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(57) ABSTRACT

At least one aspect is directed to determining an estimate of
an intersection of user identifiers in a first set of user
identifiers and a second set of user identifiers. The first and
second sets of user identifiers can be populated with user
identifiers that have interacted with the same content item or
content item campaign. Estimates of intersections of the first
and the second sets can be determined based on a binomial
vector approach, a vector of counts approach, or a hybrid
approach. The binomial vector approach generates vectors
based on k hashes of each user identifier in the first set and
summing the vectors to generate a first vector. The inter-
section can be determined based on a dot product of the first
vector and a second vector similarly generated from the
second set of user identifiers.
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SYSTEMS AND METHODS FOR PRIVACY
PRESERVING DETERMINATION OF
INTERSECTIONS OF SETS OF USER

IDENTIFIERS

CROSS-REFRENCE TO RELATED
APPLICATIONS

[0001] This application claims priority to U.S. provisional
patent application Ser. No. 62/870970 filed on Jul. 5, 2019,
and to U.S. provisional patent application Ser. No.
62/877251 filed on Jul. 22, 2019, the contents of each of
which are incorporated herein by reference.

BACKGROUND

[0002] In a computer networked environment such as the
interne, third-party content providers provide third-party
content items for display on end-user computing devices.
These third-party content items, for example, advertise-
ments, can be displayed on a web page associated with a
respective publisher. These third-party content items can
include content identifying the third-party content provider
that provided the content item.

SUMMARY

[0003] One technical issue addressed by the present dis-
closure is the difficulty in determining the total number of
interactions between users and a set of content items from
two different content delivery platforms by a third party
while maintaining the privacy of the users. For example, a
third party may want to estimate the total number of user
interactions with a certain set of content items across two
separate content delivery platforms. However, sending all
the information about the users and their interactions to the
third party from each content delivery platform will provide
the third party with private information about each user. The
challenges addressed in this disclosure relate to providing
the third party with enough data to estimate the total
interactions the users with a certain set of content items
while maintaining the privacy of the users of each content
delivery platform.

[0004] By hashing each user interaction, one is able to
preserve the privacy of the users while maintaining some
information about the user interactions. This information is
a deterministic set of bits that can be used in further
computation, but contains no specific information about the
individual users or their interactions. Pieces of these hashes
can be used to construct data structures called vectors. A user
interaction that is present on two different content delivery
platforms will have the same quantitative contribution to the
vector of each platform, because the hashing operations used
on the user interaction data is deterministic. The vector can
be sent to a third party which is capable of processing
vectors from two different content delivery platforms to
estimate the total number of user interactions with a set of
content items across both platforms using statistical analy-
sis.

[0005] This application claims priority to provisional
application 62/870970 filed on Jul. 5, 2019, and provisional
application 62/877251 filed on Jul. 22, 2019. The contents of
each are incorporated within here by reference.

[0006] At least one aspect is directed to a method for
estimating the number of unique user interactions with a set
of content items provided by different content delivery
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platforms. The method includes transmitting, via a network,
a set of hash functions to a first content delivery platform.
The method further includes transmitting, via a network, the
set of hash functions to a second content delivery platform.
The method also includes receiving, via a network, a first
vector from the first content delivery platform, each coor-
dinate of the first vector being equal to a sum based on a
plurality of hashes, with each hash calculated from one of a
plurality of user interactions with the set of content items
occurring via the first content delivery platform. The method
also includes receiving, via a network, a second vector from
the second content delivery platform, each coordinate of the
second vector being equal to a sum based on a plurality of
hashes, with each hash calculated from one of a plurality of
user interactions with the set of content items occurring via
the second content delivery platform. The method further
includes estimating a number of user interactions with the
set of content items occurring via the first content delivery
platform based on a sum of the elements of the first vector.
The method also includes estimating a number of user
interactions with the set of content items occurring via the
second content delivery platform based on a sum of the
elements of the second vector. The method further includes
estimating a number of unique user interactions with the set
of content items provided by both the first content delivery
platform and the second content delivery platform based on
the number of user interactions with the set of content items
occurring via the first content delivery platform, the number
of user interactions with the set of content items occurring
via the second content delivery platform, and a dot product
of the first and the second vector.

[0007] In some implementations, the method includes
transmitting, via a network, a first request for a first vector
to a first content delivery platform. In some implementa-
tions, the method includes transmitting, via a network, a
second request for a second vector to a second content
delivery platform. In some implementations, the first request
comprises a set of hash functions. In some implementations
the second request comprises a set of hash functions. In
some implementations, the method comprises estimating the
total number of user interactions with the set of content
items occurring via the first content delivery network based
on twice the total sum of all coordinates in the first vector
divided by the number of coordinates in the first vector. In
some implementations, the method comprises estimating the
total number of user interactions with the set of content
items occurring via the second content delivery network
based on twice the total sum of all coordinates in the second
vector divided by the number of coordinates in the second
vector. In some implementations, the method comprises
estimating a number of unique user interactions with the set
of content items provided by the both the first content
delivery platform and the second content delivery platform
based on the number of user interactions with the set of
content items occurring via the first content delivery plat-
form, the number of user interactions with the set of content
items occurring via the second content delivery platform,
and the covariance of the first vector and the second vector.

[0008] At least another aspect is directed to a method for
providing anonymous data about user interactions with a set
of content items. The method includes receiving, via a
network, data to identity a set of hash functions. The method
further includes retrieving a plurality of user identifiers, each
of the user identifiers identifying interaction with a set of
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content items by a respective user of the plurality. The
method further includes for each of the plurality of user
identifiers, generating k hashes of the user identifier, each
hash corresponding to one of the set of hash functions, and
generating a user vector, each coordinate of the user vector
corresponding to a bit value of a respective hash. The
method also includes generating an interaction vector by
summing the plurality of generated user vectors. The method
further includes transmitting, via a network, the generated
interaction vector via a network to the requesting party.

[0009] At least another aspect is directed to a method for
providing anonymous data about user interactions with a set
of content items. The method includes receiving, via a
network, a request via a network for an interaction vector
from a requesting party, the request comprising data to
identify a hash function. The method further includes
retrieving a plurality of user identifiers, each of the user
identifiers identifying interaction with a set of content items
by a respective user of the plurality. The method also
includes for each of the plurality of user identifiers, gener-
ating a hash value of the user identifier using the hash
function included in the request, determining a value of a
first m-bits of the hash value, and incrementing a count of a
register corresponding to the value, the register being one of
k registers, where k=2"m. The method also includes gener-
ating an interaction vector, each coordinate of the interaction
vector being equal to a count of a corresponding kth register.
The method further includes transmitting, via a network, the
generated interaction vector via a network to the requesting
party.

[0010] In another aspect, the present disclosure is directed
to a system comprising one or more processors configured to
estimate the number of unique user interactions with a set of
content items provided by different content delivery plat-
forms. In some implementations, the one or more processors
are configured to transmit, via a network, a set of hash
functions to a first content delivery platform. In some
implementations, the one or more processors are configured
to transmit, via a network, the set of hash functions to a
second content delivery platform. In some implementations
the one or more processors are configured to receive, via a
network, a first vector from the first content delivery plat-
form, each coordinate of the first vector being equal to a sum
based on a plurality of hashes, with each hash calculated
from one of a plurality of user interactions with the set of
content items occurring via the first content delivery plat-
form. In some implementations, the one or more processors
are configured to receive, via a network, a second vector
from the second content delivery platform, each coordinate
of the second vector being equal to a sum based on a
plurality of hashes, with each hash calculated from one of a
plurality of user interactions with the set of content items
occurring via the second content delivery platform. In some
implementations, the one or more processors are configured
to estimate a number of user interactions with the set of
content items occurring via the first content delivery plat-
form based on a sum of the elements of the first vector. In
some implementations, the one or more processors are
configured to estimate a number of user interactions with the
set of content items occurring via the second content deliv-
ery platform based on a sum of the elements of the second
vector. In some implementations, the one or more processors
are configured to estimate a number of unique user interac-
tions with the set of content items provided by both the first
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content delivery platform and the second content delivery
platform based on the number of user interactions with the
set of content items occurring via the first content delivery
platform, the number of user interactions with the set of
content items occurring via the second content delivery
platform, and a dot product of the first vector and the second
vector.

[0011] In another aspect, the present disclosure is directed
to a system comprising one or more processors configured to
provide anonymous data about user interactions with a set of
content items. In some implementations, the one or more
processors are configured to receive, via a network, data to
identify a set of hash functions. In some implementations,
the one or more processors are configured to retrieve a
plurality of user identifiers, each of the user identifiers
identifying interaction with a set of content items by a
respective user of the plurality. In some implementations,
the one or more processors are configured to, for each of the
plurality of user identifiers, generate k hashes of the user
identifier, each hash corresponding to one of the set of hash
functions, and generate a user vector, each coordinate of the
user vector corresponding to a bit value of a respective hash.
In some implementations, the one or more processors are
configured to generate an interaction vector by summing the
plurality of generated user vectors. In some implementa-
tions, the one or more processors are configured to transmit,
via a network, the generated interaction vector.

[0012] Inanother aspect, the present disclosure is directed
to a system comprising one or more processors, the proces-
sors configured to provide anonymous data about user
interactions with a set of content items. In some implemen-
tations, the one or more processors are configured to receive,
via a network, data to identify a set of hash functions. In
some implementations, the one or more processors are
configured to retrieve a plurality of user identifiers, each of
the user identifiers identifying interaction with a set of
content items by a respective user of the plurality. In some
implementations, the one or more processors are configured
to, for each of the plurality of user identifiers, generate a
hash value of the user identifier using the hash function
included in the request, determine a value of a first m-bits of
the hash value, and increment a count of a register corre-
sponding to the value, the register being one of k registers,
where k=2"m. In some implementations, the one or more
processors are configured to generate an interaction vector,
each coordinate of the interaction vector being equal to a
count of a corresponding kth register. In some implementa-
tions, the one or more processors are configured to transmit,
via a network, the generated interaction vector.

[0013] These and other aspects and implementations are
discussed in detail below. The foregoing information and the
following detailed description include illustrative examples
of various aspects and implementations, and provide an
overview or framework for understanding the nature and
character of the claimed aspects and implementations. The
drawings provide illustration and a further understanding of
the various aspects and implementations, and are incorpo-
rated in and constitute a part of this specification.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] The accompanying drawings are not intended to be
drawn to scale. Like reference numbers and designations in
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the various drawings indicate like elements. For purposes of
clarity, not every component may be labeled in every
drawing. In the drawings:

[0015] FIG. 1 depicts a block diagram of an example
implementation of a networked computer system, according
to an illustrative implementation.

[0016] FIG. 2 shows a flow diagram illustrating one
embodiment of a method for estimating the number of
unique user interactions with a set of content items across a
first content delivery platform and a second content delivery
platform.

[0017] FIG. 3 shows a graphical representation of one
embodiment of the intersection of the first set of user
identifiers and the second set of user identifiers.

