(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

AT Y 00O O

(10) International Publication Number

(43) International Publication Date

23 December 2004 (23.12.2004) PCT WO 2004/111881 A1l

(51) International Patent Classification’: GOGF 17/30, ARNOLD, Richard [US/US]; 4814 Shoal Creek, Austin,
12/00 TX 78756 (US). JACOB, Sunil [IN/US]; 13109 Troops
Trail, Austin, TX 78727 (US). TAN, Desmond [SG/US];
(21) International Application Number: 604 Kai Drive, Cedar Park, TX 78613 (US). LEWIS,
PCT/US2004/017259 Kevin [US/US]; 8541 Copano Drive, Austin, TX 78749

US).

(22) International Filing Date: =~ 28 May 2004 (28.05.2004)

(74) Agent: PETERMAN, Brian, W.; 1101 Capital of Texas

(25) Filing Language: English Hwy. So., Building C, Suite 200, Austin, TX 78746 (US).

(26) Publication Language: Eng]ish (81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(30) Priority Data:

10/447,205 28 May 2003 (28.05.2003) US

(71) Applicant (for all designated States except US): PERVA-
SIVE SOFTWARE, INC. [US/US]; 12385 Riata Trace
Parkway, Building B, Austin, TX 78727 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): REINAUER, Rob

[US/US]; 3008 Toro Ring, Austin, TX 78746 (US). (84) Designated States (unless otherwise indicated, for every

WHITE, Ken [US/US]; 104 Oakmont Forest Drive,
Cedar Park, TX 78613 (US). SUN, Chunsheng [CN/US];
8012 Whitworth Lane, Round Rock, TX 78681 (US).

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR UTILIZING COMPRESSION IN DATABASE CACHES TO FACILITATE ACCESS
TO DATABASE INFORMATION

600

W

Client System jMA

604B
Client System |/

C 605 .
Database Server (608 b
Cllent Syst soC
612 D) Database Cache (610 fent System
Compressed Cache Uncompressed Cache Local Cache 620
~—
1 1
N \

622 624
Storage System 606

Database 614

(57) Abstract: A system and method are disclosed for utilizing compression in database caches to facilitate access to database
& information. In contrast with applying compression to the database that is stored on disk, the present invention achieves performance
& advantages by using compression within the main memory database cache used by a database management system to manage data
transfers to and from a physical database file stored on a storage system or stored on a networked attached device or node. The
O disclosed system and method thereby provide a significant technical advantage by increasing the effective database cache size. And
this effective increase in database cache size can greatly enhance the operations-per-second capability of a database management
g system by reducing unnecessary disk or network accesses thereby reducing data access times.

4111881 A1 IO

WO 2004/111881 A1 I} A0VOH0 T 00000000

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, — before the expiration of the time limit for amending the
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, claims and to be republished in the event of receipt of
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, amendments

GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guid-
Published: ance Notes on Codes and Abbreviations" appearing at the begin-
— with international search report ning of each regular issue of the PCT Gazette.

WO 2004/111881 PCT/US2004/017259

SYSTEM AND METHOD FOR UTILIZING COMPRESSION IN DATABASE CACHES
TO FACILITATE ACCESS TO DATABASE INFORMATION

Inventors: Rob Reinauer, Ken White, Chunsheng Sun, Richard Arnold,

Sunil Jacob, Desmond Tan and Kevin Lewis

TECHNICAL FIELD OF THE INVENTION

[0001] The present invention relates to the management of data and more particularly to

database management, for example, in networked client-server environments.

BACKGROUND OF THE INVENTION

[0002} In prior systems, cache memory has been used to improve performance of central
processing units (CPUs) in computer systems. This cache memory is typically small in size as
compared to main memory and is used to hold a segment of main memory for use by the' CPU in its
operations. To the extent the CPU can use instructions in cache memory without having to pull new
information from main memory, CPU performance is typically enhanced. For this reason, it is often
desirable to increase the cache memory size. Limitations exist, however, that hinder the ability to add
more physical memory. For example, many operating systems limit how much main memory and
cache memory a system can physically access. To increase the effective size of CPU cache memory,

therefore, prior solutions have proposed the use of cache compression within the cache memory.

