS is the encoding engine. The desired output consists of MX_ CUR[63..0] and
MX_MSK]J63..0]. The other “outputs” shown in Figure 22 are intermediate data used in

calculating the output and appear in the equations shown below.

The real time encoding engine works on a 64 cycle basis, so it is important to be sure that
the theoretical worst case of each of L, K, C and S being at maximum values will actuaily

“fit”. This is tested by understanding that:

L PASS=1xL_CUR [63..0] per plane
K PASS =16 x K_CUR[15..0] per plane
C PASS =16 x C_CURJ63..0] per plane
S PASS =16 x S_CUR([63..0] per plane

Therefore to generate MX CUR and MX_MSK requires the full sequence of L, K, C and S
passes, that is:
1+16+16+16 = 49 cycles per plane

which is well within the 64 cycle capacity.

The output MX_MSK][63..0] is a mask for selecting which bits of each of L, K, C and
S_CUR[] are encoded.

10

15

20

25

30

35

40

45

WO 2007/023254
49

The equations used in the LKCS pass now follow:

Deriving K accumulate from C accumulate

K_acc[0] = C_acc[0] # C_acc[1] #C_acc[2] # C_acc[3];

K _acc[1]=C_acc[4] # C_acc[5] #C_accf6] # C acc[7];

K _acc[2] = C_acc[8] # C_acc[9] #C_acc[10] # C_acc[l11];
K acc[3}=C_acc[12] # C_acc[13] # C_acc[14] # C_acc[15];

K_acc[4] = Cacc[16] # Cacc[17] # C_acc[18] # C_acc[19];
K acc[5] = Cacc[20] # Cacc{21] # Cacc[22] # C_acc[23];
K_acc[6] = Cacc[24] # Cacc[25] # Cacc[26] # C_acc[27];
K _acc[7] = Cacc[28] # Cacc[29] # Cacc[30] # C_acc[31];

K acc[8] = C_acc[32] # C_acc[33] # C_acc[34] # C_acc[35];
K acc[9]=C_acc[36] # C_acc[37] # C_acc[38] # C_acc[39];
K _acc[10}= C_acc[40]# C_acc[41] # C_acc[42] # C_acc[43];
K _accf11}=C_acc[44] # C_acc[45] # C_acc[46] # C_acc[47];

K _acc[12] = C_acc[48] # C_acc[49] # C_acc[50] # C_acc[51];
K acc[13] = C_acc[52] # C_acc[53] # C_acc[54] # C_acc[55];
K_acc[14] = C_acc[56] # C_acc[57]# C_acc[58] # C_acc[59];
K _acc[15] = C_acc[60] # C_acc[61] # C_acc[62] # C_acc[63];

Deriving the K type from C_cur

K[0] = C_cur[0] #C_cur[1] #C_cur{2] # C_cur[3];
K[1]=C_cur[4] # C_cur[5] # C_cur[6] # C_cur[7];
K[2]=C_cur[8] #C_cur[9] # C_cur{10] # C_cur[11];
K[3]=C _cur[12} # C_cur[13] # C_cur[14] # C_cur[15];

K[4] = C_cur[16] # C_cur{171 # C_cur[18} # C_cur[19];
K[5]=C_cur[20]1 # C_cur[21] # C_cur[22] # C_cur[23];
K[6] = C_cur[24] # C_cur[25] # C_cur[26] # C_cur[27];
K[7]=C_cur[28]1# C_cur[29] # C_cur[30] # C_cur[31];

K[8]=C_cw[32] #C _cur[33}# C_cur[34] # C_cur[35];
K[91=C_cur[36] # C_cur[37]# C_cur[38] # C_cur[39];
K[101= C_curf40] # C_cur[41] # C_cur[42] # C_cur[43];
K[11]= C_cur[44] # C_cur[45] # C_cur[46] # C_cur[47];

K[12]=C_cur[48] # C_cur[49] # C_cur[50] # C_cur[51];
K[13]=C_cm52] # C_ocur[53] # C_cur[54] # C_cur[55];
K[14] = C_cur[56] # C_cur[57] # C_cur[58] # C_cur[59];
K[15]=C_cur[60] # C_cur[61] # C_cur[62] # C_cur[63];

PCT/GB2006/003008

10

15

WO 2007/023254

50
The K pass

Derive K _cur (needed for both K pass and C_pass)

K _cur[15..0] = KJ[15..0] & (K_acc[15..12] & L_sig[3],

IK acc[11..8] & L_sig[2],

K acc[7.4] & L_sig{1],

K _acc[3..0] & L_sig[07) & (K_pass_# C_pass);
K _cur[15..0] = K cm15..0} &K pass ;
Make K_pass mask

K_msk[15..0]= ('K acc[15..12] & L_sig[3],
K _acc[11..8] & L, sig[2],
K_acc[7..4] & L _sig[1],
K acc[3..0] &L _sig[0]) & K _pass_;

PCT/GB2006/003008

10

15

20

25

30

35

40

WO 2007/023254

The C pass

Derive C_cur

C_cur[63..0] =

51

(C_cur[63..48] & L_sig[3],
C_cur[47..32] & L_sigf2],
C_cur[31..16] & L_sigf1],
C_curf15..0] &L _sig[0]) & P_pass_;

Prepare and make C_pass mask

a[15.0] =

C _msk[63..0] =

The S Pass

S_msk[63..0} =

S_cur[63..0] =

(K _cur[15..0] #(X_accf15..12] & I_sig{3],
K acc[11..8]& L_sig[2],

K acc[7.4} & L_sig[1],

K acc[3..0) & L sig[0])) & C_pass_;

(a[15],a[15],a[15),2[15],
a[14],a[14],a[14],a[14],
a[13],a{13],a[13],a[13],
a[12],a[12],a[12],a[12],
a[11],a[11},a[11],a[11],
a[10],a[10],a[10],a[10],
a[9],a[9}.a[9],a[9],
a[8],a[8],a[8],a[8],
a[7].al7],a[71,a[7],
af6].a[6],a[6],2[6],
a[5],a[5],a[5},2[5],
al4],a[4],a[4],a[4],
a[3},a[3],a[3],a[3],
a[2].a[2],a[2],a[2],
a[1].a[1],a[1],a[1],
a[0],a[01,2[01,2[0]).

C_cur[63..0] & (IC_acc[63..48] & L_sig[3],
IC_acc[47..32] & L,_sig[2],

!IC_acc[31..16] & L_sig[1],

1C_acc[15..0] & L _sig[0]) & S_pass_;

S[63..0} & S_msk[63..0].

PCT/GB2006/003008

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
52
The MX LKCS

MX_cur[63..0] = (L_cur[63..0] & L_pass) #
((z[63..16}.X_cur[15..0]) & K _pass) #
(C_cur[63..0] & C_pass) #
(S_cur[63..0] & S_pass);

MX_msk[63..0]= (I._msk[63..0] & L._pass) #
((2[63..16],K_msk[15..0]) & K pass) #
(C_msk[63..0] & C_pass) #
(S_msk[63..0] & S_pass).

The Decoding Engine

The decoding engine is based on a set of deterministic principles that provides a “one pass”
decoding solution by mirroring the encoding format. The format provides for a
progressive calculation that allows for a set of pointers for subsequent data to be known
ahead of time. In a pipelined logic structure that contains a dependant feedback element; it
is a requirement to know ahead of time the location of future data otherwise the delay

(pipeline) will result in a non-real-time decoder.

Like the encoder, the decoder operates on a 64-bit by 64-cycle basis per plane. It decodes
the embedded control and data progressively in the same order as it was encoded i.e.
LKCS.

The L decoder

The decoding of the L control bits [63..0] is done in two passes:

L pass 1 =Level 4,3,2 = L[15..0]
L pass 2 =Level 1 =[[63..16]

10

15

WO 2007/023254 PCT/GB2006/003008
53

L pass 1 operates on the first 16 bits of serial data d[15..0] of any plane. Together inputs:

L _acc[15..0]
C _prof[15..0]

it produces 8 planes of :

L _cur15..0]
L4 sig
L3_LH_sig

L3 HL sig

L3 _HH sig

L2 LH_sig[3..0]
L2 HL sig[3..0]
L2 HH sig[3..0]

The definitions of these parameters are defined in the encoding engine.

10

15

20

25

30

35

40

45

50

WO 2007/023254

54

L_pass 1 equations

Pointers for L data

pointer for L3_LH
s1_[1..0]) =2 x (!L_acc[0] & C_prof[0]));

pointer for L3_HL
s2_{2..0D =s1_[1..01x 2 x (1L_acc[1] & C_prof[7]));

pointer for L.3_HH
s3_[3..0]) =s2_[2..0] x 2 x (!{L_acc[2] & C_prof[8]));

pointer for start of L2 data
s4 [4..0]) =s3_[3..0] x 2 x (!L_acc[3] & C_prof[9]);

pointer for 1.2_LH[3]
not required (base = 0)

pointer for L2_TH[2]
s5 [1..0]= 2x (IL_acc[5] & L3 1H sig & C_prof[10]);

pointer for 1.2_LH[1]
§6_[2..0D) =s5_[1..01x 2 x (L_acc{6] & L3_LH_sig & C_prof[10]);

pointer for L.2_TLH[O0]
§7_[3..0) =s6_[2..0}x 2 x (!L_acc[7] & L3_LH sig & C_prof[10]);

pointer for L2_HL[3]
s8 [4.0D) =57 [4..0]1x2x ('L_acc[8] & L3 HL _sig & C_prof[11]);

pointer for 1.2_HL[2]
89 [5..0])=s8_[4..0]1x2x ('L_acc[9] & L3_HL sig & C_prof[11]);

pointer for L2_HI[1]
s10_[6..0D) =59 [5..01x2x (1L _acc[10} & L3_HI_sig_& C_prof{11]);

pointer for L2 HL{0]
s11 [7..01) =510 [5..0]x2x ('L _acc[11] & L3_HIL sig & C profl11]);

pointer for L2 HH[3]
s12_[8..0D) =s11_[7..0]1x 2 x (IL_acc[12] & L3_HH sig & C prof[12]);

pointer for L2_HH[2]
s13 [9..0]) =s12_[8..0}x2 x (!L_acc[13] & L3_HH_sig_ & C prof{12]);

pointer for 1.2_HH[1]
s14_[10..0]) =s13_[9..0}x 2 x (!L_acc[14] & L3_HH_sig_ & C_prof[12]);

pointer for L.2_HH[0]
s15 _[11..0]) =514 _[10..0] x 2 x (!L_acc[15] & L.3_HH_sig_ & C_prof[12]);