[0018] FIG. 4A shows a flow diagram illustrating one
embodiment of a method for generating and transmitting an
interaction vector representing user interactions with a set of
content items based on a multiple hash functions.

[0019] FIG. 4B illustrates one embodiment of generating
a k-length vector based on hashes of user interaction data as
in the method shown in FIG. 4A.

[0020] FIG. 5A shows a flow diagram illustrating one
embodiment of a method for generating and transmitting an
interaction vector representing user interactions with a set of
content items based on a single hash function.

[0021] FIG. 5B illustrates one embodiment of generating
a k-length vector based on m-bits of a hash of user interac-
tion data, where k=2"m as in the method shown in FIG. 5A.
[0022] FIG. 6 shows one embodiment of a schematic
adding n k-length vectors corresponding to n user identifiers
from a set of content items generating an interaction vector
as in the method shown in FIG. 4A.

[0023] FIG. 7 shows one embodiment of a schematic of a
hybrid approach for determining an estimate of an intersec-
tion of two sets of user identifiers.

[0024] FIG. 8 shows the general architecture of an illus-
trative computer system that may be employed to implement
any of the computer systems discussed herein.

[0025] FIG. 9 shows experimental data from a non-limit-
ing embodiment of an architecture implemented to test the
accuracy of union cardinality estimations while varying
vector size and set cardinality.

[0026] FIG. 10 shows experimental data from a non-
limiting embodiment of an architecture implemented to test
the accuracy of union cardinality estimations while increas-
ing the cardinality of one of the sets relative to the other.
[0027] FIG. 11 shows experimental data from a non-
limiting embodiment of an architecture implemented to test
the accuracy of union cardinality estimations while varying
the size of the intersection of both sets.

[0028] FIG. 12 shows experimental data from a non-
limiting embodiment of an architecture implemented to test
the accuracy of union cardinality estimations while varying
the scale of Laplacian noise added to the vectors.

DETAILED DESCRIPTION

[0029] Below are detailed descriptions of various concepts
related to, and implementations of, methods, apparatuses,
and systems of privacy preserving determination of inter-
section of sets of user identifiers. The various concepts
introduced above and discussed in greater detail below may
be implemented in any of numerous ways, as the described
concepts are not limited to any particular manner of imple-
mentation.
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[0030] FIG. 1 depicts a block diagram of an example
implementation of a networked computer system 100. The
system 100 includes a first data computing system 102, a
second data computing system 104, and a third data com-
puting system 106. The system 100 can also include a
plurality of user devices 108a-108e (collectively referred to
as user devices 108). The first, second, and third data
computing systems 102, 104, and 106, and the user devices
108 can communicate over a network 110, which can
include one or more of a local area networks, a wide area
network, private networks, public networks, and the Inter-
net. In some examples, the first data computing system 102
can be a content item (e.g., ads) provider that can provide
content items for distribution and rendering on the user
devices 108. The second data computing system 104 and the
third data computing system can be content item distribution
systems that distribute the content items to the user devices
based on, for example, the content provided to the user
devices. As an example, users on the user devices 108 can
be provided with content such as, for example, web pages or
audio-visual content. The content can include content item
slots (e.g., positional or temporal) for displaying content
items along with the content. The requests for displaying
content items in the content item slots can be received by the
content item distribution systems. The requests can include
a user device identifier identifying the user device 108 and
additional information related to the user device, the content
provided to the user device 108, etc. The content item
distribution system can utilize the information included in
the content item request to select a content item, and provide
the content item to the user device 108 to be rendered along
with the provided content. The content item provided to the
user device 108 can be part of a content item campaign run
by, for example, the first data computing system 102.

[0031] The content item distribution system, or content
delivery platform, such as the first data computing system
104 and the second data computing system 106 can keep
records of the user identifiers related to the content items
provided to the user devices 108. These records can include,
for example, a list of user identifiers associated with users or
user devices that were rendered with a particular set of
content items or that interacted (e.g., clicked on) with the
content item. These lists of user identifiers are sometimes
referred to as “sketches.” A publisher, such as the first data
computing system 102, can determine the effectiveness of a
content item or a content item campaign by analyzing the
sketches received from the content item distribution sys-
tems. For example, the publisher can determine the effec-
tiveness of a content item campaign by determining the
number of users that interacted with the content items in the
content item campaign. The publisher can request the con-
tent item distribution systems to provide the publisher with
sketches associated with the content item campaign. A
sketch can include user identifiers of the users or user
devices that interacted with the content item campaign. The
publisher may add the number of user identifiers included in
the received sketches to determine the number of users that
interacted with the content item. However, sketches received
from two different content item distribution systems may
include duplicate user identifiers, resulting in counting the
duplicate user identifiers twice, and therefore, resulting in an
inaccurate count. The duplicate identifiers can be a result of,
for example, same users or user devices interacting with the
same content item distributed by the two content item
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distribution systems. To determine the actual number of
users that interacted with the content item, the publisher
needs to remove duplicate user identifiers. One approach to
removing the duplicate identifiers can be to determine the
intersection of the two sketches, where the intersection
includes the user identifiers that are common to both
sketches, and then removing that number from the sum of
the sketches to arrive at the actual count of unique user
identifiers of users that interacted with the content item.
[0032] However, determining the intersection of the two
sets of user identifiers can be computationally costly. For
example, in some instances, each sketch can include hun-
dreds of thousands if not millions of user identifiers. Deter-
mining unique set of user identifiers from the two large sets
can be computationally costly or even infeasible. In some
instances, cardinality estimation algorithms can be utilized
to determine an estimate of the unique number of user
identifiers in the sketches. Examples of cardinality estima-
tion algorithms can include hyperloglog, probabilistic count-
ing with stochastic averaging (PCSA), kth minimal value
(KMV), etc. Each of these algorithms can estimate the
cardinality, i.e., a unique number of members in a multiset,
in a computationally efficient manner. However, these algo-
rithms can indicate information on individual members of
the sketches.

[0033] The following discusses a set of approaches that
can be utilized in determining the intersection of the
sketches in a computationally efficient manner that also
preserves the privacy of the user identifiers in the sketches.
In particular, three approaches: a binomial vector approach,
a vector of counts approach, and a hybrid approach are
discussed, each of which can determine the user identifiers
at the intersection of two sketches while preserving the
privacy of the user identifiers in those sketches.

[0034] FIG. 2 shows a flow diagram of method 200, which
is an example embodiment of a method to estimate the
number of unique user interactions with a set of content
items provided by different content delivery platforms. The
method 200 can be executed on system 100 to determine, for
example, the intersection 306 of the first and second sets of
user identifiers 302 and 304 shown in FIG. 3. This process
stage can be executed, for example, by the first data pro-
cessing system 102, which can receive the first set of user
identifiers 302 and the second set of user identifiers 304
shown in FIG. 3.

[0035] Inbrief overview of FIG. 2, the method to estimate
the number of unique user interactions may include trans-
mitting a set of hashes to a first content delivery platform
202. The first content delivery platform may calculate a
vector representing user interactions with a set of content
items provided by the first content delivery platform 216.
The method may transmit the set of hashes to a second
content delivery platform 204. The second content delivery
platform may calculate a vector representing user interac-
tions with the set of content items provided by the second
content delivery platform 220. The first content delivery
platform may transmit the vector representing user interac-
tions provided by the first content delivery platform 218.
The method may receive a vector representing user interac-
tions from the first content delivery platform 206. The
second content delivery platform may transmit the vector
representing user interactions provided by the second con-
tent delivery platform 222. The method may receive the
vector representing user interactions from the second con-
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tent delivery platform 208. The method may estimate the
number of user interactions from the first content delivery
platform 210. The method may estimate the number of user
interactions from the second content delivery platform 212.
The method may finally estimate the number of unique user
interactions with the set of content items across both the first
and second content delivery platforms using a dot product
operation on the two vectors 214.

[0036] In further detail of step 202, a set of hashes is
transmitted to the first content delivery platform. The set of
hashes may contain many hashes. The set of hashes may
contain only one hash. The set of hashes may contain the
identity has function. The set of hashes may be transmitted
as part of a request for user interaction data from the first
content delivery platform. The set of hashes may be trans-
mitted over the network 110. In some implementations, the
set of hash functions may be identifiers directing the first
content delivery platform to use certain hash functions. In
some implementations, the set of hash functions may be a
single binary containing computer instructions to execute a
set of hash functions. In some implementations, the set of
hash functions may be many binaries, each binary contain-
ing computer instructions to execute a hash function. In
some implementations, the set of hash functions may be
many binaries, each binary containing code to execute a
subset of the hash functions in the set of hash functions.

[0037] In further detail of step 204, a set of hashes is
transmitted to the first content delivery platform. The set of
hashes may contain many hashes. The set of hashes may
contain only one hash. The set of hashes may contain the
identity hash function. The set of hashes may be transmitted
as part of a request for user interaction data from the first
content delivery platform. The set of hashes may be trans-
mitted over the network 110. In some implementations, the
set of hash functions may be identifiers directing the first
content delivery platform to use certain hash functions. In
some implementations, the set of hash functions may be a
single binary containing computer instructions to execute a
set of hash functions. In some implementations, the set of
hash functions may be many binaries, each binary contain-
ing computer instructions to execute a hash function. In
some implementations, the set of hash functions may be
many binaries, each binary containing code to execute a
subset of the hash functions in the set of hash functions.

[0038] In further detail of step 206, the method receives a
first vector representing user interactions from the first
content delivery platform. In some implementations, the
vector may be a binomial vector of counts. In some imple-
mentations, the number of coordinates in the vector is equal
to the number of hash functions in the set of hash functions.
In some implementations, each coordinate in the vector
could correspond to a hash function in the set of hash
functions. In some embodiments, each coordinate of the
vector could be equal to the sum of a single bit of the hashes
of each user identifier provided by the first content delivery
platform, where each coordinate corresponds to a hash
function in the set of hash functions. In some implementa-
tions, the number of coordinates in the vector could be equal
to 2k, where k is the number of hash functions in the set of
hash functions. In some implementations, while receiving
the first vector representing user interactions from the first
content delivery platform, the method 200 may also receive
the number of user identifiers that interacted with the set of
content items from the first content delivery platform.
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[0039] In further detail of step 208, the method receives a
second vector representing user interactions from the second
content delivery platform. In some implementations, the
vector may be a binomial vector of counts. In some imple-
mentations, the number of coordinates in the vector is equal
to the number of hash functions in the set of hash functions.
In some implementations, each coordinate in the vector
could correspond to a hash function in the set of hash
functions. In some embodiments, each coordinate of the
vector could be equal to the sum of a single bit of the hashes
of each user identifier provided by the first content delivery
platform, where each coordinate corresponds to a hash
function in the set of hash functions. In some implementa-
tions, the number of coordinates in the vector could be equal
to 2k, where k is the number of hash functions in the set of
hash functions. In some implementations, while receiving
the second vector representing user interactions from the
second content delivery platform, the method 200 may also
receive the number of user identifiers that interacted with the
set of content items from the second content delivery
platform.