[0003] With respect to database environments, a portion of the main memory.for the computer
system managing the database is often used by the database management application as a database
cache for data being read from or written to the stored database file. The database cache provides a
buffer between the adcesé, create and modify instructions from the database users and the database
file itself. In addition, the database cache can provide for improved access times to client systems to
the extent that the database management application can satisfy queries to the database from the data
currently sitting in the database cache. The database file is typically stored on some physical media,
such as ohe or more hard disks. With respect to the storage of large database files, [;rior work has
focused on using data cor;ipression algorithms to reduce the size of the database files stored on hard
drives. In addition, because most existing database access protocols operate on uncompressed data,
prior work has also focused on protocols and query methodology for directly accessing the

compressed data where the database file is compressed on disk. However, with increases in the speed

WO 2004/111881 PCT/US2004/017259

of CPUs outpacing the speed of disk access, this disk compression can provide only limited

improvement due to the physical limitations related to accessing data from a physical disk.
SUMMARY OF THE INVENTION

[0006] The present invention provides a system and method for utilizing compression in
database caches to facilitate access to database information. In contrast wﬁh applying compression to
the database that is stored on disk, the present invention achieves performance advantages by using
compression within the main memory database cache used by a database management system to
manage data transfers to and from a physical database file stored on a storage system or stored on a
networked attached device or node. As discussed herein, the present invention provides a significant
technical advantage by increasing the effective database cache size. And this effective increase in
database cache size can greatly enhance the operations-per-second capability of a database
management system by reducing unnecessary disk or network accesses thereby reducing data access

times.

[0007] In part, the present invention provides a solution that substantially eliminates or reduces
disadvantages and problems associated with previously developed database cache management
systems. More specifically, the present invention provides systems and methods for managing data in
database caches. This system includes a first data storage location. This first data storage location
typically comprises a disk or network resource. Additional data storage locations, typically in the
form of local or cache memory, allow database management systems to more quickly access
frequently used data from a database cache as opposed to disk. To increase the effective size of the
database cache, data stored within the local memory may be compressed. This compression typically
becomes desirable when decompressing compressed data from the database cache and supplying this
data to the data user can occur more quickly than accessing the original data from disk. The database
cache can include both data and instructions, and the data may be formatted into pages or other like
data structures as known to those skilled in the art. Furthermore, these pages (data structures) may

include one or more flags that indicate whether the page has been compressed.

[0008] Other embodiments may further optimize the present invention by utilizing a local
uncompressed database cache and a local compressed database cache. In such an embodiment, data
pages, such as the least recently used pages within the local database cache, move to the local
compressed database cache when the local uncompressed database cache is full. This use’of
compressed and uncompressed database caches can enhance performance because the performance
penalty for compression/decompression is typically significantly less than disk access costs even

when the compression penalty is incurred multiple times. By utilizing an uncompressed cache for the

-2.

SUBSTITUTE SHEET (RULE 26)

WO 2004/111881 PCT/US2004/017259

pages most likely to be re-used, the system can trade the fewest number of compression efforts for the
highest number of disk reads. In certain embodiments, the pages within the compressed database
cache may, in fact, only be compressed if the page actually compresses when compressed and/or
when the compressed database cache has become full. This procedure can be used to avoid -

unnecessary compression and decompression, thus effectively increasing system resources.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Tt is noted that the appended drawings illustrate only exemplary embodiments of the
invention and are, therefore, not to be considered limiting of its scope, for the invention may admit to

other equally effective embodiments.

[0010] FIGURE 1 graphically depicts the cache curve demonstrating the benefit of effectively

increasing the size of database cache.

[0011] FIGURE 2 depicts one general embodiment of the system and method provided by the

present invention;

[0012] FIGURE 3 illustrates an embodiment of the present invention that utilizes two cache

memories;

[0013] FIGURE 4 illustrates other embodiments of the present invention utilizing two cache

memories;
[0014] FIGURE 5 depicts various structures within a block of compressed data.

[0015] FIGURE 6 is a block diagram for a client-server database environment in which a

database server utilizes compression within its database cache.

DETAILED DESCRIPTION OF THE INVENTION

[0016] The present invention compresses data within a database cache in order to effectively
increase the size of database cache. Increased processor speeds make this possible as the time
required to compress and decompress data and/or instructions with increased processor speed is less
than the time required to access the data from disk. Previously, the time spent to compress and
decompress data and/or instructions exceeded the time required to access .and retrieve data and/or

instructions from disk. The present invention couples increased processor speeds with high

WO 2004/111881 PCT/US2004/017259

performance compression algorithms as known to those skilled in the art, allowing data and/or

instructions to be compressed and decompressed faster than the time required for disk access.

[0017] FIGURE 1 graphically depicts the improved performance of a system based on a
percentage of data caches, assuming a standard hard disk drive is used for persistent storage. Cache .
curve 12 shows that the benefit increases exponentially. This benefit increases exponentially as the
number of operations per second on the y axis increase. Improved performance comes from the
elimination of disk access times that may be associated with each operation. Cache curve 12 shows a
change from 10 to 20 percent does not yield a large increase in the number of operations per second.
However, an increase from 80 to 100 percent yields a much greater increase in operations per second.
The Y-axis on FIGURE 1 has been left without a scale because the actual numbers are dependent on
a number of factors. These factors include the time to acquire a given piece of information from disk,
the time to acquire the same piece of information from cache, and the time required to process that
piece of information on behalf of the client (where this time is considered the same regardless of the
source of the piece of information). Given these values, the Y-axis value for a given percentage of the
total information in cache for a given time period can be calculated using the following formula,
where “td” represents the time to acquire information from disk, “tm” represerits the time to acquire
information from memory, “tp” represents the time to process a given piece of information, and “tt”

represents the total time taken to run the test:
Y =tt/ (X * tm) + ((100 — x) * td) + tp)

Assuming current hard drive technology, which is multiple orders of magnitude slower than typical
RAM access times and a reasonable “tp” value, as X increases, Y will increase exponentially. The

reason for this relationship is the exponential disparity between “tm” and “td.”

[0018] The method and system of the present invention add incremental costs to the access of
cache through various processes. Primarily, compression, decompression and cache management all
add incremental costs. These costs previously exceeded those associated with disk I/O access.
However, increased processor speeds have greatly reduced these costs while disk I/O costs remain

relatively unchanged.

[0019] The present invention provides a system and method of effectively increasing database
cache or local memory for database management systems. This greatly improves the performance of
" many database applications. FIGURE 2 generally illustrates how the present invention handles data
and/or instructions. This data and/or instructions are contained within pages. For example, when

user 26 requests access to page 22, cache manager 28 causes page 22 to be accessed from disk 24.

WO 2004/111881 PCT/US2004/017259

Compression/decompression algorithm 30 compre;sses page 22 within cache 32. Cache manager 28
directs compression/decompression algorithm 30 to decompress page 22 from cache 32, then page 22
is provided to user 26. Whenever page 22 is accessed by user 26, user 26 accesses page 22 from

cache 32 and decompresses page 22 with a compression/decompression algorithm.

[0020] If desired, as shown in FIGURE 3, two or more database caches may be used by a
database management system, according to the present invention. Here, page 22, when first accessed,
resides within uncompressed cache 34. This embodiment uses two caches: uncompressed cache 34
and compressed cache 36. Users always read data and/or instructions from uncompressed cache 34.
Hence, if page 22 has been compressed, the compression/decompression algorithm 40 decompresses
page 22 and delivers the page to uncompressed cache 34. Compression/decompression algorithm 40
compresses the least recently used (LRU) pages from uncompressed cache 34 to compressed cache 36.
These actions are directed by cache manager 41. Other cache management strategies may be utilized,
if desired, including cache management strategies such as a least-recently-used cache management
strategy in which relative “ages” of cache information is kept and the information that has remained
unused for the longest time is replaced, a least-frequently-used cache management strategy in which
the number of times information has been used over some number of uses or period of time and the
information that is least used is replaced, and a first-in-first-out cache management strategy in which

the first information added to the database cache is the first information to be replaced.

[0021] FIGURE 4, similar to FIGURE 3, again illustrates an embodiment of the present
invention containing both an uncompressed cache 46 and a compressed cache 48. Here, page 42
initially resides on disk 44. When needed by user application 50, cache manager 52 directs that page
42 be retrieved from disk 44 and stored within uncompressed cache 46. Additional pages are stored
in an uncompressed cache 46 until uncompressed cache 46 has been filled. As uncompressed cache
46 fills, cache manager 48 directs that the LRU page, page 54, stored within uncompressed cache 46,
to be compressed via compression/decompression algorithm 56 and stored within compressed cache
48. LRU page 54 remains stored within compressed cache 48 until needed. When needed,
compression/decompression algorithm 56 decompresses the page, which is then stored within
uncompressed cache 46. When compressed cache 48 is full, cache manager 52 directs that the LRU
page, page 58, within compressed cache 48 to be deleted or written over as represented by “trash”
block 59. The decision to push the LRU pages from uncompressed cache 46 to compressed cache 48,
and to delete the LRU from compressed cache 48 comes from the theory that users are more likely to
access a recently accessed pages. This theory avoids the costs associated with repeatedly
compressing and uncompressing frequently used pages. Although the present invention uses an LRU

cache management technique, any cache management technique known to those skilled in the art may

-5-

SUBSTITUTE SHEET (RULE 26)

WO 2004/111881 PCT/US2004/017259

be used in place of this technique. When a requested page has been deleted from compressed cache

48, that page must be read from disk 44.