PCT/GB2006/003008

10

15

20

25

30

35

WO 2007/023254

L data

L_cur[3..0] for Leveld and 3

L_cur[0] = d[0] & (!L_acc[0] & C_prof[0]) ;

L cur[1]=((d[1] &s1_[1]D#
(d[0] &s1_[0D)) &
(('L_acc[1]& C_prof[7]) & 14 sig);

L _cur[2] = ((d[2] &s2_[2]) #
(d[1] &s2_[1D #
(d[0] & s2_[0])) &
(("L_acc[2] & C_prof[8]) & 14 sig);

L_cur[3] = ((d[3] & s3_[3D #
(2] &s3_[2D) #
(A1} &s3_[1D#
(d[0] & s3_[0])) &
(("L_acc[3] & C_prof[9]) & LA_sig);

Locate range of Level2 L data[15..4])

12 [4] =s4_[4.0] & d[4.0];
12 [5] =s4_[4..0] &d[5.1];
12 (6] =s4_[4..0] & d[6.2];
12 [7] =s4 [4.0] &d[7.3];
12 [8] =s4_[4..0] & d[8.4];

12 [9] =s4_[4..0] &d[9.5);
12 [10] = s4_[4..0] & d[10..6];
12 [11] =s4_[4..0] & d[11..7];
12 [12] =s4_[4..0] & d[12..8];
12 [13] = s4_[4..0] & d[13..9);
12 [14] =s4_[4..0] & d[14..10];
L2 _[15] =s4_[4..0] & d[15..11};

55

PCT/GB2006/003008

10

15

20

25

30

35

40

45

50

55

WO 2007/023254

L _cur[15..4] for Level2

12 1LH cur

L_curf4]= L2_[4] & (\L_acc[4] & L3_LH sig & C_prof{10]);

L cur[5}=((L2_[5] &s5_[1]) #
(L2_[4] &s5_[0)) &
('L_acc{5] & L3_LH sig & C_prof{10]);

L cur[6]=((L2_[6] & s6_[2]) #
(L2 J5] &s6_[1D#
(L2_T4] & s6_[0]))&
('L_acc[6] & L3_LH sig & C_prof[10]);

L _cur[7]=((L2_[7] & s7_[3] #
@2 [6] &s7_[2D#
(L2 [5] &7 [1D#
(L2 4] & s7_[01))&
('L_acc[7] & L3_LH sig & C_prof[10]);

L2 HI cur

L_cur[8]=((L2_[8] & s8_[4]) #
(L2_[7] &8 [3D#
(L2_[6] &s8_[2]) #
(L2 5] &s8_[1D #
(L2 _[4] & s8_[0]))&
(IL_acc[8] & L3_HL, _sig & C_profl11]);

L _cur[9]1=((L2 _[9] &9 _[5])#
(L2_[8] & s9_[4D #
L2 [7] &s9_[3D#
(L2_[6] & s9_[2]) #
(L2_[5]1 &9 [1D#
(L2_[41&s9 [0D) &
(IL_acc[9] & L3_HL _sig_ & C_prof[11]);

L _cur{10] = ((L2_[10]& s10_[6]) #

(L2_{91 & s10_[5]) #

(L2_[8] & s10_[4]) #

(L2 _[7] &s10_[3D #

(L2_[6] &s10_[2]) #

(L2 {51 &s10_[1D#

(L2_[4] &s10_[0D)) &

(IL_ace[10] & L3_HL sig_ & C_prof[11]);

L cur[11]= ((L2_[11)& s11_[7]) #

(L2_[10]& s11_[6]) #

(L2_[9] & s11_[5]) #

(L2_[8] & s11_[4]) #

(L2 [7] &s11_[3]) #

(L2_[61&s11_[2D)#

(L2_[5] &s11_[1D#

(L2_[4] &s11_[0])) &

('L_acc[11] & L3_HIL sig & C_prof[11]);

56

PCT/GB2006/003008

10

15

20

25

30

35

40

45

50

WO 2007/023254

L2 HH cur

L cur{12] = ((T.2_[12]}& s12_[81) #

(L2 [11]& s12_[77) #

(L2_[10]& s12_[6]) #

(L2 9] &s12 [ShH#

(L2 8] & s12 [4D #

L2 {71 &s12 3D #

(L2_[6] &sl2 2 #

(L2 {51 &sl2 (1D #

(L2_J4] &s12_[0])) &

(1L _acc[12} & L3 _HH sig & C_prof[12]);

L cur{13]=((L2_[13]& s13_[ON) #
(L2_[12]1& s13_[8]) #
(L2_[i1j& s13_[7D #

(L2 f10]& s13_[6]) #

(L2_J9] & s13_[5D#

(L2 _[8] & 13 {4 #

(L2 _[7] &s13_[3D#

(L2_[6] & s13_[2]) #

(L2 _[51&s13_[1)#

(L2_[4] & s13_[0]D)&

('L_acc[13] & L3_HH sig_ & C_prof[12]);

L_cur[14] = ((L2_[14]1& s14_[10])#

(L2 [13]1& s14_[9D#

(L2 [12]& s14 [8D #
(L2_[111& s14 [7TH #
(L2_[10]& s14 [6]) #

(L2 _[9] &s14_[5)) #
(L2_[8] &sl4_[4D#

(L2 [7] &s14_[3D)#
(L2_[6] &sl4 2D #

L2 _[5]&s14 [1D#
(L2_f4] & s14_[0]))&
('L_acc[14] & L3_HH_sig_ & C_prof[12]);

L cur[15]=(L2_[15]& s15_[11])#
(L2_[14]& s15_[10D#
(L2_[13]& s15_[9D #

(L2 12]}& s15_[8D) #

(L2_[11]& s15_[7ThH #

(L2_[10]& s15_[61) #

(L2 {91 &s15_[5])#

(L2 _[8] & s15_[4)#

@2 [7}&s15_[3D#

(L2 6] &s15_[2D) #

(L2 [51&s15_[1D#

(L2 [4] & s15_[0]))&

('L_acc[15] & L3_HH sig & C_prof[12]);

57

PCT/GB2006/003008

WO 2007/023254 PCT/GB2006/003008

58

L significance

4 sig =L_cur[0]# (L_acc[0] & C_prof[0);

L3 LH sig =1L cur[1]# (L_acc[1] & C_prof[7]);
5 L3 _HL sig =L ocur[2] #(L_acc[2] & C_proi[8]);

L3 HH sig =L cur[3] # (L_acc[3] & C_prof[9]);

12 LH sig[3..0]=(L_cur{7.4] #L acc{7.4]) & C_prof{10];
12 _HL sigf{3..01=(L_cur{11..8] #L_acc{11..8]) & C_prof[11}; ;
10 L2 HH sig[3..0]1=(L_cur[15..12}# L_acc[15..12])& C_prof[12]; ;

10

15

20

25

30

35

40

45

50

WO 2007/023254 PCT/GB2006/003008

59

L_Pass 2 operates on a range of data d[63..16] that has been pre-pointed to from the end of
data of L Pass 1. Together with inputs:

L_acc[63..16]
L2 1H sig[3..0]
L2 HI, sig[3..0]
12 HH sig[3..0]
C_prof[15..0]

it produces 8 planes of:

L _cur[63..16]
L_acc[63..16]
L1 LH sig[15..0]
L1_HIL sig[15..0]
L1_HH_sigf15..0]

These parameters are defined in the encoding engine

a[63..16] = (d[63..16] & 'L _acc[63..16]) ;

L _cur[19..16] = a[19..16] & L.2_LH_sig{0] & C_prof[13];
L curf23..20] = a[23..20] & L2_LH_sig{1} & C_prof[13];
L _cuwr[27..24] = a[27..24] & L2_LH sig[2] & C_prof{13];
L_cur{31..28] = a[31..28] & L2_LH sig[3] & C_prof[13];

L _cur35..32] = a[35..32] & L2_HL sig[0] & C_prof[14];
L_cur[39..36] = a[39..36] & L2_HL _sig[1] & C_prof[14];
L_cur[43..40] = a[43..40] & L2_HL_sig[2] & C_prof[14];
L_cur{47..44] = a[47..44] & L2_HL _sig[3] & C_prof[14];

L_cur[51..48] = a[51..48] & L2 HH_sig[0] & C_prof[15];
L _cwr]55..52] = af55..52] & L2_HH_sig[1] & C_prof{15];
L_cur[59..56] = a[59..56] & L2_HH_sig[2} & C_prof[15];
I_cur[63..60] = a[63..60] & 1.2_HH _sig[3] & C_prof[15];

b[63..16] = (d[63..16] & !L._acc[63..16]) # L_acc[63..16);

L1 IH sig[3..0] =b[19..16] & L2 LH sig[0] & C_prof[13];
L1 _LH sig{7.4] =b{23.20]& L2 LH_ sig[1] & C_proff13];
L1_LH sig{11..8] =b[27.24] & L2_LH_sig[2] & C_prof[13];
L1_LH sig[15..12]=b{31..28] & L2_LH_sig[3] & C_prof[13];

L1_HL_sig[3..0] =b[35.32] & L2_HL, sig[0] & C_prof[14];
L1_HL sig[7.4] =0b[39..36] & 1.2 HL sig[1] & C_prof[14];
L1_HL sig[11..8] =b{43..40] & L2 HL sig[2] & C_prof]14];
L1_HL sig[15..12] =b[47..44] & L2_HI,_sig[3] & C_prof[14];

L1_HH_sig[3..0] =b[51..48] & L2 _HH_sig[0] & C_prof[15];
L1_HH_sig[7.4] =b[55..52] & L2_HH_sig[1] & C_prof[15];
L1_HH sig[11..8] = b[59..56] & L2_HH_sig[2] & C_prof[15];
L1_HH_sig[15..12] = b[63..60] & L2_HH_sig[3] & C_prof[15].