[0040] In some implementations, the cardinality of the
first vector and the second vector can be the same. In some
implementations, the cardinality of the first vector and the
second vector will be different. The cardinality of the first
vector can be a power of two. The cardinality of the second
vector can be a power of two. In some embodiments, the
method 200 may determine either the first vector to have a
larger cardinality than the second vector or the second vector
to have a larger cardinality than the first vector. In such
embodiments, the method 200 may down-sample the larger
of the two vectors to match the cardinality of the smaller of
the two vectors. In such embodiments, the vectors may both
have a cardinality that is equal to a power of two. The
down-sampling may be performed by summing the values in
the coordinates of the larger vector congruent to the modulus
of the cardinality of the smaller vector. In a non-limiting
example, consider the first vector having a cardinality of 8,
and the second vector having a cardinality of 4. To make the
cardinality of the first vector and the second vector equal,
down-sampling is performed on the first vector. In this
non-limiting exampling embodiment, down-sampling is per-
formed by summing the last four coordinates of the first
vector with the first four coordinates of the first vector, to
generate a vector with cardinality four.

[0041] In further detail of step 210, the method estimates
the total number of user interactions from the first content
delivery platform. In some implementations, the number of
user interactions is based off the vector provided by the first
content delivery platform in step 206. The number of user
interactions can be estimated by summing each coordinate in
the vector of user interactions provided by the first content
delivery platform and dividing that sum by the number of
coordinates in the vector. The number of user interactions
can be estimated by summing each coordinate in the vector
of user interactions provided by the first content delivery
platform, multiplying that number by two, and dividing by
the number of coordinates in the vector. The estimated
number of user interactions can also be received from the
first content delivery platform, for example over network
110. In some embodiments, the exact number of user inter-
actions can also be received from the first content delivery
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platform, for example over network 110. In such embodi-
ments, the exact value is used by the method 200 as the
estimated value.

[0042] In further detail of step 212, the method estimates
the total number of user interactions from the second content
delivery platform. In some implementations, the number of
user interactions is based off the vector provided by the
second content delivery platform in step 208. The number of
user interactions is estimated by summing each coordinate in
the vector of user interactions provided by the second
content delivery platform and dividing that sum by the
number of coordinates in the vector. The number of user
interactions is estimated by summing each coordinate in the
vector of user interactions provided by the second content
delivery platform, multiplying that number by two, and
dividing by the number of coordinates in the vector. The
estimated number of user interactions can also be received
from the second content delivery platform, for example over
network 110. In some embodiments, the exact number of
user interactions can also be received from the second
content delivery platform, for example over network 110. In
such embodiments, the exact value is used by the method
200 as the estimated value.

[0043] In further detail of step 214, the method can
estimate the number of unique user interactions with the set
of content items provided by the first and second content
delivery platforms using a dot product. The estimate of the
number of unique user interactions can be equal to the sum
of the estimated number of user interactions from the first
and second content delivery platforms, minus the intersec-
tion of the sets 306. In some implementations, a dot product
is used to calculate the intersection of the sets 306 based on
the vectors received in steps 206 and 208. In some imple-
mentations, the intersection between sets 306 is calculated
by multiplying the dot product of the vectors received in
steps 206 and 208 by four and dividing by the number of
coordinates in the vectors. In some implementations, the
intersection between sets 306 is calculated by multiplying
the covariance of the vectors received in steps 206 and 208
by four. In some implementations, the intersection between
the sets 306 can be calculated by taking the dot product of
a plurality of vectors of counts, and taking the average of the
plurality of dot products.

[0044] Inanon-limiting example embodiment of step 214,
the intersection of the sets 206 must first be calculated based
on the first vector and the second vector received in step 206
and 208 respectively. In the example embodiment described
herein, both the first and second vectors are vectors of counts
generated using method 500. Because each vector is based
on a sum of the user identifiers, each vector can be consid-
ered the sum of three different vectors: a vector representing
user identifiers that are present on the first and second
content delivery platforms (represented below as z), user
identifiers that are unique to the first or second content
delivery platform (represented below as u), and a vector of
noise (represented below as e). The expected value (i.e.
estimate) of the dot product of the first and second vectors
can be represented by the equation below:

E(vyvo)=E[(z+u+e ) (z+u,+e;)]
When written in an expanded form, the equation above can
be written as:

E(v\vo)=E(z-2)+E(z'u +E(zt)+E(u, us )+E(ze +E
(ze)+E(uye ) +E(uyer)+E(esves)
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In this example, if the noise terms are drawn from zero-
centered distributions and are independent from all other
terms, their expected value of their dot products is equal to
zero. Therefore, all terms in the above equation containing
noise from either the first vector (e,) or second vector (e,)
are equal to zero. In this example, the first vector and second
vector are mean subtracted (i.e., the average of all coordi-
nates of each vector is subtracted from each coordinate of
the respective vector). Further, because they are unique to
either first or second vector, the disjoint portions of the two
vectors u; and u2 are considered independent. Therefore, the
expected values of their dot products are also zero. In this
non-limiting example, with the assumptions made above,
the equation listed above is reduced to the equation provided
below.

E(viv)=E(z2)

[0045] In further detail of the non-limiting example above,
consider that a user identifier from the first content delivery
platform has a probability 1/k of contributing to any one
coordinate of the first vector, where the first vector has a
cardinality of k. In the interest of this non-limiting example,
the same assumptions are made for the second vector, except
based on the user identifiers from the second content deliv-
ery platform. In this example, each coordinate of the first and
second vectors approximate a binomial distribution with
probability 1/k and number of trials N,, where the number of
trials is equal to the number of user identifiers that contribute
to the respective vector. For a large value of N,, the
distribution for any coordinate could be approximated by a
Guassian distribution with variance as shown below.

Vary, )]V, (k-1

In the equation above, v,(j) represents the jth coordinate of
vector v,, where i represents either the first or second vector.
To continue the analysis of the non-limiting example, con-
sider the expanded form of the expected value of the dot
product of the first and second vector below.

k
E(v-vy) = Ez-2) = ) | [2()?)
=

[0046] In the equation above, z(j) represents the jth coor-
dinate of the vector z, which is defined above. Based on our
previous analysis, z(j) must also be approximated with a
Gaussian distribution. Therefore, in this non-limiting
example, we can simplify the above equation to the one
provided below.

Nppk - 1)

k k
E@9)= ) ER(P] = ) Vare(j) = =

J=1 J=1

In the equation above, N, represents the number of user
identifiers that have interacted with a set of content items on
both the first and second content delivery platforms. Note
that for a sufficiently large k, the value of (k-1)/k is about
equal to 1. Therefore, in a final simplification step, one could
arrive at the equation below.
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Nip(k-1)

E(vi-v)=E(z-2)= k

=~ Npp

Therefore, in this non-limiting example, based on the
assumptions made above, one could calculate the number of
user interactions common to both content delivery platforms
by using a dot product. In some embodiments, this example
could be used as a part of step 214 to calculate the number
of unique user interactions across both the first and second
content delivery platform. In this example, the variance of
the estimated value of the number of user interactions
common to both content delivery platforms is described in
the equation below.

NN, + N3, 2Ny +Np) 4k
k * g2 + @

Var(Wy;) =

In the above equation, E is equal to the inverse of the
Laplacian noise scale.

[0047] In further detail of step 216, the first content
delivery platform can calculate a vector representing user
interactions with a set of content items provided by the first
content delivery platform The systems and methods for
calculating the vector representing user interactions with a
set of content items provided by the first content delivery
platform are elaborated upon later in the specification. In
further detail of step 218, the first content delivery platform
can transmit the vector representing user interactions calcu-
lated in step 216 over a network, for example, network 110,
to be used in method 200. In some implementations, step
218 may also include sending the exact number of user
interactions represented by the vector to be used in method
200. In some implementations, step 218 may also include
sending an estimate the number of user interactions repre-
sented by the vector to be used in method 200. The systems
and methods for calculating and transmitting the vector
representing user interactions with a set of content items
provided by the first content delivery platform are elaborated
upon later in the specification.

[0048] In further detail of step 220, the first content
delivery platform can calculate a vector representing user
interactions with a set of content items provided by the first
content delivery platform. The systems and methods for
calculating the vector representing user interactions with a
set of content items provided by the first content delivery
platform are elaborated upon later in the specification. In
further detail of step 222, the first content delivery platform
can transmit the vector representing user interactions calcu-
lated in step 220 over a network to be used in method 200.
In some implementations, step 222 may also include sending
the number of user interactions represented by the vector to
be used in method 200. The systems and methods for
calculating and transmitting the vector representing user
interactions with a set of content items provided by the first
content delivery platform are elaborated upon later in the
specification.

[0049] In some embodiments, the first data processing
system executes method 200. In some embodiments, the first
data processing system 102 can determine the intersection
306 of FIG. 3 based on the following expression:
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r=4Cov(Zx, Zy) ~

4 4
;(lezyl oty - k—z(le ot z)Eyr o+ 2y

[0050] Where r represents an estimate of the number of
user identifiers that appear in both the first set of user
identifiers 302 and the second set of user identifiers 304. In
some implementations, the first data processing system 102
can subtract an expected value of n/2 from each position in
the first vector and the second vector before generating the
value for r. In such instances, the first data processing system
102 can determine the intersection r based on the following
expression:

4
r=4Cov(Zx, Zy) ~ ;(z;clzyl + o+ 2TV

[0051] In some embodiments, the first data processing
system 102 can estimate the size n of the first vector based
on the sum of the values of all k-positions of the k-length
first vector Zx,. In some embodiments, the For example, the
first data processing system 102 can determine the size n
based on the following expression:

2
nx ;(z;cl + .+ 2)

In some embodiments, the previous expression can be used
in step 210 and step 212 of method 200. In some embodi-
ments, the sum computed as a part of the above expression
is computer by either the second data processing system 104
or the third data processing system 106. The first data
processing system 102 can similarly determine the size n of
the second set of user identifiers 204 based on the second
k-length vector Zy,. The sizes of the respective first and
second vectors can then be used to subtract the respective
value n/2 from the first and the second vectors.

