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SYSTEMS AND METHODS FOR PRIVACY 
PRESERVING DETERMINATION OF 
INTERSECTIONS OF SETS OF USER 

IDENTIFIERS 

CROSS - REFRENCE TO RELATED 
APPLICATIONS 

[ 0001 ] This application claims priority to U.S. provisional 
patent application Ser . No. 62/870970 filed on Jul . 5 , 2019 , 
and to U.S. provisional patent application Ser . No. 
62/877251 filed on Jul . 22 , 2019 , the contents of each of 
which are incorporated herein by reference . 

BACKGROUND 

[ 0002 ] In a computer networked environment such as the 
interne , third - party content providers provide third - party 
content items for display on end - user computing devices . 
These third - party content items , for example , advertise 
ments , can be displayed on a web page associated with a 
respective publisher . These third - party content items can 
include content identifying the third - party content provider 
that provided the content item . 

SUMMARY 

[ 0003 ] One technical issue addressed by the present dis 
closure is the difficulty in determining the total number of 
interactions between users and a set of content items from 
two different content delivery platforms by a third party 
while maintaining the privacy of the users . For example , a 
third party may want to estimate the total number of user 
interactions with a certain set of content items across two 
separate content delivery platforms . However , sending all 
the information about the users and their interactions to the 
third party from each content delivery platform will provide 
the third party with private information about each user . The 
challenges addressed in this disclosure relate to providing 
the third party with enough data to estimate the total 
interactions the users with a certain set of content items 
while maintaining the acy of the users of each content 
delivery platform . 
[ 0004 ] By hashing each user interaction , one is able to 
preserve the privacy of the users while maintaining some 
information about the user interactions . This information is 
a deterministic set of bits that can be used in further 
computation , but contains no specific information about the 
individual users or their interactions . Pieces of these hashes 
can be used to construct data structures called vectors . A user 
interaction that is present on two different content delivery 
platforms will have the same quantitative contribution to the 
vector of each platform , because the hashing operations used 
on the user interaction data is deterministic . The vector can 
be sent to a third party which is capable of processing 
vectors from two different content delivery platforms to 
estimate the total number of user interactions with a set of 
content items across both platforms using statistical analy 
sis . 
[ 0005 ] This application claims priority to provisional 
application 62/870970 filed on Jul . 5 , 2019 , and provisional 
application 62/877251 filed on Jul . 22 , 2019. The contents of 
each are incorporated within here by reference . 
[ 0006 ] At least one aspect is directed to a method for 
estimating the number of unique user interactions with a set 
of content items provided by different content delivery 

platforms . The method includes transmitting , via a network , 
a set of hash functions to a first content delivery platform . 
The method further includes transmitting , via a network , the 
set of hash functions to a second content delivery platform . 
The method also includes receiving , via a network , a first 
vector from the first content delivery platform , each coor 
dinate of the first vector being equal to a sum based on a 
plurality of hashes , with each hash calculated from one of a 
plurality of user interactions with the set of content items 
occurring via the first content delivery platform . The method 
also includes receiving , via a network , a second vector from 
the second content delivery platform , each coordinate of the 
second vector being equal to a sum based on a plurality of 
hashes , with each hash calculated from one of a plurality of 
user interactions with the set of content items occurring via 
the second content delivery platform . The method further 
includes estimating a number of user interactions with the 
set of content items occurring via the first content delivery 
platform based on a sum of the elements of the first vector . 
The method also includes estimating a number of user 
interactions with the set of content items occurring via the 
second content delivery platform based on a sum of the 
elements of the second vector . The method further includes 
estimating a number of unique user interactions with the set 
of content items provided by both the first content delivery 
platform and the second content delivery platform based on 
the number of user interactions with the set of content items 
occurring via the first content delivery platform , the number 
of user interactions with the set of content items occurring 
via the second content delivery platform , and a dot product 
of the first and the second vector . 
[ 0007 ] In some implementations , the method includes 
transmitting , via a network , a first request for a first vector 
to a first content delivery platform . In some implementa 
tions , the method includes transmitting , via a network , a 
second request for a second vector to a second content 
delivery platform . In some implementations , the first request 
comprises a set of hash functions . In some implementations 
the second request comprises a set of hash functions . In 
some implementations , the method comprises estimating the 
total number of user interactions with the set of content 
items occurring via the first content delivery network based 
on twice the total sum of all coordinates in the first vector 
divided by the number of coordinates in the first vector . In 
some implementations , the method comprises estimating the 
total number of user interactions with the set of content 
items occurring via the second content delivery network 
based on twice the total sum of all coordinates in the second 
vector divided by the number of coordinates in the second 
vector . In some implementations , the method comprises 
estimating a number of unique user interactions with the set 
of content items provided by the both the first content 
delivery platform and the second content delivery platform 
based on the number of user interactions with the set of 
content items occurring via the first content delivery plat 
form , the number of user interactions with the set of content 
items occurring via the second content delivery platform , 
and the covariance of the first vector and the second vector . 
[ 0008 ] At least another aspect is directed to a method for 
providing anonymous data about user interactions with a set 
of content items . The method includes receiving , via a 
network , data to identify a set of hash functions . The method 
further includes retrieving a plurality of user identifiers , each 
of the user identifiers identifying interaction with a set of 
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content items by a respective user of the plurality . The 
method further includes for each of the plurality of user 
identifiers , generating k hashes of the user identifier , each 
hash corresponding to one of the set of hash functions , and 
generating a user vector , each coordinate of the user vector 
corresponding to a bit value of a respective hash . The 
method also includes generating an interaction vector by 
summing the plurality of generated user vectors . The method 
further includes transmitting , via a network , the generated 
interaction vector via a network to the requesting party . 
[ 0009 ] At least another aspect is directed to a method for 
providing anonymous data about user interactions with a set 
of content items . The method includes receiving , via a 
network , a request via a network for an interaction vector 
from a requesting party , the request comprising data to 
identify a hash function . The method further includes 
retrieving a plurality of user identifiers , each of the user 
identifiers identifying interaction with a set of content items 
by a respective user of the plurality . The method also 
includes for each of the plurality of user identifiers , gener 
ating a hash value of the user identifier using the hash 
function included in the request , determining a value of a 
first m - bits of the hash value , and incrementing a count of a 
register corresponding to the value , the register being one of 
k registers , where k = 2 ̂ m . The method also includes gener 
ating an interaction vector , each coordinate of the interaction 
vector being equal to a count of a corresponding kth register . 
The method further includes transmitting , via a network , the 
generated interaction vector via a network to the requesting 
party . 
[ 0010 ] In another aspect , the present disclosure is directed 
to a system comprising one or more processors configured to 
estimate the number of unique user interactions with a set of 
content items provided by different content delivery plat 
forms . In some implementations , the one or more processors 
are configured to transmit , via a network , a set of hash 
functions to a first content delivery platform . In some 
implementations , the one or more processors are configured 
to transmit , via a network , the set of hash functions to a 
second content delivery platform . In some implementations 
the one or more processors are configured to receive , via a 
network , a first vector from the first content delivery plat 
form , each coordinate of the first vector being equal to a sum 
based on a plurality of hashes , with each hash calculated 
from one of a plurality of user interactions with the set of 
content items occurring via the first content delivery plat 
form . In some implementations , the one or more processors 
are configured to receive , via a network , a second vector 
from the second content delivery platform , each coordinate 
of the second vector being equal to a sum based on a 
plurality of hashes , with each hash calculated from one of a 
plurality of user interactions with the set of content items 
occurring via the second content delivery platform . In some 
implementations , the one or more processors are configured 
to estimate a number of user interactions with the set of 
content items occurring via the first content delivery plat 
form based on a sum of the elements of the first vector . In 
some implementations , the one or more processors are 
configured to estimate a number of user interactions with the 
set of content items occurring via the second content deliv 
ery platform based on a sum of the elements of the second 
vector . In some implementations , the one or more processors 
are configured to estimate a number of unique user interac 
tions with the set of content items provided by both the first 

content delivery platform and the second content delivery 
platform based on the number of user interactions with the 
set of content items occurring via the first content delivery 
platform , the number of user interactions with the set of 
content items occurring via the second content delivery 
platform , and a dot product of the first vector and the second 
vector . 

[ 0011 ] In another aspect , the present disclosure is directed 
to a system comprising one or more processors configured to 
provide anonymous data about user interactions with a set of 
content items . In some implementations , the one or more 
processors are configured to receive , via a network , data to 
identify a set of hash functions . In some implementations , 
the one or more processors are configured to retrieve a 
plurality of user identifiers , each of the user identifiers 
identifying interaction with a set of content items by a 
respective user of the plurality . In some implementations , 
the one or more processors are configured to , for each of the 
plurality of user identifiers , generate k hashes of the user 
identifier , each hash corresponding to one of the set of hash 
functions , and generate a user vector , each coordinate of the 
user vector corresponding to a bit value of a respective hash . 
In some implementations , the one or more processors are 
configured to generate an interaction vector by summing the 
plurality of generated user vectors . In some implementa 
tions , the one or more processors are configured to transmit , 
via a network , the generated interaction vector . 
[ 0012 ] In another aspect , the present disclosure is directed 
to a system comprising one or more processors , the proces 
sors configured to provide anonymous data about user 
interactions with a set of content items . In some implemen 
tations , the one or more processors are configured to receive , 
via a network , data to identify a set of hash functions . In 
some implementations , the one or more processors are 
configured to retrieve a plurality of user identifiers , each of 
the user identifiers identifying interaction with a set of 
content items by a respective user of the plurality . In some 
implementations , the one or more processors are configured 
to , for each of the plurality of user identifiers , generate a 
hash value of the user identifier using the hash function 
included in the request , determine a value of a first m - bits of 
the hash value , and increment a count of a register corre 
sponding to the value , the register being one of k registers , 
where k = 2 ̂ m . In some implementations , the one or more 
processors are configured to generate an interaction vector , 
each coordinate of the interaction vector being equal to a 
count of a corresponding kth register . In some implementa 
tions , the one or more processors are configured to transmit , 
via a network , the generated interaction vector . 
[ 0013 ] These and other aspects and implementations are 
discussed in detail below . The foregoing information and the 
following detailed description include illustrative examples 
of various aspects and implementations , and provide an 
overview or framework for understanding the nature and 
character of the claimed aspects and implementations . The 
drawings provide illustration and a further understanding of 
the various aspects and implementations , and are incorpo 
rated in and constitute a part of this specification . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0014 ] The accompanying drawings are not intended to be 
drawn to scale . Like reference numbers and designations in 
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a 

the various drawings indicate like elements . For purposes of 
clarity , not every component may be labeled in every 
drawing . In the drawings : 
[ 0015 ] FIG . 1 depicts a block diagram of an example 
implementation of a networked computer system , according 
to an illustrative implementation . 
[ 0016 ] FIG . 2 shows a flow diagram illustrating one 
embodiment of a method for estimating the number of 
unique user interactions with a set of content items across a 
first content delivery platform and a second content delivery 
platform . 
[ 0017 ] FIG . 3 shows a graphical representation of one 
embodiment of the intersection of the first set of user 
identifiers and the second set of user identifiers . 
[ 0018 ] FIG . 4A shows a flow diagram illustrating one 
embodiment of a method for generating and transmitting an 
interaction vector representing user interactions with a set of 
content items based on a multiple hash functions . 
[ 0019 ] FIG . 4B illustrates one embodiment of generating 
a k - length vector based on hashes of user interaction data as 
in the method shown in FIG . 4A . 
[ 0020 ] FIG . 5A shows a flow diagram illustrating one 
embodiment of a method for generating and transmitting an 
interaction vector representing user interactions with a set of 
content items based on a single hash function . 
[ 0021 ] FIG . 5B illustrates one embodiment of generating 
a k - length vector based on m - bits of a hash of user interac 
tion data , where k = 2 m as in the method shown in FIG . 5A . 
[ 0022 ] FIG . 6 shows one embodiment of a schematic 
adding n k - length vectors corresponding to n user identifiers 
from a set of content items generating an interaction vector 
as in the method shown in FIG . 4A . 
[ 0023 ] FIG . 7 shows one embodiment of a schematic of a 
hybrid approach for determining an estimate of an intersec 
tion of two sets of user identifiers . 
[ 0024 ] FIG . 8 shows the general architecture of an illus 
trative computer system that may be employed to implement 
any of the computer systems discussed herein . 
[ 0025 ] FIG . 9 shows experimental data from a non - limit 
ing embodiment of an architecture implemented to test the 
accuracy of union cardinality estimations while varying 
vector size and set cardinality . 
[ 0026 ] FIG . 10 shows experimental data from a non 
limiting embodiment of an architecture implemented to test 
the accuracy of union cardinality estimations while increas 
ing the cardinality of one of the sets relative to the other . 
[ 0027 ] FIG . 11 shows experimental data from a non 
limiting embodiment of an architecture implemented to test 
the accuracy of union cardinality estimations while varying 
the size of the intersection of both sets . 
[ 0028 ] FIG . 12 shows experimental data from a non 
limiting embodiment of an architecture implemented to test 
the accuracy of union cardinality estimations while varying 
the scale of Laplacian noise added to the vectors . 