10

15

20

25

30

35

40

45

WO 2007/023254

60
The K decoder

K _Pass operates on a range of data that has been pre-pointed to from the end of data of

L. Pass 2. Together with inputs:

16 x d[15..0]
16 x C_acc[63..0]

16 x L sigf3..0] Note that L _sig]3..0] is a sequential quad mapping of:

14 sig, 13 LH sig, 1.3 _HI, sig, L3_HH_sig

to

L1 _HH sig[15..12]
it produces:
16 xK_cur[15..0] perplane

16 x K msk[15..0] per plane
K accumulate from C accumulate

K_acc[0] = C_acc[0] # C_acc[1] #C_acc[2] # C_acc|3];

K _acc[1] = C_acc[4] # C_acc[5] # C_accl[6] # C_acc[7];
K_acc[2] = C_acc[8] # C_acc[9] # C_acc[10] # C_acc[11];
K _ace[3]=C_acc[12] # C_acc[13]1# C_acc[14] # C_acc[15];

K_acc[4] = C_acc[16] # C_acc[17] # C_acc[18] # C_acc[19];
K_acc[5] = C_acc[20] # C_acc[21] # C_acc[22] # C_acc[23];
K_acc[6] = C_acc[24] # C_acc[25] # C_acc[26] # C_acc[27];
K _acc[7] = C_acc[28] # C_acc[29] # C_acc[30] # C_acc[31];

K _acc[8] = C_acc[32] # C_acc[33] # C_acc[34] # C_acc[35];
K_acc[9] = C_acc|[36] # C_acc[37] # C_acc[38] # C_acc[39];
K _acc[10]= C_acc[40]# C_acc[41] # C_acc[42] # C_acc[43];
K acc[11}=C_accl[44] # C_acc[45] # C_acc[46] # C_acc[47];

K_acc[12] = C_acc[48] # C_acc{49] # C_acc[50] # C_acc[51};
K_acc[13] = C _acc[52] # C_acc[53] # C_acc[54] # C_acc[55];
K _acc[14]=C_acc[56) # C_acc[57] # C_acc[58] # C_acc[59];
K _acc[15] = C_acc[60] # C_acc[61] # C_acc[62] # C_acc[63];

K cur{15..01=d[15..0]1 & ('K_acc[15..12] & L_sig{31],
IK acc[11..8] & L_sig[2],
K acc[7.4] &L sig[l],
IK_acc[3..0] &L sig[0]) & K_pass_en;

K _msk[15..0] = (K_cur[15..0] # (K_acc[15..12] & L_sig[3],
K _acc[11..8] & L_sig[2],
K acc[7.4] &L sig[l],
K _acc[3..0] &L _sig[0])) &K pass en;

PCT/GB2006/003008

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
61
The C Decoder

C_Pass operates on a range of data that has been pre-pointed to from the end of data of

K Pass. Together with inputs:

16 x d[63..0]

16 x C_acc[63..0]
16 x K_msk[15..0]
16 x LL_sig[3..0]

it produces:

16 x C_cur{63..0] per plane
16 x S msk{63..0] per plane

C_cur[63..0]=4d[63..0] &
(K_msk[15], K_msk{15], K_msk[15], K_msk{15],
K_msk{14], K _msk[14], K msk[14], K msk[14],
K _msk[13], K msk[13], K_msk[13], K _msk[13],
K msk[12], K msk[12], K msk[12], K msk[12],
K msk{11], K mskf{11], K msk[11], K _msk[11],
K_msk{10], K_msk[10], K_msk[10], K _msk[10],
K _msk{9], K msk{9], K_msk[9], K_msk{9],
K msk{8], K msk{8], K msk{8], K_msk[8],
K _msk{7], K_msk[7], K_msk[7]), K msk{7],
K _msk[6], K msk[6], K_msk[6], K_msk[6],
K _msk[5], K _msk[5], K_msk[5], K_msk[5],
K_msk[4], K_msk[4], K_msk[4], K_msk[4],
K_msk[3], K _msk[3], K_msk{3], K _msk{3],
K msk{2], K msk[2], K msk[2], K _msk[2],
K msk[1], K _msk[1], K msk[1], K msk[1],
K msk{0], K_msk{0], K msk[0], K_msk[0])&
C_pass_en;

35 S_msk[63..0] = C_cur_[63..0] & (IC_acc[63..48] & L_sig[3],

IC_acc[47..32] & L_sig[2],
IC_acc[31..16] & L_sig[1],
1C_ace[15..0] & I_sig[0]) & C_pass_en;

10

15

20

25

30

35

WO 2007/023254 PCT/GB2006/003008
62
The S decoder

S Pass operates on a range of data that has been pre-pointed to from the end of data of

C_Pass. Together with inputs:

16 x d[63..0]
16 x S_msk[63..0]

it produces:

16 x S_cur[63..0] per plane

S_cur[63..0]1 = (d[63..0] & S_msk[63..0]) & S_pass_en;

Encoding for Temporal Compression

Temporal compression is the key to achieving high compression ratios. However some
methods are computationally intensive, with the processing time being highly dependent
on the image content. In the preferred scheme two priorities are addressed:

() Whatever method is used must retain the determinism of the transform and
coding engines. In this way the overall process is simplified, and the time taken to encode
content is precisely defined.

(b) The data to be streamed must be “absolute”; that is to say that the images
can be reconstructed using only the data received, and there is no dependency on image
history or forward prediction. The concept of absolute data provides high immunity to
network errors, and, in particular, does not extend image latency. (Extended image
latency, i.e. a multiple frame delay between encoding and decoding, is inevitable with any

system that requires complex computation over a group of images.)

The basis of the preferred temporal compression scheme is to code only the picture
information that has changed. The scheme exploits the fact that areas of picture content
can remain static over several frames, which it detects and does not code. In this way large
coding gains are achieved. For this scheme to be viable, accurate and secure detection of
changes is of paramount importance, since any false detections of change will produce

obvious errors — manifested in “frozen” areas of the decoded image.

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

63

The secure detection of motion is at the heart of the scheme. However it is much more
difficult to devise a scheme based on the sending of absolute data than it is to use a scheme
relying on only sending the differences between changes (as is done with, for example,
MPEG). The difficulty arises because of the presence of noise in the images, and the
consequent problem of discriminating between true picture content and the noise. The
noise arises for two principal reasons; camera sensor noise (particularly in scenes with low

lighting levels) and quantization noise arising from analog to digital signal conversion.

The basis of the preferred method of discriminating between noise and image content is to
process the motion detection in the wavelet domain — i.e. at the transform output, prior to
coding. “De-noising” in the wavelet domain is based on an idea first proposed by Donoho
who noticed that the wavelet transform maps noise in the signal domain to noise in the

transform.

For any given image, signal energy becomes concentrated into fewer coefficients in the
transform domain — but noise energy does not. It is this important principle that enables
the separation of signal from noise, achieved by “thresholding” the wavelet coefficients.
Since noise is at a much lower level than the significant coefficients, intelligent low level
thresholding can be applied to remove only the low level coefficients deemed to be noise.
The thresholding is dynamic across the transform levels in order to achieve optimum noise
suppression. The preferred scheme is novel because the signal is separated from the noise
by non-linear means — in some ways the process is akin to the method used to apply the

compression profile described above.

In the preferred temporal compression scheme only a sparse set of the most significant
coefficients is used as the basis for noise removal. This aggressive approach is designed to
obtain a super-clean “wavelet signature” for motion detection. This “signature” is not

required to resemble a recognizable picture, but only to be the means of valid change

detection.

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
64

Definition of Temporal Compression

The aim of the temporal compression algorithm is to minimize the computation needed. In

the preferred system advantage is taken of the nature of the initial color space transform.

The boundary for defining motion is the YUV transformed block of 32x32 coefficients.
Each block is numbered in a way that defines its position within an image frame.
Corresponding blocks between frames are compared, and only if they are different are
coded and transmitted. Since Y itself can be considered as being derived from U and V, it
is sufficient to use only the Y coefficients for assessing motion. This has the effect of
reducing the requirement for motion computation and frame storage to only one third of

what it would be if the computation was done for the full YUV (or RGB) image.

The process of temporal encoding is shown diagrammatically in Figure 19, which indicates

the following steps in the process:

1. Extract the Y transform information in 32x32 blocks; assign position

information for each block.

2. Apply a noise threshold to the data. This eliminates all coefficients below a
programmed value. This “threshold” is very low and is only intended to

eliminate insignificant coefficients that are at noise level.

3. Detect the magnitude and position of the most significant coefficients. In
this process the 16 sub-bands that form the five-level transform are each

filtered to select the most significant coefficient and its associated position.