[0052] The method 200 can include estimating a size of
the intersection of the first set of user identifiers and the
second set of user identifiers based on a dot product of the
first vector Vx, and the second vector Vy,, as shown in FIG.
7. In some embodiments, the first data processing system
102 can subtract a value n /k from each coordinate value of
the first vector Vx, and a value n,/k from each coordinate
value of the second vector Vy,, where n_and n, represent the
estimate of the number of user identifiers in the first set of
user identifiers 302 and the second set of user identifiers 304,
respectively. In some implementations, n, and n, are pro-
vided by the first and second content delivery platforms
respectively. In some embodiments, the first data processing
system 102 can estimate the value r of the intersection, i.e.,
the number of user identifiers common to both the first set
of user identifiers 302 and the second set of user identifiers
304 based on the following expression:

k
r= Z V- Vy;
i=1
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[0053] As the determination of the vector is based on the
aggregate statistic of all the user identifiers within the
corresponding set of user identifiers, the aggregation
removes any correlation between the value of the vector and
the identity of the user. Therefore, the vectors utilized to
determine the estimate of the intersection are privacy safe.
[0054] In some embodiments, the data processing system
executing method 200 can determine intermediate estimates
of intersection based on pairwise dot products of vector of
counts generated using the same hash function while execut-
ing step 214. Thus for example, the first data processing
system 102 can generate a first intermediate vector r; based
on the dot product of V1x, and V1y,, r, based on the dot
product of V2x, and V2y,, and so on as show in FIG. 7. The
data processing system can generate an estimate of the
intersection based on the average of the intermediate esti-
mates of intersections by summing all the intermediate
estimates and dividing the sum by p, where p is the number
otf'hash functions transmitted in steps 204 and 206 of method
200. By subtracting the estimate of the intersection value
from the sum of the estimates of the total number of user
identifiers in each vector, the method 200 can estimate the
number of unique user interactions with the set of content
items across both content delivery platforms.

[0055] In some embodiments, the data processing system
executing method 200 can subtract a value n /k from each
coordinate value of the vectors V1x,, V2x,, . .., Vpx,, 902
and a value n /k from each coordinate value of the second
vectors V1y,, V2y,, . . ., Vpy, 904, where n, and n,
represent the number of user identifiers in the first set of user
identifiers 302 and the second set of user identifiers 304,
respectively. The number of user identifiers in the first and
second set of user identifiers are estimated in steps 210 and
212 respectively. The first data processing system can sub-
tract these values before carrying out the dot product of the
vectors. In some embodiments, the values n, and n, can be
received by the data processing system executing method
200 when receiving the first and second vector in steps 206
and 208 respectively.

[0056] Inanon-limiting example embodiment, the code to
implement parts of method 200 may look like the following:

def ComputeVocIntersetion(vocl, voc2, nl, n2, k):
Args:
vocl, voc2: Vectors of counts for sets 1 and 2
nl, n2: Cardinalities of sets 1 and 2
k: Size of the vectors of counts
Returns:
The cardinality of the intersection of the two sets.
assert len(vocl) == len(voc2) ==
return sum((voc[i]-nl/k)*(voc2[i]-n2/k) for i in range(k))

[0057] FIG. 3 shows a schematic of two sets of user
identifiers and their intersection. In particular, FIG. 3 shows
a first set of user identifiers 302 and a second set of user
identifiers 304. The first set of user identifiers 302 and the
second set of user identifiers 304 may be generated by the
second data processing system 104 and the third data
processing system 106, respectively. The first set of user
identifiers 302 includes a set of n user identifiers x, X,, X,
..., X, while the second set of user identifiers 304 includes
a set of n user identifiers y,, ¥, V5, . - . , V,,. While FIG. 3
shows the first and the second set of user identifiers 302 and
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304 having the same number n of user identifiers, it should
be understood that the first set of user identifiers 302 can
have a different number of user identifiers that that in the
second set of user identifiers 304. The first set of user
identifiers 302 may include a list of user identifiers associ-
ated with users or user devices 108 that interacted with a
particular content item or content item campaign, and may
have been collected by the second data processing system
104. The first data processing system 104 can store the first
set of user identifiers 302 in memory in a data structure such
as a one dimensional or multidimensional array. The second
set of user identifiers 304 can be similarly managed by the
third data processing system 106, for example. A publisher,
such as the first data processing system 102 would like to
determine the unique set of user identifiers from the first and
the second set of user identifiers 302 and 304.

[0058] In some implementations, the second and the third
data processing systems 104 and 106 could transmit the first
and the second set of user identifiers 302 and 304, respec-
tively, to the first data processing system 102 for the
determination of a unique and unduplicated set of user
identifiers. However, merely transmitting the first and the
second set of user identifiers 302 and 304 can expose the
identities of the users to the first data processing system,
thereby defeating the privacy of the users associated with the
user identifiers. For example, the entire history of content
item interaction of one or more users may be exposed to the
first data processing system 102. In some implementations,
cryptographic techniques, such as private set intersection
(PSI) can be utilized to allow a third party, such as the first
data processing system 102, to determine an intersection of
the first and the second set of user identifiers 302 and 304,
while maintaining privacy. However, PSI implementations
involve substantial communication overhead between the
data computing systems, thereby increasing the computation
time. In some implementations, cardinality estimators, such
as hyperloglog, mentioned above, can be utilized to deter-
mine the union of the first and the second sets of user
identifiers 302 and 304, where the union can be used to
determine the intersection of the two sets. However, hyper-
loglog is not privacy safe.

[0059] FIG. 4A shows a flow diagram of method 400,
which illustrates an example embodiment of a method to
generate a vector representing user interactions with a set of
content items. The method 400 can be executed, for
example, by the second data processing system 104 or the
third data processing system 106. The method 400 can be
executed, for example, to generate a user vector 420 as
shown in FIG. 4B for each item of a set. For example, the
set could be the set of user identifiers 302 or the set of user
identifiers 304 as shown in FIG. 3. The method 400 includes
receiving data to identify a set of hash functions 401. This
step can be executed, for example, by the second data
processing system 104 or the third data processing system
106, which can receive the data to identify the set of hash
functions from the first data processing system 102 via the
network 110. The method 300 includes retrieving a plurality
of user identifiers 402. In some implementations, the plu-
rality of user identifiers can be retrieved from storage local
to the second data processing system 104 or from storage
local to the third data processing system 106. In some
implementations, the plurality of user identifiers can be
retrieved from a remote storage via the network 110. In some
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implementations, the plurality of user identifiers can be
retrieved from a database or datacenter.

[0060] The method 400 includes selecting the ith user
identifier 404. This step can be executed, for example, by the
second data processing system 104 or the third data pro-
cessing system 106 to process the set of user identifiers
retrieved in step 402. FIG. 4B shows a schematic depicting
processing of a portion of the method 400. In particular, FI1G.
4B shows selection of the first user identifier x, (ith, i=1).
While FIG. 4B shows the selection of the first user identifier
in the first set of user identifiers 302, it should be understood
that the user identifiers can be selected in any order.
[0061] The method 400 includes generating k hashes of
the selected user identifier 406. The second data processing
system 104 or the third data processing system 106 can
generate k hashes h, (x,), h,(x,), h;(x,), . . ., h(x;) of the
selected user identifier x,, as shown in FIG. 4B. In some
embodiments, the second data processing system 104 or the
third data processing system 106 can utilize k independent
hash functions to generate k hashes of the first user identifier
X,. In some embodiments, the k independent hash functions
correspond to the data to identify a set of hash functions in
step 401. In some embodiments, the second data processing
system 104 or the third data processing system 106 can
utilize k/b hash functions, where b is a number of bits in the
hash digest.

[0062] In some embodiments, a salt can be added to each
of the selected user identifier to enhance the privacy of the
user. The salt can be a randomly generated string of bits that
can be concatenated or somehow combined with the data
structure containing the selected user identifier. In some
embodiments, the salt can be pre-determined. In such
embodiments, the salt can be pre-determined by an entity
that is connected to system 100 via network 110. In some
embodiments, each user identifier selected by method 400 is
concatenated with the same salt. In some embodiments, each
user identifier selected by method 400 is concatenated with
a different salt. In some embodiments, the data processing
systems executing method 400, for example, 104 or 106,
may concatenate each user identifier with the same salt. In
some embodiments, the two data processing systems execut-
ing the method 400 may use different salts.

[0063] In some embodiments, the salt is received by the
data processing system executing method 400 by a third
party provider. In some embodiments, before concatenating
the salt with each user identifier, the salt is hashed using a
pre-determined hash function. In such embodiments, the
pre-determined hash function may be determined by the
third party providing the salt. In some embodiments, the
third party providing the salt may provide a new salt based
on a fixed period of time. For example, the third party salt
provider may provide a new salt after an hour, two hours,
one day, two days, a week, two weeks, a month, two months
or a year. In some embodiments, the third party salt provider
may sign the salt with a public key belonging to the data
processing system executing method 400.

[0064] The method 400 includes generating a first k-length
vector, where coordinate values of the first k-length vector
equal to a bit value of the corresponding kth hash 408. As
shown in FIG. 4B, the second data processing system 104 or
the third data processing system 106 can generate a first
k-length vector 420, where the value of each coordinate of
the k-length vector 420 is equal to a bit value of the k hashes
418. In some embodiments, such as the one shown in FIG.
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4B, the value of a kth bit of the k-length vector 420 can be
equal to the bit value of the least significant bit of the
corresponding kth hash of the k hashes 418. In some
embodiments, instead of the least significant bit, any other
bit position can be utilized. In some embodiments, at least
two bits of the k-length vector 418 can correspond to two
different bit positions of their respective hash. For example,
the bit value of one bit in the k-length vector can be equal
to a least significant bit of the corresponding kth hash, while
the bit value of another bit in the k-length vector can be
equal to the most significant bit of the corresponding kth
hash. The bit position of a kth hash assigned to provide the
bit value for the kth bit of the k-length vector can be
pre-determined. In some embodiments, the bit position of a
kth hash assigned to provide the bit value for the kth bit of
the k-length vector can be received with the data to identify
a set of hash functions in step 401. Whatever the method-
ology used for selecting the bit values for the k-length vector
from the k hashes, it may be ensured that the generation of
the k-length vector from the second set of user identifiers
304 follows the same methodology. In some embodiments,
the second data processing system 104 or the third data
processing system 106 can utilize fewer than k hashes to
generate the k-length vector 402. For example, the second
data processing system 104 or the third data processing
system 106 can set positions 1, 2, . . ., b in the k-length
vector based on bits 1, 2, . . ., b of the hash h, (x,), positions
b+1,b+2,...,2*¥b based on bits 1, 2, . . ., b of h,(x,), and
so on (assuming the L.SB is at bit position 1). Generally, the
second data processing system 104 or the third data pro-
cessing system 106 can set bit positions (i-1)*b+1 to i*b of
a k-length vector of a first user identifier x, based on b bits
of the hash h,(x,). In instances where k is not divisible by b,
then k/b can be rounded up, and any leftover bits can be
discarded.

[0065] The method 400 includes generating k-length vec-
tors corresponding to all the user identifiers in the plurality
of user identifiers retrieved in step 402. For example, the
second data processing system 104 or third data processing
system 106 can determine whether the currently generated
k-length vector is the nth k-length generated vector 410. If
no, then the second data processing system 104 or the third
data processing system 106 can increment the counter i 312,
and select the next user identifier from the plurality of user
identifiers retrieved in step 402, and generate a k-length
vector as discussed above. In this manner, the second data
processing system 104 or the third data processing system
106 can generate n k-length vectors, where each of the n
k-length vectors corresponds to a user identifier in the
plurality of user identifiers retrieved in step 402.