[0022] The present invention also provides the ability to compress and uncompress
asynchronously. Both compression and decompression provide cache management costs. Moving
data and/or instructions from one cache to another involves up dating pointers within the cache
manager. Furthermore, the compression and decompression require processor time. Compressing
asynchronously queues uncompressed pages for compression when processor time becomes
available. Asynchronous decompression similarly queues pages for decompression but requires

predictive read ahead.

[0023] Operating systems often already use predictive read ahead when accessing files. This
type of read ahead assumes the user will request the page following that being viewed. The drawback
associated with predictive read ahead occurs when the user does not request what was predicted, thus

requiring additional resources to be expended.

[0024] Another embodiment of the present invention addresses the problem with compressed
pages that compress longer than the original page (i.e., the page actually expands). This problem

occurs within all compression techniques. Compression does not guarantee to compress every page.

[0025] In some instances, the cache management technique may store pages that compress larger
than their uncompressed size only within the uncompressed cache. This feature reduces or eliminates

wasted memory but still consumes processing resources.

[0026] Cache compression enables cache to store more data pages within the cache. For
example, if all data pages can be compressed to at least 1/2 their original size, with the size of the
cache being constant, the cache can hold twice as many pages. Although having to
compress/decompress pages adds overheads (i.e., CPU utilization), this increase in overhead is small

when compared to disk I/O access costs.

[0027] There are a wide variety of different compression algorithms that can be used to
compress data including data in a database cache. For example, a Limpel-Ziv (LZ) compression
algorithm provide a technique that encodes a streaming byte sequence using a dynamic table.
Popular variations on this technique include the LZ78 and LZ77 families. It is noted that other
compression algérithms could be wused, as desired. Preferably, a high performance
_compression/decompression algorithm is used so that the processing overhead for the algorithm does
not outweigh the access time benefits provided by the compressed database cache approach of the

present invention. In addition, any of a number of well-understood variants of the LZ algorithm may

-6-

WO 2004/111881 PCT/US2004/017259

be utilized, as desired, depending upon the particular application, as would be understood by one of
skill in the art.

[0028] To improve the compression/decompression algorithms performance, the algorithms may
be modified with the following abilities. First, the algorithm does not compress the data page when
the compression ratio is less than 2, and the page may be flagged to eliminate future attempts to
compress the same page. Second, the algorithm writes out the compressed data in predetermined
sizes such as 256 bytes (256B). For example, if a 1K data page compresses to 356B, the algorithm,
when compressing, writes the first 256B compressed data in one chunk and the remainder of the
100B in another chunk. It is noted that a trade-off exists with respect to the compression block size,
and other compression block sizes may be utilized, as desired. In particular, it is noted that the
smaller the compression block size, the better able the system typically is in taking advantage of
reduced data size, but the more overhead the system will typically incur in managing the compressed
blocks. Third, the algorithm provides a pointer to a compressed data header object that provides

information about the compressed data pages.

[0029] FIGURE 5 depicts the various structures that compressed data header object 70 tracks
within the pieces of compressed data. As shown in this embodiment, the decompression algorithm

gathers related chunks of 256B compressed data and decompresses them into their original size.

[0030] The integration of cache compression into an existing application may require modifying
some structures within the existing application. The main part of the integration work occurs within
the two caches. The structures identified begin with the page pointer (page_ptr) 72. Page pointer 72
may include an additional pointer 74 returned by the compression algorithm when the compression is

successful. If pointer 74 is NULL, the data page is not compressed.

[0031] " As mentioned above, the compressed cache receives a pool of memory 76. The different
pools in the compressed cache include 2 pool of 256B objects 78 that hold compressed data.
Compressed data headers 70 serve as the map table or data pointer list for finding the different
chunks of related compressed data. In the embodiment depicted, each header is limited to four 256B
objects. It is noted, however, that this size could be altered, as desired, without departing from the
present invention. And in addition to being any fixed number of blocks, this header could also

contain a structure containing a variable number of blocks, such as a vector or linked list.

[0032] Synchronous compression and decompression manipulates the data on request. When a
thread moves a page from uncompressed cache to compressed cache, the thread invokes the

compression function to compress the data page directly into the compressed cache pool of objects.

-7-

SUBSTITUTE SHEET (RULE 26)

WO 2004/111881 PCT/US2004/017259

Decompression occurs in the same manner. During decompression, first the correct size buffer is
located in the uncompressed cache, after which pieces of related compressed data located in
compressed cache decompress directly into the uncompressed cache. Compressing on demand
requires no additional memory copying, reducing the amount of overhead. The disadvantage during

heavy paging situations between uncompressed and compressed caches occurs when the data pages
do not meet the required compression ratio. Failed compression (compressions thresholds in

expansion) is an overhead in addition to the memory copy functions that needs to be invoked.

[0033] Asynchronous operation is typically best suited for compression. Data pages move from
uncompressed cache to compressed cache, after which the compression function operates to compress
the data. The advantage being that compression can happen any time. If heavy paging situations
occurs, the overhead incurred is only the memory copy function. When less busy, a thread in the
compressed cache can start the compression of the data pages queued for compression. This situation

will typically invoke an additional memory copy function.

[0034] As noted above, compression and decompression adds a certain amount of overhead to
the workings of an application. However, the idea trades this overhead for I/O by storing more data
pages in cache. Not all database environments will experience a performance boost by having cache
compression. Situations, which involve small size databases and CPU-bound systems, actually may
experience a negative impact on performance with cache compression. Therefore, a setting for cache
compression may be made available for the better-informed user within the application configuration

or setup.

[0035] Returning to FIGURE 4, in this and other embodiments of the present invention cache
compression does not occur until all the available primary cache has been filled with uncompressed

pages. This avoids compression and decompression until needed.

[0036] Compression of the secondary cache may begin when the system becomes /O bound or
may be considered the permanent state of the secondary cache. In this way, if an entire database fits
into the total available cache without compression, the processor costs associated with compression
and decompression are avoided automatically. This may also imply that an asynchronous thread
might try to compress all non-compressed pages before freeing the LRU pages. It would do this in

order based on a cache management algorithm, such as MRU/LRU.

[0037] In summary, the present invention provides a system and method that substantially
eliminates or reduces disadvantages and problems associated with previously developed database

management systems. This system includes a first data storage location. Where this first data storage

WO 2004/111881 PCT/US2004/017259

location typically is a disk or network resource. Additional data storage locations, typically in the
form of local or database cache, allow data users to more quickly access frequently used data from

local or database cache as opposed to disk.

[0038] To increase the effective size of the database cache stored in memory, the present
invention compresses data stored within the database cache. This compression only now becomes
desirable as decompressing compressed data from the local memory and supplying decompressed
compressed data to the data user can occur more quickly than accessing the original data from disk.
Thus, the present invention further includes a processor and instructions operable to decompress the
compressed data more quickly than the time required to access the information or data from non-local

memory.

[0039] FIGURE 6 is a block diagram for a client-server database environment 600 in which a
database server 605 utilizes compression within its database cache 608 to manage the database. In
the embodirpent depicted, one ore more client systems 604A, 604B ... 604C are connected through
network 602 to a server-based database management system 605. The database cache 608 provides
an interface between the client systems 604A, 604B ... 604C and the database 614 stored on the
storage system 606. In its operations, the database management server 605 utilizes a database cache
608. As discussed above and according to the present invention, this database cache 608 includes a
compressed cache 612 and an uncompressed cache 610. It is noted that in a client-server

environment, the client systems 604A, 604B ... 604C can also utilize a local database cache. For

example, client system 604C could include a local database cache 620 that provides an interface .

between the database related operations of the client system 604C and the database server 605. As
such, the client sysfem 604C could cache database information locally in its local database cache 620
thereby reducing the number of accesses the client system 604C needs to make to database server 605
and also reducing latency caused by network access through network 602. In addition, the client
system 604C could also utilize compression with respect to its local database cache 620, according to
the present invention. As such, the local database cache 620 would include a compressed cache 622
and an uncompressed cache 624. With respect to the database cache 608 and the local database cache
620, if utilized, the ratio of compressed to uncompressed cache can be selected, as desired, and the
entire database cache can be compressed if this implementation is desired. In addition, a fixed ratio
or a dynamic ratio could be used, as desired. It is noted that where a local database cache is used in
addition to the server database cache, coherence between these two caches can be problematic.
Solutions to this cache coherence problem are discussed, for example, in U.S. Patent Application No.
10/144,917, filed May 14, 2002, and entitled “SYSTEM AND METHOD OF MAINTAINING

-9.

SUBSTITUTE SHEET (RULE 26)

WO 2004/111881 PCT/US2004/017259

FUNCTIONAL CLIENT SIDE DATA CACHE COHERENCE,” the entire text and all contents of

which are hereby expressly incorporated by reference in its entirety.

[0040] Further modifications and alternative embodiments of this invention will be apparent to
those skilled in the art in view of this description. It will be recognized, therefore, that the present
invention is not limited by these example arrangements. Accordingly, this description is to be
construed as illustrative only and is for the purpose of teaching those skilled in the art the manner of
carrying out the invention. It is to be understood that the forms of the invention herein shown and
described are to be taken as the presently preferred embodiments. Various changes may be made in
the implementations and architectures for database processing. For example, equivalent elements
may be substituted for those illustrated and described herein, and certain features of the invention
may be utilized independently of the use of other features, all as would be apparent to one skilled in

the art after having the benefit of this description of the invention.

-10 -

WO 2004/111881 PCT/US2004/017259

CLAIMS
What is claimed is:

1. A system for managing access to database information, comprising:

a first data storage device configured to store a database;

a second data storage device configured to store a database cache, at least a portion of the
database cache comprising a compressed cache portion, the database cache also
including an uncompressed cache portion where the compressed cache portion is less
than the full database cache; and

a database management system configured to control data transfers among the database, the
compressed portion of the database cache and the uncompressed portion of the database

cache, if any, to manage accesses to database information.
2. The system of claim 1, wherein the first data storage device comprises a disk drive.

3. The system of claim 1, wherein the second data storage device comprises memory within a

computer system.

4. The system of claim 3, wherein the memory is configured to store database cache information in
pages.
5. The system of claim 4, wherein each database cache page stored within memory are configured

to include a flag indicating whether or not the page comprises compressed data.

6. The system of claim 1, wherein the entire database cache comprises compressed data and there

is no uncompressed cache portion.

7. The system of claim 1, wherein the database management system comprises a server system

within a client-server environment.

-11-

WO 2004/111881 PCT/US2004/017259

8. The system of claim 1, wherein the database management system is a client system within a
client-server environment, wherein the first data storage device comprises a remote storage device
céupled to a server system, and wherein the database cache is a local database cache utilized by the client

system.

9. A database management system for managing access to database information in a client-server
environment, comprising:
a plurality of client systems, the client systems configured to access information in a database;
a server systém coupled to the client systems through a network, the server system configured to
manage transfers of information between the client systems and the database;
a first data storage device coupled to the server system and configured to store the database; and
a second data storage device coupled to the server system and configured to store a database
cache, at least a portion of the database cache comprising a compressed cache portion,
the database cache élso including an uncompressed cache portion where the compressed
cache portion is less than the full database cache;
wherein the server system is configured to control data transfers among the database, the
compressed portion of the database cache and the uncompressed portion of the database

cache, if any, to manage accesses to database information by the client systems.

10 The database management system of claim 9, wherein the first data storage device comprises a
disk drive.
11. The database management system of claim 9, wherein the second data storage device comprises

memory within a computer system.

12. The database management system of claim 9, wherein the entire database cache comprises

compressed data and there is no uncompressed cache portion.
13. The database management system of claim 9, wherein one or more of the client systems utilize a

local database cache to manage database information accessed by the client system, the local database

cache including at least in part a compressed cache portion.

-12-

WO 2004/111881 PCT/US2004/017259

14. A method for managing access to database information, comprising:
storing a database in a first data storage device;
storing a database cached in a second data storage device, at least a portion of the database cache
comprising a compressed cache portion, the database cache also including an
uncompressed cache portion where the compressed cache portion is less than the full
database cache; and
controlling data transfers among the database, the compressed portion of the database cache and

the uncompressed portion of the database cache, if any, to manage accesses to database

information.
15. The method of claim 14, wherein the first data storage device comprises a disk drive.
16. The method of claim 14, wherein the second data storage device comprises memory within a

computer system.