4. From the 16 resulting coefficients select the most significant. The number
selected is programmable, and in practice a maximum of eight is found to
be sufficient. The idea behind the scheme is to get sufficient information to
ensure reliable motion detection, but at the same time achieve maximum

noise immunity by capping the size of the group of most significant

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
65

coefficients. This information summarizing the significant coefficient and

corresponding positional data is referred to as a “wavelet signature”.

5. Compare the resulting “signature” with that of the corresponding block in
the previous image frame. At this stage another programmable threshold is
applied. This “difference threshold” may allow certain comparisons that are
not exact to be still considered true — it allows for small peak modulation
differences between coefficients, and is applied only to magnitude, and not

position, information.

6. As a result of the comparison, there is no transmission if signatures are the
same; there is transmission of data for coding if the signatures are different.
Note that the data that goes forward for coding is the original YUV
transform data. This is an important principle since it ensures that (within
the constraints of the compression profile) the highest possible image
quality is maintained, and that the code/decode processes do not have to

distinguish between still and moving image data.

Reference Frame Data

The temporal compression scheme is also organized to output reference frame data for
synchronizing the decoder(s) to the current status of the encoder. The process can be

considered as providing a “background” image refresh facility.

The facility ensures that, regardless of the decision taken at Step 6 (see above), the fuil
YUV transform data of a block is sent at intervals. The interval is programmable, in order
to ensure that sending of reference frame data has a minimum impact on data flow in the
output network. The parameter is defined by “one reference block sent for every x normal

blocks” with x typically 100 or more.

This refresh mechanism is independent of image resolution and asynchronous to temporal
changes in the image, and is, therefore, image content independent: it merely sends the

latest update for a block, governed by the index of the block within the current frame. It

10

15

20

WO 2007/023254 PCT/GB2006/003008
66

can be seen that to refresh an entire high resolution image this way could take some
seconds; but such a system deals effectively with errors (e.g. arising from network
problems) affecting still images, and supports multiple users where, for example, a new
user logs on and otherwise would not receive still image data until the original image was

changed.
The Network Connection

The task here is to convert the compressed image data to a form that can be passed over an
Ethernet network. The image data is in the form of coded “image blocks™ each of which
describes a 32x32 array of pixels. Such a block does not necessarily match the payload
specification of Ethernet. In addition there must be provision for multiplexing digital

audio data into the final data stream.

Each YUV block is encoded on the basis of leading most significant data to trailing least
significant data. The block format is shown in Table 4.

Field Size (in bits) Description
D 32 SYNC word — 16 bits
Index Number — 11 bits (defines position of block

in the frame)

Spare - 5 bits

Block data variable YUV compressed data in order:
Y bit plane 7 L-types

Y bit plane 7 K-types

Y bit plane 7 C-types

Y bit plane 7 S-types

Y bit plane 6 L-types

And so0 on through..
Y bit plane 0 S-types
Then repeat for U and V

Table 4. The image block format.

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
67
Choice of User Datagram Protocol (UDP)

Early in the development program behind the present invention many different methods of
multiplexing and transmitting image data over a digital link were considered; but then the
decision was taken to ride on the back of the universally accepted Ethernet network using
Internetwork Protocol. It was then important to ensure the system would work on “real

world” networks and that it did not introduce any practical difficulties.

As a result, the guiding principles in defining how the data is transmitted across a network
are as follows:

() The aim is reliable and efficient transport of real time images;
notwithstanding the fact that networks are asynchronous in nature —
conflicting with the requirement of synchronous image delivery.

(b) The system must be based on existing network transport standards and
protocols.

(c) There must be low system complexity across the network.

(d) The system must work as a multi-node system (i.e. typically one image
source being distributed to multiple “users” or “viewers”).

() As a corollary, there must be no need for the capture node(s) to manage the
display node(s) in any way. This minimizes the computational complexity

of nodes, and (in this execution) provides scalability.

The technical requirement is to get the data into a format that matches the IEEE 802.3
Media Access Control (MAC) frame as shown in Figure 24. The last requirement above
indicates a “multicast” approach, and the accepted method of achieving this is that the
MAC “payload” follows Internetwork Protocol (IP) in the form of “datagrams” following
the User Datagram Protocol (UDP). Multicast messages have a special Multicast
“Destination Address”. Note that the maximum data packet size is 1500 bytes, which must

include any protocol overhead. Larger packets are permitted on Gigabit Ethernet.

UDP has the great merits of simplicity and minimum data overhead. But like IP it is a
connectionless protocol that does not itself provide any guarantee of reliable

communication; nor does it provide any form of error correction or recovery, or any kind

10

15

20

WO 2007/023254 PCT/GB2006/003008

68

of message flow control. Communication is “best effort”, and any means of overcoming

deficiencies must reside in the application.

In order to eliminate the need for any bi-directional communication (as is used in the
connection oriented protocol Transport Control Protocol (TCP) and which provides
reliable point-to-point communication) the preferred system is designed to be robust
against packet loss. Table 4 shows that each data block is separated by a uniquely coded
sync word. In the event that data from a block or series of blocks is damaged, the sync
word is designed to arrest propagation of the error. The sync word is used to “bracket”
errors, thus preventing the decoded bit stream displaying garbage. In the case of error(s)

the last intact block or blocks continue to be displayed.
Translation to IP packets

The matching of the image data to IP/UDP is a two stage process. The first stage is to
convert the original coded YUV block data into a series of standardized data packets. It is
at this point that any accompanying audio is multiplexed with the image data. Audio is
carried as uncompressed digital audio according to AES/SPDIF standards (Dolby AC3 can

also be carried). Table 5 shows the packet format.

Field Size (in bits) Description

ID 32 “VIDO” — 0x56494430 “AUDO0”- 0x41554430
Data Start 1 The first packet in a set of data

Haar 1 Transform, Haar / 2-10

Profile Y 4 Compression Profile

Profile U 4

Profile V 4

Reserved 2

Packet Size 16 The size of the data packet in bytes

PTS 32 The time stamp of the data packet in 10 ps units
Data {packet size}*8 The raw data.

Table 5. The packet format for the multiplexed audio/video stream. Byte order is “Little

endian” (Intel) format.

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
69

The resulting bit stream is placed in a buffer memory, and then converted to Ethernet
payload with the addition of the necessary headers. The whole process is illustrated in
Figure 25.

An item not clearly shown in Figure 25 is an additional Real Time Protocol (RTP) header
that is carried between the Transport Layer Header and the Transport Layer Payload.

The “Data start for video” marks a frame start; marking the first packet in a variable
number of packets required for a frame. (The number of packets needed for a frame varies
according to the nature of the image, the compression profile and the influence of temporal
compression.) Because there is no alignment between the original image blocks and the
packet boundaries, the last packet may only be partially filled. In this case the packet is

packed with zeroes to make up the packet size.
Network Loading

It is clear from the above that the “loading” presented to a network carrying the
compressed images is variable according to the nature of the image. In practice it is found
that for any given image resolution and compression profile the average bit rate remains
fairly constant. This means that in any real application it is easy to ensure that there is
sufficient network capacity for the images, and this is especially the case where multiple
images are being carried, since statistically the overall bit rate will remain constant within

quite narrow limits.

It should be noted that the “programmable” aspects of the overall system can be applied on
an individual frame basis. This means that it is possible to change compression
performance, and hence average bit rate, “on the fly”. Thus while the system does not
offer a constant bit rate, it does offer predictable performance and the ability to change the

bit rate rapidly should this be necessary.

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

70

Decoding Options

!

The intended principle of the preferred system is that the encode and decode processes are

symmetrical. Thus the normal execution of the decode process will be the inverse of that

shown in Figure 12, and can be based on a similar hardware configuration. In summary:

(a)

(b)

©

(d)

®

The incoming data stream is “depacketized”, i.e. all overhead data related to
the UDP format and to error correction is removed, and the coded YUV
block data is recovered.

By receiving the compression profile information first, it is then possible to
apply this information to the compressed block data, and thereby to recover
the complete LKCS information. Note that in many cases a complete “tree”
may be represented by only a single bit in the coded state, but on decoding
all the “hidden” values are restored.

The LKCS information is used to create the complete set of wavelet
coefficients.

This data undergoes the reverse transform to recover the L and H values
using Equations 13 and 15. As with the encode process, this requires
multiple passes through the reverse transform engine, until Level 1
“vertical” is reached. As in the encode process, “row and column” control
is used to allow the simple one dimension reverse transform engine to be
used.

The recovered data is then put through a second reverse transform engine,
operating only in the horizontal Level 1 dimension, to recover the individual
pixel data.

The pixel data (now back at 16 bit for two pixels) is transformed from YUV
back to 8 bit RGB.

Dealing with Packet Loss

In a real world network there is a significant chance of data packets being lost. For

example ITU Recommendation Y.1541 (Network performance objectives for IP-based

services) envisages an IPLR (IP packet loss ratio) of 1 x 10" on an IP network. Clearly

this could have a catastrophic effect on the received image. However, in order to avoid the

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
71

additional overhead that would arise from the use of complex forward error correction
(which would increase both bandwidth and latency) the preferred system uses its own

image block format (Table 4) to provide a method of discarding corrupted data resulting

from packet loss.

The data stream is continuous, but the sync words are easily distinguished as a series of 16
bits value 1. Figure 26 shows two consecutive blocks of YUV data, and it can be seen that,
if all is well, each block has its own sync word, but at the end of the block there is the sync
word of the next block.

In an IP network each IP packet is validated using a CRC checksum. If the IP packet is
invalid, it is discarded. The effect on the image bit stream shown in the figure is that a
section is chopped out and, typically, two lots of unrelated block data could get joined
together.