[0066] The method 400 includes summing the n k-length
vectors to generate an interaction vector 414. This can be
called the binomial vector method. The second data pro-
cessing 104 and the third data processing system 106 can
sum the n k-length vectors corresponding to the n user
identifiers in the plurality of user identifiers retrieved in step
402. The second data processing system 104 or the third data
processing system 106 can perform a numerical addition of
the “0”s and the “1”’s in a bit position of the n k-length
vectors V,, to V,, to generate a k-length first Zx,. In a
non-limiting example, if there were 10 k-length vectors
where six of the k-length vectors had a “1” in the first bit
position and the remaining four of the k-length vectors had
a “0” in the first bit position, the k-length first vector Zx, can
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have a value 6 in the first position. Typically, for a large
number of k-length vectors (i.e., for large values of n), the
value at each kth position of the first vector Zx, would be
approximately equal to n/2 as shown in FIG. 6.

[0067] The method 400 includes transmitting the interac-
tion vector via a network 416. In some embodiments, the
second data processing system 104 or the third data pro-
cessing system 106 transmits the interaction vector gener-
ated in step 414 to the first data processing system 102. In
some embodiments, transmitting the interaction vector
includes transmitting the vector via an encrypted commu-
nication channel, for example HTTPS. In some embodi-
ments, prior to transmitting the interaction vector, n/2 is
subtracted from each coordinate in the interaction vector. In
some embodiments, the number of user interactions n is
transmitted along with the interaction vector. In some
embodiments, transmitting the interaction vector includes
transmitting a plurality of vectors of counts. In such embodi-
ments, prior to transmitting the plurality of vectors of
counts, n/2 is subtracted from each coordinate in each of the
plurality of the vectors of counts.

[0068] FIG. 5A shows a flow diagram of method 500,
which illustrates an example embodiment of a method to
generate a vector representing user interactions with a set of
content items. The vector of counts method 500 can be
executed, for example, by the second data processing system
104 or the third data processing system 106. The method 500
can be executed, for example, to generate a user vector 520
as shown in FIG. 5B for each item of a set. For example, the
set could be the set of user identifiers 302 or the set of user
identifiers 304 as shown in FIG. 3. In some embodiments,
receiving data to identify a set of hash functions can include
receiving a set of hash functions containing a single hash
function. In some embodiments, the data to identify a set of
hash functions may be a binary file containing executable
computer instructions that generate a hash based on an input
value. The method 500 includes retrieving a plurality of user
identifiers 502. In some implementations, the plurality of
user identifiers can be retrieved from storage local to the
second data processing system 104 or from storage local to
the third data processing system 106. In some implementa-
tions, the plurality of user identifiers can be retrieved from
a remote storage via the network 110. In some implemen-
tations, the plurality of user identifiers can be retrieved from
a database or datacenter.

[0069] The method 500 includes selecting the ith user
identifier 504. This step can be executed, for example, by the
second data processing system 104 or the third data pro-
cessing system 106 to process the first set of user identifiers
302 or the second set of user identifiers 304. FIG. 5B shows
a schematic depicting processing of a portion of the method
500. In particular, FIG. 5B shows a selection of the first user
identifier x, (ith, i=1) by the second data processing system
104 or the third data processing system 106. While FIG. 5B
shows the selection of the first identifier in the first set of
user identifiers 302, it should be understood that the user
identifiers can be selected in any order, and the user iden-
tifiers are the same user identifiers retrieved in step 502.
[0070] The method 500 includes generating a hash of the
selected user identifier 506. The second data processing
system 104 or the third data processing system 106 can
generate a hash using a hash function. In some embodi-
ments, the hash function is based on the data identifying a
set of hash functions in step 501. In some embodiments, if
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there is more than one hash function in the set of hash
functions received in step 501, the method may choose one
of the hash functions in the set of hash functions to perform
the hash computation. In a non-limiting example, the
method may choose the first hash function in the set of hash
functions. For example, as shown in FIG. 5B, the second
data processing system 104 or the third data processing
system 106 generates a hash h(x;) based on the hash
function h( ). In some embodiments, the second data pro-
cessing system 104 or the third data processing system 106
can utilize well known hash functions such as SHA(1, 2, or
3), MDS5, etc.

[0071] In some embodiments, a salt can be added to each
of the selected user identifier to enhance the privacy of the
user. In some embodiments, the salt is a randomly generated
string of bits that is concatenated with the data structure
containing the selected user identifier. In some embodi-
ments, the salt can be pre-determined. In some embodi-
ments, the salt can be pre-determined by a third party that is
connected to system 100 via network 110. In some embodi-
ments, each user identifier selected by method 500 is con-
catenated with the same salt. In some embodiments, each
user identifier selected by method 500 is concatenated with
a different salt. In some embodiments, the data processing
systems executing method 500, for example, 104 or 106,
may concatenate each user identifier with the same salt. In
some embodiments, the two data processing systems execut-
ing the method 400 may use different salts.

[0072] In some embodiments, the salt is received by the
data processing system executing method 500 by a third
party provider. In some embodiments, before concatenating
the salt with each user identifier, the salt is hashed using a
pre-determined hash function. In such embodiments, the
pre-determined hash function may be determined by the
third party providing the salt. In some embodiments, the
third party providing the salt may provide a new salt based
on a fixed period of time. For example, the third party salt
provider may provide a new salt after an hour, two hours,
one day, two days, a week, two weeks, a month, two months
or a year. In some embodiments, the third party salt provider
may sign the salt with a public key belonging to the data
processing system executing method 500.

[0073] The method 500 includes incrementing the count of
a register corresponding to m-bits of the hash value 508. The
second data processing system 104 or the third data pro-
cessing system 106 can select a set of bits of the hash value
to determine the appropriate register to increment. For
example, as shown in FIG. 5B, the second data processing
system 104 or the third data processing system 106 can
select the first 3 bits of the hash values to determine the
register. Although, in some other embodiments, the second
data processing system 104 or the third data processing
system 106 can select any other set of bit of the hash value
to determine the register value. As the first three bits of the
hash of the first user identifier x, is “010”, the data process-
ing system executing the method can increment the second
register in the set of registers 520. The total number of
registers k in the set of registers 520 can be equal to 2'm,
where m represents the number of bits of the hash value that
the data processing system executing the method utilizes to
select the register. In some embodiments, the number of
registers k can be independent of the number of bits m of the
hash value that the data processing system executing the
method utilizes to select the register. For example, the
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second data processing system 104 or the third data pro-
cessing system 106 can select a particular value k and map
the m bits appropriately to the k registers. The set of registers
520 can represent coordinates of an interaction vector VXx,.
[0074] The method 500 includes generating hashes and
incrementing counts or registers for all user identifiers in the
first set of user identifiers. This is called the vector of counts
method. For example, the second data processing system
104 or the third data processing system 106 can determine
whether the currently generated hash value is for the nth user
identifier 510. If no, the data processing system executing
the method can increment a counter i 512, and select the next
user identifier from the plurality of user identifiers retrieved
in step 502. For example, referring to FIG. 5B, the data
processing system executing the method can increment the
third register based on the first three bits of the hash value
for the third user identifier x;, and increment the sixth
register based on the first three bits of the hash value of the
second user identifier X,. In this manner, the data processing
system executing the method can increment the count in
each register of the set of registers 520. The data processing
system executing the method can store the set of registers
520 in a data structure in memory. For example, the data
structure can be a one dimensional array or a multi-dimen-
sional array. In some embodiments, the set of registers 520
can be stored as a vector representing user interactions. In
some embodiments, the data structure containing the set of
registers 520 can be changed into a vector representation,
wherein each coordinate of the vector is equal to one of the
set of registers 520.

[0075] In some embodiments, the method 500 may add
noise to one or more of the registers in register set 520. In
some embodiments, the method 500 may add noise to one or
more coordinates of the vector representation based off of
register set 520. In these embodiments, the method 500 may
add Laplacian noise to one or more of the registers in
register set 520. In some embodiments, the method 500 may
add Laplacian noise to all of the registers in register set 520.
In some embodiments, the method 500 may add a vector of
Laplacian noise to the interaction vector based on the set of
registers 520. In these embodiments, the vector of Laplacian
noise may have the same cardinality as the interaction vector
based on the set of registers 520. In certain embodiments, the
method 500 may subtract the expected value of each of the
registers from the contents of each register. In such embodi-
ments, the expected value of each register could be equal to
total count of the register set 520 divided by the number of
registers in register set 520, designated in FIG. 5B as k.
[0076] Inanon-limiting example embodiment, the code to
implement parts of method 500 may look like the following:

def ComputeVectorOfCounts(k, b, user__set):
Args:
k: Size of the vector to be returned
b: Scale factor of the Laplacian noise.
user__set: Deduplicated set of user IDs.
Returns:

The vector of counts of size k for the given user
set, with Laplacian noise of scale b added.
hashed__user_set = get__hashed_ user_ set(user__set)
user__buckets = [get_last_k_ digits(id, k) for id in

hashed__user_ set]
voc =[]
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-continued

for i in range(k):
voc.append(user__buckets.count(i) +
generate__laplace_ noise(b))

return voc

[0077] In some embodiments, the method 500 may use a
hybrid approach to generate a plurality of interaction vec-
tors. In particular, in the hybrid approach, the data process-
ing system executing the method 500 can generate a vector
of counts using not just one hash function, as in the vector
of counts approach, but generating p vectors of counts using
p hash functions. In some embodiments, the plurality of hash
functions are identified by the data received in step 501. FIG.
9 shows p vectors of counts V1x,, V2x;, . . ., Vpx,, 902
generated by the second data processing system 104 or the
third data processing system 106 executing a based the set
of user identifiers retrieved in step 502, for example the first
set of user identifiers 302 or the second set of user identifiers
304. Each vector of count Vpx, can be generated based on
an independent hash function. Thus, the first vector of count
Vlx, can be generated using a first hash function, and the
second vector of counts V2x, can be generated using a
second independent hash function, and so on. Thus, the data
processing system executing method 500 generates hashes
of all the user identities in the set of user identities retrieved
in step 502 using a first hash function to generate the vector
of counts V1x, in a manner similar to that discussed above
in relation to FIGS. 5A and 5B.

[0078] The method 500 includes generating a k-length
interaction vector based on the register values 514. As
mentioned above, the value of the counts of the registers 520
can represent the coordinates of a k-length vector Vx,. The
method 500 includes transmitting the interaction vector via
a network 516. In some embodiments, the second data
processing system 104 or the third data processing system
106 transmits the interaction vector generated in step 514 to
the first data processing system 102. In some embodiments,
transmitting the interaction vector includes transmitting the
vector via an encrypted communication channel, for
example HTTPS. In some embodiments, the number of user
interactions n is transmitted along with the interaction
vector. In some embodiments, transmitting the interaction
vector includes transmitting a plurality of vectors of counts.
In some embodiments, prior to transmitting the interaction
vector, n/k is subtracted from each coordinate in the inter-
action vector.

