发明名称
电极化材料及其在锂离子电池阳极中的用途

摘要
本发明涉及一种新型电极化材料，其包括一个石墨碳相 C 和一个（半）金属相和（或）（半金属）氧化物相（WOₓ相）；还涉及所述电极化材料用于锂离子电池的阳极的用途。本发明还涉及制备所述材料的方法，所述的电极化材料包括：a) 碳相 C；b) 至少一个 WOₓ相，其中 M 表示金属或半金属，x 代表 0 至 < k/2 的一个数，k 表示金属或半金属的最高化合价；在本发明的电极化材料中，所述碳相 C 和 WOₓ相基本上形成共连续的相区域，且相同相的两个相邻区域之间的平均距离等于（amounting）10nm，特别是 5nm 且更特别地 2nm。
1. 一种电活化材料，其包括：
 a) 碳相 C；
 b) 至少一个 Moₓ 相，其中 M 为金属或半金属，x 为 0 至 ≤ k/2，其中 k 为所述金属或半金属的最高化合价；
 其中所述碳相 C 和所述 Moₓ 相形成共连续的相区域，且相同相的两个相邻区域之间的平均距离不大于 10nm。
2. 根据权利要求 1 的电活化材料，其中 M 选自 B, Al, Si, Ti, Zr, Sn, Sb 及其混合物。
3. 根据权利要求 1 的电活化材料，其中基于 M 的总量计，至少 90mol% 的 M 为 Si。
4. 根据权利要求 1 的电活化材料，其中 x 在 0 至 2 的范围内。
5. 根据权利要求 1-4 之一的电活化材料，其中碳相 C 中的氢与碳的摩尔比不大于 0.5。
6. 根据权利要求 1-4 之一的电活化材料，其中半金属或金属 M 与碳相 C 的摩尔比在 1:30 至 1:1 范围内。
7. 根据权利要求 1-4 之一的电活化材料，其中碳相和 Moₓ 相形成共连续的相区域的部位构成至少 80% 的电活化材料。
8. 根据权利要求 1 的电活化材料，其可由包括以下步骤的方法得到：
 i) 在非水聚合介质中聚合至少一种式 1 的单体

 \[
 R^1-\overset{\text{R}}{\text{M}}\overset{\text{O}}{\text{X}}\overset{\text{R}'}{\text{R}''}
 \]

 其中
 M 为金属或半金属；
 R¹, R² 可相同或不同，且各自为基团 Ar–C(R³, R⁴)–，其中 Ar 为芳环或杂芳环，可选地具有一个或两个选自卤素、CN, C₁₋₆ 烷基, C₁₋₆ 烷氧基和苯基的取代基，并且 R³, R⁴ 各自彼此独立地为氢或甲基，或 R³, R⁴ 一起代表一个氧原子或一个甲叉基基团（=CH₂），
 或基团 R₀₀ 和 R₂Q 形成式 A 的基团

 ![Diagram](image)

 其中 A 为与双键稠合的芳环或杂芳环，m 为 0, 1 或 2，基团 R 可相同或不同并选自卤素、
 CN, C₁₋₆ 烷基, C₁₋₆ 烷氧基和苯基，并且 R³, R⁴ 如上定义，# 代表连接 M 的键，
 Q 为 O, S 或 NH；
 q 对应于 M 的化合价为 0, 1 或 2，
 X, Y 可相同或不同，且各自为 O, S, NH 或一个化学键，
 R¹, R² 可相同或不同，且各自为 C₁₋₆ 烷基, C₁₋₆ 烷氧基, 芳基或基团 Ar’–C(R³, R⁴)–，
 其中 Ar’ 具有对于 Ar 给出的含义，R³, R⁴ 具有对于 R³, R⁴ 给出的含义，或 R³, R⁴ 与 X 和 Y
 一起形成如上定义的式 A 的基团。
9. 根据权利要求8的电活化材料，其中式I的单体包括至少一种式II的单体:

其中
M为金属或半金属；
A和A’各自为与双键稠合的芳环或杂芳环；
m和n各自彼此独立地为0、1或2；
Q和Q’相同或不同，且各自彼此独立地为0、5或NH；
R和R’相同或不同，且独立地选自卤素、CN、C1-C6烷基、C1-C6烷氧基和苯基；且
R\(^{a}\)、R\(^{b}\)、R\(^{c}\)、R\(^{d}\)独立地选自氢和甲基，或R\(^{e}\)和R\(^{f}\)和/或R\(^{g}\)和R\(^{h}\)各自一起代表一个氧原子。

10. 根据权利要求8或9的电活化材料，其中所述煅烧在400至1500℃范围内的温度下在反应区域的氧气分压不超过20mbar的条件下进行。

11. 一种制备电活化材料的方法，其包括以下步骤：
i) 在非水聚合介质中聚合至少一种如权利要求8所定义的式I的单体；以及
ii) 在反应区域的氧气分压不超过20mbar的条件下煅烧生成的聚合物。

12. 根据权利要求11的方法，其中所述式I的单体包括至少一种如权利要求9所定义的式II的单体。

13. 根据权利要求11或12的方法，其中所述煅烧在400至1500℃范围内的温度下在反应区域的氧气分压不超过20mbar的条件下进行。

14. 根据权利要求1至10之一的电活化材料在锂离子电池的阴极中的用途。
15. 一种锂离子电池的阴极，其包括至少一种根据权利要求1至10之一的电活化材料。
16. 一种包括至少一个根据权利要求15的阴极的锂离子电池。
电活化材料及其在锂离子电池阳极中的用途

[0001] 本发明涉及一种新型电活化材料，其包括石墨碳相 C 和 (半) 金属相和 / 或 (半金属) 氧化物相 (WOx 相)，并涉及该电活化材料在锂离子电池阳极中的用途。本发明进一步涉及制备这类材料的方法。

[0002] 在日益移动的生活中，便携式电器扮演着越来越重要的角色。因此，电池——特别是可再充电电池（称之为二次电池或者蓄电池）——多年来已应用于几乎生活的各个方面。目前二次电池在其性能和机械性能方面必须满足复杂的需求。因此，电子工业正需要新型、小型、质量二次电池和电池组，其具有高容量和高循环稳定性以获得较长的寿命。此外，温度敏感性和自放电速率应当较低以确保较高可靠性和效率。同时在使用中还需要具有高度安全性。具有这些特性的锂离子二次电池组也特别有益于汽车领域，并且例如可再将来用作电动车或者混合动力车中的能量存储器。此外，本文还需要具有有利动性能的电池以能够获得高电流密度。在新型电池体系发展中，能够以廉价的方式制备可再充电电池也具有特殊的意义。环境问题在新型电池体系的发展中也扮演着越来越多的角色。