While the length of the block is variable, the “tree” nature of the image data is such that the
decoder “knows” when it has received enough data to complete the image reconstruction,
and, therefore, when it should expect to see the next sync word. This feature is exploited

to validate block data before it is sent on to the display memory.

The mechanism is that block data of the form YUV BLOCK,, is validated by its own
SYNC WORD,, and its immediate neighbor’s SYNC WORD,. A “YUV Block Send
Module” in the decoder stores the decoded YUV block, and if a trailing SYNC word is
present at the end of a decoded YUV block, the module passes the YUV block on to the
display memory. Ifit is not present, the decoded YUV block is discarded.

The special case of the last block in an image frame, which would not normally see a
following sync word, is dealt with by the insertion of an additional sync word at end of
frame. This ensures that only valid YUV blocks are passed on to the display. The method
works because the YUV blocks contain absolute image data, and do not depend on either
historical or forward data. In the event that a block is discarded, the display system

continues to show the previous “good” YUV image block. In systems operating at typical

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008
72

display frame rates (24 — 60Hz) the random errors arising from lost packets are, in practice,

not noticeable.
Software Decode

The intended applications of the preferred system are such that, in most cases, hardware
decoding will be used to ensure deterministic performance. However, it is clear from the
description given so far that the “output” of the encode process is a bit stream that
describes an image or set of images. Therefore in theory anyone with knowledge of the bit

stream syntax could devise a means of decoding it using software methods only.

It is envisaged that a “software decode” product might be developed to meet particular
market needs: these would likely be where a lower level of performance was acceptable

(for example for reviewing images at low resolution or examining partial images).
Advantages of the Compressed Image Format

The description so far has covered the concept of a codec (coder-decoder) that displays
symmetry in the encoding and decoding processes, that is deterministic (with the exception
of bit rate in the temporal compression process) and that introduces minimum latency.
Clearly there is the possibility of introducing additional image processing features,
particularly at the decode stage. The coded data represents a highly economical
“shorthand” description of the underlying images ~ and this means that operations that
would be computationally intensive in the pixel domain can be carried out with minimum
resources in the coded block domain. This is especially the case when a single codec unit
is used to simultaneously process multiple images (for example a codec realized using an

industry standard FPGA can process eight standard video images simultaneously).

Some of the possibilities are:
(a) Compositing multiple image displays by selecting only the required blocks
from different image streams, and re-ordering to produce the required

display format.

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

(b)

73

Selecting different image fidelities (by electing not to decode all levels of
the transform).

Selecting image blocks to match the capabilities of the display node. (For
example the image stream may be carrying the equivalent of 1600x1200,
but the display is only able to show 800%600). N.B This does not imply re-

sizing, which is a separate subject.

An important theoretical point is that any processing or re-ordering done at the coded block

level can be thought of as being done in faster than real time. For example, if an image has

been compressed 20:1, any processing will take place in one twentieth of the time that the

corresponding processing would take at the pixel level.

Summary

A summary of some of the advantageous features of the preferred implementation of image

compression based on wavelet transforms is as follows:

(a)

(b)

©

(d)

©)

Use of the Property of Precision Preservation in the combined result of the
RGB to YUV transform and wavelet transform to provide an overall
reversible lossless transform without bit growth.

High speed scalable transform engine based on parallel pipeline
architecture. Programmable choice of transform to optimize results for
either graphics or moving image applications. Transform processing
deterministic — i.e. carried out in precise cycle time and quite independent
of image content. Minimum practicable latency.

Method of achieving the results of a full frame transform for moving images
while actually carrying out all processing in the block domain (use of “out
of block” transform data).

Novel “LKCS” coding arrangement designed to exploit the characteristics
of the wavelet transform that can lead to efficient compression.
Programmable Compression Profile, able to provide lossless, visually
lossless and high compression ratios at high spatial compression efficiency,

for example, a ratio of highest to lowest bit stream rate of 1000:1.

10

WO 2007/023254 PCT/GB2006/003008

®

®
(h)

)

74

Novel programmable temporal compression scheme based on the
application of wavelet signatures. Absolute coding, not requiring image
history or forward prediction; no extension of image latency. Use of
reference frames to eliminate effects of transmission errors.

Self-describing bit stream to carry the coded image block data.

The system output is configured for connectionless network operation,
providing for the configuration of a scalable multiple image network. High
immunity to network transmission errors.

Novel method of detecting IP packet loss, taking advantage of the nature of

the encoded bit stream.

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

75

CLAIMS:

A method of encoding an input sequence of data bits by forming a tree structure,
the method comprising:

(a) forming groups of data bits from the input sequence and logically
combining the data bits within each group to form a sequence of first-stage logic
output bits;

(b) repeating step (a) iteratively, by forming groups of logic output bits
from the first-stage logic output bits and logically combining logic output bits
within each group to form a sequence of intermediate logic output bits, until there
is a single final logic output bit;

(c) generating an encoded output bit stream comprising said final logic
output bit and any or all of the logic output bits and any or all of the data bits of the
input data sequence, in dependence on at least a first exclusion condition that, if a
given logic output bit is equal to a first predetermined value, which uniquely
defines the data bits and any logic output bits which have been used to generate
said given logic output bit, then said uniquely-defined data bits and said uniquely-
defined logic output bits are excluded from said output bit stream.

A method as claimed in claim 1, wherein the data bits and the logic output bits are
so combined using a logical OR combination, and wherein the first predetermined

value is 0.

A method as claimed in claim 2, where it is expected that the number of data bits in
the sequence which are equal to 0 will be sufficiently more than the number of data
bits which are equal to 1, such that the resulting encoded output bit stream

comprises fewer bits than the input sequence of data bits.

A method as claimed in any preceding claim, wherein the input sequence of bits
comprises one of a plurality of rows of bits which collectively define a bit plane of
a transformed block of image data, a bit plane being defined as a plane formed from

the respective bits of equal significance within the transformed block of image data.

10

15

20

235

30

WO 2007/023254 PCT/GB2006/003008

76

A method as claimed in claim 4, wherein steps (a) and (b) are applied to each of the
rows of said bit plane, thereby generating, for each row, a respective single final
logic output bit which constitutes a row output bit, the method further comprising
forming a further row tree structure by:

6)) forming groups of said row output bits and logically combining the
row output bits within each group to form a sequence of first-stage row logic output
bits;

(i) repeating step (i) iteratively, by forming groups of row logic output
bits from the first-stage row logic output bits and logically combining the row logic
output bits to form a sequence of intermediate row logic output bits, until there is
only a single final row logic output bit;

and wherein the resulting output bit stream comprises:

said final row logic output bit;
any or all of the first-stage or intermediate row logic output bits; and
any or all of the row output bits,

in dependence on a second exclusion condition that, if a given row logic
output bit is equal to said first predetermined value, which uniquely defines the row
logic output bits and any row output bits which have been used to generate said
given logic output bit, then said uniquely-defined row logic output bits and said

uniquely-defined row output bits are also excluded from said output bit stream.

A method as claimed in claim 5, wherein each group of said row output bits

comprises five row output bits.

A method as claimed in claim 5 or claim 6, wherein not all of the row output bits

are formed into groups, and the non-grouped row output bits are combined with

other row logic output bits within the row tree structure.

A method as claimed in claim 7, wherein the resulting output bit stream
additionally comprises some or all of the non-grouped row output bits, in
dependence on an additional exclusion condition that, for each non-grouped row
output bit, if the row logic output bit, which results from the logical combination of
that non-grouped row output bit with the other row logic output bits with which

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

10.

11.

12.

13.

14.

71

they are combined in the row tree structure, is not equal to said first predetermined
value, then that non-grouped row output bit is excluded from the output bit stream,
but all of the intermediate logic output bits which were logically combined to form

that non-grouped row output bit are included.

A method as claimed in any one of claims 5 to 8, wherein the transformed block of
image data has been transformed using a multi-level wavelet transform, and the
row output bits are grouped in step (i) in accordance with the level of the transform

to which they relate.

A method as claimed in claim 9, wherein only the row output bits of the first and

second levels are grouped together in step (i).

A method as claimed in claim 10, wherein the row output bits of the third level are

grouped with the first-stage row logic output bits.

A method of encoding a transformed image data block which comprises an array of
transformed image coefficients configured as a plurality of bit planes, by forming
the data bits from each of said bit planes as a respective sequence of data bits and
applying a method in accordance with any one of claims 5 to 11 to the bit
sequences of each bit plane, starting with the most significant bit plane and ending
with the least significant, so as to derive an encoded output bit stream representing

the entire transformed data bock.

A method as claimed in claim 12, wherein the transformed image data block
additionally comprises a bit plane in which the signs of the transformed image data
have been encoded, and wherein the method further comprises incorporating in said
output bit stream bits representing the respective signs associated with the most

significant data bit of each of the transformed image coefficients.

A method as claimed in claim 12 or claim 13, subject to a further exclusion
condition that, for each logic value which is equal to a second predetermined value,

the corresponding logic values in the same position within the corresponding row

5
15.
16.

10
17.

15
18.

20
19.

25
30 20.

WO 2007/023254 PCT/GB2006/003008

78

tree structure associated with each succeeding bit plane are excluded from the
encoded output bit stream, but wherein the logic values or data bits immediately
preceding said corresponding logic values are retained, even if they would

otherwise have been excluded by said first exclusion condition.
A method as claimed in claim 14, wherein the second predetermined value is 1.

A method as claimed in any preceding claim, wherein the encoded output bit
stream is additionally subject to a compression exclusion condition in which bits
occupying predetermined positions within the or each tree structure are excluded
from said encoded output bit stream in accordance with a predetermined

compression profile.

A method as claimed in claim 16, wherein said compression profile is defined for
each of said bit planes and serves to exclude a greater number of bits from the bit

planes of lower significance than those from the bit planes of greater significance.