17. The method of claim 16, configuring the memory to store database cache information in pages.

18. The method of claim 17, further comprising utilizing for each stored database cache page a flag

within the page to indicate whether or not the page comprises compressed data.

19. The method of claim 14, storing the entire database cache as compressed data such that there is

no uncompressed cache portion.

20. The method of claim 14, wherein a server system within a client-server environment performs the

controlling step.

-13-

WO 2004/111881
1/6

PCT/US2004/017259

Cache Curve

~
-
(o
S L
\\
N
o
N
L
[15]
=
[}
323
O
oy
o &
0 O
[72]
(1]
o)
S
m‘
Q
=
[Te]
e (N}
o

O QO = @+ — 0 =W

oD

S

w O O 0 T

WO 2004/111881 PCT/US2004/017259
2/6

Disk Storage 24

Page 22

Compression/
Decompression
Algorithm 30

Cache Manager Cache Memory

Bz [=2

\

Compression/
Decompression
Algorithm 30

Application/User
2

FIG. 2

WO 2004/111881

3/6

PCT/US2004/017259

Compressed |
Cache Memory
36

Application/User
38

Disk Storage 24
Page 22
Uncompressed Compression/
Cache &———> decompression
Memory 34 Algorithm 40
Cache Manager
il

FIG. 3

WO 2004/111881

4/6

PCT/US2004/017259

s

Compressed
Cache Memory
48

Disk Storage 44
Page 42
LRU
Page
Uncompressed 54 Compression/
Cache- ! >ﬂ Decompression
Memory 46 Algorithm 56
Cache Manager
52

Application/User
50

FIG. 4

LRU
Page
58

Trash 59

PCT/US2004/017259

WO 2004/111881

5/6

G 'Ol

0L

Junud g 96¢ N
T Junyd g 96¢
8L | S ‘
BRd X Junyod g 962
8.
g unyo
or Hunyd g 96¢
\-I
9.
Junyo g 96¢
€id | **" | 04d | PesH
174
N—EA8d{ *** {04d | Pesy
N
|
4]
\{€4d| “** | 04d | PesH
gdd ¢id L ad 04d JopeaH

‘d)d"ejep passaidiiooun

‘9 Jopesy ejeppassaldiuod

‘¢ Jaiod
‘Z Joquiod
‘) Jejuod
‘0 Jajui0d

-Jopeay

}
Jjd"sbed jonng

Hao |
ONOTIN
ONOIN
ONOIN
ONOIN

Y430avaH

}

Japeay ejep ssaidwod jon)g

PCT/US2004/017259

WO 2004/111881

6/6

71 eseqee f
e qeieq
909 wajshg obelo)g
(A \ [4AY) N
 —.
on| [9 2
1
029 oyoes 2207 8yoe) passaidwodun ayoen passaidwon
(] washgwern 019” ayoen aseqeieq (g
or09 ' b
" " 809 Joa1sg asegele(
. 509/
e waysAs walo
av09
1 washs ey
V¥09 . 009
209

INTERNATIONAL SEARCH REPORT

t-+--==tional Application No

v, US2004/017259

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 GO6F17/30 G06F12/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, INSPEC

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

FILESYSTEM"

ISSN: 0163-5964

abstract

paragraph 3

COMPUTER ARCHITECTURE NEWS, ASSOCIATION
FOR COMPUTING MACHINERY, NEW YORK, US,
vol. 19, no. 2, 1 April 1991 (1991-04-01),
pages 200-211, XP000203262

page 208, Teft-hand column, paragraph 1
page 201, left-hand column, paragraph 3

page 202, right-hand column, paragraph 2 -

X CATE V ET AL: "COMBINING THE CONCEPTS OF 1-20
COMPRESSION AND CACHING FOR A TWO-LEVEL

-/

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

A document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or after the international
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other.special reason (as specified)

*O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

'T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory undetlying the
invention

X document of particular relevance; the claimed Invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
ments, ﬁuoh combination being obvious to a person skilled
in the art.