[0003] 现代高能锂离子电池的阳极目前通常包括石墨，但也可基于金属锂、锂合金或锂——金属氧化物。最近几年已发现锂——铝氧化物可用于构建现代锂离子电池的阳极。锂电池组中的两个极用液体或固体电解质彼此连接。在锂电池组的 (再) 充电过程中，阳极材料被氧化 (例如根据方程式 LiCoO2 → n Li+ + n e− + n Co2+ + n LiCl)。以此方式，锂从阳极材料中释放并锂离子的形式迁移至阳极，在阳极锂离子随阳极材料还原而被束缚于阳极，在石墨的情况下，伴随着石墨的还原，以锂离子的形式插入阳极中。此时，锂占据石墨结构层间的位置。在电池放电时，束缚于阳极的锂以锂离子的形式从阳极释放出来并生成阳极材料的氧化。锂离子通过电解质迁移至阳极并伴随着阳极材料的还原而被束缚于阴极。在电池的放电和再充电过程中，锂离子都会迁移透过隔膜。

[0004] 然而，在 Li 离子电池中使用石墨的一个明显缺点是相对较低的比容量，其理论上限为 0.372Ah/g。除了石墨以外的类石墨碳材料，例如碳黑，诸如乙炔黑、灯黑、炉法炭黑、火焰黑、裂化炭、槽炭炭黑或热裂炭黑，以及有光碳或硬碳，也有类似的特点。此外，这类阳极材料在安全性方面也是没有问题的。

[0005] 当使用例如 Li4Si、LiPb、LiSn、LiAl 或 LiSb 合金的锂合金时可获得更高的比容量。在这种情况下，可能有高达 10 倍于石墨充电容量的充电容量（Li4Si 合金，参见 R.A. Huggins, Proceedings of the Electrochemical society 87-1, 1987, 356–64 页）。该种合金的一个明显缺点是在充电 / 放电过程中所经历的尺寸变化，该变化导致阳极材料的分解。由此引起的阳极材料比表面积的增加由于阳极材料与电解质的不可逆反应而引起的容量降低和电池对热的敏感度增加，在极端情况下其不可致电池的强放热破坏从而产生安全隐患。

[0006] 出于安全原因使用锂作为电极材料是有问题的。特别是，在充电过程中的锂沉积导致阳极材料上锂枝晶的形成。其可导致电池短路并可以此方式造成电池的无控制的破坏。

属，尤其是硅。该化合物通过包含金属或半金属和烃基的聚合物的热解而制备，例如在含硅嵌入化合物的情况下通过聚硅氧烷的热解而制备。热解需要剧烈的条件，在该条件下初始聚合物首先分解，随后形成碳和（半）金属和/或（半）金属氧化物区域。这类材料的制备通常导致较差的可重现性，可能是由于所述区域结构因高能输入而不可能或难以控制。

[0009] US2002/0164479 描述了一种作为 Li 离子二次电池的阳极材料的颗粒状含碳材料，其中该含碳材料的颗粒包括石墨颗粒，其表面上有多个包覆有一层无定形碳层的“复合颗粒”。所述复合颗粒依次由颗粒状结晶硅酸，硅酸盐和碳壳组成。该复合颗粒的直径在 50nm 至 2 μm 范围内，所述石墨颗粒的直径在 2 至 70 μm 范围内。为了制备所述材料，首先通过还原酸性物质、硅酸盐和导电碳黑的混合物的碳化制备复合颗粒，随后将这些物质与颗粒状石墨和另外的酚醛树脂混合并碳化。尤其因为双重碳化，这些材料的制备相对复杂并导致可重现性较差的结果。

[0010] US2004/0115535 描述了一种作为 Li 离子二次电池的阳极材料的颗粒状碳材料，其中尺寸小于 100nm 的硅颗粒和 SiO₂ 颗粒分布于连续的碳相的颗粒中。为了制备该材料，将 SiO₂ 颗粒 (0.8 ≤ x ≤ 1.5)、碳颗粒和可碳化物质的混合物在高温下碳化。SiO₂ 颗粒的使用使该方法复杂化。

[0013] 总之，可以说迄今为现有技术已知的基于碳或基于铝合金的阳极材料并就容量、充电/放电动力学和/或循环稳定性（例如多个充电/放电循环后容量的降低和/或高电阻或电阻的增加）而言是不令人满意的。为解决这些问题而最近提出的具有颗粒状半金属或金属相和一种或多种碳相的复合材料只能部分地解决这些问题，且此类复合材料的性质通常是不可重现的。此外，这些材料的制备通常太过复杂以至于经济使用是不能的。

[0014] 本发明的一个目的是提供一种电活化材料，其适于作为 Li 离子电池——特别是 Li 离子二次电池——的阳极材料，并且克服了现有技术的缺点。特别地，所述电活化材料应具有至少一种，尤其是多于一种的以下特性：