A method as claimed in claim 16 or claim 17, wherein said compression profile
serves to exclude a greater number of row logic output bits generated in earlier

stages of step (ii) than those generated in the later stages thereof.

A method as claimed in any one of claims 5 to 18, wherein said output bit stream
comprises, for each bit plane in sequence starting with the bit plane of greatest
significance and ending with the bit plane of least significance:
the non-excluded row output bits, followed in sequence by:
@) the row logic output bits;
(b) the non-excluded intermediate logic output bits; and

(c) the non-excluded data bits.

A method as claimed in claim 19, when dependent on claim 13, wherein said output

bit stream further comprises, for each bit plane:

WO 2007/023254 PCT/GB2006/003008

10 22.

15

23.
20

24.

25 25.

26.
30

79

(d) said bits representing the respective signs associated with the
most significant data bit of each of the transformed image

coefficients.

A method of decoding a bit stream which has been encoded using a method as
claimed in any preceding claim, the method comprising regenerating the bits which
have been excluded by said or each exclusion condition, thereby to recreate the

original input sequence of data bits from which the bit stream has been encoded.

A method of preventing the creation of blocking artefacts during the transmission
of image data, the method comprising:

receiving an original set of data relating to an image in the form of an array
of adjoining blocks; and

processing the data of each block, together with data of each immediately
adjacent block within the array, in accordance with a predetermined transformation
algorithm, thereby to create a respective block of transformed data which is

substantially devoid of block boundary artefacts.

A method as claimed in claim 22, further comprising the step of compressing the

transformed data in each of said blocks separately.

A method as claimed in claim 23, further comprising transmitting sequentially the

blocks of compressed data.

A method as claimed in claim 24, further comprising receiving the transmitted
bocks of compressed data and sequentially decompressing each block to recreate

said transformed data.

A method as claimed in claim 25, further comprising processing said recreated
transformed data in accordance with a reverse algorithm so as to recreate the

original set of data.

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

27.

28.

29.

30.

31.

32.

80

A method as claimed in any one of claims 22 to 26, wherein said original set of

data constitute the pixels of an entire frame of an image signal.
A method as claimed in claim 27, wherein each block comprises 1,024 pixels.

A method of recreating an original set of data relating to an image in the form of an
array of adjoining blocks which has been processed in accordance with a method as
claimed in claim 22 to create blocks of transformed data, the method comprising
processing each block of transformed data in accordance with an algorithm which
is an inverse of said predetermined transformation algorithm, thereby to recreate
the data of each block, together with data of each immediately adjacent block
within the array, and combining the resulting processed blocks thereby to recreate

the original image.

A method as claimed in any one of claims 22 to 29, wherein the predetermined

transformation algorithm comprises a wavelet transform.

A method as claimed in claim 30, wherein said wavelet transform is the 2/10

transform.

A method of performing a first transformation on each of a first and a second data
group to generate first and second transformed data groups respectively, and
performing a plurality of subsequent transformations on each of the first and second
transformed data groups, the method comprising, in sequence:

performing said first transformation on said first data group using a first
transform engine; and

performing all of said subsequent transformations on said transformed first
data group using a second transform engine within a time interval which at least
partly overlaps a time interval within which said first transform engine performs

said first transformation on said second data group.

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

33.

34.

35.

36.

37.

81

A method as claimed in claim 32, wherein the time taken to perform all of said
subsequent transformations on a transformed data group is less than or equal to the

time taken to perform the first transformation thereon. \

A method as claimed in claim 32 or claim 33, further comprising storing the
transformed data resulting from each transformation on said first data group in a
first memory storage area, and storing the transformed data resulting from each

transformation on said second data group in a second memory storage area.

A method as claimed in claim 34, applied to a plurality of further data groups,
comprising storing the transformed data resulting from each transformation on the
or each further odd-numbered data group in said first memory storage area, and
storing the transformed data resulting from each transformation on the or each

further even-numbered data group in said second memory storage area.

A method as claimed in claim 34 or claim 35, wherein after each of said subsequent
transformations the resulting transformed data are stored in their respective
memory storage area so as to overwrite at least some of the data already stored

therein resulting from one or more previous transformations.

A method of performing a plurality of fransformations on first and second data
groups, the method comprising, in sequence:
(@) performing a first transformation on said first data group using a
first transform engine, so as to generate a first once-transformed data group;
®) storing said first once-transformed data group in a first memory
storage area;
(c) reading said first once-transformed data group from said first
memory storage area,
(d) performing a second-stage transformation thereon using a second
transform engine, thereby generating a first twice-transformed data group;

and

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

38.

39.

40.

82

(e) writing said first twice-transformed data group into said first
memory storage area so as to overwrite said first once-transformed data
group;

the method further comprising, in sequence:
® performing said first transformation on said second data group using
said first transform engine, so as to generate a second once-transformed data
group;
(g) storing said second once-transformed data group in a second
memory storage area,
(h) reading said second once-transformed data group from said second
memory storage area,
(i) performing said second-stage transformation thereon using said
second transform engine, thereby generating a second twice-transformed
data group; and
G) writing said second twice-transformed data group into said second
memory storage area so as to overwrite said second once-transformed data
group;

wherein step (f) commences after the completion of step (a) but

before the completion of step (e).

A method as claimed in claim 37, wherein step (f) commences before the

completion of step (c).

A method as claimed in claim 37 or claim 38, wherein steps (a) to (j) are repeated
using a multiplicity of data groups, wherein steps (a) to (€) are applied to odd-

numbered data groups and steps (f) to (j) are applied to even-numbered data groups.

A method as claimed in any one of claims 37 to 39, further comprising, in

sequence, after step (e):

(e1) reading a sub-group of said first twice-transformed data group from

said first memory storage area;

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

41.

42.

&3

(e2) performing a third-stage transformation thereon using said second
transform engine, thereby generating a first three-times-transformed data
sub-group; and

(e3s) writing said first three-times-transformed data sub-group into said
first memory storage area so as to overwrite said sub-group of said first
twice-transformed data group;

and, after step (j):

(1) reading a sub-group of said second twice-transformed data group
from said second memory storage area;

(G2) performing a third-stage transformation thereon using said second
transform engine, thereby generating a second three-times-transformed data
sub-group; and

(G3) writing said second three-times-transformed data sub-group into said
second memory storage area so as to overwrite said sub-group of said

second twice-transformed data group.

A method as claimed in claim 40, wherein the time taken to perform the
combination of steps (c) to (e3) is less than or equal to the time taken to perform
step (a), and the time taken to perform the combination of steps (h) to (j3) is less

than or equal to the time taken to perform step (f).

A method as claimed in claim 40 or claim 41, further comprising, in sequence, after
step (e3):
(es) reading said first three-times-transformed data sub-group from said
first mémory storage area;
(es) performing a fourth-stage transformation thereon using said second
transform engine, thereby generating a first four-times-transformed data
sub-group;
(es) writing said first four-times-transformed data sub-group into said
first memory storage area so as to overwrite said first three-times-
transformed data sub-group;

and, after step (js):

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

43.

44.

45.

46.

47.

84

(a) reading said second twice-transformed data group from said second
memory storage area;

(Gs) performing a fourth-stage transformation thereon using said second
transform engine, thereby generating a second four-times-transformed data
sub-group; and

(o) writing said second four-times-transformed data sub-group into said
second memory storage area so as to overwrite said second three-times-

transformed data sub-group.

A method as claimed in claim 42, wherein the time taken to perform the
combination of steps (c) to (es) is less than or equal to the time taken to perform
step (a), and the time taken to perform the combination of steps (h) to (je) is less

than or equal to the time taken to perform step ().

A method as claimed in claim 42 or claim 43, further comprising repeating steps
(e3) to (es) and steps (j3) to (js) a plurality of times, using the transformed sub-
groups stored in the respective memory storage areas, wherein each even-numbered
transformation is performed on only a sub-group of the data stored in the memory
and each odd~numbered transformation is performed on all of the data generated in

the preceding even-numbered transformation step.

A method as claimed in claim 44, wherein the data groups are subjected to ten

transformations.

A method as claimed in claim 45, wherein the time taken to perform all of the
second and higher-levels transformations on each group of data is less than that

taken to perform the first transformation.

A method as claimed in any one of claims 44 to 46, wherein the first and second

memory storage areas comprise respectively two storage areas of a double data rate

memory.

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

438.

49.

50.

51.

52.

53.

54.

85

A method as claimed in one of claims 32 to 47, wherein the plurality of

transformations comprise a multi-level wavelet transform.

A method as claimed in claim 48, wherein the multi-level wavelet transform

comprises the Haar wavelet transform.

A method as claimed in claim 48, wherein the multi-level wavelet transform

comprises the 2/10 wavelet transform.

A method as claimed in any one of claims 32 to 50, wherein each data group

comprises a frame of image data.

A method of performing a plurality of reverse transformations on first and second
data groups which have been transformed in accordance with a method as claimed
in any one of claims 32 to 36, the method comprising, in sequence:

performing all but the last one of the reverse transformations on said first
transformed data group using a first reverse transform engine;

performing the last reverse transformation on said first transformed data
group using a second reverse transform engine within a time interval which at least
partly overlaps a time interval within which said first reverse transform engine
performs all but the last one of the reverse transformations on said second

transformed data group.

A method as claimed in claim 52, wherein the time taken to perform said all but the
last one of the reverse transformations on said first transformed data group is less

than or equal to the time taken to perform the last reverse transformation on said

first data group.

A method of transmitting data comprising:

grouping the data into a sequence of frames comprising a first frame and at
least one subsequent frame, each frame comprising a predetermined plurality of
data blocks;

transmitting the first frame in its entirety; and

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

55.