[ 0030 ] FIG . 1 depicts a block diagram of an example 
implementation of a networked computer system 100. The 
system 100 includes a first data computing system 102 , 
second data computing system 104 , and a third data com 
puting system 106. The system 100 can also include a 
plurality of user devices 108a - 108e ( collectively referred to 
as user devices 108 ) . The first , second , and third data 
computing systems 102 , 104 , and 106 , and the user devices 
108 can communicate over a network 110 , which can 
include one or more of a local area networks , a wide area 
network , private networks , public networks , and the Inter 
net . In some examples , the first data computing system 102 
can be a content item ( e.g. , ads ) provider that can provide 
content items for distribution and rendering on the user 
devices 108. The second data computing system 104 and the 
third data computing system can be content item distribution 
systems that distribute the content items to the user devices 
based on , for example , the content provided to the user 
devices . As an example , users on the user devices 108 can 
be provided with content such as , for example , web pages or 
audio - visual content . The content can include content item 
slots ( e.g. , positional or temporal ) for displaying content 
items along with the content . The requests for displaying 
content items in the content item slots can be received by the 
content item distribution systems . The requests can include 
a user device identifier identifying the user device 108 and 
additional information related to the user device , the content 
provided to the user device 108 , etc. The content item 
distribution system can utilize the information included in 
the content item request to select a content item , and provide 
the content item to the user device 108 to be rendered along 
with the provided content . The content item provided to the 
user device 108 can be part of a content item campaign run 
by , for example , the first data computing system 102 . 
[ 0031 ] The content item distribution system , or content 
delivery platform , such as the first data computing system 
104 and the second data computing system 106 can keep 
records of the user identifiers related to the content items 
provided to the user devices 108. These records can include , 
for example , a list of user identifiers associated with users or 
user devices that were rendered with a particular set of 
content items or that interacted ( e.g. , clicked on ) with the 
content item . These lists of user identifiers are sometimes 
referred to as “ sketches . ” A publisher , such as the first data 
computing system 102 , can determine the effectiveness of a 
content item or a content item campaign by analyzing the 
sketches received from the content item distribution sys 
tems . For example , the publisher can determine the effec 
tiveness of a content item campaign by determining the 
number of users that interacted with the content items in the 
content item campaign . The publisher can request the con 
tent item distribution systems to provide the publisher with 
sketches associated with the content item campaign . A 
sketch can include user identifiers of the users or user 
devices that interacted with the content item campaign . The 
publisher may add the number of user identifiers included in 
the received sketches to determine the number of users that 
interacted with the content item . However , sketches received 
from two different content item distribution systems may 
include duplicate user identifiers , resulting in counting the 
duplicate user identifiers twice , and therefore , resulting in an 
inaccurate count . The duplicate identifiers can be a result of , 
for example , same users or user devices interacting with the 
same content item distributed by the two content item 

DETAILED DESCRIPTION 

[ 0029 ] Below are detailed descriptions of various concepts 
related to , and implementations of , methods , apparatuses , 
and systems of privacy preserving determination of inter 
section of sets of user identifiers . The various concepts 
introduced above and discussed in greater detail below may 
be implemented in any of numerous ways , as the described 
concepts are not limited to any particular manner of imple 
mentation . 
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distribution systems . To determine the actual number of 
users that interacted with the content item , the publisher 
needs to remove duplicate user identifiers . One approach to 
removing the duplicate identifiers can be to determine the 
intersection of the two sketches , where the intersection 
includes the user identifiers that are common to both 
sketches , and then removing that number from the sum of 
the sketches to arrive at the actual count of unique user 
identifiers of users that interacted with the content item . 
[ 0032 ] However , determining the intersection of the two 
sets of user identifiers can be computationally costly . For 
example , in some instances , each sketch can include hun 
dreds of thousands if not millions of user identifiers . Deter 
mining unique set of user identifiers from the two large sets 
can be computationally costly or even infeasible . In some 
instances , cardinality estimation algorithms can be utilized 
to determine an estimate of the unique number of user 
identifiers in the sketches . Examples of cardinality estima 
tion algorithms can include hyperloglog , probabilistic count 
ing with stochastic averaging ( PCSA ) , kth minimal value 
( KMV ) , etc. Each of these algorithms can estimate the 
cardinality , i.e. , a unique number of members in a multiset , 
in a computationally efficient manner . However , these algo 
rithms can indicate information on individual members of 
the sketches . 
[ 0033 ] The following discusses a set of approaches that 
can be utilized in determining the intersection of the 
sketches in a computationally efficient manner that also 
preserves the privacy of the user identifiers in the sketches . 
In particular , three approaches : a binomial vector approach , 
a vector of counts approach , and a hybrid approach are 
discussed , each of which can determine the user identifiers 
at the intersection of two sketches while preserving the 
privacy of the user identifiers in those sketches . 
[ 0034 ] FIG . 2 shows a flow diagram of method 200 , which 
is an example embodiment of a method to estimate the 
number of unique user interactions with a set of content 
items provided by different content delivery platforms . The 
method 200 can be executed on system 100 to determine , for 
example , the intersection 306 of the first and second sets of 
user identifiers 302 and 304 shown in FIG . 3. This process 
stage can be executed , for example , by the first data pro 
cessing system 102 , which can receive the first set of user 
identifiers 302 and the second set of user identifiers 304 
shown in FIG . 3 . 
[ 0035 ] In brief overview of FIG . 2 , the method to estimate 
the number of unique user interactions may include trans 
mitting a set of hashes to a first content delivery platform 
202. The first content delivery platform may calculate a 
vector representing user interactions with a set of content 
items provided by the first content delivery platform 216 . 
The method may transmit the set of hashes to a second 
content delivery platform 204. The second content delivery 
platform may calculate a vector representing user interac 
tions with the set of content items provided by the second 
content delivery platform 220. The first content delivery 
platform may transmit the vector representing user interac 
tions provided by the first content delivery platform 218 . 
The method may receive a vector representing user interac 
tions from the first content delivery platform 206. The 
second content delivery platform may transmit the vector 
representing user interactions provided by the second con 
tent delivery platform 222. The method may receive the 
vector representing user interactions from the second con 

tent delivery platform 208. The method may estimate the 
number of user interactions from the first content delivery 
platform 210. The method may estimate the number of user 
interactions from the second content delivery platform 212 . 
The method may finally estimate the number of unique user 
interactions with the set of content items across both the first 
and second content delivery platforms using a dot product 
operation on the two vectors 214 . 
[ 0036 ] In further detail of step 202 , a set of hashes is 
transmitted to the first content delivery platform . The set of 
hashes may contain many hashes . The set of hashes may 
contain only one hash . The set of hashes may contain the 
identity has function . The set of hashes may be transmitted 
as part of a request for user interaction data from the first 
content delivery platform . The set of hashes may be trans 
mitted over the network 110. In some implementations , the 
set of hash functions may be identifiers directing the first 
content delivery platform to use certain hash functions . In 
some implementations , the set of hash functions may be a 
single binary containing computer instructions to execute a 
set of hash functions . In some implementations , the set of 
hash functions may be many binaries , each binary contain 
ing computer instructions to execute a hash function . In 
some implementations , the set of hash functions may be 
many binaries , each binary containing code to execute a 
subset of the hash functions in the set of hash functions . 
[ 0037 ] In further detail of step 204 , a set of hashes is 
transmitted to the first content delivery platform . The set of 
hashes may contain many hashes . The set of hashes may 
contain only one hash . The set of hashes may contain the 
identity hash function . The set of hashes may be transmitted 
as part of a request for user interaction data from the first 
content delivery platform . The set of hashes may be trans 
mitted over the network 110. In some implementations , the 
set of hash functions may be identifiers directing the first 
content delivery platform to use certain hash functions . In 
some implementations , the set of hash functions may be a 
single binary containing computer instructions to execute a 
set of hash functions . In some implementations , the set of 
hash functions may be many binaries , each binary contain 
ing computer instructions to execute a hash function . In 
some implementations , the set of hash functions may be 
many binaries , each binary containing code to execute a 
subset of the hash functions in the set of hash functions . 
[ 0038 ] In further detail of step 206 , the method receives a 
first vector representing user interactions from the first 
content delivery platform . In some implementations , the 
vector may be a binomial vector of counts . In some imple 
mentations , the number of coordinates in the vector is equal 
to the number of hash functions in the set of hash functions . 
In some implementations , each coordinate in the vector 
could correspond to a hash function in the set of hash 
functions . In some embodiments , each coordinate of the 
vector could be equal to the sum of a single bit of the hashes 
of each user identifier provided by the first content delivery 
platform , where each coordinate corresponds to a hash 
function in the set of hash functions . In some implementa 
tions , the number of coordinates in the vector could be equal 
to 2 * k , where k is the number of hash functions in the set of 
hash functions . In some implementations , while receiving 
the first vector representing user interactions from the first 
content delivery platform , the method 200 may also receive 
the number of user identifiers that interacted with the set of 
content items from the first content delivery platform . 
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[ 0039 ] In further detail of step 208 , the method receives a 
second vector representing user interactions from the second 
content delivery platform . In some implementations , the 
vector may be a binomial vector of counts . In some imple 
mentations , the number of coordinates in the vector is equal 
to the number of hash functions in the set of hash functions . 
In some implementations , each coordinate in the vector 
could correspond to a hash function in the set of hash 
functions . In some embodiments , each coordinate of the 
vector could be equal to the sum of a single bit of the hashes 
of each user identifier provided by the first content delivery 
platform , where each coordinate corresponds to a hash 
function in the set of hash functions . In some implementa 
tions , the number of coordinates in the vector could be equal 
to 2 ° k , where k is the number of hash functions in the set of 
hash functions . In some implementations , while receiving 
the second vector representing user interactions from the 
second content delivery platform , the method 200 may also 
receive the number of user identifiers that interacted with the 
set of content items from the second content delivery 
platform 
[ 0040 ] In some implementations , the cardinality of the 
first vector and the second vector can be the same . In some 
implementations , the cardinality of the first vector and the 
second vector will be different . The cardinality of the first 
vector can be a power of two . The cardinality of the second 
vector can be a power of two . In some embodiments , the 
method 200 may determine either the first vector to have a 
larger cardinality than the second vector or the second vector 
to have a larger cardinality than the first vector . In such 
embodiments , the method 200 may down - sample the larger 
of the two vectors to match the cardinality of the smaller of 
the two vectors . In such embodiments , the vectors may both 
have a cardinality that is equal to a power of two . The 
down - sampling may be performed by summing the values in 
the coordinates of the larger vector congruent to the modulus 
of the cardinality of the smaller vector . In a non - limiting 
example , consider the first vector having a cardinality of 8 , 
and the second vector having a cardinality of 4. To make the 
cardinality of the first vector and the second vector equal , 
down - sampling is performed on the first vector . In this 
non - limiting exampling embodiment , down - sampling is per 
formed by summing the last four coordinates of the first 
vector with the first four coordinates of the first vector , to 
generate a vector with cardinality four . 
[ 0041 ] In further detail of step 210 , the method estimates 
the total number of user interactions from the first content 
delivery platform . In some implementations , the number of 
user interactions is based off the vector provided by the first 
content delivery platform in step 206. The number of user 
interactions can be estimated by summing each coordinate in 
the vector of user interactions provided by the first content 
delivery platform and dividing that sum by the number of 
coordinates in the vector . The number of user interactions 
can be estimated by summing each coordinate in the vector 
of user interactions provided by the first content delivery 
platform , multiplying that number by two , and dividing by 
the number of coordinates in the vector . The estimated 
number of user interactions can also be received from the 
first content delivery platform , for example over network 
110. In some embodiments , the exact number of user inter 
actions can also be received from the first content delivery 