[0079] FIG. 6 shows a schematic of a binomial vector of
counts approach for generating an interaction vector from k
hash functions and n user identifiers. In some embodiments,
the process outlined in the schematic can be performed by a
data processing system executing method 400. Each of the
vectors 602 representing hashed user interaction information
can have a cardinality k, representing k hash functions. Each
of'the vectors 602 can represent a single user identifier in the
set of user identifiers. The vectors 602 can be summed
together, for example in method 400, to generate an inter-
action 604 vector with cardinality k. In some embodiments,
the each coordinate of the interaction vector 604 can be
about equal to n/2, where n is the number of user identifiers.
[0080] FIG. 7 shows a schematic of a hybrid approach for
determining an estimate of an intersection of two sets of user
identifiers, which in some embodiments is performed by a
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data processing system executing step 214 of method 200.
The hybrid approach combines the features of the binomial
vector approach and the vector of counts approach discussed
above. In particular, in the hybrid approach, the data pro-
cessing system executing method 200 can generate a vector
of counts using not just one hash function, as in the vector
of counts approach, but generating p vectors of counts using
p hash functions.

[0081] In some embodiments, the system 100 can apply
additional techniques to improve the privacy of the
approaches discussed above. For example, in some embodi-
ments, the second data processing system 104 and the third
data processing system 106 can add noise to the counts when
generating vector of counts discussed above in relation to
FIGS. 5-7. Adding noise to the vector of counts can include
adding random numbers to each element of the vectors of
counts. The second data processing system 104 and the third
data processing system 106 can each add noise to their
respective vectors of counts prior to sending the vectors of
counts to the first data processing system 102, which deter-
mines an estimate of the intersection. In some embodiments,
the second data processing system 104 and the third data
processing system 106 can add various types of noise, such
as, for example, Gaussian noise, geometric noise, etc., into
the vector generated by the binomial vectors approach. In
some embodiments, the second data processing system 104
and the third data processing system 106 can add, for
example, Laplacian noise to the vectors generated by the
vector of counts approach. The addition of noise to the
vectors, whether generated by the binomial vector or the
vector of counts approach, can improve differential privacy
of the user identifiers. The differential privacy of the bino-
mial vectors approach and the vectors of counts approach
discussed above can be achieved while sacrificing less
accuracy that that by previously existing differentially pri-
vate cardinality estimators.

[0082] In yet another approach, the user identifiers can be
encrypted or hashed prior to generating the vectors dis-
cussed above in relation to FIGS. 3-4B. For example, the
second data processing system 104 and the third data
processing system 106 can encrypt or compute a hash of
each of the user identities in the first set of user identities 302
and the second set of user identities 304. The second data
processing system 104 and the third data processing system
106 can then generate the vectors (the binomial vectors or
the vectors of counts) based on the encrypted set of user
identities. Encrypting the user identifiers before generating
the vectors can improve the privacy of the user identities. In
some instances, where vectors are formed from the same
user identities, the intersection of the vectors may still
include some information related to the user identities. By
encrypting or hashing the user identities prior to generating
the vectors, the risk of leakage of information can be
reduced.

[0083] In some embodiments, the counts in a vector of
counts can be permuted prior to communicating the vectors
to the first data processing system 102. For example, the
second data processing system 104 can permute or re-order
the counts in the vectors Vx, or Vlx, prior to communicating
the vectors to the first data processing system 102. The third
data processing system 106 may also similarly permute its
respective vectors of counts prior to sending the vectors to
the first data processing system. Both the first and the second
data processing systems 104 and 106 can agree on a per-
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mutation scheme and keep the permutation secret. In some
embodiments, the first data processing system 102 can select
and transmit the desired permutation scheme to the second
and the third data processing systems 104 and 106, such that
both the systems utilize matching permutation schemes.
Permuting the vectors in the vectors of counts can improve
the privacy of the user identities in instances where vectors
are formed from the same user identities, and the intersec-
tion of the vectors may still include some information
related to the user identities.

[0084] FIG. 8 shows the general architecture of an illus-
trative computer system 800 that may be employed to
implement any of the computer systems discussed herein
(including the system 100 and its components such as the
first data processing system 102, the second data processing
system 104, the third data processing system 106 and the
user devices 108 in accordance with some implementations.
The computer system 800 can be used to provide informa-
tion via the network 110 for display. The computer system
800 of FIG. 8 comprises one or more processors 820
communicatively coupled to memory 825, one or more
communications interfaces 805, and one or more output
devices 810 (e.g., one or more display units) and one or more
input devices 815. The processors 820 can be included in the
data processing system 100 or the other components of the
system 100 such as the first data processing system 102, the
second data processing system 104, the third data processing
system 106 and the user devices 108.

[0085] In the computer system 800 of FIG. 8, the memory
825 may comprise any computer-readable storage media,
and may store computer instructions such as processor-
executable instructions for implementing the various func-
tionalities described herein for respective systems, as well as
any data relating thereto, generated thereby, or received via
the communications interface(s) or input device(s) (if pres-
ent). Referring again to the system 100 of FIG. 1, the data
processing systems can include the memory 825 to store
information related to the sets of user identifiers, the gen-
erated vectors, among others. The processor(s) 820 shown in
FIG. 8 may be used to execute instructions stored in the
memory 825 and, in so doing, also may read from or write
to the memory various information processed and or gen-
erated pursuant to execution of the instructions.

[0086] The processor 820 of the computer system 800
shown in FIG. 8 also may be communicatively coupled to or
control the communications interface(s) 805 to transmit or
receive various information pursuant to execution of instruc-
tions. For example, the communications interface(s) 805
may be coupled to a wired or wireless network, bus, or other
communication means and may therefore allow the com-
puter system 800 to transmit information to or receive
information from other devices (e.g., other computer sys-
tems). While not shown explicitly in the system of FIG. 8,
one or more communications interfaces facilitate informa-
tion flow between the components of the system 800. In
some implementations, the communications interface(s)
may be configured (e.g., via various hardware components
or software components) to provide a website as an access
portal to at least some aspects of the computer system 800.
Examples of communications interfaces 805 include user
interfaces (e.g., web pages), through which the user can
communicate with the data processing system 800.

[0087] The output devices 810 of the computer system 800
shown in FIG. 8 may be provided, for example, to allow
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various information to be viewed or otherwise perceived in
connection with execution of the instructions. The input
device(s) 815 may be provided, for example, to allow a user
to make manual adjustments, make selections, enter data, or
interact in any of a variety of manners with the processor
during execution of the instructions. Additional information
relating to a general computer system architecture that may
be employed for various systems discussed herein is pro-
vided further herein.

[0088] Implementations of the subject matter and the
operations described in this specification can be imple-
mented in digital electronic circuitry, or in computer soft-
ware embodied on a tangible medium, firmware, or hard-
ware, including the structures disclosed in this specification
and their structural equivalents, or in combinations of one or
more of them. Implementations of the subject matter
described in this specification can be implemented as one or
more computer programs, i.e., one or more components of
computer program instructions, encoded on computer stor-
age medium for execution by, or to control the operation of,
data processing apparatus. The program instructions can be
encoded on an artificially-generated propagated signal, e.g.,
a machine-generated electrical, optical, or electromagnetic
signal that is generated to encode information for transmis-
sion to suitable receiver apparatus for execution by a data
processing apparatus. A computer storage medium can be, or
be included in, a computer-readable storage device, a com-
puter-readable storage substrate, a random or serial access
memory array or device, or a combination of one or more of
them. Moreover, while a computer storage medium is not a
propagated signal, a computer storage medium can include
a source or destination of computer program instructions
encoded in an artificially-generated propagated signal. The
computer storage medium can also be, or be included in, one
or more separate physical components or media (e.g., mul-
tiple CDs, disks, or other storage devices).

[0089] The features disclosed herein may be implemented
on a smart television module (or connected television mod-
ule, hybrid television module, etc.), which may include a
processing module configured to integrate internet connec-
tivity with more traditional television programming sources
(e.g., received via cable, satellite, over-the-air, or other
signals). The smart television module may be physically
incorporated into a television set or may include a separate
device such as a set-top box, Blu-ray or other digital media
player, game console, hotel television system, and other
companion device. A smart television module may be con-
figured to allow viewers to search and find videos, movies,
photos and other content on the web, on a local cable TV
channel, on a satellite TV channel, or stored on a local hard
drive. A set-top box (STB) or set-top unit (STU) may include
an information appliance device that may contain a tuner
and connect to a television set and an external source of
signal, turning the signal into content which is then dis-
played on the television screen or other display device. A
smart television module may be configured to provide a
home screen or top level screen including icons for a
plurality of different applications, such as a web browser and
a plurality of streaming media services, a connected cable or
satellite media source, other web “channels”, etc. The smart
television module may further be configured to provide an
electronic programming guide to the user. A companion
application to the smart television module may be operable
on a mobile computing device to provide additional infor-
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mation about available programs to a user, to allow the user
to control the smart television module, etc. In alternate
implementations, the features may be implemented on a
laptop computer or other personal computer, a smartphone,
other mobile phone, handheld computer, a tablet PC, or other
computing device.

[0090] The operations described in this specification can
be implemented as operations performed by a data process-
ing apparatus on data stored on one or more computer-
readable storage devices or received from other sources.
[0091] The terms “data processing apparatus”, “data pro-
cessing system”, “user device” or “computing device”
encompasses all kinds of apparatus, devices, and machines
for processing data, including by way of example a pro-
grammable processor, a computer, a system on a chip, or
multiple ones, or combinations, of the foregoing. The appa-
ratus can include special purpose logic circuitry, e.g., an
FPGA (field programmable gate array) or an ASIC (appli-
cation-specific integrated circuit). The apparatus can also
include, in addition to hardware, code that creates an execu-
tion environment for the computer program in question, e.g.,
code that constitutes processor firmware, a protocol stack, a
database management system, an operating system, a cross-
platform runtime environment, a virtual machine, or a
combination of one or more of them. The apparatus and
execution environment can realize various different com-
puting model infrastructures, such as web services, distrib-
uted computing and grid computing infrastructures.

[0092] A computer program (also known as a program,
software, software application, script, or code) can be writ-
ten in any form of programming language, including com-
piled or interpreted languages, declarative or procedural
languages, and it can be deployed in any form, including as
a stand-alone program or as a module, component, subrou-
tine, object, or other unit suitable for use in a computing
environment. A computer program may, but need not, cor-
respond to a file in a file system. A program can be stored in
a portion of a file that holds other programs or data (e.g., one
or more scripts stored in a markup language document), in
a single file dedicated to the program in question, or in
multiple coordinated files (e.g., files that store one or more
modules, sub-programs, or portions of code). A computer
program can be deployed to be executed on one computer or
on multiple computers that are located at one site or dis-
tributed across multiple sites and interconnected by a com-
munication network.