56.

57.

38.

59.

86

transmitting only those data blocks within the or each subsequent frame
which are significantly different from the corresponding data block within the first

frame.

A method as claimed in claim 54, further comprising:

processing each of said data blocks in accordance with a predetermined
algorithm to evaluate a parameter for that data block;

for each data block within the or each subsequent frame, determining if the
value of the associated parameter is significantly different from the corresponding
data block of the preceding frame within the sequence;

wherein the step of transmitting only those data blocks which are
significantly different comprises transmitting only those data blocks within the or

each subsequent frame for which there has been a positive determination.

A method as claimed in claim 54 or claim 55, wherein the step of grouping the data
comprises grouping the data into a plurality of said sequences, each containing »
frames, where n is a predetermined number, such that at least one entire frame is

transmitted within each sequence of # consecutive frames of data.

A method as claimed in claim 56, further comprising transmitting an additional

entire frame at regular intervals.

A method as claimed in claim 56 or claim 57, further comprising transmitting an

additional entire frame on receipt of a demand signal.

A method of compressing data comprising:

grouping the data into a sequence of frames comprising a first frame and at
least one subsequent frame, each frame comprising a predetermined plurality of
data blocks;

compressing the first frame in its entirety; and

compressing only those data blocks within the or each subsequent frame

which are significantly different from the corresponding data block within the first
frame.

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

60.

6l1.

62.

63.

64.

65.

66.

87

A method as claimed in claim 59, further comprising:

processing each of said data blocks in accordance with a predetermined
algorithm to evaluate a parameter for that data block;

for each data block within the or each subsequent frame, determining if the
value of the associated parameter is significantly different from the corresponding
data block of the preceding frame within the sequence;

wherein the step of compressing only those data blocks which are
significantly different comprises compressing only those data blocks within the or

each subsequent frame for which there has been a positive determination.

A method as claimed in claim 59 or claim 60, wherein the step of grouping the data
comprises grouping the data into a plurality of said sequences, each containing #
frames, where » is a predetermined number, such that at least one entire frame is

compressed within each sequence of n consecutive frames of data.

A method as claimed in claim 61, further comprising compressing an additional

entire frame at regular intervals.

A method as claimed in claim 61 or claim 62, further comprising compressing an

additional entire frame on receipt of a demand signal.

A method as claimed in any one of claims 59 to 63, wherein the data to be
compressed has been subjected to a wavelet transform, and wherein the parameter

is evaluated on the basis of only the most significant coefficient within each sub-
band in each data block.

A method as claimed in claim 64, wherein the parameter is evaluated on the basis

of the position within the data block of the most significant coefficient.

A method as claimed in claim 64 or claim 65, wherein the parameter is evaluated

on the basis of only the n most significant coefficients selected from the group

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

67.

68.

69.

70.

71.

72.

73.

74.

88

comprising the most significant coefficient within each sub-band in each data

block, where # is a predetermined number.
A method as claimed in claim 66, wherein # is equal to 8.

A method as claimed in any one of claims 64 to 67, wherein the wavelet transform

is a five-level transform resulting in 16 sub-bands.

A method as claimed in any one of claims 59 to 68, further comprising transmitting

only the compressed data.

A method as claimed in any one of claims 59 to 69, wherein the data comprises
colour image data, and wherein only the luminance component of the colour image

data is processed in order to evaluate said parameter.

A method as claimed in any one of claims 59 to 70, wherein only those components
of the data within each data block having values higher than a predetermined

threshold are processed to evaluate the parameter for that data block.

A method of configuring a plurality of variable-length data blocks into a data
stream from which each data block can subsequently be retrieved, the method
comprising:
for each data block, forming a respective indexed data block comprising:
a sync word which is identical for each indexed data block;
an index number which uniquely identifies the data block within
said plurality of data blocks; and

the respective data block.

A method as claimed in claim 72, wherein each indexed data block comprises, in

sequence, said sync word, said index number and said respective data block.

A method as claimed in claim 72 or claim 73, wherein the sync word comprises a

sequence of 16 bits.

10

15

20

25

30

WO 2007/023254 PCT/GB2006/003008

75.

76.

77.

78.

79.

80.

81.

89

A method as claimed in any one of claims 72 to 74, wherein the sync word

comprises a sequence of bits each equal to 1.

A method as claimed in any one of claims 72 to 75, wherein all of the index

numbers comprise bits sequences of equal length.

A method as claimed in claim 76, wherein each of the index numbers is 11 bits in
length.

A method as claimed in any one of claims 72 to 77, wherein each of said data
blocks comprises a data block which has been transformed in accordance with a

wavelet transform.

A method of retrieving variable-length data blocks from a data stream, the data
blocks having been configured in accordance with a method as claimed in any one
of claim 72 to 78, the method comprising locating said sync word within said data
stream thereby to identify said data blocks; and

retrieving the resulting identified data blocks from said data stream.

A method as claimed in claim 79, wherein each of said data blocks has a
characteristic which enables it to be verified as a valid data block, the method
comprising searching sequentially within the data stream for a data sequence which
is identical to said sync word, thereby to identify a potential indexed data block
comprising a potentially valid data block, and validating said data block only:

(@ if it is verified by said characteristic to be a valid data block; and

(b) if the potential indexed data block is followed immediately within
the data stream by a further potential indexed data block comprising a data

sequence which is identical to said sync word.

A method as claimed in claim 80, further comprising selecting for a subsequent

processing step only those data blocks which have been validated.

WO 2007/023254 PCT/GB2006/003008

82.

83.

90

A method as claimed in claim 81, wherein said data stream comprises data
corresponding to an image to be displayed, and wherein said processing step

comprises displaying the resulting selected data blocks.

A method of selecting a region of interest from within a plurality of variable-length
data blocks which have been retrieved in accordance with any one of claims 79 to
82, the method comprising selecting only those retrieved variable-length data bocks

which are associated with one or more predetermined index numbers.

WO 2007/023254

INPUT

Freqzzamy

PCT/GB2006/003008

iy {fraduency‘}' |
FIG. 2
FILTER {2 [
—»| FILTER |2
FILTER |2 |— FILTER {2 |
! FILTER {2 >
FILTER {2 9
FIG. 3
LL HL
ORIGINAL r__)
IMAGE
LH HH

WO 2007/023254 PCT/GB2006/003008

2/20

FIG. 4

—piUpsample TZ Filter
— Output
—Pp{ Upsample TZ Filter
FIG. 7
[v
u

PCT/GB2006/003008

WO 2007/023254

3/20

H¥3aod
WV3dLs 119
ONIIFO0S3a

-474S

¢

IVHOdNEL-
ALIM3AI4 LNVLSNOD-

(@]
HOSSTHANGD
INIAN33d
IXILNOD

a3asvd o01g-
asoins Lig-

d3d00 3341
d3ad0
azaazgang
LNVOIHINOIS Lig

<=

11 0k/c-
uVVH ¢/¢-

INHO4ASNVHL
1373AVM
QIASVE-"49O41NI
F19ISHIATSH

<

(A'nA
-q'64)

WHOASNVYHL
HN07100
AMdISHINTY

G Old

WO 2007/023254 PCT/GB2006/003008

4/20

FIG. 6

Level 5 uu
f /l coeff

rLf)/ o
r{ —f Level4

EH — HL Level 3

LHE 1 1evel 4

Level 4 | 4 oot 1 HL Level 2

HH Level 3

LH Level 3 16 coefficient

HL Level 1

LH Level 2 HH Level 2
64 coefficients

HH Level 1

LHLevel 1
256 coefficients

PCT/GB2006/003008

WO 2007/023254

5/20

FIG. 8

s N
o o 0o 0 & o o o o
o o o o 8 o o o o
o o o o R 8 o o o o
o o 0 © H & o 0 o O
S
© v 0 WV © o o o
—_ N N o S —oon o= A =)
n
n O O O ©v N n 0 O
o o o o 8 § oo o o LL
o o o o 8 & @ o o o
o O o O g B o o o o
o o o 0o T o o o o
N v
I,
=y

0

11

10

0

14
10

-10

-65

0

-3| 32

8

0

16
20

0

0
0

0

0

0
0

0
0

0

01 0 7

0| 0|20
0] 0124
0] 0132

64|26 |77 |85]|65

ol 01|27

0] 0112 0] O

WO 2007/023254 PCT/GB2006/003008

6/20
foomoo\ (0 0 —13 0 0)
0 0 280 O 00 -8 0 O
LL=| 68 31 70 83 62 IH=|8 10 -13 -3 -6
0 0 19 6 O 00 15 0 ©
\0 0 13 0 0 \0 0 13 0 0
/00—800} f0 O 5 0 0)
00 -7 0 0 0 0 300
HL=| 18 2 -17 12 10 HH=| -4 -11 97 4 1
00 0 0 0 0 0 -1000
Loo 1 0 0 L0 0 =100 0)
1:=0.4 c=2
LL(r,C) - HL(r,C))
13 8
= H = 28 '7
I,C I,C
70 1
64 48 m ;
77 -45
13 1
r=2 c¢=2 LH

(0.0 =~16 HH(r,c) =95

PCT/GB2006/003008

WO 2007/023254

7/20

Lo

ULIOISTEY) 3J0[q
AQX pdwIdmioyy

/,m, .

£opory

Jospoped |

HromjoN

[BALIIA G [340] -
[BINOZLIOLY G [PAT] -
[BONIIAA pJoADT] -
[BIUOZIIOH] f[osa -
TOMWA.C PAYT -
[SIUOZLIOK] € JoAS] -
JLELECT RA LIS S
[BIUOZLION] Z [3a07] -
[B3NIRA [fora -

WY -E-19A0 sSed NI0[q A,

X BINA

98

"oF

9€

BT

81

AWV € JIAO U ©
b HOISUSUIIP.o1I0 UL

81

Jutogsuen ssed agmg @

e T W o e e e

Tl

81

| o¢
5

9F

s

0).