platform , for example over network 110. In such embodi 
ments , the exact value is used by the method 200 as the 
estimated value . 
[ 0042 ] In further detail of step 212 , the method estimates 
the total number of user interactions from the second content 
delivery platform . In some implementations , the number of 
user interactions is based off the vector provided by the 
second content delivery platform in step 208. The number of 
user interactions is estimated by summing each coordinate in 
the vector of user interactions provided by the second 
content delivery platform and dividing that sum by the 
number of coordinates in the vector . The number of user 
interactions is estimated by summing each coordinate in the 
vector of user interactions provided by the second content 
delivery platform , multiplying that number by two , and 
dividing by the number of coordinates in the vector . The 
estimated number of user interactions can also be received 
from the second content delivery platform , for example over 
network 110. In some embodiments , the exact number of 
user interactions can also be received from the second 
content delivery platform , for example over network 110. In 
such embodiments , the exact value is used by the method 
200 as the estimated value . 
[ 0043 ] In further detail of step 214 , the method can 
estimate the number of unique user interactions with the set 
of content items provided by the first and second content 
delivery platforms using a dot product . The estimate of the 
number of unique user interactions can be equal to the sum 
of the estimated number of user interactions from the first 
and second content delivery platforms , minus the intersec 
tion of the sets 306. In some implementations , a dot product 
is used to calculate the intersection of the sets 306 based on 
the vectors received in steps 206 and 208. In some imple 
mentations , the intersection between sets 306 is calculated 
by multiplying the dot product of the vectors received in 
steps 206 and 208 by four and dividing by the number of 
coordinates in the vectors . In some implementations , the 
intersection between sets 306 is calculated by multiplying 
the covariance of the vectors received in steps 206 and 208 
by four . In some implementations , the intersection between 
the sets 306 can be calculated by taking the dot product of 
a plurality of vectors of counts , and taking the average of the 
plurality of dot products . 
[ 0044 ] In a non - limiting example embodiment of step 214 , 
the intersection of the sets 206 must first be calculated based 
on the first vector and the second vector received in step 206 
and 208 respectively . In the example embodiment described 
herein , both the first and second vectors are vectors of counts 
generated using method 500. Because each vector is based 
on a sum of the user identifiers , each vector can be consid 
ered the sum of three different vectors : a vector representing 
user identifiers that are present on the first and second 
content delivery platforms ( represented below as z ) , user 
identifiers that are unique to the first or second content 
delivery platform ( represented below as u ) , and a vector of 
noise ( represented below as e ) . The expected value ( i.e. 
estimate ) of the dot product of the first and second vectors 
can be represented by the equation below : 

E ( V1 " V2 ) = E [ ( Z + U1 + e1 ) - ( z + uj + e1 ) ] 

When written in an expanded form , the equation above can 
be written as : 

E ( v1v2 ) = E ( z - z ) + E ( z • 41 ) + E ( z " Uz ) + E ( U1 * 42 ) + E ( ze1 ) + E 
( ze1 ) + E ( uz'e 1 ) + E ( ui * e2 ) + E ( 2142 ) 
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N12 ( k – 1 ) E ( v1 · V2 ) = E ( z.Z ) = k N12 
In this example , if the noise terms are drawn from zero 
centered distributions and are independent from all other 
terms , their expected value of their dot products is equal to 
zero . Therefore , all terms in the above equation containing 
noise from either the first vector ( e . ) or second vector ( en ) 
are equal to zero . In this example , the first vector and second 
vector are mean subtracted ( i.e. , the average of all coordi 
nates of each vector is subtracted from each coordinate of 
the respective vector ) . Further , because they are unique to 
either first or second vector , the disjoint portions of the two 
vectors u , and u2 are considered independent . Therefore , the 
expected values of their dot products are also zero . In this 
non - limiting example , with the assumptions made above , 
the equation listed above is reduced to the equation provided 
below . 

Therefore , in this non - limiting example , based on the 
assumptions made above , one could calculate the number of 
user interactions common to both content delivery platforms 
by using a dot product . In some embodiments , this example 
could be used as a part of step 214 to calculate the number 
of unique user interactions across both the first and second 
content delivery platform . In this example , the variance of 
the estimated value of the number of user interactions 
common to both content delivery platforms is described in 
the equation below . 

E ( V1 ° V2 ) = E ( zºz ) 
N1 N2 + N z 2 ( N1 + N2 ) Var ( N12 ) = 

4k 
+ + 

k £ 2 £ 4 [ 0045 ] In further detail of the non- n - limiting example above , 
consider that a user identifier from the first content delivery 
platform has a probability 1 / k of contributing to any one 
coordinate of the first vector , where the first vector has a 
cardinality of k . In the interest of this non - limiting example , 
the same assumptions are made for the second vector , except 
based on the user identifiers from the second content deliv 
ery platform . In this example , each coordinate of the first and 
second vectors approximate a binomial distribution with 
probability 1 / k and number of trials N? , where the number of 
trials is equal to the number of user identifiers that contribute 
to the respective vector . For a large value of N1 , the 
distribution for any coordinate could be approximated by a 
Guassian distribution with variance as shown below . 

Var [ v ; ( / ) ] = N ; ( k - 1 ) / k 

In the equation above , v ; ( j ) represents the jth coordinate of 
vector Vi , where i represents either the first or second vector . 
To continue the analysis of the non - limiting example , con 
sider the expanded form of the expected value of the dot 
product of the first and second vector below . 

k 

E ( VI • v2 ) = E ( zºz ) = [ z ( j ) 2 ] ? 

In the above equation , E is equal to the inverse of the 
Laplacian noise scale . 
[ 0047 ] In further detail of step 216 , the first content 
delivery platform can calculate a vector representing user 
interactions with a set of content items provided by the first 
content delivery platform The systems and methods for 
calculating the vector representing user interactions with a 
set of content items provided by the first content delivery 
platform are elaborated upon later in the specification . In 
further detail of step 218 , the first content delivery platform 
can transmit the vector representing user interactions calcu 
lated in step 216 over a network , for example , network 110 , 
to be used in method 200. In some implementations , step 
218 may also include sending the exact number of user 
interactions represented by the vector to be used in method 
200. In some implementations , step 218 may also include 
sending an estimate the number of user interactions repre 
sented by the vector to be used in method 200. The systems 
and methods for calculating and transmitting the vector 
representing user interactions with a set of content items 
provided by the first content delivery platform are elaborated 
upon later in the specification . 
[ 0048 ] In further detail of step 220 , the first content 
delivery platform can calculate a vector representing user 
interactions with a set of content items provided by the first 
content delivery platform . The systems and methods for 
calculating the vector representing user interactions with a 
set of content items provided by the first content delivery 
platform are elaborated upon later in the specification . In 
further detail of step 222 , the first content delivery platform 
can transmit the vector representing user interactions calcu 
lated in step 220 over a network to be used in method 200 . 
In some implementations , step 222 may also include sending 
the number of user interactions represented by the vector to 
be used in method 200. The systems and methods for 
calculating and transmitting the vector representing user 
interactions with a set of content items provided by the first 
content delivery platform are elaborated upon later in the 
specification . 
[ 0049 ] In some embodiments , the first data processing 
system executes method 200. In some embodiments , the first 
data processing system 102 can determine the intersection 
306 of FIG . 3 based on the following expression : 

[ 0046 ] In the equation above , z ( j ) represents the jth coor 
dinate of the vector z , which is defined above . Based on our 
previous analysis , z ( i ) must also be approximated with a 
Gaussian distribution . Therefore , in this non - limiting 
example , we can simplify the above equation to the one 
provided below . 

N12 ( k – 1 ) E ( z + 2 ) = E [ :( ? 1 = Var ( z ( ) = U1 1 

In the equation above , N12 represents the number of user 
identifiers that have interacted with a set of content items on 
both the first and second content delivery platforms . Note 
that for a sufficiently large k , the value of ( k - 1 ) / k is about 
equal to 1. Therefore , in a final simplification step , one could 
arrive at the equation below . 
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r = 4 Cov ( Zx , Zy ) 

( zxizy? + ... + Zxk Zyk ) – kz ( zx1 + ... + 2xk ) ( zy? + ... + zyk ) czy 4 

[ 0050 ] Where r represents an estimate of the number of 
user identifiers that appear in both the first set of user 
identifiers 302 and the second set of user identifiers 304. In 
some implementations , the first data processing system 102 
can subtract an expected value of n / 2 from each position in 
the first vector and the second vector before generating the 
value for r . In such instances , the first data processing system 
102 can determine the intersection r based on the following 
expression : 

4 
r = 4 Cov ( Zx , Zy ) 7 ( zx1 zy? + ... + ZXk zyk ) ayi 

[ 0051 ] In some embodiments , the first data processing 
system 102 can estimate the size n of the first vector based 
on the sum of the values of all k - positions of the k - length 
first vector Zxz . In some embodiments , the For example , the 
first data processing system 102 can determine the size n 
based on the following expression : 

[ 0053 ] As the determination of the vector is based on the 
aggregate statistic of all the user identifiers within the 
corresponding set of user identifiers , the aggregation 
removes any correlation between the value of the vector and 
the identity of the user . Therefore , the vectors utilized to 
determine the estimate of the intersection are privacy safe . 
[ 0054 ] In some embodiments , the data processing system 
executing method 200 can determine intermediate estimates 
of intersection based on pairwise dot products of vector of 
counts generated using the same hash function while execut 
ing step 214. Thus for example , the first data processing 
system 102 can generate a first intermediate vector r? based 
on the dot product of V1xx and Vlyk r2 based on the dot 
product of V2xz and V2yk , and so on as show in FIG . 7. The 
data processing system can generate an estimate of the 
intersection based on the average of the intermediate esti 
mates of intersections by summing all the intermediate 
estimates and dividing the sum by p , where p is the number 
of hash functions transmitted in steps 204 and 206 of method 
200. By subtracting the estimate of the intersection value 
from the sum of the estimates of the total number of user 
identifiers in each vector , the method 200 can estimate the 
number of unique user interactions with the set of content 
items across both content delivery platforms . 
[ 0055 ] In some embodiments , the data processing system 
executing method 200 can subtract a value n / k from each 
coordinate value of the vectors V1xx , V2.xza · 902 
and a value n , / k from each coordinate value of the second 
vectors Vlyk V2yk Vpyk , 904 , where ng and 
represent the number of user identifiers in the first set of user 
identifiers 302 and the second set of user identifiers 304 , 
respectively . The number of user identifiers in the first and 
second set of user identifiers are estimated in steps 210 and 
212 respectively . The first data processing system can sub 
tract these values before carrying out the dot product of the 
vectors . In some embodiments , the values n , and n , can be 
received by the data processing system executing method 
200 when receiving the first and second vector in steps 206 
and 208 respectively . 
[ 0056 ] In a non - limiting example embodiment , the code to 
implement parts of method 200 may look like the following : 

VpXk2 k ... ) 

nz ( 7x1 + ... + zxK ) 

def ComputeVocIntersetion ( voc1 , voc2 , nl , n2 , k ) : 
GGGGG 

In some embodiments , the previous expression can be used 
in step 210 and step 212 of method 200. In some embodi 
ments , the sum computed as a part of the above expression 
is computer by either the second data processing system 104 
or the third data processing system 106. The first data 
processing system 102 can similarly determine the size n of 
the second set of user identifiers 204 based on the second 
k - length vector Zyk . The sizes of the respective first and 
second vectors can then be used to subtract the respective 
value n / 2 from the first and the second vectors . 
[ 0052 ] The method 200 can include estimating a size of 
the intersection of the first set of user identifiers and the 
second set of user identifiers based on a dot product of the 
first vector VXx and the second vector Vyk , as shown in FIG . 
7. In some embodiments , the first data processing system 
102 can subtract a value n / k from each coordinate value of 
the first vector VXx and a value n , / k from each coordinate 
value of the second vector Vyk , where n and n , represent the 
estimate of the number of user identifiers in the first set of 
user identifiers 302 and the second set of user identifiers 304 , 
respectively . In some implementations , n , and n , are pro 
vided by the first and second content delivery platforms 
respectively . In some embodiments , the first data processing 
system 102 can estimate the value r of the intersection , i.e. , 
the number of user identifiers common to both the first set 
of user identifiers 302 and the second set of user identifiers 
304 based on the following expression : 

Args : 
vocl , voc2 : Vectors of counts for sets 1 and 2 
nl , n2 : Cardinalities of sets 1 and 2 
k : Size of the vectors of counts 

Returns : 
The cardinality of the intersection of the two sets . 

?????? 

== assert len ( vocl ) - len ( voc2 ) k 
return sum ( ( voc [ i ] -nl / k ) * ( voc2 [ i ] -n2 / k ) for i in range ( k ) ) 

[ 0057 ] FIG . 3 shows a schematic of two sets of user 
identifiers and their intersection . In particular , FIG . 3 shows 
a first set of user identifiers 302 and a second set of user 
identifiers 304. The first set of user identifiers 302 and the 
second set of user identifiers 304 may be generated by the 
second data processing system 104 and the third data 
processing system 106 , respectively . The first set of user 
identifiers 302 includes a set of n user identifiers X1 , X2 , X3 , 

Xn , while the second set of user identifiers 304 includes 
a set of n user identifiers Y? , Y22 Y3 , ... , Yn . While FIG . 3 
shows the first and the second set of user identifiers 302 and 

?vx ; • Vy : 
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304 having the same number n of user identifiers , it should 
be understood that the first set of user identifiers 302 can 
have a different number of user identifiers that that in the 
second set of user identifiers 304. The first set of user 
identifiers 302 may include a list of user identifiers associ 
ated with users or user devices 108 that interacted with a 
particular content item or content item campaign , and may 
have been collected by the second data processing system 
104. The first data processing system 104 can store the first 
set of user identifiers 302 in memory in a data structure such 
as a one dimensional or multidimensional array . The second 
set of user identifiers 304 can be similarly managed by the 
third data processing system 106 , for example . A publisher , 
such as the first data processing system 102 would like to 
determine the unique set of user identifiers from the first and 
the second set of user identifiers 302 and 304 . 

[ 0058 ] In some implementations , the second and the third 
data processing systems 104 and 106 could transmit the first 
and the second set of user identifiers 302 and 304 , respec 
tively , to the first data processing system 102 for the 
determination of a unique and unduplicated set of user 
identifiers . However , merely transmitting the first and the 
second set of user identifiers 302 and 304 can expose the 
identities of the users to the first data processing system , 
thereby defeating the privacy of the users associated with the 
user identifiers . For example , the entire history of content 
item interaction of one or more users may be exposed to the 
first data processing system 102. In some implementations , 
cryptographic techniques , such as private set intersection 
( PSI ) can be utilized to allow a third party , such as the first 
data processing system 102 , to determine an intersection of 
the first and the second set of user identifiers 302 and 304 , 
while maintaining privacy . However , PSI implementations 
involve substantial communication overhead between the 
data computing systems , thereby increasing the computation 
time . In some implementations , cardinality estimators , such 
as hyperloglog , mentioned above , can be utilized to deter 
mine the union of the first and the second sets of user 
identifiers 302 and 304 , where the union can be used to 
determine the intersection of the two sets . However , hyper 
loglog is not privacy safe . 
[ 0059 ] FIG . 4A shows a flow diagram of method 400 , 
which illustrates an example embodiment of a method to 
generate a vector representing user interactions with a set of 
content items . The method 400 can be executed , for 
example , by the second data processing system 104 or the 
third data processing system 106. The method 400 can be 
executed , for example , to generate a user vector 420 as 
shown in FIG . 4B for each item of a set . For example , the 
set could be the set of user identifiers 302 or the set of user 
identifiers 304 as shown in FIG . 3. The method 400 includes 
receiving data to identify a set of hash functions 401. This 
step can be executed , for example , by the second data 
processing system 104 or the third data processing system 
106 , which can receive the data to identify the set of hash 
functions from the first data processing system 102 via the 
network 110. The method 300 includes retrieving a plurality 
of user identifiers 402. In some implementations , the plu 
rality of user identifiers can be retrieved from storage local 
to the second data processing system 104 or from storage 
local to the third data processing system 106. In some 
implementations , the plurality of user identifiers can be 
retrieved from a remote storage via the network 110. In some 

implementations , the plurality of user identifiers can be 
retrieved from a database or datacenter . 
[ 0060 ] The method 400 includes selecting the ith user 
identifier 404. This step can be executed , for example , by the 
second data processing system 104 or the third data pro 
cessing system 106 to process the set of user identifiers 
retrieved in step 402. FIG . 4B shows a schematic depicting 
processing of a portion of the method 400. In particular , FIG . 
4B shows selection of the first user identifier x? ( ith , i = 1 ) . 
While FIG . 4B shows the selection of the first user identifier 
in the first set of user identifiers 302 , it should be understood 
that the user identifiers can be selected in any order . 
[ 0061 ] The method 400 includes generating k hashes of 
the selected user identifier 406. The second data processing 
system 104 or the third data processing system 106 can 
generate k hashes h? ( X1 ) , h2 ( x1 ) , hz ( x1 ) , ... , hz ( xi ) of the 
selected user identifier X1 , as shown in FIG . 4B . In some 
embodiments , the second data processing system 104 or the 
third data processing system 106 can utilize k independent 
hash functions to generate k hashes of the first user identifier 
X1 . In some embodiments , the k independent hash functions 
correspond to the data to identify a set of hash functions in 
step 401. In some embodiments , the second data processing 
system 104 or the third data processing system 106 can 
utilize k / b hash functions , where b is a number of bits in the 
hash digest . 
[ 0062 ] In some embodiments , a salt can be added to each 
of the selected user identifier to enhance the privacy of the 
user . The salt can be a randomly generated string of bits that 
can be concatenated or somehow combined with the data 
structure containing the selected user identifier . In some 
embodiments , the salt can be pre - determined . In such 
embodiments , the salt can be pre - determined by an entity 
that is connected to system 100 via network 110. In some 
embodiments , each user identifier selected by method 400 is 
concatenated with the same salt . In some embodiments , each 
user identifier selected by method 400 is concatenated with 
a different salt . In some embodiments , the data processing 
systems executing method 400 , for example , 104 or 106 , 
may concatenate each user identifier with the same salt . In 
some embodiments , the two data processing systems execut 
ing the method 400 may use different salts . 
[ 0063 ] In some embodiments , the salt is received by the 
data processing system executing method 400 by a third 
party provider . In some embodiments , before concatenating 
the salt with each user identifier , the salt is hashed using a 
pre - determined hash function . In such embodiments , the 
pre - determined hash function may be determined by the 
third party providing the salt . In some embodiments , the 
third party providing the salt may provide a new salt based 
on a fixed period of time . For example , the third party salt 
provider may provide a new salt after an hour , two hours , 
one day , two days , a week , two weeks , a month , two months 
or a year . In some embodiments , the third party salt provider 
may sign the salt with a public key belonging to the data 
processing system executing method 400 . 
[ 0064 ] The method 400 includes generating a first k - length 
vector , where coordinate values of the first k - length vector 
equal to a bit value of the corresponding kth hash 408. As 
shown in FIG . 4B , the second data processing system 104 or 
the third data processing system 106 can generate first 
k - length vector 420 , where the value of each coordinate of 
the k - length vector 420 is equal to a bit value of the k hashes 
418. In some embodiments , such as the one shown in FIG . 
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4B , the value of a kth bit of the k - length vector 420 can be 
equal to the bit value of the least significant bit of the 
corresponding kth hash of the k hashes 418. In some 
embodiments , instead of the least significant bit , any other 
bit position can be utilized . In some embodiments , at least 
two bits of the k - length vector 418 can correspond to two 
different bit positions of their respective hash . For example , 
the bit value of one bit in the k - length vector can be equal 
to a least significant bit of the corresponding kth hash , while 
the bit value of another bit in the k - length vector can be 
equal to the most significant bit of the corresponding kth 
hash . The bit position of a kth hash assigned to provide the 
bit value for the kth bit of the k - length vector can be 
pre - determined . In some embodiments , the bit position of a 
kth hash assigned to provide the bit value for the kth bit of 
the k - length vector can be received with the data to identify 
a set of hash functions in step 401. Whatever the method 
ology used for selecting the bit values for the k - length vector 
from the k hashes , it may be ensured that the generation of 
the k - length vector from the second set of user identifiers 
304 follows the same methodology . In some embodiments , 
the second data processing system 104 or the third data 
processing system 106 can utilize fewer than k hashes to 
generate the k - length vector 402. For example , the second 
data processing system 104 or the third data processing 
system 106 can set positions 1 , 2 , b in the k - length 
vector based on bits 1 , 2 , b of the hash h / ( x1 ) , positions 
b + 1 , b + 2 , ... , 2 * b based on bits 1 , 2 , ... , b of h2 ( x1 ) , and 
so on ( assuming the LSB is at bit position 1 ) . Generally , the 
second data processing system 104 or the third data pro 
cessing system 106 can set bit positions ( i - 1 ) * b + 1 to i * b of 
a k - length vector of a first user identifier x , based on b bits 
of the hash h ; ( x1 ) . In instances where k is not divisible by b , 
then k / b can be rounded up , and any leftover bits can be 
discarded . 
[ 0065 ] The method 400 includes generating k - length vec 
tors corresponding to all the user identifiers in the plurality 
of user identifiers retrieved in step 402. For example , the 
second data processing system 104 or third data processing 
system 106 can determine whether the currently generated 
k - length vector is the nth k - length generated vector 410. If 
no , then the second data processing system 104 or the third 
data processing system 106 can increment the counter i 312 , 
and select the next user identifier from the plurality of user 
identifiers retrieved in step 402 , and generate a k - length 
vector as discussed above . In this manner , the second data 
processing system 104 or the third data processing system 
106 can generate n k - length vectors , where each of the n 
k - length vectors corresponds to a user identifier in the 
plurality of user identifiers retrieved in step 402 . 
[ 0066 ] The method 400 includes summing the n k - length 
vectors to generate an interaction vector 414. This can be 
called the binomial vector method . The second data pro 
cessing 104 and the third data processing system 106 can 
sum the n k - length vectors corresponding to the n user 
identifiers in the plurality of user identifiers retrieved in step 
402. The second data processing system 104 or the third data 
processing system 106 can perform a numerical addition of 
the “ 0 ” s and the “ 1 ” s in a bit position of the n k - length 

to Vnk to generate a k - length first Zxz . In a 
non - limiting example , if there were 10 k - length vectors 
where six of the k - length vectors had a “ l ” in the first bit 
position and the remaining four of the k - length vectors had 
a “ O ” in the first bit position , the k - length first vector Zxz can 

have a value 6 in the first position . Typically , for a large 
number of k - length vectors ( i.e. , for large values of n ) , the 
value at each kth position of the first vector Zxz would be 
approximately equal to n / 2 as shown in FIG . 6 . 
[ 0067 ] The method 400 includes transmitting the interac 
tion vector via a network 416. In some embodiments , the 
second data processing system 104 or the third data pro 
cessing system 106 transmits the interaction vector gener 
ated in step 414 to the first data processing system 102. In 
some embodiments , transmitting the interaction vector 
includes transmitting the vector via an encrypted commu 
nication channel , for example HTTPS . In some embodi 
ments , prior to transmitting the interaction vector , n / 2 is 
subtracted from each coordinate in the interaction vector . In 
some embodiments , the number of user interactions n is 
transmitted along with the interaction vector . In some 
embodiments , transmitting the interaction vector includes 
transmitting a plurality of vectors of counts . In such embodi 
ments , prior to transmitting the plurality of vectors of 
counts , n / 2 is subtracted from each coordinate in each of the 
plurality of the vectors of counts . 
[ 0068 ] FIG . 5A shows a flow diagram of method 500 , 
which illustrates an example embodiment of a method to 
generate a vector representing user interactions with a set of 
content items . The vector of counts method 500 can be 
executed , for example , by the second data processing system 
104 or the third data processing system 106. The method 500 
can be executed , for example , to generate a user vector 520 
as shown in FIG . 5B for each item of a set . For example , the 
set could be the set of user identifiers 302 or the set of user 
identifiers 304 as shown in FIG . 3. In some embodiments , 
receiving data to identify a set of hash functions can include 
receiving a set of hash functions containing a single hash 
function . In some embodiments , the data to identify a set of 
hash functions may be a binary file containing executable 
computer instructions that generate a hash based on an input 
value . The method 500 includes retrieving a plurality of user 
identifiers 502. In some implementations , the plurality of 
user identifiers can be retrieved from storage local to the 
second data processing system 104 or from storage local to 
the third data processing system 106. In some implementa 
tions , the plurality of user identifiers can be retrieved from 
a remote storage via the network 110. In some implemen 
tations , the plurality of user identifiers can be retrieved from 
a database or datacenter . 
[ 0069 ] The method 500 includes selecting the ith user 
identifier 504. This step can be executed , for example , by the 
second data processing system 104 or the third data pro 
cessing system 106 to process the first set of user identifiers 
302 or the second set of user identifiers 304. FIG . 5B shows 
a schematic depicting processing of a portion of the method 
500. In particular , FIG . 5B shows a selection of the first user 
identifier x? ( ith , i = 1 ) by the second data processing system 
104 or the third data processing system 106. While FIG . 5B 
shows the selection of the first identifier in the first set of 
user identifiers 302 , it should be understood that the user 
identifiers can be selected in any order , and the user iden 
tifiers are the same user identifiers retrieved in step 502 . 
[ 0070 ] The method 500 includes generating a hash of the 
selected user identifier 506. The second data processing 
system 104 or the third data processing system 106 can 
generate a hash using a hash function . In some embodi 
ments , the hash function is based on the data identifying a 
set of hash functions in step 501. In some embodiments , if 

vectors Vlk 
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there is more than one hash function in the set of hash 
functions received in step 501 , the method may choose one 
of the hash functions in the set of hash functions to perform 
the hash computation . In a non - limiting example , the 
method may choose the first hash function in the set of hash 
functions . For example , as shown in FIG . 5B , the second 
data processing system 104 or the third data processing 
system 106 generates a hash h ( x1 ) based on the hash 
function h ( ) . In some embodiments , the second data pro 
cessing system 104 or the third data processing system 106 
can utilize well known hash functions such as SHA ( 1 , 2 , or 
3 ) , MD5 , etc. 
[ 0071 ] In some embodiments , a salt can be added to each 
of the selected user identifier to enhance the privacy of the 
user . In some embodiments , the salt is a randomly generated 
string of bits that is concatenated with the data structure 
containing the selected user identifier . In some embodi 
ments , the salt can be pre - determined . In some embodi 
ments , the salt can be pre - determined by a third party that is 
connected to system 100 via network 110. In some embodi 
ments , each user identifier selected by method 500 is con 
catenated with the same salt . In some embodiments , each 
user identifier selected by method 500 is concatenated with 
a different salt . In some embodiments , the data processing 
systems executing method 500 , for example , 104 or 106 , 
may concatenate each user identifier with the same salt . In 
some embodiments , the two data processing systems execut 
ing the method 400 may use different salts . 
[ 0072 ] In some embodiments , the salt is received by the 
data processing system executing method 500 by a third 
party provider . In some embodiments , before concatenating 
the salt with each user identifier , the salt is hashed using a 
pre - determined hash function . In such embodiments , the 
pre - determined hash function may be determined by the 
third party providing the salt . In some embodiments , the 
third party providing the salt may provide a new salt based 
on a fixed period of time . For example , the third party salt 
provider may provide a new salt after an hour , two hours , 
one day , two days , a week , two weeks , a month , two months 
or a year . In some embodiments , the third pa salt provider 
may sign the salt with a public key belonging to the data 
processing system executing method 500 . 
[ 0073 ] The method 500 includes incrementing the count of 
a register corresponding to m - bits of the hash value 508. The 
second data processing system 104 or the third data pro 
cessing system 106 can select a set of bits of the hash value 
to determine the appropriate register to increment . For 
example , as shown in FIG . 5B , the second data processing 
system 104 or the third data processing system 106 can 
select the first 3 bits of the hash values to determine the 
register . Although , in some other embodiments , the second 
data processing system 104 or the third data processing 
system 106 can select any other set of bit of the hash value 
to determine the register value . As the first three bits of the 
hash of the first user identifier x ; is “ 010 ” , the data process 
ing system executing the method can increment the second 
register in the set of registers 520. The total number of 
registers k in the set of registers 520 can be equal to 2 ° m , 
where m represents the number of bits of the hash value that 
the data processing system executing the method utilizes to 
select the register . In some embodiments , the number of 
registers k can be independent of the number of bits m of the 
hash value that the data processing system executing the 
method utilizes to select the register . For example , the 

second data processing system 104 or the third data pro 
cessing system 106 can select a particular value k and map 
the m bits appropriately to the k registers . The set of registers 
520 can represent coordinates of an interaction vector VXz . 
[ 0074 ] The method 500 includes generating hashes and 
incrementing counts or registers for all user identifiers in the 
first set of user identifiers . This is called the vector of counts 
method . For example , the second data processing system 
104 or the third data processing system 106 can determine 
whether the currently generated hash value is for the nth user 
identifier 510. If no , the data processing system executing 
the method can increment a counter i 512 , and select the next 
user identifier from the plurality of user identifiers retrieved 
in step 502. For example , referring to FIG . 5B , the data 
processing system executing the method can increment the 
third register based on the first three bits of the hash value 
for the third user identifier X3 , and increment the sixth 
register based on the first three bits of the hash value of the 
second user identifier Xy . In this manner , the data processing 
system executing the method can increment the count in 
each register of the set of registers 520. The data processing 
system executing the method can store the set of registers 
520 in a data structure in memory . For example , the data 
structure can be a one dimensional array or a multi - dimen 
sional array . In some embodiments , the set of registers 520 
can be stored as a vector representing user interactions . In 
some embodiments , the data structure containing the set of 
registers 520 can be changed into a vector representation , 
wherein each coordinate of the vector is equal to one of the 
set of registers 520 . 
[ 0075 ] In some embodiments , the method 500 may add 
noise to one or more of the registers in register set 520. In 
some embodiments , the method 500 may add noise to one or 
more coordinates of the vector representation based off of 
register set 520. In these embodiments , the method 500 may 
add Laplacian noise to one or more of the registers in 
register set 520. In some embodiments , the method 500 may 
add Laplacian noise to all of the registers in register set 520 . 
In some embodiments , the method 500 may add a vector of 
Laplacian noise to the interaction vector based on the set of 
registers 520. In these embodiments , the vector of Laplacian 
noise may have the same cardinality as the interaction vector 
based on the set of registers 520. In certain embodiments , the 
method 500 may subtract the expected value of each of the 
registers from the contents of each register . In such embodi 
ments , the expected value of each register could be equal to 
total count of the register set 520 divided by the number of 
registers in register set 520 , designated in FIG . 5B as k . 
[ 0076 ] In a non - limiting example embodiment , the code to 
plement parts of method 500 may look like the following : 

def ComputeVectorOfCounts ( k , b , user_set ) : 
CGGGGG 

Args : 
k : Size of the vector to be returned 
b : Scale factor of the Laplacian noise . 
user_set : Deduplicated set of user IDs . 

Returns : 
The vector of counts of size k for the given user 
set , with Laplacian noise of scale b added . 

?????? 

hashed_user_set = get_hashed_user_set ( user_set ) 
user_buckets [ get_last_k_digits ( id , k ) for id in 
hashed_user_set ] 
voc = [ ] 
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-continued 

for i in range ( k ) : 
voc.append ( user_buckets.count ( i ) + 
generate_laplace_noise ( b ) ) 

return voc 

[ 0077 ] In some embodiments , the method 500 may use a 
hybrid approach to generate a plurality of interaction vec 
tors . In particular , in the hybrid approach , the data process 
ing system executing the method 500 can generate a vector 
of counts using not just one hash function , as in the vector 
of counts approach , but generating p vectors of counts using 
p hash functions . In some embodiments , the plurality of hash 
functions are identified by the data received in step 501. FIG . 
9 shows p vectors of counts V1x40 V2xk9 ... , VpXz , 902 
generated by the second data processing system 104 or the 
third data processing system 106 executing a based the set 
of user identifiers retrieved in step 502 , for example the first 
set of user identifiers 302 or the second set of user identifiers 
304. Each vector of count VpXz can be generated based on 
an independent hash function . Thus , the first vector of count 
V1xx can be generated using a first hash function , and the 
second vector of counts V2xz can be generated using a 
second independent hash function , and so on . Thus , the data 
processing system executing method 500 generates hashes 
of all the user identities in the set of user identities retrieved 
in step 502 using a first hash function to generate the vector 
of counts V1xz in a manner similar to that discussed above 
in relation to FIGS . 5A and 5B . 
[ 0078 ] The method 500 includes generating a k - length 
interaction vector based on the register values 514. As 
mentioned above , the value of the counts of the registers 520 
can represent the coordinates of a k - length vector VXx . The 
method 500 includes transmitting the interaction vector via 
a network 516. In some embodiments , the second data 
processing system 104 or the third data processing system 
106 transmits the interaction vector generated in step 514 to 
the first data processing system 102. In some embodiments , 
transmitting the interaction vector includes transmitting the 
vector via an encrypted communication channel , for 
example HTTPS . In some embodiments , the number of user 
interactions n is transmitted along with the interaction 
vector . In some embodiments , transmitting the interaction 
vector includes transmitting a plurality of vectors of counts . 
In some embodiments , prior to transmitting the interaction 
vector , n / k is subtracted from each coordinate in the inter 
action vector . 
[ 0079 ] FIG . 6 shows a schematic of a binomial vector of 
counts approach for generating an interaction vector from k 
hash functions and n user identifiers . In some embodiments , 
the process outlined in the schematic can be performed by a 
data processing system executing method 400. Each of the 
vectors 602 representing hashed user interaction information 
can have a cardinality k , representing k hash functions . Each 
of the vectors 602 can represent a single user identifier in the 
set of user identifiers . The vectors 602 can be summed 
together , for example in method 400 , to generate an inter 
action 604 vector with cardinality k . In some embodiments , 
the each coordinate of the interaction vector 604 can be 
about equal to n / 2 , where n is the number of user identifiers . 
[ 0080 ] FIG . 7 shows a schematic of a hybrid approach for 
determining an estimate of an intersection of two sets of user 
identifiers , which in some embodiments is performed by a 

data processing system exe xecuting step 214 of method 200 . 
The hybrid approach combines the features of the binomial 
vector approach and the vector of counts approach discussed 
above . In particular , in the hybrid approach , the data pro 
cessing system executing method 200 can generate a vector 
of counts using not just one hash function , as in the vector 
of counts approach , but generating p vectors of counts using 
p hash functions . 
[ 0081 ] In some embodiments , the system 100 can apply 
additional techniques to improve the privacy of the 
approaches discussed above . For example , in some embodi 
ments , the second data processing system 104 and the third 
data processing system 106 can add noise to the counts when 
generating vector of counts discussed above in relation to 
FIGS . 5-7 . Adding noise to the vector of counts can include 
adding random numbers to each element of the vectors of 
counts . The second data processing system 104 and the third 
data processing system 106 can each add noise to their 
respective vectors of counts prior to sending the vectors of 
counts to the first data processing system 102 , which deter 
mines an estimate of the intersection . In some embodiments , 
the second data processing system 104 and the third data 
processing system 106 can add various types of noise , such 
as , for example , Gaussian noise , geometric noise , etc. , into 
the vector generated by the binomial vectors approach . In 
some embodiments , the second data processing system 104 
and the third data processing system 106 can add , for 
example , Laplacian noise to the vectors generated by the 
vector of counts approach . The addition of noise to the 
vectors , whether generated by the binomial vector or the 
vector of counts approach , can improve differential privacy 
of the user identifiers . The differential privacy of the bino 
mial vectors approach and the vectors of counts approach 
discussed above can be achieved while sacrificing less 
accuracy that that by previously existing differentially pri 
vate cardinality estimators . 
[ 0082 ] In yet another approach , the user identifiers can be 
encrypted or hashed prior to generating the vectors dis 
cussed above in relation to FIGS . 3-4B . For example , the 
second data processing system 104 and the third data 
processing system 106 can encrypt or compute a hash of 
each of the user identities in the first set of user identities 302 
and the second set of user identities 304. The second data 
processing system 104 and the third data processing system 
106 can then generate the vectors ( the binomial vectors or 
the vectors of counts ) based on the encrypted set of user 
identities . Encrypting the user identifiers before generating 
the vectors can improve the privacy of the user identities . In 
some instances , where vectors are formed from the same 
user identities , the intersection of the vectors may still 
include some information related to the user identities . By 
encrypting or hashing the user identities prior to generating 
the vectors , the risk of leakage of information can be 
reduced . 
[ 0083 ] In some embodiments , the counts in a vector of 
counts can be permuted prior to communicating the vectors 
to the first data processing system 102. For example , the 
second data processing system 104 can permute or re - order 
the counts in the vectors VXzor V1.xx prior to communicating 
the vectors to the first data processing system 102. The third 
data processing system 106 may also similarly permute its 
respective vectors of counts prior to sending the vectors to 
the first data processing system . Both the first and the second 
data processing systems 104 and 106 can agree on a per 
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mutation scheme and keep the permutation secret . In some 
embodiments , the first data processing system 102 can select 
and transmit the desired permutation scheme to the second 
and the third data processing systems 104 and 106 , such that 
both the systems utilize matching permutation schemes . 
Permuting the vectors in the vectors of counts can improve 
the privacy of the user identities in instances where vectors 
are formed from the same user identities , and the intersec 
tion of the vectors may still include some information 
related to the user identities . 
[ 0084 ] FIG . 8 shows the general architecture of an illus 
trative computer system 800 that may be employed to 
implement any of the computer systems discussed herein 
( including the system 100 and its components such as the 
first data processing system 102 , the second data processing 
system 104 , the third data processing system 106 and the 
user devices 108 in accordance with some implementations . 
The computer system 800 can be used to provide informa 
tion via the network 110 for display . The computer system 
800 of FIG . 8 comprises one or more processors 820 
communicatively coupled to memory 825 , one or more 
communications interfaces 805 , and one or more output 
devices 810 ( e.g. , one or more display units ) and one or more 
input devices 815. The processors 820 can be included in the 
data processing system 100 or the other components of the 
system 100 such as the first data processing system 102 , the 
second data processing system 104 , the third data processing 
system 106 and the user devices 108 . 
[ 0085 ] In the computer system 800 of FIG . 8 , the memory 
825 may comprise any computer - readable storage media , 
and may store computer instructions such as processor 
executable instructions for implementing the various func 
tionalities described herein for respective systems , as well as 
any data relating thereto , generated thereby , or received via 
the communications interface ( s ) or input device ( s ) ( if pres 
ent ) . Referring again to the system 100 of FIG . 1 , the data 
processing systems can include the memory 825 to store 
information related to the sets of user identifiers , the gen 
erated vectors , among others . The processor ( s ) 820 shown in 
FIG . 8 may be used to execute instructions stored in the 
memory 825 and , in so doing , also may read from or write 
to the memory various information processed and or gen 
erated pursuant to execution of the instructions . 
[ 0086 ] The processor 820 of the computer system 800 
shown in FIG . 8 also may be communicatively coupled to or 
control the communications interface ( s ) 805 to transmit or 
receive various information pursuant to execution of instruc 
tions . For example , the communications interface ( s ) 805 
may be coupled to a wired or wireless network , bus , or other 
communication means and may therefore allow the com 
puter system 800 to transmit information to or receive 
information from other devices ( e.g. , other computer sys 
tems ) . While not shown explicitly in the system of FIG . 8 , 
one or more communications interfaces facilitate informa 
tion flow between the components of the system 800. In 
some implementations , the communications interface ( s ) 
may be configured ( e.g. , via various hardware components 
or software components ) to provide a website as an access 
portal to at least some aspects of the computer system 800 . 
Examples of communications interfaces 805 include user 
interfaces ( e.g. , web pages ) , through which the user can 
communicate with the data processing system 800 . 
[ 0087 ] The output devices 810 of the computer system 800 
shown in FIG . 8 may be provided , for example , to allow 

various information to be viewed or otherwise perceived in 
connection with execution of the instructions . The input 
device ( s ) 815 may be provided , for example , to allow a user 
to make manual adjustments , make selections , enter data , or 
interact in any of a variety of manners with the processor 
during execution of the instructions . Additional information 
relating to a general computer system architecture that may 
be employed for various systems discussed herein is pro 
vided further herein . 
[ 0088 ] Implementations of the subject matter and the 
operations described in this specification can be imple 
mented in digital electronic circuitry , or in computer soft 
ware embodied on a tangible medium , firmware , or hard 
ware , including the structures disclosed in this specification 
and their structural equivalents , or in combinations of one or 
more of them . Implementations of the subject matter 
described in this specification can be implemented as one or 
more computer programs , i.e. , one or more components of 
computer program instructions , encoded on computer stor 
age medium for execution by , or to control the operation of , 
data processing apparatus . The program instructions can be 
encoded on an artificially - generated propagated signal , e.g. , 
a machine - generated electrical , optical , or electromagnetic 
signal that is generated to encode information for transmis 
sion to suitable receiver apparatus for execution by a data 
processing apparatus . A computer storage medium can be , or 
be included in , a computer - readable storage device , a com 
puter - readable storage substrate , a random or serial access 
memory array or device , or a combination of one or more of 
them . Moreover , while a computer storage medium is not a 
propagated signal , a computer storage medium can include 
a source or destination of computer program instructions 
encoded in an artificially - generated propagated signal . The 
computer storage medium can also be , or be included in , one 
or more separate physical components or media ( e.g. , mul 
tiple CDs , disks , or other storage devices ) . 
[ 0089 ] The features disclosed herein may be implemented 
on a smart television module ( or connected television mod 
ule , hybrid television module , etc. ) , which may include a 
processing module configured to integrate internet connec 
tivity with more traditional television programming sources 
( e.g. , received via cable , satellite , over - the - air , or other 
signals ) . The smart television module may be physically 
incorporated into a television set or may include a separate 
device such as a set - top box , Blu - ray or other digital media 
player , game console , hotel television system , and other 
companion device . A smart television module may be con 
figured to allow viewers to search and find videos , movies , 
photos and other content on the web , on a local cable TV 
channel , on a satellite TV channel , or stored on a local hard 
drive . A set - top box ( STB ) or set - top unit ( STU ) may include 
an information appliance device that may contain a tuner 
and connect to a television set and an external source of 
signal , turning the signal into content which is then dis 
played on the television screen or other display device . A 
smart television module may be configured to provide a 
home screen or top level screen including icons for a 
plurality of different applications , such as a web browser and 
a plurality of streaming media services , a connected cable or 
satellite media source , other web " channels ” , etc. The smart 
television module may further be configured to provide an 
electronic programming guide to the user . A companion 
application to the smart television module may be operable 
on a mobile computing device to provide additional infor 
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mation about available programs to a user , to allow the user 
to control the smart television module , etc. In alternate 
implementations , the features may be implemented on a 
laptop computer or other personal computer , a smartphone , 
other mobile phone , handheld computer , a tablet PC , or other 
computing device . 
[ 0090 ] The operations described in this specification can 
be implemented as operations performed by a data process 
ing apparatus on data stored on one or more computer 
readable storage devices or received from other sources . 
[ 0091 ] The terms " data processing apparatus ” , “ data pro 
cessing system ” , “ user device ” or “ computing device " 
encompasses all kinds of apparatus , devices , and machines 
for processing data , including by way of example a pro 
grammable processor , a computer , a system on a chip , or 
multiple ones , or combinations , of the foregoing . The appa 
ratus can include special purpose logic circuitry , e.g. , an 
FPGA ( field programmable gate array ) or an ASIC ( appli 
cation - specific integrated circuit ) . The apparatus can also 
include , in addition to hardware , code that creates an execu 
tion environment for the computer program in question , e.g. , 
code that constitutes processor firmware , a protocol stack , a 
database management system , an operating system , a cross 
platform runtime environment , a virtual machine , or a 
combination of one or more of them . The apparatus and 
execution environment can realize various different com 
puting model infrastructures , such as web services , distrib 
uted computing and grid computing infrastructures . 
[ 0092 ] A computer program ( also known as a program , 
software , software application , script , or code ) can be writ 
ten in any form of programming language , including com 
piled or interpreted languages , declarative or procedural 
languages , and it can be deployed in any form , including as 
a stand - alone program or as a module , component , subrou 
tine , object , or other unit suitable for use in a computing 
environment . A computer program may , but need not , cor 
respond to a file in a file system . A program can be stored in 
a portion of a file that holds other programs or data ( e.g. , one 
or more scripts stored in a markup language document ) , in 
a single file dedicated to the program in question , or in 
multiple coordinated files ( e.g. , files that store one or more 
modules , sub - programs , or portions of code ) . A computer 
program can be deployed to be executed on one computer or 
on multiple computers that are located at one site or dis 
tributed across multiple sites and interconnected by a com 
munication network . 
[ 0093 ] The processes and logic flows described in this 
specification can be performed by one or more program 
mable processors executing one or more computer programs 
to perform actions by operating on input data and generating 
output . The processes and logic flows can also be performed 
by , and apparatuses can also be implemented as , special 
purpose logic circuitry , e.g. , an FPGA ( field programmable 
gate array ) or an ASIC ( application - specific integrated cir 
cuit ) . 
[ 0094 ] Processors suitable for the execution of a computer 
program include , by way of example , both general and 
special purpose microprocessors , and any one or more 
processors of any kind of digital computer . Generally , a 
processor will receive instructions and data from a read - only 
memory or a random access memory or both . The essential 
elements of a computer are a processor for performing 
actions in accordance with instructions and one or more 
memory devices for storing instructions and data . Generally , 

a computer will also include , or be operatively coupled to 
receive data from or transfer data to , or both , one or more 
mass storage devices for storing data , e.g. , magnetic , mag 
neto - optical disks , or optical disks . However , a computer 
need not have such devices . Moreover , a computer can be 
embedded in another device , e.g. , a mobile telephone , a 
personal digital assistant ( PDA ) , a mobile audio or video 
player , a game console , a Global Positioning System ( GPS ) 
receiver , or a portable storage device ( e.g. , a universal serial 
bus ( USB ) flash drive ) , for example . Devices suitable for 
storing computer program instructions and data include all 
forms of non - volatile memory , media and memory devices , 
including by way of example semiconductor memory 
devices , e.g. , EPROM , EEPROM , and flash memory 
devices ; magnetic disks , e.g. , internal hard disks or remov 
able disks ; magneto - optical disks ; and CD - ROM and DVD 
ROM disks . The processor and the memory can be supple 
mented by , or incorporated in , special purpose logic 
circuitry . 
[ 0095 ] To provide for interaction with a user , implemen 
tations of the subject matter described in this specification 
can be implemented on a computer having a display device , 
e.g. , a CRT ( cathode ray tube ) , plasma , or LCD ( liquid 
crystal display ) monitor , for displaying information to the 
user and a keyboard and a pointing device , e.g. , a mouse or 
a trackball , by which the user can provide input to the 
computer . Other kinds of devices can be used to provide for 
interaction with a user as well ; for example , feedback 
provided to the user can include any form of sensory 
feedback , e.g. , visual feedback , auditory feedback , or tactile 
feedback ; and input from the user can be received in any 
form , including acoustic , speech , or tactile input . In addi 
tion , a computer can interact with a user by sending docu 
ments to and receiving documents from a device that is used 
by the user ; for example , by sending web pages to a web 
browser on a user's client device in response to requests 
received from the web browser . 
[ 0096 ] Implementations of the subject matter described in 
this specification can be implemented in a computing system 
that includes a back - end component , e.g. , as a data server , or 
that includes a middleware component , e.g. , an application 
server , or that includes a front - end component , e.g. , a client 
computer having a graphical user interface or a Web browser 
through which a user can interact with an implementation of 
the subject matter described in this specification , or any 
combination of one or more such back - end , middleware , or 
front - end components . The components of the system can be 
interconnected by any form or medium of digital data 
communication , e.g. , a communication network . Examples 
of communication networks include a local area network 
( “ LAN ” ) and a wide area network ( “ WAN ” ) , an inter 
network ( e.g. , the Internet ) , and peer - to - peer networks ( e.g. , 
ad hoc peer - to - peer networks ) . 
[ 0097 ] The computing system such as the data processing 
systems 102 , 104 , 106 , and 108 can include clients and 
servers . For example , the data processing systems 102 , 104 , 
106 , and 108 can include one or more servers in one or more 
data centers or server farms . A client and server are generally 
remote from each other and typically interact through a 
communication network . The relationship of client and 
server arises by virtue of computer programs running on the 
respective computers and having a client - server relationship 
to each other . In some implementations , a server transmits 
data ( e.g. , an HTML page ) to a client device ( e.g. , for 
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any of 

purposes of displaying data to and receiving user input from 
a user interacting with the client device ) . Data generated at 
the client device ( e.g. , a result of the user interaction ) can be 
received from the client device at the server . 
[ 0098 ] While this specification contains many specific 
implementation details , these should not be construed as 
limitations on the scope of any inventions or of what may be 
claimed , but rather as descriptions of features specific to 
particular implementations of the systems and methods 
described herein . Certain features that are described in this 
specification in the context of separate implementations can 
also be implemented in combination in a single implemen 
tation . Conversely , various features that are described in the 
context of a single implementation can also be implemented 
in multiple implementations separately or in any suitable 
subcombination . Moreover , although features may be 
described above as acting in certain combinations and even 
initially claimed as such , one or more features from a 
claimed combination can in some cases be excised from the 
combination , and the claimed combination may be directed 
to a subcombination or variation of a subcombination . 
[ 0099 ] Similarly , while operations are depicted in the 
drawings in a particular order , this should not be understood 
as requiring that such operations be performed in the par 
ticular order shown or in sequential order , or that all illus 
trated operations be performed , to achieve desirable results . 
In some cases , the actions recited in the claims can be 
performed in a different order and still achieve desirable 
results . In addition , the processes depicted in the accompa 
nying figures do not necessarily require the particular order 
shown , or sequential order , to achieve desirable results . 
[ 0100 ] In certain circumstances , multitasking and parallel 
processing may be advantageous . Moreover , the separation 
of various system components in the implementations 
described above should not be understood as requiring such 
separation in all implementations , and it should be under 
stood that the described program components and systems 
can generally be integrated together in a single software 
product or packaged into multiple software products . For 
example , the data processing systems 102 , 104 , and / or 106 
could be a single module , a logic device having one or more 
processing modules , one or more servers , or part of a search 
engine . 
[ 0101 ] Having now described some illustrative implemen 
tations and implementations , it is apparent that the foregoing 
is illustrative and not limiting , having been presented by way 
of example . In particular , although many of the examples 
presented herein involve specific combinations of method 
acts or system elements , those acts and those elements may 
be combined in other ways to accomplish the same objec 
tives . Acts , elements and features discussed only in connec 
tion with one implementation are not intended to be 
excluded from a similar role in other implementations or 
implementations . 
[ 0102 ] The phraseology and terminology used herein is for 
the purpose of description and should not be regarded as 
limiting . The use of " including " " comprising ” “ having " 
" containing ” “ involving ” “ characterized by ” “ characterized 
in that ” and variations thereof herein , is meant to encompass 
the items listed thereafter , equivalents thereof , and addi 
tional items , as well as alternate implementations consisting 
of the items listed thereafter exclusively . In one implemen 
tation , the systems and methods described herein consist of 

one , each combination of more than one , or all of the 
described elements , acts , or components . 
[ 0103 ] Any references to implementations or elements or 
acts of the systems and methods herein referred to in the 
singular may also embrace implementations including a 
plurality of these elements , and any references in plural to 
any implementation or element or act herein may also 
embrace implementations including only a single element . 
References in the singular or plural form are not intended to 
limit the presently disclosed systems or methods , their 
components , acts , or elements to single or plural configu 
rations . References to any act or element being based on any 
information , act or element may include implementations 
where the act or element is based at least in part on any 
information , act , or element . 
[ 0104 ] Any implementation disclosed herein may be com 
bined with any other implementation , and references to “ an 
implementation , ” “ some implementations , " " an alternate 
implementation , ” “ various implementation , ” “ one imple 
mentation ” or the like are not necessarily mutually exclusive 
and are intended to indicate that a particular feature , struc 
ture , or characteristic described in connection with the 
implementation may be included in at least one implemen 
tation . Such terms as used herein are not necessarily all 
referring to the same implementation . Any implementation 
may be combined with any other implementation , inclu 
sively or exclusively , in any manner consistent with the 
aspects and implementations disclosed herein . 
[ 0105 ] References to “ or ” may be construed as inclusive 
so that any terms described using “ or ” may indicate 
a single , more than one , and all of the described terms . 
[ 0106 ] Where technical features in the drawings , detailed 
description or any claim are followed by reference signs , the 
reference signs have been included for the sole purpose of 
increasing the intelligibility of the drawings , detailed 
description , and claims . Accordingly , neither the reference 
signs nor their absence have any limiting effect on the scope 
of any claim elements . 
[ 0107 ] The systems and methods described herein may be 
embodied in other specific forms without departing from the 
characteristics thereof . Although the examples provided 
herein relate to controlling the display of content of infor 
mation resources , the systems and methods described herein 
can include applied to other environments . The foregoing 
implementations are illustrative rather than limiting of the 
described systems and methods . Scope of the systems and 
methods described herein is thus indicated by the appended 
claims , rather than the foregoing description , and changes 
that come within the meaning and range of equivalency of 
the claims are embraced therein . 
[ 0108 ] Further to the descriptions above , a user may be 
provided with controls allowing the user to make an election 
as to both if and when systems , programs , or features 
described herein may enable collection of user information 
( e.g. , information about a user's social network , social 
actions , or activities , profession , a user's preferences , or a 
user's current location ) , and if the user is sent content or 
communications from a server . In addition , certain data may 
be treated in one or more ways before it is stored or used , so 
that personally identifiable information is removed . For 
example , a user's identity may be treated so that no person 
ally identifiable information can be determined for the user , 
or a user's geographic location may be generalized where 
location information is obtained ( such as to a city , ZIP code , 
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or state level ) , so that a particular location of a user cannot 
be determined . Thus , the user may have control over what 
information is collected about the user , how that information 
is used , and what information is provided to the user . 
[ 0109 ] In further detail and as an example , results from 
comparison between different architectures and model 
parameters can be described herein . The results described 
herein are not meant to limit the scope of the invention . All 
the architectures implemented herein can be comprised of 
the elements that make up system 100. In the non - limiting 
example embodiments described herein , the data processing 
system 102 is responsible for estimating the union between 
the two sets of user data 302 and 304. The data processing 
system 104 is responsible for generating the first interaction 
vector using , for example , the method 500 and set 302. The 
data processing system 106 is responsible for generating the 
second interaction vector using , for example , the method 
500 and set 304. In this example embodiment , the data 
processing systems 102 , 104 , and 106 can communicate 
over network 110. The non - limiting example embodiments 
described herein use the vector of counts approach . 
[ 0110 ] In an exemplary embodiment , the accuracy for 
estimating the size of the union of two sets of user identi 
fiers , for example 302 and 304 , could depend on set cardi 
nalities and the magnitude of their intersection . In some 
exemplary embodiments , the accuracy for estimating the 
size of the union of two sets of user identifiers could depend 
on the size of the interaction vector generated , for example , 
in method 400 or method 500. In some exemplary embodi 
ments , the accuracy for estimating the size of the union of 
two sets of user identifiers could depend on the scale of the 
noise that is added to the interaction vectors . 
[ 0111 ] In a non - limiting exemplary embodiment for 
implementing and testing various architectures , which does 
not limit the scope of the invention , the accuracy of the 
implementation is tested while varying the interaction vector 
cardinality and the size of the sets user identifiers 302 and 
304. The data from this example experiment is illustrated in 
FIG . 9. In this non - limiting exemplary embodiment , the size 
of the intersection 306 of the two sets is was one - tenth the 
size of the first set of user identifiers 302. Both sets of user 
identifiers are assumed to have the same cardinality . The 
scale of the Laplacian noise applied in this exemplary 
embodiment is fixed at ? = ln ( 3 ) , where the scale of the 
Laplacian noise is equal to b = 1 / ? . FIG . 9 shows a graph 
containing contour curves of constant fractional standard 
error of the estimate of the union cardinality ( 306 ) of both 
sets of user identifiers 302 and 304. As illustrated in FIG.9 , 
the contour 912 has 10 % standard error , the contour 910 has 
a 5 % standard error , the contour 908 has a 3 % standard error , 
the contour 906 has a 2 % standard error , and the contour 904 
has a 1 % standard error . The contours in FIG.9 indicate this 
exemplary embodiment with a set cardinality Ni = N2 = 216 , 
can achieve a 1 % accuracy on an estimate of the union for 
vector sizes ( k ) between 213 and 217 . 
[ 0112 ] The plot included in FIG . 9 shows that the non 
limiting exemplary embodiment can ensure accuracies on 
the order of 1-5 % with the correct choice of vector size k . 
The plot in FIG . 9 also shows that the accuracy contours are 
relatively flat in vector size k with varying set size Ni = N2 . 
Based on this data , one can assume that a minimum vector 
size of k = 210 = 1024 might ensure a 2 % error threshold . 
[ 0113 ] In another non - limiting exemplary embodiment , 
which does not limit the scope of the invention , the accuracy 

