Title: APPARATUS AND METHOD OF MOBILE MEDIA PRESENTATION PORTABLE ELECTRONIC DEVICE

Abstract: A method of mobile media presentation includes receiving content wirelessly with a portable electronic device and selectively interfacing the portable electronic device with at least one host device via a docking station. Playback of the content can then switch between the portable electronic device and the host device.
Apparatus and Method of Mobile Media Presentation Portable Electronic Device

BACKGROUND

[0001] Portable electronic devices provide users with an ever-increasing array of features and capabilities. For example, wireless telephones, personal digital assistants, smart phones, pocket computers and similar devices allow users to manage data, make phone calls and send or receive text or email messages.

[0002] Additionally, many portable electronic devices can provide a wireless connection to the Internet. This connection may be provided, for example, through a wireless or wi-fi hot-spot or through a network of transceiver stations disposed throughout a service area, such as a mobile telephone network. Many different systems and protocols can be used to wirelessly connect a portable electronic device to the Internet or other computer network through the system of a wireless service provider.

[0003] With access to the Internet or other service provide computer network, portable electronic devices are increasingly able to provide access to a wide variety of audio and audiovisual media content. For example, using a portable electronic device, a user may be able to download or stream audio or audiovisual content such as songs, news footage, video clips, music videos, movies, television programs, etc. Any audio, visual or audiovisual content can be downloaded or streamed to these portable electronic devices.

[0004] This access to an unlimited variety of content through portable electronic devices is particularly helpful for users because the content can be accessed and enjoyed from any location within the wireless service area that supports the portable electronic device. Consequently, the user can access desired audio or audiovisual content when away from home or office, for example, when traveling, waiting for an appointment, doing errands, etc.

[0005] However, portable electronic devices are, by their nature, compact in size so as to be easily carried on the user's person. As a result, the display device
on a portable electronic device is typically quite small, which may effect the user's ability or desire to watch streamed video content on the portable electronic device.

[0006] Additionally, when listening to audio using a portable electronic device, the user must typically wear earphones or headphones. This prevents those near the user from having to listen to the audio being enjoyed by the user. Additionally, ear or headphones conserve the limited power in a portable electronic device as compared to the power that would be required to operate larger speakers if the user were not wearing headphones.

[0007] Watching a relatively tiny display device and/or using an earpiece or headphones may be satisfactory to enable portability. However, the user may sometimes be in the process of viewing and/or listening to content on the portable electronic device when the user arrives at his or her home or office or some other place where the user could access a device with a larger, higher density display, higher quality speakers, or other enhanced features for playback of the audiovisual content.

[0008] In such a case, the user typically must finish watching the desired content on the relatively inconvenient, small display of the portable electronic device or discontinue watching the desired content on the portable device and then activate another device, such as a computer or set-top box, and restart, most likely at additional cost, the download or stream of the desired content to the new device which provides the advantage of a larger screen, speakers and/or enhanced user interface.

[0009] Clearly, it is inconvenient to discontinue viewing content on a portable device and re-access the content on another device, at additional cost. While the second device may provide a larger screen or other features that make it easier to enjoy the content, the user will waste time transitioning between devices. Additionally, the user may have to start again at the beginning of the program or content, even though a substantial portion has already been experienced on the portable device.

BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings illustrate various embodiments of the principles described herein and are a part of the specification. The illustrated embodiments are merely examples and do not limit the scope of the claims.

Fig. 1 is a perspective diagram of an illustrative portable electronic device.

Fig. 2 is a diagram of an illustrative portable electronic device being inserted into an illustrative docking station.

Fig. 3 is a perspective diagram of another view of an illustrative portable electronic device.

Fig. 4 is a diagram of media content from an illustrative portable electronic device being displayed on an illustrative host device of an illustrative docking station.

Fig. 5 is a diagram of an illustrative system of mobile media presentation.

Fig. 6 is a block diagram of an illustrative system of mobile media presentation.

Fig. 7 is a block diagram of an illustrative system of mobile media presentation.

Fig. 8 is a block diagram of an illustrative system of mobile media presentation.

Fig. 9 is a block diagram of an illustrative system of mobile media presentation.

Fig. 10 is a block diagram of an illustrative portable electronic device.

Fig. 11 is a block diagram of an illustrative method of mobile media presentation.

Fig. 12 is a block diagram of an illustrative method of mobile media presentation.

Throughout the drawings, identical reference numbers designate similar, but not necessarily identical, elements.
To address the issues presented by the ability to download or stream content to a portable electronic device, but possibly wanting to transition the experience of that content to a device with a larger display or other features for enhancing the user's enjoyment of the content, the present specification describes a novel system in which the portable electronic device can be selectively connected to, or brought into communication with, a second audiovisual playback system that provides or includes a larger display or other features for enhancing the user's enjoyment of the content. As described herein, this interfacing of the portable electronic device and the second audiovisual playback system can automatically initiate playback of the content, without interruption or needing to restart or re-access the content, on the second audiovisual system.

As used herein and in the appended claims, the term "portable electronic device" is used to refer to any portable electronic device that can be used to experience audio, visual, or audiovisual content, particularly where the content is provided to the portable electronic device wirelessly through a supporting wireless network. Consequently, the term "portable electronic device" may include, but is not limited to, personal digital assistants (PDAs), cellular and mobile telephones, smart phones, MP3 players, portable global positioning system (GPS) units, portable satellite receivers, pocket and laptop computers and the like. It will be recognized by those skilled in the art that new portable devices continue to be developed and marketed to consumers who use them for a variety of purposes. Such new portable devices may also be included in the broad definition of a portable electronic device for purposes of the present specification and the techniques disclosed.

As used in the present specification and in the appended claims, the term "content" or "media content" refers to any audio, visual or audiovisual data including, but not limited to, still images with or without audio, video images with or without audio, audio content only, and any combinations thereof. Examples of such content may include broadcast television content, pay-per-view content, video on demand content, music videos, music without video, email messages, electronic text, ebooks, video books, web pages and others.
[0027] As used in the present specification and in the appended claims, the term "host device" will be used to refer to an electronic content playback device. Typically, the host device will include or provide a relatively large screen, speakers and/or other features that tend to improve or enhance a user's enjoyment of media content being played back as compared to playback on a portable electronic device. Typically, the host device is generally a non-portable device, but this is not necessarily so.

[0028] As used in the present specification and in the appended claims, the term "docking station" refers to an electronic device configured to communicatively couple or interface a portable electronic device and a host device. The docking station may physically support or house the portable electronic device, but this is not necessarily so. In some embodiments, the docking station is specifically configured to transmit media content from the portable electronic device to the host device. In this way, the user can seamlessly transition between experiencing content playback on the portable electronic device to playback of the same content on the host device.

[0029] To overcome the issues described above, the present specification discloses various embodiments of systems that allow a user to seamlessly shift playback of media content between a portable electronic device and a host device that can interface with the portable device. Some of these embodiments include a docking station for the portable electronic device. In such embodiments, a first communication interface is configured to interface the portable electronic device and the docking station. A second communication interface is configured to interface the docking station with the host device. In some embodiments, the docking station is configured to detect when the portable electronic device is interfaced with the docking station and automatically supersede and replace existing media content being replayed on the host device with the content from the portable electronic device. The media content may be transmitted to the host device in a format supported by the host device.

[0030] Additionally, the present specification discloses a method of mobile media presentation, including the steps of detecting a new interface between a host device and a portable electronic device, superseding other means of content delivery associated with the host device, receiving streaming media content from the
portable electronic device, streaming the media content to the host device in a format compatible with the host device, and presenting the media content on the host device.

[0031] In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present systems and methods. It will be apparent, however, to one skilled in the art that the present systems and methods may be practiced without these specific details. Reference in the specification to "an embodiment," "an example" or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment or example is included in at least one embodiment, but not necessarily in other embodiments. The various instances of the phrase "in one embodiment" or similar phrases in various places in the specification are not necessarily all referring to the same embodiment.

[0032] The principles disclosed herein will now be discussed with respect to exemplary systems and methods of media content presentation.

Illustrative Systems

[0033] Referring now to Fig. 1, an illustrative portable electronic device (100) is shown according to the principles described herein. The illustrative portable electronic device (100) has a main case or housing (101), a screen (103), which may be a touch-sensitive screen in some embodiments, and a user interface.

[0034] In the illustrated example, the screen (103) is a touch-sensitive screen, and the user interface includes "soft button" style controls (109, 111, 113, 115, 117) displayed on a lower portion of the screen (103). Consequently, the "soft button" controls (109, 111, 113, 115) of the portable electronic device (100) may be operated by pressure on the touch-sensitive screen with a stylus (119), a user's finger or the like.

[0035] In other embodiments, where a touch-sensitive is not necessarily used, the user interface of the portable electronic device (100) may include physical buttons on the housing (101) that provide various functions when actuated depending on a label displayed in connection with that physical button on the display screen (103). In still other embodiments, physical buttons in the housing (101) may have predetermined functions that do not change.
[0036] The exemplary portable electronic device (100) is shown displaying video content (107) on the screen (103). In some embodiments, the media content (107) is transmitted wirelessly to an antenna (105) of the portable electronic device (100). The antenna (105) may be internal or external to the portable electronic device (100). In some embodiments, the user of the portable electronic device (100) may receive paid media content from a cellular or mobile network provider. In other embodiments, the video media content (107) may be received wirelessly through internet access provided by a wireless computer network (also referred to as a "Wi-Fi" network) or a connection to another electronic device, such as a computer or another portable electronic device. In still other embodiments, the media content (107) may be content that is broadcast generally to the public, such as a television broadcast.

[0037] In some embodiments, the video media content (107) reproduced by the portable electronic device (100) may be content that was downloaded to the portable electronic device (100) and stored on a hard disk or other electronic storage device (e.g. flash RAM) of the portable electronic device (100). In other embodiments, the video media content (107) may be streamed or streaming to the portable electronic device (100) through the wireless connection described above.

[0038] The portable electronic device (100) and/or software running on the portable electronic device (100) may be designed to facilitate the manipulation of the media content (107) that is being reproduced on the screen (107). For example, some of the "soft button" controls (109, 111, 113, 115) may be used to affect the rate or direction of a playback mode. Additional options may be adjusted, or additional functions provided, through the menu "soft button" control (117). Similar control functions can be provided regardless of the type of user interface provided with the portable device (100).

[0039] As noted above, in various different embodiments, the portable electronic device (100) may be a personal digital assistant (PDA), a cellular or mobile phone, a personal media player, or other generic device. In such embodiments, the portable electronic device (100) may have special software installed permitting the user to access media content that is stored on, or wirelessly transmitted to, the portable electronic device (100). In other embodiments, the portable electronic
device (100) may be specifically designed for the purpose of receiving the wireless transmission of the media content (107) from a specific provider and then reproducing or playing back the media content (107).

[0040] In any case, the portable electronic device (100), as will be described in detail below, is configured to be selectively interfaced with a host device to enhance the user's experience in playing back the media content (107). In such instances, the portable electronic device (100) becomes a content source for the host device.

[0041] Referring now to Fig. 2, the portable electronic device (100) is selectively interfaced with a host device (203) to enhance the user's experience in playing back the media content (107). The docking station (201) may comprise a processing element (202) configured to run firmware, software or a combination thereof (referred to collectively herein as "software"). Examples of suitable processing elements (202) include, but are not limited to, microprocessors, computing devices, application specific integrated circuits (ASICS), Field Gate Programmable Arrays, and combinations thereof.

[0042] As shown in Fig. 2, the portable electronic device (100) is designed to be interfaced with, connected to, supported by and/or housed in, a docking station (201). In some embodiments, the docking station may simply be a cable connected to a port of the portable electronic device (100). In still other embodiments, the docking station (201) may be a wireless transceiver for interfacing wirelessly with the portable electronic device (100) whether or not the two are in physical contact. In the illustrated example of Fig. 2, the docking station (201) includes a cradle for receiving and physically supporting the portable electronic device (100) as well as providing a data communication path between the portable electronic device (100) and the host device (203). The docking station (201) may be separate from or integrated in the host device (203). In either case, the docking station (201) is communicatively coupled with the host device (203).

[0043] When a user desires playback media content (107) that is received or stored by the portable electronic device (100) to be presented on the host device (203), the portable electronic device (100) is interfaced with the docking station (201). When interfaced with the docking station (201), the portable electronic device
transmits the data needed to display the desired media content (107) on the host
device (203).

[0044] In the present example, the host device (203) is shown as a large
screen monitor or television device. However, the host device (203) may be any
device suitable for reproducing the media content (107) from the portable electronic
device (100), for example, a computer system or set-top box and monitor system. In
some embodiments, the content (107) is video content and utilizes both a display and
speakers. In other embodiments, the media content (107) is only audio, and speakers
may suffice as the host device (203). In yet other embodiments, the content (107)
may include any combination of still or active video and/or audio.

[0045] As indicated, there are a number of different arrangements for
communicatively interfacing the portable electronic device (100) and the docking
station (201). In many embodiments, this interface is electrical. Fig. 3 shows an
example of a portable electronic device (100) that has an electrical connector (301)
disposed on one edge of the portable electronic device (100). The electrical connector
(301) is configured to mate with a corresponding electrical connector in the docking
station (201, Fig. 2), thus establishing data communication between the portable
electronic device (100) and the docking station (201, Fig. 7). The electrical connector
(301) may have a plurality of individual pins or electrical traces.

[0046] In other embodiments, the communication interface between the
portable electronic device (100) and the docking station may be obtained using optical
or wireless means. For example, returning to Fig. 2, the portable electronic device
(100) and the docking station (201) may both have hardware and software that enable
BlueTooth communication or infrared (IR) communication between the portable
electronic device (100) and the docking station (201). Many types of communications
systems are available in the art, and any of these that enable bilateral communication
between the portable electronic device (100) and the docking station (201) may be
used in accordance with the principles of the present specification.

[0047] Still with reference to Fig. 2, the interface between the portable
electronic device (100) and the docking station (201) can carry several different types
of signals including a media content signal, control signal and power. In some
embodiments, increased data bandwidth is achieved by transmitting media content
over several individual pins of the connector (301, Fig. 3) from the portable electronic device (100) to the docking station (201). In other embodiments, additional electrical connections between the portable electronic device (100) and the docking station (201) may be used to provide control signals or power to the portable electronic device (100).

[0048] In some embodiments, a remote control device (205) may be in communication with the docking station (201) or the host device (203) and provide user input through the docking station (201) to the portable electronic device (100) such that the media content is manipulated according to a user's preferences. In other examples, the remote control device (205) may communicate directly with the portable device (100).

[0049] Referring now to Fig. 4, the portable electronic device (100) is shown docked in the docking station (201). The docking station (201) is in communication with the host device (203), which is displaying the media content (107) from the portable electronic device (100) on a display or screen (401).

[0050] The media content from the portable electronic device (100) is displayed on the screen (401) of the host device (203) in a format and resolution used by the host device (203). As will be appreciated by those skilled in the art, and as demonstrated by the present example, a wide disparity between resolution and display sizes may exist between the portable electronic device (100) and the host device (203) or between different host devices. Thus, media content that is of an acceptable format and resolution for the portable electronic device (100) may not necessarily be suitable for display by the host device (203). This difference between the inherent display characteristics of the portable (100) and host (203) devices can be addressed in a number of ways.

[0051] For example, when interfaced with the host device (203), the portable electronic device (100) may output a higher-resolution version of the content to the host device (203) than was being used for display on the portable electronic device (100). In some embodiments, the portable electronic device (100) may receive or store a high-resolution version of the media content (107) and then convert the content (107) to a lower resolution version for display on the relatively smaller screen of the portable electronic device (100). If this is the case, when the portable
electronic device (100) is interfaced with the host device (203) through the docking station (201), the portable device (101) simply outputs the original, higher-resolution version of the media content (107) to the host device (202), or a version of the media content (107) most suited to the resolution of the host device (203).

[0052] In other embodiments, the portable electronic device (100) may be receiving and playing back streaming media content (107) from a specific wireless network service. In such embodiments, the portable electronic device (100) may receive a low-resolution version of the media content (107) from the network service when the portable electronic device (100) is playing back the content itself. When the portable electronic device (100) is interfaced with the docking station (201), the portable electronic device (100) may request a higher-resolution version of the media content (107) from the content provider and then stream the higher-resolution version to the host device (203) through the docking station (201). In some embodiments, this transition from the low to high resolution stream would occur at the same point in the content the user had reached on the portable device (100) so that the content is not restarted from its beginning. In some embodiments, there would be no additional charge to the user for switching from the low to the high resolution stream of the content.

[0053] In some embodiments, the docking station (201) is configured to detect when the portable electronic device (100) is connected to, or otherwise interfaced with, the docking station (201). In response, the docking station (201) will signal the host device (203) to supersede or replace any existing media content being displayed on the host device (203) with the content incoming from the portable electronic device (100). For example, if the host device (203) is displaying some media content from some source other than the portable electronic device (100), the docking station (201) may automatically switch the input source of media content in the host device (203) to the media content (107) received from the portable electronic device (100) upon establishing an interface with the portable electronic device (100), thus superseding the existing media content on the host device (203). The docking station (201) may accomplish this by sending a special control signal to the host device (203) once an interface with the portable electronic device (100) is detected by the docking station (201).
[0054] Still in other embodiments, the portable electronic device (100) may be configured to transmit media content (107) to the docking station (201) in a plurality of different formats. The appropriate media content (107) format for the host device (203) may be selected from among the available formats by the docking station (201) and relayed to the host device (203).

[0055] In other examples, the correct format for the host device (203) may be communicated to the portable electronic device (100) automatically through the docking station (201) by the docking station (201), host device (203) or user input. The portable electronic device (100) can then discontinue outputting the media content (107) in any but the indicated format.

[0056] Referring now to Fig. 5, an illustrative system (500) of mobile media presentation is shown. The system (500) includes a plurality of host devices (507, 517, 519) and at least one portable electronic device (100) operated by a user (501).

[0057] The illustrative system (500) includes a satellite transmitter (503) in wireless communication with the portable electronic device (100). The satellite transmitter (503) of this example provides the portable electronic device (100) with streaming or downloaded media content (107, Fig. 1) which may be played, paused, or otherwise reproduced by the portable electronic device (100). In other embodiments, the media content (107, Fig. 1) may be provided to the portable electronic device (100) via a cellular-type transmitter, a Radio Frequency (RF) transceiver, a Bluetooth transceiver, a public broadcast antenna, or the like. In any of these embodiments, the media content (107, Fig. 1) may be stored electronically in the portable electronic device (100) or streamed in real time.

[0058] Each of the host devices (507, 517, 519) has a corresponding docking station (513, 515, 520) configured to interface with a portable electronic device (100). As explained above, interfacing the portable device (100) and a host device enables the host device to display media content (107, Fig. 1) received from or through the portable electronic device (100).

[0059] As shown in Fig. 5, one of the host devices (519) may be installed inside an automobile (522). As in other instances, a docking station (520) corresponding to the host device (519) is provided in the automobile (522). The
docking station (520) inside the vehicle (522) permits the transfer of media content (107, Fig. 1) from the portable electronic device (100) to an interior display and speakers (519) accessible by passengers.

[0060] The system (500) illustrated in Fig. 5 exhibits true seamless mobility of the playback of the media content (107, Fig. 1). The portable electronic device (100) constantly receives the media content (107, Fig. 1) regardless of physical changes in location. The dotted lines (505, 509, 511) represent an exemplary path of the portable electronic device (100) between different host devices (507, 517, 519).

[0061] In accordance with the present example, the portable electronic device (100) may be constantly receiving a stream of media content (107, Fig. 1) from the satellite transmitter (503). The portable electronic device (100) may initially be interfaced with the first host device (507) and displaying the content (107, Fig. 1) on the first host device (507) through the docking station (513). A user (501) of the portable electronic device (100) may then desire to change locations and display the media content (107, Fig. 1) on another host device (517) via the corresponding docking station (515). This second host device (517) may be in another room or building or may provide features desired by the user that are unavailable with the first host device (507) or the second host device (517) may simply be in another location to which the user (501) wants to move.