[0093] The processes and logic flows described in this
specification can be performed by one or more program-
mable processors executing one or more computer programs
to perform actions by operating on input data and generating
output. The processes and logic flows can also be performed
by, and apparatuses can also be implemented as, special
purpose logic circuitry, e.g., an FPGA (field programmable
gate array) or an ASIC (application-specific integrated cir-
cuit).

[0094] Processors suitable for the execution of a computer
program include, by way of example, both general and
special purpose microprocessors, and any one or more
processors of any kind of digital computer. Generally, a
processor will receive instructions and data from a read-only
memory or a random access memory or both. The essential
elements of a computer are a processor for performing
actions in accordance with instructions and one or more
memory devices for storing instructions and data. Generally,
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a computer will also include, or be operatively coupled to
receive data from or transfer data to, or both, one or more
mass storage devices for storing data, e.g., magnetic, mag-
neto-optical disks, or optical disks. However, a computer
need not have such devices. Moreover, a computer can be
embedded in another device, e.g., a mobile telephone, a
personal digital assistant (PDA), a mobile audio or video
player, a game console, a Global Positioning System (GPS)
receiver, or a portable storage device (e.g., a universal serial
bus (USB) flash drive), for example. Devices suitable for
storing computer program instructions and data include all
forms of non-volatile memory, media and memory devices,
including by way of example semiconductor memory
devices, e.g., EPROM, EEPROM, and flash memory
devices; magnetic disks, e.g., internal hard disks or remov-
able disks; magneto-optical disks; and CD-ROM and DVD-
ROM disks. The processor and the memory can be supple-
mented by, or incorporated in, special purpose logic
circuitry.

[0095] To provide for interaction with a user, implemen-
tations of the subject matter described in this specification
can be implemented on a computer having a display device,
e.g., a CRT (cathode ray tube), plasma, or LCD (liquid
crystal display) monitor, for displaying information to the
user and a keyboard and a pointing device, e.g., a mouse or
a trackball, by which the user can provide input to the
computer. Other kinds of devices can be used to provide for
interaction with a user as well; for example, feedback
provided to the user can include any form of sensory
feedback, e.g., visual feedback, auditory feedback, or tactile
feedback; and input from the user can be received in any
form, including acoustic, speech, or tactile input. In addi-
tion, a computer can interact with a user by sending docu-
ments to and receiving documents from a device that is used
by the user; for example, by sending web pages to a web
browser on a user’s client device in response to requests
received from the web browser.

[0096] Implementations of the subject matter described in
this specification can be implemented in a computing system
that includes a back-end component, e.g., as a data server, or
that includes a middleware component, e.g., an application
server, or that includes a front-end component, e.g., a client
computer having a graphical user interface or a Web browser
through which a user can interact with an implementation of
the subject matter described in this specification, or any
combination of one or more such back-end, middleware, or
front-end components. The components of the system can be
interconnected by any form or medium of digital data
communication, e.g., a communication network. Examples
of communication networks include a local area network
(“LAN”) and a wide area network (“WAN”), an inter-
network (e.g., the Internet), and peer-to-peer networks (e.g.,
ad hoc peer-to-peer networks).

[0097] The computing system such as the data processing
systems 102, 104, 106, and 108 can include clients and
servers. For example, the data processing systems 102, 104,
106, and 108 can include one or more servers in one or more
data centers or server farms. A client and server are generally
remote from each other and typically interact through a
communication network. The relationship of client and
server arises by virtue of computer programs running on the
respective computers and having a client-server relationship
to each other. In some implementations, a server transmits
data (e.g., an HTML page) to a client device (e.g., for
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purposes of displaying data to and receiving user input from
a user interacting with the client device). Data generated at
the client device (e.g., a result of the user interaction) can be
received from the client device at the server.

[0098] While this specification contains many specific
implementation details, these should not be construed as
limitations on the scope of any inventions or of what may be
claimed, but rather as descriptions of features specific to
particular implementations of the systems and methods
described herein. Certain features that are described in this
specification in the context of separate implementations can
also be implemented in combination in a single implemen-
tation. Conversely, various features that are described in the
context of a single implementation can also be implemented
in multiple implementations separately or in any suitable
subcombination. Moreover, although features may be
described above as acting in certain combinations and even
initially claimed as such, one or more features from a
claimed combination can in some cases be excised from the
combination, and the claimed combination may be directed
to a subcombination or variation of a subcombination.

[0099] Similarly, while operations are depicted in the
drawings in a particular order, this should not be understood
as requiring that such operations be performed in the par-
ticular order shown or in sequential order, or that all illus-
trated operations be performed, to achieve desirable results.
In some cases, the actions recited in the claims can be
performed in a different order and still achieve desirable
results. In addition, the processes depicted in the accompa-
nying figures do not necessarily require the particular order
shown, or sequential order, to achieve desirable results.

[0100] In certain circumstances, multitasking and parallel
processing may be advantageous. Moreover, the separation
of various system components in the implementations
described above should not be understood as requiring such
separation in all implementations, and it should be under-
stood that the described program components and systems
can generally be integrated together in a single software
product or packaged into multiple software products. For
example, the data processing systems 102, 104, and/or 106
could be a single module, a logic device having one or more
processing modules, one or more servers, or part of a search
engine.

[0101] Having now described some illustrative implemen-
tations and implementations, it is apparent that the foregoing
is illustrative and not limiting, having been presented by way
of example. In particular, although many of the examples
presented herein involve specific combinations of method
acts or system elements, those acts and those elements may
be combined in other ways to accomplish the same objec-
tives. Acts, elements and features discussed only in connec-
tion with one implementation are not intended to be
excluded from a similar role in other implementations or
implementations.

[0102] The phraseology and terminology used herein is for
the purpose of description and should not be regarded as
limiting. The use of “including” “comprising” “having”
“containing” “involving” “characterized by” “characterized
in that” and variations thereof herein, is meant to encompass
the items listed thereafter, equivalents thereof, and addi-
tional items, as well as alternate implementations consisting
of the items listed thereafter exclusively. In one implemen-

tation, the systems and methods described herein consist of
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one, each combination of more than one, or all of the
described elements, acts, or components.

[0103] Any references to implementations or elements or
acts of the systems and methods herein referred to in the
singular may also embrace implementations including a
plurality of these elements, and any references in plural to
any implementation or element or act herein may also
embrace implementations including only a single element.
References in the singular or plural form are not intended to
limit the presently disclosed systems or methods, their
components, acts, or elements to single or plural configu-
rations. References to any act or element being based on any
information, act or element may include implementations
where the act or element is based at least in part on any
information, act, or element.

[0104] Any implementation disclosed herein may be com-
bined with any other implementation, and references to “an
implementation,” “some implementations,” “an alternate
implementation,” “various implementation,” “one imple-
mentation” or the like are not necessarily mutually exclusive
and are intended to indicate that a particular feature, struc-
ture, or characteristic described in connection with the
implementation may be included in at least one implemen-
tation. Such terms as used herein are not necessarily all
referring to the same implementation. Any implementation
may be combined with any other implementation, inclu-
sively or exclusively, in any manner consistent with the
aspects and implementations disclosed herein.

[0105] References to “or” may be construed as inclusive
so that any terms described using “or” may indicate any of
a single, more than one, and all of the described terms.
[0106] Where technical features in the drawings, detailed
description or any claim are followed by reference signs, the
reference signs have been included for the sole purpose of
increasing the intelligibility of the drawings, detailed
description, and claims. Accordingly, neither the reference
signs nor their absence have any limiting effect on the scope
of any claim elements.

[0107] The systems and methods described herein may be
embodied in other specific forms without departing from the
characteristics thereof. Although the examples provided
herein relate to controlling the display of content of infor-
mation resources, the systems and methods described herein
can include applied to other environments. The foregoing
implementations are illustrative rather than limiting of the
described systems and methods. Scope of the systems and
methods described herein is thus indicated by the appended
claims, rather than the foregoing description, and changes
that come within the meaning and range of equivalency of
the claims are embraced therein.

[0108] Further to the descriptions above, a user may be
provided with controls allowing the user to make an election
as to both if and when systems, programs, or features
described herein may enable collection of user information
(e.g., information about a user’s social network, social
actions, or activities, profession, a user’s preferences, or a
user’s current location), and if the user is sent content or
communications from a server. In addition, certain data may
be treated in one or more ways before it is stored or used, so
that personally identifiable information is removed. For
example, a user’s identity may be treated so that no person-
ally identifiable information can be determined for the user,
or a user’s geographic location may be generalized where
location information is obtained (such as to a city, ZIP code,
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or state level), so that a particular location of a user cannot
be determined. Thus, the user may have control over what
information is collected about the user, how that information
is used, and what information is provided to the user.
[0109] In further detail and as an example, results from
comparison between different architectures and model
parameters can be described herein. The results described
herein are not meant to limit the scope of the invention. All
the architectures implemented herein can be comprised of
the elements that make up system 100. In the non-limiting
example embodiments described herein, the data processing
system 102 is responsible for estimating the union between
the two sets of user data 302 and 304. The data processing
system 104 is responsible for generating the first interaction
vector using, for example, the method 500 and set 302. The
data processing system 106 is responsible for generating the
second interaction vector using, for example, the method
500 and set 304. In this example embodiment, the data
processing systems 102, 104, and 106 can communicate
over network 110. The non-limiting example embodiments
described herein use the vector of counts approach.

[0110] In an exemplary embodiment, the accuracy for
estimating the size of the union of two sets of user identi-
fiers, for example 302 and 304, could depend on set cardi-
nalities and the magnitude of their intersection. In some
exemplary embodiments, the accuracy for estimating the
size of the union of two sets of user identifiers could depend
on the size of the interaction vector generated, for example,
in method 400 or method 500. In some exemplary embodi-
ments, the accuracy for estimating the size of the union of
two sets of user identifiers could depend on the scale of the
noise that is added to the interaction vectors.

[0111] In a non-limiting exemplary embodiment for
implementing and testing various architectures, which does
not limit the scope of the invention, the accuracy of the
implementation is tested while varying the interaction vector
cardinality and the size of the sets user identifiers 302 and
304. The data from this example experiment is illustrated in
FIG. 9. In this non-limiting exemplary embodiment, the size
of the intersection 306 of the two sets is was one-tenth the
size of the first set of user identifiers 302. Both sets of user
identifiers are assumed to have the same cardinality. The
scale of the Laplacian noise applied in this exemplary
embodiment is fixed at e=In(3), where the scale of the
Laplacian noise is equal to b=1/e. FIG. 9 shows a graph
containing contour curves of constant fractional standard
error of the estimate of the union cardinality (306) of both
sets of user identifiers 302 and 304. As illustrated in FIG. 9,
the contour 912 has 10% standard error, the contour 910 has
a 5% standard error, the contour 908 has a 3% standard error,
the contour 906 has a 2% standard error, and the contour 904
has a 1% standard error. The contours in FIG. 9 indicate this
exemplary embodiment with a set cardinality N,=N,=2"¢,
can achieve a 1% accuracy on an estimate of the union for
vector sizes (k) between 2'* and 2%7.