of the implementation is tested while varying the set cardi 
nality ratio of N , ( 302 ) and N2 ( 304 ) . In this non - limiting 
example embodiment , all other parameters are fixed to the 
values in the previous experiment . FIG . 10 shows a plot of 
data obtained from this non - limiting exemplary embodi 
ment . The contours 1002 , 1004 , 1006 and 1008 each show 
a 2 % error on the union cardinality estimate of the two sets 
while increasing the cardinality of one of the sets relative to 
the other . As illustrated in FIG . 10 , the contour 1002 shows 
the threshold of 2 % standard error when both sets are of 
equal size . The contour 1004 shows the threshold of 2 % 
standard error when set N2 ( 304 ) is twice as large as set Ni 
( 302 ) . The contour 1006 shows the threshold of 2 % standard 
error when set N2 ( 304 ) is four times as large as set N , ( 302 ) . 
The contour 1008 shows the threshold of 2 % standard error 
when set N2 ( 304 ) is eight times as large as set N , ( 302 ) . 
[ 0114 ] As demonstrated by the plot included in FIG . 10 , 
this non - limiting example embodiment shows that as the 
cardinality of the two sets ( 302 and 304 ) become more 
unequal , it becomes considerably easier to keep a fixed 
standard error . This is because , in this non - limiting example 
embodiment , the absolute error is a function of the inter 
section size , and the standard error is relative to the union 
size . Further discussing the results obtained from this 
embodiment , as the difference in set cardinality increases , 
the intersection size relative to the union size decreases , 
because the intersection size is limited by the size of the 
smaller set . 

[ 0115 ] In another non - limiting exemplary embodiment , 
which does not limit the scope of the invention , the accuracy 
of the implementation is tested while varying the fraction of 
users that are shared ( 306 ) by N. ( 302 ) and N2 ( 304 ) . In this 
non - limiting example embodiment , both sets N. ( 302 ) and 
N2 ( 304 ) are assumed to have the same cardinality ( N = N2 ) . 
The scale of the Laplacian noise applied in this exemplary 
embodiment is fixed at ? = ln ( 3 ) , where the scale of the 
Laplacian noise is equal to b = 1 / ? . FIG . 11 shows a data plot 
obtained from the experiment implemented using this 
example embodiment . The contours 1102 , 1104 , 1106 , and 
1108 shown in the plot in FIG . 11 show a constant standard 
error of 2 % for different intersection sizes 306. The contour 
1102 shows the threshold of 2 % constant error when the 
overlapping region N12 ( 306 ) is 5 % of the size of the first set 
of user identifiers N. ( 302 ) . The contour 1104 shows the 
threshold of 2 % constant error when the overlapping region 
N12 ( 306 ) is 10 % of the size of the first set of user identifiers 
N ( 302 ) . The contour 1106 shows the threshold of 2 % 
constant error when the overlapping region N12 ( 306 ) is 20 % 
of the size of the first set of user identifiers N. ( 302 ) . The 
contour 1108 shows the threshold of 2 % constant error when 
the overlapping region N12 ( 306 ) is 30 % of the size of the 
first set of user identifiers N. ( 302 ) . 
[ 0116 ] The data from this non - limiting example embodi 
ment illustrated in FIG . 11 shows that increasing the inter 
section size between sets N. ( 302 ) and N2 ( 304 ) increases 
the error for the same size N. ( 302 ) and interaction vector 
size k . The data illustrated in FIG . 11 also shows that the 
optimal vector size is almost invariant under increasing the 
intersection fraction ( 306 ) . This means , with respect to this 
example embodiment , that each data processing system 104 
and 106 can choose the optimal values of k for their value 
of N without impacting the accuracy of the estimation in a 
significant way . 
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[ 0117 ] In another non - limiting exemplary embodiment for 
implementing and testing various architectures , which does 
not limit the scope of the invention , the accuracy of the 
implementation is tested while varying scale of the Lapla 
cian noise ( b = 1 / ? ) . In the example embodiment described 
herein , both user identifier sets N. ( 302 ) and N2 ( 304 ) have 
the same cardinality ( N , = N2 ) . The intersection of both sets 
( 306 ) is fixed at one tenth of the size of N . FIG . 12 shows 
a data plot obtained from the experiment implemented using 
this example embodiment . The contours 1102 , 1104 , 1106 , 
and 1108 shown in the plot in FIG . 11 show a constant 
standard error of 2 % for different values of ? . The contour 
1202 shows the threshold of 2 % constant error when ? = 21n 
( 3 ) . The contour 1204 shows the threshold of 2 % constant 
error when E = sqrt ( 2 ) ln ( 3 ) . The contour 1206 shows the 
threshold of 2 % constant error when e = ln ( 3 ) . The contour 
1208 shows the threshold of 2 % constant error when & = ( 1 / 
sqrt ( 2 ) ) In ( 3 ) . The contour 1210 shows the threshold of 2 % 
constant error when & = ( 1/2 ) ln ( 3 ) . 
[ 0118 ] The data from this non - limiting example embodi 
ment illustrated in FIG . 12 shows that the lower bound on 
vector size k to ensure accuracy has almost no dependence 
on noise scale . This means , with respect to this example 
embodiment , that the data processing systems 104 and 106 
can choose the lower bound of the vector size k without 
regard to their chosen noise scale . The data in FIG . 12 also 
indicates that the optimal vector size k decreases signifi 
cantly with increasing error scale . 

1. A method for estimating the number of unique user 
interactions with a set of content items provided by different 
content delivery platforms comprising : 

transmitting , via a network , a set of hash functions to a 
first content delivery platform ; 

transmitting , via a network , the set of hash functions to a 
second content delivery platform ; 

receiving , via a network , a first vector from the first 
content delivery platform , each coordinate of the first 
vector being equal to a sum based on a plurality of 
hashes , with each hash calculated from one of a plu 
rality of user interactions with the set of content items 
occurring via the first content delivery platform ; 

receiving , via a network , a second vector from the second 
content delivery platform , each coordinate of the sec 
ond vector being equal to a sum based on a plurality of 
hashes , with each hash calculated from one of a plu 
rality of user interactions with the set of content items 
occurring via the second content delivery platform ; 

estimating a number of user interactions with the set of 
content items occurring via the first content delivery 
platform based on a sum of the elements of the first 
vector ; 

estimating a number of user interactions with the set of 
content items occurring via the second content delivery 
platform based on a sum of the elements of the second 
vector , and 

estimating a number of unique user interactions with the 
set of content items provided by both the first content 
delivery platform and the second content delivery plat 
form based on the number of user interactions with the 
set of content items occurring via the first content 
delivery platform , the number of user interactions with 
the set of content items occurring via the second 
content delivery platform , the first vector , and the 
second vector . 

2. The method of claim 1 , wherein receiving the first 
vector from the first content delivery platform includes 
receiving the number of user interactions occurring via the 
first content delivery platform . 

3. The method of claim 1 , wherein receiving the second 
vector from the second content delivery platform includes 
receiving the number of user interactions occurring via the 
second content delivery platform . 

4. The method of claim 1 , wherein receiving the first 
vector from the first content delivery platform comprises 
receiving a first plurality of vectors from the first content 
delivery platform , wherein each of the first plurality of 
vectors corresponds to one hash in the set of hash functions . 

5. The method of claim 4 , wherein receiving the second 
vector from the second content delivery platform comprises 
receiving a second plurality of vectors from the second 
content delivery platform , wherein each of the second plu 
rality of vectors corresponds to one hash in the set of hash 
functions . 

6. The method of claim 5 , wherein estimating the number 
of unique user interactions is based on the average of the dot 
product of each vector in the first and second plurality of 
vectors . 

7. The method of claim 1 , wherein estimating the number 
of user interactions with the set of content items occurring 
via the first content delivery platform is based on the sum of 
each coordinate of the first vector . 

8. The method of claim 1 , wherein estimating the number 
of user interactions with the set of content items occurring 
via the second content delivery platform is based on the sum 
of each coordinate of the second vector . 

9. The method of claim 1 , wherein estimating the number 
of unique user interactions with the set of content items 
occurring via the first and second content delivery platforms 
is based on determining a covariance between the first vector 
and the second vector . 

10. The method of claim 1 , wherein estimating the num 
ber of unique user interactions comprises subtracting the dot 
product of the first vector and the second vector from the 
sum of the number of user interactions with occurring via the 
first content delivery platform and the number of user 
interactions occurring via the second content delivery plat 
form . 

11. A system comprising one or more processors , the 
processors configured to : 

transmit , via a network , a set of hash functions to a first 
content delivery platform ; 

transmit , via a network , the set of hash functions to a 
second content delivery platform ; 

receive , via a network , a first vector from the first content 
delivery platform , each coordinate of the first vector 
being equal to a sum based on a plurality of hashes , 
with each hash calculated from one of a plurality of 
user interactions with the set of content items occurring 
via the first content delivery platform ; 

receive , via a network , a second vector from the second 
content delivery platform , each coordinate of the sec 
ond vector being equal to a sum based on a plurality of 
hashes , with each hash calculated from one of a plu 
rality of user interactions with the set of content items 
occurring via the second content delivery platform ; 



US 2021/0004481 A1 Jan. 7 , 2021 
17 

estimate number of user interactions with the set of 
content items occurring via the first content delivery 
platform based on a sum of the elements of the first 
vector ; 

estimate a number of user interactions with the set of 
content items occurring via the second content delivery 
platform based on a sum of the elements of the second 
vector ; and 

estimate a number of unique user interactions with the set 
of content items provided by both the first content 
delivery platform and the second content delivery plat 
form based on the number of user interactions with the 
set of content items occurring via the first content 
delivery platform , the number of user interactions with 
the set of content items occurring via the second 
content delivery platform , the first vector , and the 
second vector . 

12. The system of claim 11 , wherein the one or more 
processors are configured to : receive the first vector from the 
first content delivery platform , and receive the number of 
user interactions occurring via the first content delivery 
platform . 

13. The system of claim 11 , wherein the one or more 
processors are configured to : receive the second vector from 
the second content delivery platform , and receive the num 
ber of user interactions occurring via the second content 
delivery platform . 

14. The system of claim 11 , wherein the one or more 
processors are configured to : receive a first plurality of 
vectors from the first content delivery platform , wherein 
each of the first plurality of vectors corresponds to one hash 
in the set of hash functions . 

15. The system of claim 14 , wherein the one or more 
processors are configured to : receive a second plurality of 
vectors from the second content delivery platform , wherein 
each of the second plurality of vectors corresponds to one 
hash in the set of hash functions . 

16. The system of claim 15 , wherein the one or more 
processors are configured to : estimate the number of unique 
user interactions based on the average of the dot product of 
each vector in the first and second plurality of vectors . 

17. The system of claim 11 , wherein the one or more 
processors are configured to : estimate the number of user 
interactions with the set of content items occurring via the 
first content delivery platform based on the sum of each 
coordinate of the first vector . 

18. The system of claim 11 , wherein the one or more 
processors are configured to : estimate the number of user 
interactions with the set of content items occurring via the 
second content delivery platform based on the sum of each 
coordinate of the second vector . 

19. The system of claim 11 , wherein the one or more 
processors are configured to : estimate the number of unique 
user interactions with the set of content items occurring via 
the first and second content delivery platforms based on a 
covariance between the first vector and the second vector . 

20. The system of claim 11 , wherein the one or more 
processors are configured to : estimate the number of unique 
user interactions based on subtracting the dot product of the 
first vector and the second vector from the sum of the 
number of user interactions occurring via the first content 
delivery platform and the number of user interactions occur 
ring via the second content delivery platform . 