[0015] - 高比容量，
[0016] - 高循环稳定性，
说明 书

[0017] - 低自发性电，
[0018] - 良好的机械稳定性。
[0019] 此外，该物质应能够经济地并且尤其是品质可重现地制备。
[0020] 已发现这些目的通过具有以下特性的电活化材料而令人惊讶地实现。所述电活化材料包括：
[0021] a) 碳相 C；
[0022] b) 至少一个 M0x 相，其中 M 是金属或半金属，x 为 0 至 k/2，其中 k 是金属或半金属的最高化合价。
[0023] 在本发明的电活化材料中，所述的碳相 C 和 M0x 相实质上形成其连续的相区域，并且相同相的两个相邻区域之间的平均距离不大于 10nm、特别是不大于 5nm、尤其是不大于 2nm。
[0024] 因此本发明提供了一种电活化材料，其具有在上述以及以下指出的特性。
[0025] 由于其组成和碳相 C 与 M0x 相的特定排列，本发明的材料特别适于作为 Li 离子电池——特别是 Li 离子二次电池或电池组——的阳极的电活化材料。特别地，当用于 Li 离子电池，尤其是 Li 离子二次电池，的阳极时，其具有高容量和良好的循环稳定性并确保了电池的低阻抗。此外，其还具有高机械稳定性，可能是由于所述共连续相的排列。另外，其还可简单并品质可重现地制备。
[0026] 因此本发明还提供了电活化材料用于锂离子电池（特别是锂离子二次电池）的阳极的用途，并提供了一种包含本发明的电活化材料的锂离子电池（特别是锂离子二次电池）的阳极，以及一种具有至少一个包含本发明的电活化材料的阳极的锂离子电池（特别是锂离子二次电池）。
[0027] 本发明的物质可以特别简单的方式通过双重聚合方法后再进行碳化来制备，而不需要纳米颗粒的复杂功能化或多层碳化。因此本发明还提供了制备所述电活化材料的方法。
[0028] 根据本发明，电活化材料包括一个碳相 C。在这一相中，碳主要以元素的形式存在，即该相中除了碳以外的原子例如 N、O、S、P 和 F 或 H 的比例少于 10 重量 %，特别是少于 5 重量 %，基于该相中碳的总量计。该相中除了碳以外的原子的含量可由 X-射线光电子能谱确定。由于制备方法的原因，除了碳之外，该碳相可特别地包括少量氯、氧和氟或氢。氢与碳的摩尔比通常不超过 1:2 的一个值，特别是 1:3 的一个值，尤其是 1:4 的一个值。该数值还可为 0 或几乎为 0，例如 ≤ 0.1。
[0029] 在碳相 C 中，碳可能主要以石墨或无定形的形式存在，正如可从特征键能（284.5eV）和 ESCA 研究中的特征不对称信号形状推断出的。就本发明而言，石墨形式的碳表示碳至少部分地以石墨典型的六角层堆叠存在，且所述的层还可弯曲或分层。
[0030] 根据本发明，所述的电活化材料包括具有化学计量 M0x 的相，即基本上由以氧化和 / 或元素形式存在的金属或半金属 M 组成的相。因此以下还将该相称为 M0x 相。一般而言，所述金属或半金属 M 选自可与锂形成合金的金属和这些金属的混合物。实例有元素周期表的第 3 主族中的金属和半金属（IUPAC 表中的族 3），特别是铝；元素周期表的第 4 主族中的半金属和金属（IUPAC 表中的族 14），特别是硅和锡；元素周期表的第 4 族过渡族中的金属（IUPAC 表中的族 4），特别是锆和钛；和元素周期表的第 5 主族中的半金属（IUPAC 表中的族
15），特别是锑。其中，优选硅和钛。具体地，在MoO₃相中这些金属构成了除了氧以外的原子的90重量%。具体地，MoO₃相中的原子M的至少90mol%，特别是至少95mol%为硅原子。除了金属或半金属之外，MoO₃相可包括氧，且氧原子的最大可能量由金属或半金属的最高化卖合价确定。因此，x的数值不大于金属或半金属的化合价的一半，即不多于 k/2。如果存在的话，氧优选以亚化学计量存在，即x的数值少于k/2，特别是不多于k/4。优选x为0至2，特别是0至1。

【0031】在本发明的电活化材料中，(半)金属原子M与碳原子C的摩尔比——即摩尔比M:C——可在较宽范围内变化，并优选在1:30至2:1的范围内，特别是在1:16至1:1的范围内。

【0033】在本发明的电活化材料中，碳相和MoO₃相实质上形成共连续的相区域的部位构成了电活化材料的至少80体积%。特别是90体积%。

【0034】在本发明的电活化材料中，相邻相边界间的距离或相邻的相同相区域间的距离较小且平均不多于10nm，特别是不多于5nm，尤其是不多于2nm。对本发明而言，相邻的相同相间的距离为，例如，两个被碳相C区域彼此分隔的MoO₃相区域间的距离，或两个被MoO₃相区域彼此分隔的碳相C区域间的距离。相邻的相同相区域间的平均距离可由小角X射线散射(SAXS)（20℃下透射测量，单色CuKα，辐射，2D探测器(图像板)，狭缝检测）中的散射矢量q确定。

【0035】相区域的尺寸及其相邻相边界间的距离和相的排列也可由电子透射显微镜，特别是借助HAADF-STEM技术(HAADF-STEM，高角环形暗场扫描电子显微镜)确定。在该成像技术中，较重的元素(例如Si与C相比)比较轻的元素呈现的颜色更明显。同样观察到人工制剂，因为较紧密的制剂区域比不太密集的区域呈现的颜色更明显。

【0036】本发明的电活化材料由以下方法制备，其包括在第一步中的双重聚合和在第二步中碳化(即在基本或完全不含氧的条件下煅烧)在双重聚合中得到的有机聚合物。

【0037】为了本发明目的，双重聚合是以下单体的聚合，其

【0038】—包括含有形成氧化物的金属或半金属的第一单体单元且

【0039】—包括通过一个或多个化学键，特别是通过一个或多个共价键连

【0040】接于第一单体单元的第二有机单体单元。

【0041】对双重聚合的聚合条件进行选择，以使得在单体聚合中第一单体单元和第二单体单元同步地聚合，其中第一单体单元形成包括金属或半金属的——通常为氧化的——第一聚合材料，同时第二单体单元形成由第二单体单元组成的有机聚合物。术语“同步地”不是
必须表示第一单体单元和第二单体单元的聚合在相同速率下进行。更准确地说，“同步地”表示第一单体单元和第二单体单元的聚合为动力学偶合并且可由相同聚合条件引发。

在聚合条件下，发生部分或完全的相分离，分成由第一聚合材料形成的第一相和由第二单体单元组成的有机聚合物（第二聚合材料）形成的第二相。以此方式，获得由第一聚合材料和第二聚合材料组成的复合材料。同步聚合导致形成第一聚合材料和第二聚合材料的极小的相区域，其尺寸在分子范围内，其中第一聚合材料的相区域和第二聚合材料的相区域具有共连续排列。相邻相边界间的距离或相邻的不同相区域间的极小且平均不大于 10nm，特别是不小于 5nm，特别是不小于 2nm。各相没有肉眼可见地分离形成不连续区域。令人吃惊地，相区域的共连续排列以及相区域的小尺寸在随后的擦拭中同样地保留了下来。

适宜双重聚合的单体为现有技术已知或可由类似于其中记载的方法制备。在这一点上，可通过实例参考在开端引用的文献以及以下参考文献：

- silylenol ethers (Chem. Ber. 119, 3394 (1986); J. Organomet. Chem. 244, 381 (1981); JACS112, 6965 (1990))
- cyclostannanes (J. Organomet. Chem. 1, 328 (1963))
- cyclozirconates (JACS82, 3495 (1960))

适宜制备本发明材料的单体可特别地用通式 I 描述：

![结构式I](image)

其中

M 是金属或半金属，特别是元素周期表的 2、3、14 或 15 族的金属或半金属，其优选地选自 B、Al、Si、Ti、Zr、Hf、Ge、Sn、Pb、As、Sb 和 Bi，特别是选自 B、Al、Si、Ti、Zr、Sn 和 Sb，其中 M 特别优选 Si；
[0054] R¹, R² 可相同或不同且各自为基团 Ar→C(R¹, R²)→, 其中 Ar 为芳基或杂芳基, 其可选地具有 1 或 2 个选自以下取代基:卤素、CN、C₁-C₆ 烷基、C₁-C₆ 烷氧基和苯基, 并且 R¹、R² 彼此独立地为氢或甲基, 或一起为一个氧原子或一个甲基基团(=CH₂)。

[0055] 或基团 R¹ 和 R² 与氧原子或与它们连接的基团 Q 形成式 A 的基团

[0056] 其中 # 表示连接 M 的键, A 为与双键配对的芳环或杂芳环, m 为 0、1 或 2, 基团 R 可相同或不同并选自卤素、CN、C₁-C₆ 烷基、C₁-C₆ 烷氧基和苯基, 并且 R¹、R² 如以上定义,

[0057] X、Y 可相同或不同并各自为氧、硫、NH 或化学键,

[0058] q 对应于 M 的化合价为 0、1 或 2,

[0059] Q 为氧, 硫, 或 NH, 特别是氧;

[0060] R¹’、R²’ 可相同或不同且各自为 C₁-C₆ 烷基、C₁-C₆ 烷氧基、芳基或基团 Ar¹ →C(R¹’, R²’)→, 其中 Ar¹ 具有对于 Ar 给出的含义, R¹’、R²’ 具有对于 R¹、R² 给出的含义或在 q=1 的情况下 R¹’、R²’ 与 X 和 Y 一起可形成如上定义的式 A 的基团。

[0061] 还适于制备本发明物质的是式 I 的单体, 其中 M、R¹’、R²’、Q、q、Y 和 R²’ 如上定义, 基团 R²’ 是下式的基团:

[0062] 其中 q、R¹’、R²’、X 和 Q 如上定义, X’’ 为 Q 指定的含义之一并且是氧, # 代表连接 M 的键。其中, 优选其中的 M、R¹’、R²’、Q、q、Y 和 R²’ 具有作为优选表示的含义的单体, 特别是其中的基团 R¹’Q 和 R²’G 一起形成式 A 的基团的单体。

[0063] 因此, 本发明还提供了一种利用具有以下性质的电活化材料的方法

[0064] a）如上定义的碳相 C;

[0065] b）至少一个如上定义的 W-O 相, 其中 M 是金属或半金属, 特别是 B、Al、Si、Ti、Zr、Sn 或 Sb, 且尤其为 Si, x 为 0 至 k/2, 特别是 0 至 2, 尤其为 0 至 1, 其中 k 为金属或半金属的最高化合价;

[0066] 其中所述方法包括以下步骤:

[0067] i）在非水聚合介质中聚合至少一种如上定义式 I 的单体和

[0068] ii）在基本不含氧的条件下煅烧生成的聚合物。

[0069] 因此, 本发明还提供了一种包括以下性质的电活化材料

[0070] a）如上定义的碳相 C;

[0071] b）至少一个如上定义的 W-O 相, 其中 M 是金属或半金属, 特别是 B、Al、Si、Ti、Zr、Sn 或 Sb, 且尤其为 Si, x 为 0 至 k/2, 特别是 0 至 2, 尤其为 0 至 1, 其中 k 为金属或半
金属的最高化合价；

【0074】并且可由本发明的方法获得。

【0075】为了本发明目的，芳基为碳环芳香烃基例如苯基或萘基。

【0076】为了本发明目的，杂芳基为通常具有5或6个环原子的杂环芳基，其中所述环原子之一为选自氮、氧和硫的杂原子，且可选地1或2个其他环原子为氢原子而其余的环原子为碳。杂芳基的实例有呋喃基、噁唑基、吡唑基、吲哚基、咪唑基、噻唑基、异噻唑基、吡啶基和噻嗪基。

【0077】为了本发明目的，稠合的芳基或芳环为碳环芳香族二价烃基例如o-亚苯基(苯并)或1,2-亚萘基(萘并)。

【0078】为了本发明目的，稠合杂芳基或杂芳环如上定义的杂环芳基，其中两个相邻碳原子形成式A或式II和III中所示的双键。

【0079】在式I的单体的第一个实施方案中，组R0和R0共同形成如上定义的式A的基团，特别是式Aa的基团：

【0080】

【0081】其中#、m、Q、R、R’和R”如上定义。在式A和Aa中，变量m特别地为0。Q特别地为氧。当m为1或2时，R特别地为甲基或甲氧基。在式A和Aa中，R’和R”特别地为氢。

【0082】在第一个实施方案的单体中特别优选式I的单体，其中q=1且基团X-R’和Y-R”共同形成式A的基团，特别是式Aa的基团。该单体可用下式II和IIa描述：

【0083】

【0084】

【0085】在第一个实施方案的单体中还优选式I的单体，其中q为0或1且基团X-R’为式A’或Aa’的基团：

【0086】
其中 m, A, R^b, R^c, G, Q, X', Y, R^2 和 q 具有上述含义，特别是具有作为优选表示的含义。

这类单体可用下式 II' 和 IIa' 描述：

在式 II 和 II' 中，可变方案具有以下含义：

M 为金属或半金属，优选元素周期表的第 3 或第 4 主族或第 4 或第 5 过渡族的金属或半金属，特别是 B, Al, Si, Ti, Zr, Hf, Ge, Sn, Pb, V, As, Sb 或 Bi，特别优选 Si, Ti, Zr 或 Sn，尤其是 Si；

A, A' 各自彼此独立地为与双键偶合的芳环或杂芳环；

m, n 各自彼此独立地为 0, 1 或 2, 特别是 0；

Q, Q' 各自彼此独立地为 O, S 或 NH, 特别是 O 或 NH 并且尤其是 0；

R, R' 独立地选自卤素、CN, C_{1-6} 烷基、C_{1-6} 烷氧基和苯基，特别是甲基或甲氧基；

R^a, R^b, R^c, R^d 独立地选自氢和甲基或 R^e 和 R^f 和 / 或 R^g 和 R^h 各自一起代表一个氧原子或 -CH_2；特别地，R^a, R^b, R^c, R^d 各自为氢；

L 为基团 (Y-R^2)^q, 其中 Y, R^2 和 q 如上定义，特别是 q 为 0；且

X' 具有 Q 指定的含义之一，特别是氧。

在式 IIa 中，变化方案具有以下含义：

M 为金属或半金属，优选元素周期表的第 3 或第 4 主族或第 4 或第 5 过渡族的金属或半金属，特别是 B, Al, Si, Ti, Zr, Hf, Ge, Sn, Pb, V, As, Sb 或 Bi，特别优选 Si, Ti, Zr 或 Sn，尤其是 Si；

m, n 各自彼此独立地为 0, 1 或 2, 特别是 0；

Q, Q' 各自彼此独立地为 O, S 或 NH, 特别是 O 或 NH, 尤其是 0; R, R' 独立地选自卤素、CN, C_{1-6} 烷基、C_{1-6} 烷氧基和苯基，特别是甲基或甲氧基；

R^a, R^b, R^c, R^d 独立地选自氢和甲基或 R^e 和 R^f 和 / 或 R^g 和 R^h 各自一起代表一个
氧原子或 -CH₃ ; 特别地, R⁺、R⁻、R⁺⁻、R⁻⁻ 各自为氢 ;

[0104] L 为基团 (Y-R⁻)ₜ, 其中 Y、R⁻⁻ 和 q 如上定义, q 特别是 0。

[0105] 式 II 或 IIa 的单体的一个实例是 2,2'-螺二 [4H-1,3,2-苯并二氧杂环丁烷] (式 IIa 的化合物, 其中 M=Si,m=n=0,G=0,R⁺⁺=R⁻⁻=R⁺⁻=R⁻⁻= 氢)。这类单体已知于较早的国际专利文件 W02009/083082 和 PCT/EP2008/010169；W02009/083083 中, 或可由其中记载的方法制备。单体 IIa 的另一个另外实例是 2,2'-螺二 [4H-1,3,2-苯并二氧杂环丁烷] (Bull. Chem. Soc. Jap. 51 (1978) 524); (式 IIa) 的化合物, 其中 M=B,m=n=0,G=0,R⁺⁺=R⁻⁻=R⁺⁻= 氢。单体 IIa' 的另一个实例是 2,2'-螺二 [4H-1,3,2-苯并二氧杂环丁烷 -2' 基)氧化物 (式 IIa' 的化合物, 其中 M=B,m=n=0,L 不存在 (q=0),G=0,R⁺⁺=R⁻⁻=R⁺⁻= 氢) ; Bull. Chem. Soc. Jap. 51 (1978) 524)。

[0106] 在单体 II 和 IIa 中, 单元 MQQ' 或 MO₂ 形成可聚合单元 A, 而单体 II 或 IIa 的其余部分——即 A 或 Aa 的基团减去原子 Q 或 Q' (或在 Aa 中减去氧原子)——形成可聚合基团 B。

[0107] 在第一个实施方案的单体中还优选式 I 的单体, 其中基团 X-R⁺⁺ 和 Y-R⁻⁻ 相同或不同并选自 C₁-C₅ 烷基、C₅-C₁₀ 烷氧基和芳基 (例如苯基), 即 X 和 Y 代表化学键。该单体可用下式 III 和 IIIa 描述:

[0108]

[0109] 在式 III 中, 变化方案具有以下含义:

[0110] M 为金属或半金属, 优选元素周期表的第 3 或第 4 主族或第 4 或第 5 过渡族的金属或半金属, 特别是 B, Al, Si, Ti, Zr, Hf, Ge, Sn, Pb, V, As, Sb 或 Bi, 特别优选 Si, Ti, Zr 或 Sn, 尤其是 Si;

[0111] A 为与双键配位的芳环或杂芳环;

[0112] m 为 0, 1 或 2, 特别是 0;

[0113] q 对应于 M 的化合价和电荷, 为 0, 1 或 2;

[0114] Q 为 0, S 或 NH, 特别是 0 或 NH, 尤其是 0;

[0115] 基团 R 独立地选自卤素、CN、C₁⁻⁻--;
q 对应于 M 的化合价和电荷，为 0、1 或 2；
Q 为 0、S 或 NH，特别是 0 或 NH，尤其是 0；
基团 R 独立地选自卤素、CN、C1-C6 烷基、C1-C6 烷氧基和苯基，并特别地各为甲基或甲氧基；
R'、R" 独立地选自氢和甲基或一起代表一个氧原子或 =CH2，并特别地各为氢；
R'、R" 相同或不同，选自 C1-C6 烷基、C3-C6 环烷基和芳基，特别是甲基。
式 III 或 IIIa 的单体的实例是 2-二甲基-4H-1,3-苯并二氧杂硅烷（式 IIIa 的化合物，其中 M=Si, q=1, m=0, G=0, R'=R"= 氢, R'=R"= 甲基), 2-二甲基-4H-1,3,2-苯并噻唑硅烷（式 IIIa 的化合物，其中 M=Si, q=1, m=0, G=NH, R'=R"= 氢, R'=R"= 甲基), 2-二甲基-4-氧化代-1,3,2-苯并二氧杂硅烷（式 IIIa 的化合物，其中 M=Si, q=1, m=0, G=O, R'+R"=0, R'=R"= 甲基) 和 2,2'-二甲基-4-氧化代-1,3,2-苯并噻唑硅烷（式 IIIa 的化合物，其中 M=Si, q=1, m=0, G=OH, R'+R"=0, R'=R"= 甲基)。该单体已知于例如 Wieber 等人，Journal of Organometallic Chemistry, 1963, 93, 94 中。单体 IIIa 的其它实例有 2-二甲基 [4H-1,3,2-苯并二氧杂硅烷] (J. Organomet. Chem. 71(1974)225); 2-二甲基 [4H-1,3,2-苯并二氧杂硅烷] (Bull. Soc. Chim. Belg. 97(1988)873); 2-二甲基 [4-亚甲基-1,3,2-苯并二氧杂硅烷] (J. Organomet. Chem., 244, C5-C8(1983)); 2-甲基-2-乙烯基 [4-氧化代-1,3,2-苯并二氧杂硅烷]。

在式 I 的单体的第二实施例中，R' 和 R" 各自为基团 Ar-C(R', R") 并优选为基团 Ar-CH2 (R'=R"= 氢)，其中 Ar 如上定义并特别地选自呋喃基、噻吩基、吡咯基和苯基，其中所示的四种环未被取代或具有一个或两个选自卤素、CN、C1-C6 烷基、C1-C6 烷氧基和苯基的取代基。特别地，Ar 为可选地具有一个或两个选自卤素、CN、C1-C6 烷基、C1-C6 烷氧基和苯基的取代基的呋喃基，并特别是未被取代的呋喃基。在此，R' 和 R" 可不同。

第二个实施例的单体可通用式 IV 描述：

【图】

其中 M, q, Ar, X, Y, R', R", R' 和 R" 如上定义，Ar' 为 Ar 指定的含义之一，R' 和 R" 各自彼此独立地为氢或甲基。在式 IV 中，M 特别为元素周期表中族 3, 4, 14 或 15 的金属或半金属，优选为 B, Al, Si, Ti, Zr, Sn 或 Sb 并且尤其是 Si。变量 q 特别为 1。在式 IV 中，R' 和 R" 以及 R' 和 R" 特别为氢。在式 IV 中，Ar 和 Ar′ 可相同或不同并特别地选自呋喃基、噻吩基、吡咯基和苯基，其中所示的四种环未被取代或具有一个或两个选自卤素、CN、C1-C6 烷基、C1-C6 烷氧基和苯基的取代基。特别地，Ar 和 Ar′ 为可选地具有一个或两个选自卤素、CN、C1-C6 烷基、C1-C6 烷氧基和苯基的取代基的呋喃基，并特别是未被取代的呋喃基。
其中 Ar 如上定义并特别地选自呋喃基、噻吩基、吡咯基和苯基，其中所述的四种环未被取代或具有一个或两个选自卤素、CN、C₁–C₆ 烷基、C₁–C₆ 烷氧基和苯基的取代基。该单体可用式 V 和 Va 描述：

![化合物V](image)

![化合物Va](image)

在式 V 和 Va 中，M 分别为元素周期表中族 3、4、14 或 15 的金属或半金属，优选为 B、Al、Si、Ti、Zr、Sn 或 Sb 并且尤其是 Si。在式 V 和 Va 中，q 为 1。在式 V 中，Ar 和 Ar’ 相同或不同并且优选地选自呋喃基、噻吩基、吡咯基和苯基，其中所述的四种环未被取代或具有一个或两个选自卤素、CN、C₁–C₆ 烷基、C₁–C₆ 烷氧基和苯基的取代基。特别地，Ar 和 Ar’ 为可选地具有一个或两个选自卤素、CN、C₁–C₆ 烷基、C₁–C₆ 烷氧基和苯基的取代基的呋喃基，且特别地是未被取代的呋喃基（式 Va）。在式 Va 中，m 为 0.1 或 2 并特别为 0，R 选自卤素、CN、C₁–C₆ 烷基、C₁–C₆ 烷氧基和苯基并且尤其选自甲基和甲氧基。式 V 或 Va 的单体的一个实例是四呋喃甲基氧化硅烷（式 Va 的化合物，其中 M=Si，q=1，m=0，R=R’=H）。单体 V 或 Va 的另外两个实例是原钛酸四呋喃甲酯（Adv. Mater. 2008, 20, 4113）。该化合物四聚合成（μ₄–环氧）六（μ–呋喃甲氧基）八（呋喃甲基氧化）四钛，其用作双重单体。单体 V 或 Va 的另外两个实例是四呋喃甲基氧化硅烷。这类单体为现有技术已知，例如上述 Spangle 等人的文章及其中引用的参考文献，或可以类似的方式制备。

在第二个实施方案的单体中还优选式 IV 的单体，其中基团 X–R’ 和 Y–R’’ 相同或不同且选自 C₁–C₆ 烷基、C₁–C₆ 烷氧基和芳基例如苯基，即 X 和 Y 各自代表一个化学键。这类单体可用下式 VI 和 VIA 描述：

![化合物VI](image)

![化合物VIA](image)
在式(VI)和(VIa)中，M特别为元素周期表中族3、4、14或15的金属或半金属，优选为B、Al、Si、Ti、Zr、Sn或Sb并且尤其是Si。可变的q特别为1。在式VⅠ中，Ar和Ar’相同或不同并且优选地选自咔唑基、噻吩基、吡咯基和苯基，其中所述的四种环未被取代或具有一个或两个选自卤素、CN、C1-C6烷基、C1-C6烷氧基和苯基的取代基。特别地，Ar和Ar’为可选地选自一个或两个选自卤素、CN、C1-C6烷基、C1-C6烷氧基和苯基的取代基的咔唑基，并且优选地选自甲基和甲氧基。在式VⅠ和VⅠa中，R’和R”特别为C1-C6烷基，尤其为甲基。式VI或VⅠa的单体的一个实例是二(咔唑甲基氧基)二甲基硅烷(式VⅠa的化合物，其中M=Si，q=1，m=0，Ra=Rb=Rc=Rd=氢，R’=R”=甲基)。这类单体为现有技术已知，例如上述Spange等人的文章及其中引用的参考文献，或可用类似的方法制备。
化合物可彼此间共聚。在这种情况下，可挑选出母体芳族化合物不同的化合物。所述的具有平均至少两个连接于相同或不同芳基——特别是连接于苯环——的三烷基甲硅烷氧基甲基和 / 或芳基二烷基甲硅烷氧基甲基的芳族化合物优选与式 IIa、IIa 或 IIa 的单体与或或式 IV 或 V 或 Va 的化合物一起共聚。

[0140] 在本发明的一个优选实施方式中，待聚合的式 I 的单体包括至少一种式 II 的单体，特别是式 IIa 的单体，其中的变量具有上述含义并特别为作为优选表示的含义。特别地，式 II 的单体形成待聚合单体的主要成分，优选至少 90 重量 %。特别地，式 II 的单体尤其是式 IIa 的单体为单体单体。

[0141] 在本发明的一个同样优选的实施方式中，式 I 的单体包括第一单体和至少一种与第一单体不同——即 M 原子的性质不同或至少 R1、R2、X 和 / 或 Y 基团之一不同——的第二单体。特别地，待聚合的单体包括至少一种式 II 的单体，特别是式 IIa 的单体，以及与其不同的一个单体并且该单体优选地选自式 II 或 IIa 的第一单体的金属原子不同的式 II 和 IIa 的单体，还选自式 IIa'、IIa'、III、IIIa、IV、V、Va、VI 和 VIa 的单体。在这种情况下，式 II 或 IIa 的单体与另一种或另外几种单体的单体重量比通常在 10:1 至 1:10 范围内。

[0142] 在式 I 的单体的聚合中以及相应地在式 II、IIa、III、IIIa、IV、V、Va、VI 和 VIa 的单体的聚合中，基团 R1 和 R2 或对应基团 R1 和 R2 的分子部分，以及在 X=Y=0 的情况下基团 R1 和 R2 或对应的基团 R1 和 R2 的分子部分形成所述的第二种有机聚合材料，而（半）金属原子 M 与部分氧原子和，当 X 和 Y 代表一个键时，基团 XR1' 和 YR2 形成所述的第一个聚合材料。

[0143] 单体 I 的聚合可用类似于现有技术已知的方法进行，并特别地在质子催化下或在质子惰性路易斯酸的存在下进行。此处优选的催化剂有布朗斯台德酸（Brönsted acid），例如有机酸酸（例如三氟乙酸或乳酸）以及有机磷酸（例如甲磷酸、三氟甲磺酸或甲苯磺酸）。例如 HCl1、H2SO4 或 HClO4 的无机布朗斯台德酸同样是合适的。作为路易斯酸，可使用例如 BF3、BCl3、SnCl4、TiCl4 或 AlCl3。还可使用配位路易斯酸或溶解于离子液体中的路易斯酸。以单体计，通常酸的使用量为 0.1 至 10 重量 %，优选 0.5 至 5 重量 %。

[0144] 聚合反应可在本体中或优选在溶性稀释液中进行。合适的稀释液有例如卤代烃，诸如二氯甲烷、三氯甲烷、二氯乙烯，或烃类，诸如甲苯、二甲苯或己烷及其混合物。

[0145] 式 I 的单体的聚合反应优选在基本无水的条件下进行，即在聚合物水的浓度小于 0.1 重量 %。因此，在聚合条件下不消耗水的单体优选作为式 II 的单体。特别地，这类单体包括式 II、IIa、III 和 IIa 的单体。

[0146] 聚合温度通常在 0 至 150℃范围内，特别是在 20 至 100℃范围内。

[0147] 式 I 的单体的聚合之后可进行纯化步骤和可选的干燥步骤。

[0148] 在本发明方法的步骤 I 中的聚合之后进行煅烧步骤。这里，使在式 I 的单体（或式 II、IIa、III、IIIa、IV、V、Va、VI 和 / 或 VIa 的单体）的聚合中形成的有机聚合材料碳化以得到所述碳相。

[0149] 通常，煅烧在 400 至 1500℃范围内，特别是在 500 至 1100℃范围内的温度下进行。

[0150] 煅烧通常在基本不含氧的条件下进行。换句话说，在煅烧过程中进行煅烧的反应区域的氧气分压较低，并且优选不超过 20 mbar，特别是 10 mbar。煅烧优选在惰性气氛中进
行，例如在氮气或氩气中。该惰性气氛优选包括小于 1 体积%、特别是小于 0.1 体积%氧气。在本发明的一个同样地优选实施方案中，煅烧在还原条件下进行，例如在包含氢气（H₂）、烃气体（例如甲烷、乙烷或丙烷）或氨（NH₃）的气氛中，可选地可作为与例如氮气或氩气的惰性气体的混合物使用。

【0151】为了移除挥发性组分，煅烧可在惰性气流或在包含诸如氢气、烃气体或氨的还原气的气流中进行。

【0152】正如前面所述，当用于锂离子电池时本发明的材料具有特别有利的特性，特别是具有高比容量、良好的循环稳定性、发生自发放电和形成锂树枝的趋向较低、以及在充电/放电过程方面有利的动力学，因此可获得高电流密度。

【0153】因此，本发明还提供了所述电极活性材料在锂离子电池阳极中，特别是锂离子二次电池阳极中的用途，并且还提供了某种包含本发明电极活性材料的且用于锂离子电池，特别是锂离子二次电池的阳极。

【0154】除了本发明的电极活性材料，阳极通常还包括至少一种合适的粘结剂以加固本发明电极活性材料和可选的其他导电或电极性组分。此外，阳极通常具有电接触器以用于电荷的输入和输出。基于减去任意电流集电器和电接触器的阳极材料的总质量计，本发明电极活性材料的量通常为至少 40 重量%，常常至少 50 重量%，并且尤其为至少 60 重量%。

【0155】本发明阳极中其他可能的导电或电极活性组分为炭黑、石墨、碳纤维、碳纳米纤维、碳纳米管或导电聚合物。一般地，在阳极中使用约 2.5 至 40 重量%导电材料以及 50 至 97.5 重量%，常常为 60 至 95 重量%的本发明的电极活性材料，其中重量百分比以减去任意电流集电器和电接触器的阳极材料的总质量计。

【0156】特别地，用于制备使用本发明电极活性材料的阳极的可能粘合剂为以下聚合物：聚环氧乙烷（PEO）、纤维素、聚乙烯基醇（CVM）、聚乙烯、聚丙烯、聚四氟乙烯、聚丙烯腈 - 甲基丙烯酸甲酯、聚四氟乙烯、苯乙烯 - 丁二烯共聚物、四氟乙烯 - 六氟乙烯共聚物、偏氟乙烯 - 六氟丙烯共聚物（PVDF）、聚偏氟乙烯 - 六氟丙烯共聚物（PVDHFP）、四氟乙烯 - 六氟丙烯共聚物、偏氟乙烯 - 六氟丙烯共聚物、乙烯 - 四氟乙烯共聚物、偏氟乙烯 - 六氟丙烯共聚物、乙烯 - 氟氯乙烯共聚物、乙烯 - 氯丙烯酸共聚物（包括和不包括钠离子）、乙烯 - 甲基丙烯酸共聚物（包括和不包括钠离子）、乙烯 - 甲基丙烯酸酯共聚物（包括和不包括钠离子）、聚酰亚胺和聚氨二烯。

【0158】对粘合剂的选择可选地考虑任何用于制备方法的溶剂。通常粘合剂的使用量为 1 至 10 重量%，基于阳极材料的总混合物计。优选使用 2 至 8 重量%，特别是 3 至 7 重量%。

【0159】所述阳极可以以本身常规的方式通过为上文引用的现有技术以及由相关专著中已知的标准方法来制备。例如，可通过以下方法制备阳极：可选地用一种有机溶剂（例如 N, N- 甲基吡咯烷酮或烃类溶剂）将本发明的电极活性材料与阳极材料的其他任选组分混合（导电组分和/或有机粘合剂），并可选地使该混合物进行成形步骤或将其施用于惰性金属箔例如 Cu 箔上。然后可选地进行干燥。这里使用例如 80 至 150°C 的温度。干燥步骤还可在减压下进行并且通常需要 3 至 48 小时。还可可选地使用转化或烧结步骤以进行成形。

【0160】本发明另外提供了锂离子电池, 特别是锂离子二次电池, 其具有至少一个包括本发明的电极活性材料的阳极。

【0161】这类电池通常包括至少一个本发明的阳极、适于锂离子电池的阴极、电解质和可

特别地，可能的阴极为其中阴极材料包括锂-过渡金属氧化物或锂-过渡金属磷酸盐的阴极。所述锂-过渡金属氧化物例如锂-钴氧化物、锂-镍氧化物、锂-锰氧化物、锂-锰氧化物（尖晶石）、锂-镍-钴-铝氧化物、锂-镍-钴-锰氧化物或锂-镍-钴-锰氧化物，所述锂-过渡金属磷酸盐例如锂-铁磷酸盐。

使用液体或固体电解质将两个电极—即阳极和阴极—彼此连接。特别地，可能的阴极材料有锂盐的非水溶液（水含量通常<20ppm）和熔融的 Li 盐，例如六氟磷酸锂、高氯酸锂、六氟砷酸锂、三氟甲基磺酸锂、锂二（三氯甲基磺酰基）酰亚胺或四氟硼酸锂——特别是六氟磷酸锂或四氟硼酸锂——在合适的质子惰性溶剂中的溶液，所述合适的质子惰性溶剂例如碳酸亚乙酯、碳酸亚丙酯及其与一种或多种以下溶剂的混合物：碳酸二甲酯、碳酸二乙酯、二甲氧基乙烷、丙酸甲酯、丙酸乙酯、丁内酯、乙腈、乙酸乙酯、乙酸甲酯、甲苯和二甲苯，尤其是碳酸亚乙酯与碳酸二乙酯的混合物。作为固体电解质，可使用例如离子导电聚合物。

可将经过液体电解质浸渍的隔膜放置于两个电极之间。特别地，隔膜的实例有玻璃纤维无纺制品和多孔有机聚合物薄膜例如聚乙烯、聚丙烯、PVdF 等的多孔膜。

这些可例如具有棱形薄膜结构，其中将固体薄膜电解质放置于代表阳极的膜和代表阴极的膜之间。将中心阴极电流集电器放置于每个阴极膜之间以形成双面电池构造。在另一个实施方案中，可使用单面电池构造，其中将单阴极电流集电器分配给单阳极/隔膜/阴极元件组合。在该构造中，通常将绝缘膜放置于各阳极/隔膜/阴极/电流集电器元件组合之间。

以下图片和实施例示例说明了本发明而不应理解为设立限制。

根据 HAADF-STEM 方法的 TEM 研究通过使用 Tecnai F20 电子透射显微镜（FEI，Eindhoven，NL）在 200kV 的工作电压下，使用超薄层技术（将样品包埋在作为基体的合成树脂中）进行。

ESCA 研究通过使用购自 FEI（Eindhoven，NL）的 FEI5500LS X-射线光电子谱仪。

小角 X-射线散射研究在 20°C 下使用由 Gōbel 镜单色化的 CuKα 辐射的狭缝瞄准而进行。针对背景将数据校正并就狭缝瞄准引起的模糊将数据锐化。

在 10°倍放大率下对实施例 1 样品的 HAADF-STEM 检测。

图 1 : 均对错位率下对实施例 1 样品的 HAADF-STEM 检测。

图 2 : SWAXS 研究结果（实施例 1（列 C）和 2（列 B）的样品的透射率），以校正和锐化后的散射强度随散射矢量 q 的变化示出。

图 3 : 实施例 1 的电极材料的容量随循环次数变化的图表。

图 4 : 实施例 1 : 2, 2’- 螺二[4H-1, 3, 2-苯并二氧杂硅烷]。
(0.5469mol) 四甲氧基硅烷(TMOS)，其中在加入三分之一 TMOS 后使用注射器立即添加 0.3ml 四甲基氯化铵(1M 的 THF 溶液)。将混合物在 85°C 下搅拌 1 小时，随后蒸出甲醇 / 甲苯混合物 (63.7°C)。剩余甲苯在旋转蒸馏釜上移除。在 ≈ 70°C 下借用己烷将产物从所得反应混合物中浓缩。冷却至 20°C 后，将澄清溶液倾析出。移除己烷后得到作为白色固体的标题化合物。产物可通过加入己烷再沉淀而进一步纯化。

[0176] 1H-NMR (400MHz, CDCl₃, 25°C, TMS) δ [ppm] = 5.21 (m, 4H, CH₂), 6.97-7.05 (m, 6H), 7.21-7.27 (M, 2H).

[0177] 13C-NMR (100MHz, CDCl₃, 25°C): δ [ppm] = 125.3 (C H₂), 119.3, 122.3, 125.2, 125.7, 129.1, 152.4.

[0178] 28Si-CP-MAS (79.5MHz): δ [ppm] = -78.4.

[0179] 实施例 1: 电活化材料的制备

[0180] 1) 将 65g2, 2'-螺二 [4H-1, 3, 2'-苯并二氧杂硅烷] 溶解于 500ml 三氯甲烷中。借助氮气使反应容器为惰性气氛并在 23°C 下通入 5g 甲磺酸引发聚合反应。使反应混合物在 23°C 下反应 1 小时并将聚合物过滤出。将以该方式得到的聚合物在真空干燥箱中在 50°C 下干燥至恒重。

[0181] 2) 随后将在步骤 1 中得到的粉末在管式炉中于 600°C 下在氮气流中煅烧 2 小时。从而得到黑色粉末。

[0182] 根据元素分析，该粉末碳含量为 56.1 重量 %，硅含量为 15.4 重量 %。

[0183] 根据 ESCA, 硅主要以二氧化硅 (103.3eV 处的信号) 存在。

[0184] 碳主要以石墨 (284.5eV 处的不对称信号) 存在。

[0185] 根据 SWAXS, 相的平均间距小于 1nm (见图 2)。

[0186] 在电子透射显微照片 (图 1) 中可以看出 SiOx 区域的均匀分散区。这些区域的尺寸在 0.2-5nm 范围内。

[0187] 实施例 2: 电活化材料的制备

[0188] 随后将在步骤 1 中得到的粉末在管式炉中于 800°C 下在氮气流中煅烧 2 小时。从而得到黑色粉末。

[0189] 根据元素分析，该粉末碳含量为 55.9 重量 %，硅含量为 16.6 重量 %。

[0190] 根据 ESCA, 硅主要以二氧化硅存在。碳主要以石墨存在。

[0191] 根据 SWAXS, 相的平均间距小于 1nm。

[0192] 实施例 3: 电活化材料的制备

[0193] 随后将在步骤 1 中得到的粉末在管式炉中于 1000°C 下在氮气流中煅烧 2 小时。从而得到黑色粉末。

[0194] 根据元素分析，该粉末碳含量为 60.5 重量 %，硅含量为 16.3 重量 %。

[0195] 实施例 4: 电活化材料的制备

[0196] 随后将在步骤 1 中得到的粉末在管式炉中于 1000°C 下在氮气流中煅烧 2 小时。从而得到黑色粉末。

[0197] 根据元素分析，该粉末碳含量为 60.8 重量 %，硅含量为 15.7 重量 %。

[0198] 实施例 5: 阳极的制备

[0199] 为了制备阳极，用高速搅拌机 (Ultra- Turrax® T25basic, 购自 IKA
Labortechnik, D-79219 Staufen) 将 5g 实施例 1 中制备的粉末与 5g 碳黑（Super P®，购自 Timcal AG, 6743 Bodio, Switzerland）、16.4g 乙腈和 0.3g 市售 PVdF-HFP 共聚物混合 30 秒。

[0200] 在密闭的玻璃容器中使得到的黑色悬浮液在研磨机上脱气并随后用刮刀将其以 250 μm 的层厚度施用于铝箔上。在真空干燥箱中于 80℃下干燥 1 小时后，施用的层厚度为 80 μm。由制得的阳极材料冲压得到直径为 13mm 的电极，并在手套箱中于氩气（氧气和水蒸气的含量各自 <1ppm）下将其装配于电池中用于电化学表征。

[0201] 使用由 750 μm 厚的 Li 箔（来自 Sigma-Aldrich Chemie GmbH, CH-9571 Buchs SG, Switzerland）冲压得到金属锂片作为阴极。

[0202] 使用厚度为约 1 mm 的玻璃纤维非织造布作为隔膜，使用六氟磷酸锂 LiPF₆（制造商： Ferro Corp., Cleveland, USA）含量为 1mol/1 且碳酸二甲酯与碳酸亚乙酯的比值为 1:1 的混合物作为电解质溶液。

[0203] 为了检验稳定性，将电池安装在用于电化学表征的测试单元上并使用以下参数循环：在 10mA/g 下放电；电池电压从 0 至 2.0V 循环。容量随循环次数的变化在图 3 中示出。
图 1
图 2
图 3