[0062] Eventually, the user (501) may undock the portable electronic device (100) from the second host device (517) and connect the portable electronic device (100) to a docking station (520) associated with the host device (519) in the automobile (522). The automobile host device (519) may then display the media content (107, Fig. 1) on an interior audio-visual system of the automobile (522).

[0063] Throughout the changes in location, the user (501) may receive the media content (107, Fig. 1) from a single source (e.g., 503). The user (501) may also seamlessly transport the playback of the media content (107, Fig. 1) from location to location without loss of media content in the interim or restarting the program at each location.

[0064] When not interfaced with any of the host devices, the portable device (100) itself may play back the media content that the user has selected, depending on user preference. In some embodiments, the media content (107, Fig. 1)
may be paused by the portable electronic device (100) during transfers between docking stations (513, 515, 520). In other embodiments, the user (501) may view the media content (107, Fig. 1) on the display of the portable electronic device (100) while transporting the portable electronic device (100) between host devices (507, 517, 519).

[0065] Docking station (515) is shown having a sensor (521) that is configured to receive signals from a remote control device (523). The signals from the remote control may control certain playback aspects of the media content (107, Fig. 1). Any or all of the docking stations in the illustrated example may be controllable with the same or separate remote control devices. Examples of playback aspects that the remote control signals may affect include, but are not limited to, playback speed, playback sequence, playback volume, and playback resolution. Once the signals from the remote control device (523) are detected at the sensor (521), the appropriate control signals may be sent to the portable electronic device (100) by the docking station (515). In other embodiments, the remote control device (523) may communicate directly with the portable device (100).

[0066] Referring now to Fig. 6, an illustrative system (600) of mobile media presentation (600) is shown. The system (600) includes a content source (605) in communication with a portable electronic device (607). The content source (605) may be a subscription-based network provider, an internet server via a wireless network, a device on an ad-hoc type network, or the like. In the illustrated example, the content source (605) and portable electronic device (607) each have an antenna (601, 603, respectively), thus enabling wireless communication between the content source (605) and the portable electronic device (607). However, other communication systems between the content source (605) and the portable electronic device (607) could be used.

[0067] The portable electronic device (607) is also in communication with a docking station (609) through a first communication interface (608). The docking station (609) is in communication with a host device (613) through a second communication interface (612), according to principles described previously in the present specification. In some embodiments, the docking station (609) is configured to detect to the interface (608) with the portable electronic device (607), when
established, and supersede existing media content then being presented on the host device (613). Media content is then transmitted from the portable electronic device (607) to the host device (613) for playback via the docking station (609).

[0068] The docking station (609) of the present example is also in communication with a remote control device (611). The docking station (609) may have a sensor configured to detect signals from the remote control device (611). The processing element (610) may decode the signals from the remote control device (611) and interact accordingly with the portable electronic device (607). The signal from the remote control device (611) may be configured to control certain playback aspects of the media content, such as, but not limited to, playback speed, playback sequence, playback volume, playback resolution, and combinations thereof.

[0069] Referring now to Fig. 7, another illustrative system (700) of mobile media presentation is shown. In the example of Fig. 7, a single content source (701) may be in communication with a plurality of portable electronic devices (711, 713, 715) through respective antennas (703, 705, 707, 709). The content source (701) may be broadcasting the same media content to each of the portable electronic devices (711, 713, 715). In other embodiments, the portable electronic devices (711, 713, 715) may receive different media content from the same content source (701) by multiplexing signals in the frequency domain or the time domain, addressing data packets to specific devices, multicast addressing, or using other methods available in the art.

[0070] Two of the portable electronic devices (711, 715) are shown in communication with docking stations (717, 719, respectively), which are, in turn, in communication with host devices (721, 723). The media content may be transmitted to the portable electronic devices (711, 713, 715) regardless of the docking status of the portable electronic devices (711, 713, 715). However, in some embodiments, the resolution and/or format of the media content transmitted to a particular portable electronic device (711, 713, 715) may vary according to that device's docking status and the type of host device (721, 723) associated with the docking station (711, 715) to which the portable device (711, 715) is interfaced. Specifically, the content source (701) may provide media content that is formatted for a particular host device (e.g.,
721) when signaled that the corresponding portable electronic device (e.g., 711) is interfaced with that particular type of host device (721).

[0071] Referring now to Fig. 8, a cellular network may be used to transmit the media content to a portable electronic device (808). An illustrative system (800) of mobile media presentation is shown having a plurality of transceivers (802, 803, 804) in communication with a central server (801) that acts as a content source. The transceivers (802, 803, 804) are each associated with a certain geographic region (805, 806, 807) or "cell." Together all the cells make up a service area.

[0072] The portable electronic device (808) may travel within the service area, crossing from one geographic region (805, 806, 807) into another, during the course of a media content transmission. Consequently, the transceiver (802, 803, 804) providing the media content to the portable electronic device (808) may be switched to that transceiver (802, 803, 804) corresponding to the geographic region (805, 806, 807) occupied by the portable electronic device (808) at any given time. In this way, continuity of the media content stream and playback may be provided through the portable electronic device (808).

[0073] As in earlier examples, the portable electronic device (808) of the present example may be interfaced with a docking station (809) and, by extension, a media presentation host device (810) that is configured to display the media content received by the portable electronic device (808). The docking station (809) and host device (810) of the present example are portable, and remain in communication with the portable electronic device (808) as the portable electronic device (808) moves between the various geographic regions (805, 806, 807) of the service area. In some embodiments, the docking station (809) and media presentation host device (810) may be associated with an automobile, thus appearing to be mobile while located in a single entity.

[0074] Alternatively, the portable electronic device (808) may disconnect from the docking station (809) and host device (810) prior to or during transportation. In some embodiments, additional docking stations with accompanying media presentation host devices may be available in the other geographic regions (805, 806, 807).
Illustrative Methods

[0075] Referring now to Fig. 9, a flowchart of an illustrative method (900) of mobile media presentation is shown. The illustrated method (900) may be executed within a docking station that is interfaced or in communication with a portable electronic device and a media presentation host device. The method (900) includes the step of detecting (step 901) the interface with the portable electronic device, when established. The newly established interface may be detected when communication between the host device and the portable electronic device is established through the docking station. The portable electronic device or the docking station may then signal to the host device that media content is available from the portable electronic device.

[0076] In some embodiments, the portable electronic device may then cease outputting the content using its own hardware and user interface, (step 903). In any case, the portable electronic device then transmits the content through the external interface with the docking station (step 905).

[0077] In some embodiments, data is provided to the portable electronic device already in a format compatible with the host device. In such cases, the content can be streamed unchanged from the portable electronic device to the host through the docking station. In other embodiments, the format of the content as initially received by the portable electronic device may not be compatible with the host device. Thus, it may be determined whether the content should be reformatted for the host device (decision 907). If reformatting is indicated, the portable electronic device may convert the format of the content to a format used by the host device (step 909). Although, in alternative embodiments, this conversion may be performed by some other system component.

[0078] The media content is then presented (step 911) on the host device to a user. In some embodiments, other means of content delivery associated with the host device are then superseded (step 910). In other words, the host device does not playback media content received from any source other than the portable electronic device throughout the duration of the transmission of media content from the portable electronic device. Additionally, in some embodiments, the way in which the media
content is presented on the host device may be altered in response to input from a
remote control device.

[0079] Referring now to Fig. 10, a flowchart of another illustrative method (1000) of mobile media presentation is shown. The method (1000) includes the step of detecting (step 1001) an interface with the portable electronic device, when established.

[0080] The docking station passes host format requirements to the portable electronic device (step 1003). The portable electronic device determines (decision 1005) if the format of the media content is compatible with the host device. If the format is not compatible with the host device, the streaming media content is converted (step 1007), by the portable electronic device, to a format compatible with the host device. The media content is then streamed (step 1009) to the host device, via the docking station, in a format compatible with the host device, where the content is presented (step 1013) to a user. In the event that the format of the media content is found (decision 1005) to be compatible with the host device, the media content is simply streamed (step 1009) to the host device, via the docking station, where it is presented (step 1013) to the user.

[0081] Referring now to Fig. 11, a flowchart of another illustrative method (1100) of mobile media presentation is shown. The method (1100) includes receiving (step 1101) streaming media content wirelessly in a portable electronic device. The media content is then reproduced (step 1103) on a first host device associated with a first docking station to which the portable electronic device is interfaced.

[0082] The stream of media content from the portable electronic device is paused (step 1105) and the portable electronic device is removed (step 1107) from the first docking station. The portable electronic device is then interfaced (step 1109) to a second docking station, and the stream of media content from the portable electronic device is then resumed (step 1111). The media content is then transmitted (step 1113) to the second host device through the second docking station.

[0083] In some embodiments, the display and reproduction of the media content may be continued by the portable electronic device between the disconnection (step 1107) from the first docking station and the interfacing (step 1109) to the second
docking station. In other embodiments, the reproduction or playback of the media content may pause between docking stations.

[0084] Alternatively, the stream of media content from a content source to the portable electronic device may be paused when the portable electronic device is not interfaced to either the first or the second docking stations. This pause may be automatic or user-initiated.

[0085] Referring now to Fig. 12, a flowchart of another method (1200) of mobile media presentation is shown. The method (1200) may be executed by a media content provider in communication with a portable electronic device.

[0086] The method (1200) includes streaming (step 1201) digital content to a portable electronic device in a first format, for example, at a first resolution. An indication is then received (step 1203) that the format should be changed to a different format, for example, at a second resolution. This is triggered by the electronic device being interfaced with a docking station and the determination that the host device requires a different format. The docking station may be configured to receive media content streamed from the portable electronic device and transmit the media content to a media presentation host device.

[0087] The indication may be in the form of digital data transmitted from the portable electronic device back to the media content provider. The indication may include data specifying a type of host device in communication with the docking station and the appropriate format for a media content signal to be played back by that host device.

[0088] Once the indication has been received (step 1203) that a second format is needed, i.e. the electronic device has been interfaced with the docking station, digital content is streamed (step 1205) to the portable electronic device in a second format corresponding to the needs of the indicated host device. For example, the first format may be a resolution used to display the media content on the portable electronic device, and the second format may be the resolution used to display the media content on the host device.

[0089] The preceding description has been presented only to illustrate and describe embodiments and examples of the principles described. This description is not intended to be exhaustive or to limit these principles to any precise form.
disclosed. Many modifications and variations are possible in light of the above teaching.

[0090] The process shown in Figs. 9-12, for example, and described in this specification may be implemented in a general, multi-purpose or single purpose processor. Such a processor will execute instructions, either at the assembly, compiled or machine-level, to perform that process. Those instructions can be written by one of ordinary skill in the art following the description of Figs. 9-12 and stored or transmitted on a computer readable medium. The instructions may also be created using source code or any other known computer-aided design tool. A computer readable medium may be any medium capable of carrying those instructions and include a CD-ROM, DVD, magnetic or other optical disc, tape, silicon memory (e.g., removable, non-removable, volatile or non-volatile), packetized or non-packetized wireline or wireless transmission signals.
CLAIMS

WHAT I S CLAIMED IS:

1. A method of mobile media presentation, said method comprising:
   receiving content wirelessly with a portable electronic device; and
   selectively interfacing said portable electronic device with at least one host device;
   wherein playback of said content can then switch between said portable electronic device and said host device.

2. The method of claim 1, wherein said playback of said content is switched without interruption between said portable electronic device and host device.

3. The method of claim 1, wherein said playback of said content switches automatically from said portable electronic device to a said host device when said portable electronic device is interfaced with a said host device.

4. The method of claim 3, wherein playback of said content on said host device supersedes any other content being played back by said host device.

5. The method of claim 1, further comprising streaming said content to said portable electronic device.

6. The method of claim 1, wherein said selectively interfacing is performed using a docking station that interfaces said portable electronic device with a said host device.

7. The method of claim 1, wherein switching playback of said content between said portable electronic device and a said host device further comprises changing a format of said content.
8. The method of claim 1, wherein switching playback of said content between said portable electronic device and a said host device further comprises providing a version of said content in a different format.

9. The method of claim 1, further comprising controlling said playback with a remote control device.

10. A docking station for a media presentation host device, comprising:
a first communication interface configured to interface a portable electronic device and said docking station; and
a second communication interface configured to interface said docking station and a media presentation host device;
wherein said docking station is configured to detect said portable electronic device, when interfaced, and supersede existing media content on said host device with content received from said portable electronic device.

11. The docking station of claim 10, wherein said docking station is configured to convert content received from said portable electronic device into a format supported by said host device.

12. The docking station of claim 10, wherein said docking station is configured to request media content from said portable electronic device in a format supported by said media presentation device.

13. The docking station of claim 10, further comprising a sensor configured to receive signals from a remote control device.

14. The docking station of claim 13, wherein said signals from said remote control device are configured to control playback of said media content.
15. The docking station of claim 10, wherein said communication interfaces are selected from the group consisting of electrical interfaces, optical interfaces, radio frequency interfaces, other electromagnetic radiation interfaces, and combinations thereof.

16. A system of mobile media presentation, said system comprising:
a portable electronic device configured to wirelessly receive media content;
at least one media presentation host device; and
a docking station configured to interface said portable electronic device and a said host device;
wherein said docking station is configured to detect said portable electronic device, when interfaced, and transmit content from said portable electronic device to said host device for presentation on said host device.

17. The system of claim 16, wherein said portable electronic device streams said media content and playback of said media content automatically switches from said portable electronic device to said host device when said portable electronic device is interfaced with said host device.

18. The system of claim 16, wherein said content from said portable electronic device supersedes existing media content being played back on said host device.

19. The system of claim 16, wherein said system converts said content from said portable electronic device to a format supported by said host device.

20. The system of claim 16, wherein said system includes multiple versions of said content from said portable electronic device and provides said content in a format supported by said host device.

**Apparatus and Method of Mobile Media Presentation Portable Electronic Device**
FIG. 4
FIG. 6

FIG. 7
DETECT INTERFACE BETWEEN PORTABLE ELECTRONIC DEVICE AND DOCKING STATION WHEN A CONNECTION IS ESTABLISHED

PORTABLE ELECTRONIC DEVICE CEASES OUTPUT OF CONTENT TO ITS OWN AUDIO/VIDEO OUTLET (OPTIONAL)

PORTABLE ELECTRONIC DEVICE TRANSmits CONTENT THROUGH EXTERNAL INTERFACE TO DOCKING STATION

REFORMAT CONTENT?

NO

YES

PORTABLE ELECTRONIC DEVICE CONVERTS FORMAT TO THAT REQUIRED BY HOST

IF REQUIRED, SYSTEM SUPERSEDES OTHER MEANS OF CONTENT DELIVERY ASSOCIATED WITH THE HOST DEVICE, AND DELIVERS CONTENT TO THE HOST

HOST PRESENTS THE MEDIA CONTENT SOURCED BY THE PORTABLE ELECTRONIC DEVICE AND PROVIDED VIA THE DOCKING STATION

FIG. 9
DETECT INTERFACE BETWEEN PORTABLE ELECTRONIC DEVICE AND DOCKING STATION WHEN A CONNECTION IS ESTABLISHED

DOCKING STATION RECEIVES STREAMING MEDIA CONTENT FROM THE PORTABLE ELECTRONIC DEVICE

DOCKING STATION DETERMINES THE FORMAT OF MEDIA CONTENT TRANSMITTED BY THE PORTABLE ELECTRONIC DEVICE AND FORMAT OF CONTENT REQUIRED BY HOST

1007

IS THE FORMAT COMPATIBLE WITH THE HOST DEVICE?

1009

NO

DOCKING STATION CONVERTS THE STREAMING MEDIA CONTENT TO A FORMAT COMPATIBLE WITH THE HOST DEVICE

YES

DOCKING STATION STREAMS THE MEDIA CONTENT TO THE HOST DEVICE IN A FORMAT COMPATIBLE WITH THE HOST DEVICE, CONVERTING IN REAL TIME

HOST DEVICE PRESENTS THE MEDIA CONTENT

FIG. 10
FIG. 11

1101
RECEIVE STREAMING MEDIA CONTENT WIRELESSLY IN A PORTABLE ELECTRONIC DEVICE
~1101

1103
REPRODUCE THE MEDIA CONTENT ON A FIRST HOST DEVICE OF A FIRST DOCKING STATION TO WHICH THE PORTABLE ELECTRONIC DEVICE IS INTERFACED
~1103

1105
PAUSE THE STREAM OF MEDIA CONTENT FROM THE PORTABLE ELECTRONIC DEVICE
~1105

1107
REMOVE THE PORTABLE ELECTRONIC DEVICE FROM THE FIRST DOCKING STATION
~1107

1109
INTERFACE THE PORTABLE ELECTRONIC DEVICE TO A SECOND DOCKING STATION
~1109

1111
RESUME THE STREAM OF MEDIA CONTENT FROM THE PORTABLE ELECTRONIC DEVICE
~1111

1113
TRANSMIT THE MEDIA CONTENT TO THE SECOND HOST DEVICE THROUGH THE SECOND DOCKING STATION
~1113

FIG. 12

1200

1201
STREAM DIGITAL CONTENT TO A PORTABLE ELECTRONIC DEVICE AT A FIRST RESOLUTION
~1201

1203
RECEIVE AN INDICATION THAT A NEW RESOLUTION IS REQUIRED (BECAUSE ELECTRONIC DEVICE HAS BEEN CONNECTED TO A DOCKING STATION)
~1203

1205
STREAM DIGITAL CONTENT TO THE PORTABLE ELECTRONIC DEVICE AT A SECOND RESOLUTION
~1205
**INTERNATIONAL SEARCH REPORT**

International application No
PCT/US 08/86134

A. CLASSIFICATION OF SUBJECT MATTER

IP(C) - G06F 15/16 (2009.01 )  
USPC - 709/21 7  
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)  
USPC: 709/217

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched  
USPC: 709/217; 227; 707/10; 715/200 (text search)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

- PatentsCited (USPT, PGDB, EPAB, JPAB), and Google Patent/Scholar
- Search Terms Used: portable, PDA, laptop, notebook, i/o, docking, station, TV, television, player, projector, update, change, modification, modifying, resolution, format, size, media, video, audio, content, replace

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2007/0286482 A1 (Proctor et al.) 11 October 2007 (11.10.2007), entire document, especially: para [0006], [0025], [0044], [0048], [0050]-[0054]. Abstract, Fig. 1, 6, 7, 9-11</td>
<td>1-9 and 16-20</td>
</tr>
<tr>
<td>Y</td>
<td>US 2007/0247794 A1 (Jaffe et al.) 25 October 2007 (25.10.2007), entire document, especially: para [0026], Abstract and Fig. 1</td>
<td>10-15</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C

<table>
<thead>
<tr>
<th>Special categories of cited documents</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;A&quot; document defining the general state of the art which is not considered to be of particular relevance</td>
<td>&quot;T&quot;</td>
</tr>
<tr>
<td>&quot;E&quot; earlier application or patent but published on or after the international filing date</td>
<td>&quot;X&quot;</td>
</tr>
<tr>
<td>&quot;L&quot; document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)</td>
<td>&quot;Y&quot;</td>
</tr>
<tr>
<td>&quot;O&quot; document referring to an oral disclosure, use, exhibition or other means</td>
<td>&quot;&amp;&quot;</td>
</tr>
<tr>
<td>&quot;P&quot; document published prior to the international filing date but later than the priority date claimed</td>
<td>&quot;&amp;&quot;</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search  
17 January 2009 (17.01.2009)

Date of mailing of the international search report  
03 FEB 2009

Authorized officer:  
Lee W. Young

Name and mailing address of the ISA/US  
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents  
P.O. Box 1450, Alexandria, Virginia 22313-1450  
Facsimile No. 571-273-3201

Form PCT/ISA/210 (second sheet) (April 2007)