[0112] The plot included in FIG. 9 shows that the non-
limiting exemplary embodiment can ensure accuracies on
the order of 1-5% with the correct choice of vector size k.
The plot in FIG. 9 also shows that the accuracy contours are
relatively flat in vector size k with varying set size N;=N,.
Based on this data, one can assume that a minimum vector
size of k=2'°=1024 might ensure a 2% error threshold.
[0113] In another non-limiting exemplary embodiment,
which does not limit the scope of the invention, the accuracy
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of the implementation is tested while varying the set cardi-
nality ratio of N, (302) and N, (304). In this non-limiting
example embodiment, all other parameters are fixed to the
values in the previous experiment. FIG. 10 shows a plot of
data obtained from this non-limiting exemplary embodi-
ment. The contours 1002, 1004, 1006 and 1008 each show
a 2% error on the union cardinality estimate of the two sets
while increasing the cardinality of one of the sets relative to
the other. As illustrated in FIG. 10, the contour 1002 shows
the threshold of 2% standard error when both sets are of
equal size. The contour 1004 shows the threshold of 2%
standard error when set N, (304) is twice as large as set N,
(302). The contour 1006 shows the threshold of 2% standard
error when set N, (304) is four times as large as set N, (302).
The contour 1008 shows the threshold of 2% standard error
when set N, (304) is eight times as large as set N, (302).

[0114] As demonstrated by the plot included in FIG. 10,
this non-limiting example embodiment shows that as the
cardinality of the two sets (302 and 304) become more
unequal, it becomes considerably easier to keep a fixed
standard error. This is because, in this non-limiting example
embodiment, the absolute error is a function of the inter-
section size, and the standard error is relative to the union
size. Further discussing the results obtained from this
embodiment, as the difference in set cardinality increases,
the intersection size relative to the union size decreases,
because the intersection size is limited by the size of the
smaller set.

[0115] In another non-limiting exemplary embodiment,
which does not limit the scope of the invention, the accuracy
of the implementation is tested while varying the fraction of
users that are shared (306) by N, (302) and N, (304). In this
non-limiting example embodiment, both sets N, (302) and
N, (304) are assumed to have the same cardinality (N,=N,).
The scale of the Laplacian noise applied in this exemplary
embodiment is fixed at e=In(3), where the scale of the
Laplacian noise is equal to b=1/e. FIG. 11 shows a data plot
obtained from the experiment implemented using this
example embodiment. The contours 1102, 1104, 1106, and
1108 shown in the plot in FIG. 11 show a constant standard
error of 2% for different intersection sizes 306. The contour
1102 shows the threshold of 2% constant error when the
overlapping region N , (306) is 5% of the size of the first set
of user identifiers N, (302). The contour 1104 shows the
threshold of 2% constant error when the overlapping region
N, (306) is 10% of the size of the first set of user identifiers
N, (302). The contour 1106 shows the threshold of 2%
constant error when the overlapping region N, (306) is 20%
of the size of the first set of user identifiers N, (302). The
contour 1108 shows the threshold of 2% constant error when
the overlapping region N, (306) is 30% of the size of the
first set of user identifiers N, (302).

[0116] The data from this non-limiting example embodi-
ment illustrated in FIG. 11 shows that increasing the inter-
section size between sets N, (302) and N, (304) increases
the error for the same size N, (302) and interaction vector
size k. The data illustrated in FIG. 11 also shows that the
optimal vector size is almost invariant under increasing the
intersection fraction (306). This means, with respect to this
example embodiment, that each data processing system 104
and 106 can choose the optimal values of k for their value
of N without impacting the accuracy of the estimation in a
significant way.
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[0117] In another non-limiting exemplary embodiment for
implementing and testing various architectures, which does
not limit the scope of the invention, the accuracy of the
implementation is tested while varying scale of the Lapla-
cian noise (b=1/¢). In the example embodiment described
herein, both user identifier sets N, (302) and N, (304) have
the same cardinality (N;=N,). The intersection of both sets
(306) is fixed at one tenth of the size of N,. FIG. 12 shows
a data plot obtained from the experiment implemented using
this example embodiment. The contours 1102, 1104, 1106,
and 1108 shown in the plot in FIG. 11 show a constant
standard error of 2% for different values of &. The contour
1202 shows the threshold of 2% constant error when e=21n
(3). The contour 1204 shows the threshold of 2% constant
error when e=sqrt(2)In(3). The contour 1206 shows the
threshold of 2% constant error when e=In(3). The contour
1208 shows the threshold of 2% constant error when e=(1/
sqrt(2)In(3). The contour 1210 shows the threshold of 2%
constant error when e=(%2)In(3).

[0118] The data from this non-limiting example embodi-
ment illustrated in FIG. 12 shows that the lower bound on
vector size k to ensure accuracy has almost no dependence
on noise scale. This means, with respect to this example
embodiment, that the data processing systems 104 and 106
can choose the lower bound of the vector size k without
regard to their chosen noise scale. The data in FIG. 12 also
indicates that the optimal vector size k decreases signifi-
cantly with increasing error scale.

1. A method for estimating the number of unique user
interactions with a set of content items provided by different
content delivery platforms comprising:

transmitting, via a network, a set of hash functions to a

first content delivery platform;

transmitting, via a network, the set of hash functions to a

second content delivery platform;
receiving, via a network, a first vector from the first
content delivery platform, each coordinate of the first
vector being equal to a sum based on a plurality of
hashes, with each hash calculated from one of a plu-
rality of user interactions with the set of content items
occurring via the first content delivery platform;

receiving, via a network, a second vector from the second
content delivery platform, each coordinate of the sec-
ond vector being equal to a sum based on a plurality of
hashes, with each hash calculated from one of a plu-
rality of user interactions with the set of content items
occurring via the second content delivery platform;

estimating a number of user interactions with the set of
content items occurring via the first content delivery
platform based on a sum of the elements of the first
vector;

estimating a number of user interactions with the set of

content items occurring via the second content delivery
platform based on a sum of the elements of the second
vector; and

estimating a number of unique user interactions with the

set of content items provided by both the first content
delivery platform and the second content delivery plat-
form based on the number of user interactions with the
set of content items occurring via the first content
delivery platform, the number of user interactions with
the set of content items occurring via the second
content delivery platform, the first vector, and the
second vector.
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2. The method of claim 1, wherein receiving the first
vector from the first content delivery platform includes
receiving the number of user interactions occurring via the
first content delivery platform.

3. The method of claim 1, wherein receiving the second
vector from the second content delivery platform includes
receiving the number of user interactions occurring via the
second content delivery platform.

4. The method of claim 1, wherein receiving the first
vector from the first content delivery platform comprises
receiving a first plurality of vectors from the first content
delivery platform, wherein each of the first plurality of
vectors corresponds to one hash in the set of hash functions.

5. The method of claim 4, wherein receiving the second
vector from the second content delivery platform comprises
receiving a second plurality of vectors from the second
content delivery platform, wherein each of the second plu-
rality of vectors corresponds to one hash in the set of hash
functions.

6. The method of claim 5, wherein estimating the number
of' unique user interactions is based on the average of the dot
product of each vector in the first and second plurality of
vectors.

7. The method of claim 1, wherein estimating the number
of user interactions with the set of content items occurring
via the first content delivery platform is based on the sum of
each coordinate of the first vector.

8. The method of claim 1, wherein estimating the number
of user interactions with the set of content items occurring
via the second content delivery platform is based on the sum
of each coordinate of the second vector.

9. The method of claim 1, wherein estimating the number
of unique user interactions with the set of content items
occurring via the first and second content delivery platforms
is based on determining a covariance between the first vector
and the second vector.

10. The method of claim 1, wherein estimating the num-
ber of unique user interactions comprises subtracting the dot
product of the first vector and the second vector from the
sum of the number of user interactions with occurring via the
first content delivery platform and the number of user
interactions occurring via the second content delivery plat-
form.

11. A system comprising one or more processors, the
processors configured to:

transmit, via a network, a set of hash functions to a first
content delivery platform;

transmit, via a network, the set of hash functions to a
second content delivery platform;

receive, via a network, a first vector from the first content
delivery platform, each coordinate of the first vector
being equal to a sum based on a plurality of hashes,
with each hash calculated from one of a plurality of
user interactions with the set of content items occurring
via the first content delivery platform;

receive, via a network, a second vector from the second
content delivery platform, each coordinate of the sec-
ond vector being equal to a sum based on a plurality of
hashes, with each hash calculated from one of a plu-
rality of user interactions with the set of content items
occurring via the second content delivery platform;



US 2021/0004481 Al

estimate a number of user interactions with the set of
content items occurring via the first content delivery
platform based on a sum of the elements of the first
vector;

estimate a number of user interactions with the set of

content items occurring via the second content delivery
platform based on a sum of the elements of the second
vector; and

estimate a number of unique user interactions with the set

of content items provided by both the first content
delivery platform and the second content delivery plat-
form based on the number of user interactions with the
set of content items occurring via the first content
delivery platform, the number of user interactions with
the set of content items occurring via the second
content delivery platform, the first vector, and the
second vector.

12. The system of claim 11, wherein the one or more
processors are configured to: receive the first vector from the
first content delivery platform, and receive the number of
user interactions occurring via the first content delivery
platform.

13. The system of claim 11, wherein the one or more
processors are configured to: receive the second vector from
the second content delivery platform, and receive the num-
ber of user interactions occurring via the second content
delivery platform.

14. The system of claim 11, wherein the one or more
processors are configured to: receive a first plurality of
vectors from the first content delivery platform, wherein
each of the first plurality of vectors corresponds to one hash
in the set of hash functions.
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15. The system of claim 14, wherein the one or more
processors are configured to: receive a second plurality of
vectors from the second content delivery platform, wherein
each of the second plurality of vectors corresponds to one
hash in the set of hash functions.

16. The system of claim 15, wherein the one or more
processors are configured to: estimate the number of unique
user interactions based on the average of the dot product of
each vector in the first and second plurality of vectors.

17. The system of claim 11, wherein the one or more
processors are configured to: estimate the number of user
interactions with the set of content items occurring via the
first content delivery platform based on the sum of each
coordinate of the first vector.

18. The system of claim 11, wherein the one or more
processors are configured to: estimate the number of user
interactions with the set of content items occurring via the
second content delivery platform based on the sum of each
coordinate of the second vector.

19. The system of claim 11, wherein the one or more
processors are configured to: estimate the number of unique
user interactions with the set of content items occurring via
the first and second content delivery platforms based on a
covariance between the first vector and the second vector.

20. The system of claim 11, wherein the one or more
processors are configured to: estimate the number of unique
user interactions based on subtracting the dot product of the
first vector and the second vector from the sum of the
number of user interactions occurring via the first content
delivery platform and the number of user interactions occur-
ring via the second content delivery platform.
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