*&" document member of the same patent family

Date of the actual completion of the international search

7 October 2004

Date of mailing of the intemational search repont

21/10/2004

Name and mailing address of the ISA

European Patent Office, P.B. 56818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Jaedicke, M

Form PCT/ISA/210 (second sheet) (January 2004)

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

* national Application No

. vT/US2004/017259

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X WILSON P R ET AL: "The case for
compressed caching in virtual memory
systems"

PROCEEDINGS OF THE 1999 USENIX ANNUAL
TECHNICAL CONFERENCE USENIX ASSOC
BERKELEY, CA, USA,

6 June 1999 (1999-06-06), — 11 June 1999
(1999-06-11) pages 101-116, XP002299640
ISBN: 1-880446-33-2

reprinted without page numbers on 16 pages
plus cover sheet

abstract

page 104, right-hand column, paragraph 3 -
page 106, right-hand column, paragraph 4
page 114, left-hand column, Tast paragraph
- page 115, left-hand column, last
paragraph

X GRAEFE G ET AL: "Data compression and
database performance”

APPLIED COMPUTING, 1991., YPROCEEDINGS OF
THE 1991 SYMPOSIUM ON KANSAS CITY, MO, USA
3-5 APRIL 1991, LOS ALAMITOS, CA, USA,IEEE
COMPUT. SOC, US,

3 April 1991 (1991-04-03), pages 22-27,
XP010022657

ISBN: 0-8186-2136-2

A page 22, left-hand column, paragraph 3
page 23, left-hand column, paragraph 2 -
paragraph 3

X COCKSHOTT W P ET AL: ™"Data compression in
database systems”

DATABASE AND EXPERT SYSTEMS APPLICATIONS,
1998. PROCEEDINGS. NINTH INTERNATIONAL
WORKSHOP ON VIENNA, AUSTRIA 26-28 AUG.
1998, LOS ALAMITOS, CA, USA,IEEE COMPUT.
S0C, US, 26 August 1998 (1998-08-26),
pages 981-990, XP010296751

ISBN: 0-8186-8353-8

A page 988, right-hand column, paragraph 1
page 983, left-hand column, paragraph 4 -
right-hand column, paragraph 2

-

1-20

6,12,19

6,12,19

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

ational Application No

~1/US2004/017259

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Relevant 1o claim No.

A FRENCH C D: "Teaching an OLTP database
kernel advanced datawarehousing
techniques™”

DATA ENGINEERING, 1997. PROCEEDINGS. 13TH
INTERNATIONAL CONFERENCE ON BIRMINGHAM, UK
7-11 APRIL 1997, LOS ALAMITOS, CA,
USA,IEEE COMPUT. SOC, US,

7 April 1997 (1997-04-07), pages 194-198,
XP010218542

ISBN: 0-8186-7807-0

page 197, left-hand column, paragraph 3 -
right-hand column, paragraph 5

A US 5 794 228 A (WHITE PETER ET AL)

11 August 1998 (1998-08-11)

column 3, line 10 - column 4, Tine 59
column 16, 1ine 3 - 1ine 21

A MCDONALD I: "Distributed, configurable
memory management in an operating system
supparting quality of service”
DISTRIBUTED COMPUTING SYSTEMS, 1999.
PROCEEDINGS. 7TH IEEE WORKSHOP ON FUTURE
TRENDS OF CAPE TOWN, SOUTH AFRICA 20-22
DEC. 1999, LOS ALAMITOS, CA, USA,IEEE
COMPUT. SOC, US,

20 December 1999 (1999-12-20), pages
191-196, XP010367838

ISBN: 0-7695-0468-X

abstract

page 192, left-hand column, paragraph 2 -
page 193, left-hand column, paragraph 2

A YANG J ET AL: "FREQUENT VALUE COMPRESSION
IN DATA CACHES"

PROCEEDINGS OF THE ANNUAL INTERNATIONAL
SYMPOSIUM ON MICROARCHITECTURE,

10 December 2000 (2000-12-10), pages
258-265, XP000994541

abstract

A LEE J-S ET AL: "Performance analysis of a
selectively compressed memory system"”
MICROPROCESSORS AND MICROSYSTEMS, IPC
BUSINESS PRESS LTD. LONDON, GB,

vol. 26, no. 2,

17 March 2002 (2002-03-17), pages 63-76,
XP004339935

ISSN: 0141-9331

page 67, left-hand column, paragraph 2 -
paragraph 3

1-20

1-20

1,9,14

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

iational Application No

Information on patent family members - /U52004/017259
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 5794228 A 11-08-1998 US 5794229 A 11-08-1998
us 5649181 A 15-07-1997
us 5918225 A 29-06-1999
us 5852821 A 22-12-1998

Form PCT/ISA/210 (patenl family annex) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