FIR

8L

L 4!

VELIOFSUBAY,
01/ 20.48eH
[CIE0ZIIOH T 9AY] ﬁ

81

9¢

M0y wm

~ o1

91

¢l Old

o

A

A

d

- 1 waojsuel], O

. |

e]

[oa}

o]

=]

WO 2007/023254 PCT/GB2006/003008

8/20

FIG. 13

Data Filter Bank 3 Output

n-2 —| sm-2)

. | s(1) B S Y

PO
1+l

B2

— d(n)

E—1| Level2

g“
-
=
=

WO 2007/023254

CO
C1
C2
C3

C4
C5
C6
Cc7

C8
C9
C10
C11

C12
C13
C14
C15

FIG. 15

KO

PCT/GB2006/003008

K1

K2

K3

vAvERvERv

CO TO C15 = COEFFICIENTS

KOTO K3 =KTYPES

L1.0

=L TYPE

L1

1

PCT/GB2006/003008

WO 2007/023254

10/20

€ 21

91 Old

m _ W Gl LT
111
el 11
0 €71 L AN
——G/¥1
Al
HH m _ _ A
IlQ 0L 11
_ 6 L1
0 €1 | ‘ g 11
1 21
H : _ _ N
9 11
0 €1 G 11
‘ ¥ 11
H 0 ¢
G/ 13aNTT _ £
Z 1
O = VA= L1
‘ 0 L1
¢ 1ANT1 L 13N
TH 1H

PCT/GB2006/003008

WO 2007/023254

11/20

A

T
!
|
|
1
|
1
1
i
I
1
i
1
I
1

L

“ i
f I
.1 - .
T |
i I, 1
ll-1. B - — . —
. i 1
—— 1 [
IIII -
] 1H !
.- . | 1
- rres. ! !
— L e . AR |
. e 1 Ty 1
1-1 P s e, Il—l!.l o .lll-..“ .
N . " L
] o
1 “
. 1 :
' 1
) S |_......
Lo -
. e ~
S
H 1|IIL1L.'L.|T
o
e .
at A -
-
X Ln....l - &_1..
lllll: N A -Ilk N
P l- Iv.
lLLl.l.. E) -ll. ' m
) i
AV T e T e e .l_-L-...: 174
ol -
- v ...1.| m
R e At
_ T LL 9Id
Ml -HT
= FLa
T

WO 2007/023254 PCT/GB2006/003008

12/20

FIG. 18

PCT/GB2006/003008

WO 2007/023254

| THH| 1HE| 1HH| 1HH| THH| THH| 1HH| THH| 1HH| THH| THH| 1HH] THH|] THH]| [HH| THH|] €9|
BIEPD JUILAJIA0I | [2A97T JO SMOY ¥

[1a1] 1ea| 1ax| tea] rea| odr] oea] vaa| rar] oowr] e rea] tea] 1aa) 1da] 1eI|) 91|

[zud| cud]| crg| caa| cHH| cHE] <Hd| ¢BH| cHH| cHH| cHH| cHH| cHH|[cHH| THH| cHH]| ST
BIBP JUDIOYJO0D ZTOAT JO SMOY 71

[cu1] cHa| cH1| cHi] cua] cHt] cua] cai] cai] cui] cat| cHt] cHi] cHI] cHI| THI] |

m_ ¢ad| ¢ud] c¢Hu| cud] c¢uy| c¢HE| c¢nu| ¢HH| ¢HH]| ¢HB| ¢BH| ¢HH]| ¢HH| ¢BH| ¢HH| ¢HH| €]

o1o_ ¢1H| e¢1a| ¢1H| ¢1H]| ¢1H| ¢1H| €¢1H| ¢I1H| ¢I1”H| ¢1H| ¢1H| ¢1H| ¢1H| ¢1H| ¢1H| €¢IH| T

[ea1] cu1] cu1| eu1] cwa| e¢ma] ¢nu1| emui| cHi| eH1] ewi| e¢ma| eHr| emi] cui] ¢l 1]

| vHE| vuH]| vEE| vHE] vIE] vIH] vIH| vIH] vEI| vHI| vyHI| vHI| sHE| STH| sHI| ST11| 0]

17 ! 4! €l 4t 11 01 6 8 L 9 g 4) (4 I 0| MOYA

JaquuInu Jig

6} OId

PCT/GB2006/003008

WO 2007/023254

14/20

1YWdOd

STINAOWAHO
SINdLNO
[0-€9] 9571 [0-GH] TIH0Ed D
44/ [0-69] YSW™ ERtah [0-69] 20V
[0-69) 00K 1 [0-69] UNT™ 1 [0-89]7
>
{ $355vd8) SINYId8
0¢ Oid

[0-ct]0

(SMOH) ¥9%(INv1d) 8

PCT/GB2006/003008

WO 2007/023254

15/20

1Naln

[0~69] 0OV

v

SLndLno

LZ Old

LYINACA
SO

[0-61]1S (SmOH) v9x{ INVId) 8

[0-61]1D

PCT/GB2006/003008

WO 2007/023254

16/20

ONIAOONT HOd
H31S193d 141HS OL

[0-€9] MSINXIN

[0-€9] HND XN

SSvd'S

SSvd 0

SSYd M

SSvd]

[0-£9] MSW'S

0-€91 MSWO

]

0-€9] NS
]
]

0-GHI YSITY

[
[
[0-€9] HNTD
[
[

0-GL] HNO M

SddT
XN

Z¢¢ Old

g-mﬁnm mom%Zm [0-GL]18

[0-69] DOV [o-511D
[0-£9] 4NJD

[0-€] 98 | maﬁ_on [0-GL] T140Hd D

[0-£9] xm_\,_.,_ [0-611D
[0-£9] HNO 1

PCT/GB2006/003008

WO 2007/023254

17/20

‘Ploysaaiy;
INIAPJIP dqeurureisor:

14

*INJBUBIS ID[PAGM,,

913 s1 suogisod pue sanfeA
JUSII30 JO UOHBHIQUIOD
Buymsal Yy, *SJUIILI00
JuEdIUSLS 350Ul 33O A1} 1338

T

~aureay snotasad ur uonsod

aures a1y} U 20[q JO LT YPIm

971 ‘sanjeA JWINIfI03 9f)

‘wonisod a0y 9)0u pue
pUEq-qns gors U SIUIIIIJ00d
JUBDIUBIS 350U 3] 39950

€

.@:&:&n ,‘

4sanbal
BJBp JUILI] 90UA.IRJY

R

‘pazsanbaua s e)ep dwesy
BJUIINYIA J1..10 ‘JU.IHP
248 Soanjeusis ay} Ju.Ioyne
| Bumipos 10} vrep urioysuEy

B >.
e i >

3uIpod 10j vleq

*eJep uonisod pajenosse sey
NO0lq Yaey “ULIeISURI) A} X 0]
SY201q TExTE 0)ul PIPIAIP deu] -

aanyeuss Aau 1) sagduwo)): ANX 1em3pio puss AUQ
1 Y) :
Byep wLoysues ANX g
-
‘Ploysa.np A
ISI0U A[qeUIIBA30.0 g !
) A

JUBIYIUFISUI JA0UIL
| 01 ploysa.y; aston ¢ £jddy 1

RIIETA1 A BT

(4

o0]q & woty

Ao elep X ol ovje,

1

em - — =

£€¢ OId

PCT/GB2006/003008

WO 2007/023254

18/20

sahl Jo sequung

a|geLIEA

LS v L

ZHINO e
s2Ag 0051 - 97
BleQ

B1e(q
10

ssaippe
20In0%

sgaIppe
1580

\

peo|fed

10 adA) s8B21pU]

v Old

loyelaush Yoo

|EWIBIUI S9ZIUCIUIUAS

PCT/GB2006/003008

WO 2007/023254

peoided di | dI peolfed d | dI peoifed di | dl (== lapesy
, 1SEIRNIA dl

peoiied 1L | L peofed 1L | L peojfded 11 | L

lapeay Jsfe]
Uodsuel |

BUng YA BUNg wNa Bng viNa
\%&.\ - .
lapeay 1e08d
OBPIA 18]BABAR
Q wealisng PIA olpry | phy wealsyg PiA wealisyg BIA Weadi=ig PIA aphy | pny ueassid PIA
o)) . .
= + (opny BUT s1axjaed ebiew)] jo swel] | o
—, _
{4epeay e sapnjaul) ¥o0/g] Yo
08PIA ZEXZE B 10} Weals %nwmr Ewn_mmn_
g passatdwiod 18[8ABAM Ipny 18|8A }.....&k
e yoo | oo | pog | oug | o | yooi | oo | oo | o | v | oo | oo | -m-oeeeoee-
« 8)70jg akiew| passaidwoy o awel] | >

SjoNotd i OF Wieadls ofeil] Possaiuio: JO HORBIsUEL] BUIMOYS Welbelg

GZ Old

20/20

U X4AaN|

XAANI

adom -
ONAS

— — — t— — —— p— S— Sttt p—— ———

7

— m— — o m—— — — — —— — —

WX3ANI

XAANI

adom
ONAS

V

2.

N

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - claims
	Page 77 - claims
	Page 78 - claims
	Page 79 - claims
	Page 80 - claims
	Page 81 - claims
	Page 82 - claims
	Page 83 - claims
	Page 84 - claims
	Page 85 - claims
	Page 86 - claims
	Page 87 - claims
	Page 88 - claims
	Page 89 - claims
	Page 90 - claims
	Page 91 - claims
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings

