Title: "DENTAL PROSTHESIS AND MOULDING METHOD"

Abstract: A dental prosthesis is disclosed includes a prosthetic tooth element comprising ceramic and a veneer located on a surface of the prosthetic tooth element, the veneer comprising cured dental composite. The prosthetic tooth element can be fixed to a mount in a patient's mouth using the same dental composite used for the veneer. A method of forming a prosthetic tooth element is disclosed including filling a mould that is formed at least partially from flexible polymeric material with a dental mixture comprising ceramic, and applying pressure to the filled mould to form a prosthetic tooth element comprising ceramic with a roughened surface.
Published.

— with international search report (Art. 21(3))

— with amended claims (Art. 19(1))
"Dental prosthesis and moulding method"

Cross-Reference to Related Applications

[0001] The present application claims priority from Australian Provisional Patent Application No 2014902858 filed on 24 July 2014, the content of which is incorporated herein by reference.

Technical Field

[0002] This present disclosure relates to dental prostheses and methods for preparing dental prostheses including parts thereof.

Background

[0003] A dental prosthesis such as a crown or bridge provides an artificial tooth structure that is designed to replace all or part of one or more teeth that have been partially or wholly lost, e.g., through decay or other damage. The dental prosthesis is secured to a mount in the mouth such as a dental implant or part of one or more existing teeth.

[0004] A dental prosthesis is typically formed from a block of solid dental ceramic such as zirconia, which is milled to the desired shape to form a ceramic, prosthetic tooth element. A porcelain veneer is provided over the surface of the prosthetic tooth element to arrive at a dental prosthesis having a desired size, shape and colour.

[0005] Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present disclosure as it existed before the priority date of each claim of this application.

Summary

[0006] According to one aspect, the present disclosure provides a method of forming a dental prosthesis comprising:
applying a curable dental composite to a surface of a prosthetic tooth element, the prosthetic tooth element comprising ceramic; and
curing the dental composite to form a veneer on the prosthetic tooth element.

[0007] According to another aspect, the present disclosure provides a dental prosthesis comprising a prosthetic tooth element comprising ceramic, and a veneer located on a surface of the prosthetic tooth element, the veneer comprising cured dental composite.

[0008] The ceramic material of the prosthetic tooth element may comprise zirconia, zirconia-oxide, aluminium oxide or other materials usable as dental ceramics.

[0009] According to one aspect, the present disclosure provides a method of forming a dental prosthesis comprising:
providing a prosthetic tooth element comprising ceramic, the ceramic comprising at least one of zirconia, zirconia-oxide and aluminium oxide;
applying a curable dental composite to the zirconia, zirconia-oxide or aluminium oxide ceramic at a surface of the prosthetic tooth element; and
curing the dental composite to form a veneer on the prosthetic tooth element.

[0010] According to another aspect, the present disclosure provides a dental prosthesis comprising a prosthetic tooth element comprising ceramic, the ceramic comprising at least one of zirconia, zirconia-oxide and aluminium oxide zirconia, and a veneer located on the zirconia, zirconia-oxide and aluminium oxide zirconia at a surface of the prosthetic tooth element, the veneer comprising cured dental composite.

[0011] A dental composite is a type of synthetic resin, and is typically used as a filling material for dental cavities. However, the inventor has determined that a dental composite can be used advantageously to form a veneer over a ceramic prosthetic tooth element. Dental composite can form a softer veneer than porcelain. The provision of a softer veneer can reduce its abrasive properties and therefore reduce damage caused by the veneer to surrounding or opposing natural teeth. Further, the dental ceramic can be easier to replace than a porcelain veneer, enabling restorative action to be taken during a standard dental appointment, for example.
The dental composite may comprise a resin matrix, e.g., a resin-based oligomer matrix. The resin matrix may comprise, for example, Bis-GMA (bisphenol-A glycidyl methacrylate), or other dimethacrylate monomers such as UDMA (urethane dimethacrylate), TEGDMA (triethylene glycol dimethacrylate), or HDDMA (hexane diol dimethacrylate).

The dental composite may additionally comprise filler particles, such as silica particles, quartz or glass. The filler particles may determine the surface smoothness and hardness of the dental composite and can therefore be adjusted to achieve a balance between strength of the veneer and reduced abrasiveness. The filler content can also be adjusted to achieve desired flowability of the dental composite.

The dental composite may additionally comprise a coupling agent for the filler particles and the resin matrix. The coupling agent may include a bifunctional molecule such as organosilane, which bonds to both the resin and filler particles.

The dental composite may additionally comprise optical modifiers and pigments to adjust the colour and the opacity or translucency of the composite to natural tooth material. For example, the dental composite may comprise metal oxide particles such as titanium oxide or aluminium oxide.

In one embodiment, the dental composite is curable using light (i.e. is photo-curable). The dental composite may therefore comprise light activatable material that sets when exposed to light. Light activatable material may include a photoinitiator molecule such as camphorquinone, phenylpropanedione or lucirin. However, material offering heat-activated, chemically-activated or dual (light/heat and chemical) activated cure may also be used.

The composite material may be provided in a paste form, which is dispensed, e.g. squeezed from a tube or other container, over the ceramic tooth element. The composite material may then be sculpted by hand to achieve a desirable veneer profile/shape.

The method may further comprise forming the prosthetic tooth element. The prosthetic tooth element may be formed by milling or moulding of ceramic material.
[0019] The dental prosthesis may be formed by an indirect method, outside the patient's mouth or by a direct method, inside the patient's mouth. The indirect method may comprise forming the veneer while the prosthetic tooth element is mounted on a model of the patient's tooth or teeth. The direct method may comprise forming the veneer while the prosthetic tooth element is mounted inside the patient's mouth.

[0020] The prosthetic tooth element may be located in the mouth over a mount such as one or more dental implants or part of pre-existing natural tooth or teeth. To fix the prosthetic tooth element to the mount, a bonding material may be applied between the prosthetic tooth element and the mount. The bonding material may be a dental composite that is cured (e.g. by light) to achieve hardening of the bonding material. The veneer and prosthetic tooth element may be at least partially light-transmissive to enable light to travel through the bonding material.

[0021] The dental composite that is used to bond the prosthetic tooth element to the mount may be the same or substantially the same as the dental composite that is used to form the veneer (e.g., they may have the same chemical composition). By using the same or substantially the same dental composite as used to form the veneer, the dental procedure may have reduced cost and may be more straightforward. For example, fewer materials may be required and the dental composite may be dispensed from the same dispenser in each instance. Further, the same curing technique (e.g., a light curing technique) may be employed to cure both the veneer and the bonding material. Thus, curing of the veneer and bonding material may be achieved at the same time and/or using the same light source.

[0022] If the prosthetic tooth element is formed by a milling process, the surface of the tooth element may be a very smooth (glass-like) surface, making bonding of the dental composite to the tooth element harder to achieve. Accordingly, prior to application of the dental composite, the tooth element may be provided with a roughened surface. The roughened surface may be created during formation of the prosthetic tooth element or subsequently. For example, after the tooth element is formed by milling (and subsequent sintering), chemical etching, grinding, abrasion with a rotary instrument, air abrasion using abrasive particles, and/or a combination of these approaches may be employed. The roughened surface may have surface irregularities with depth of, e.g., greater than 5 µm, 5 to 50 µm, or 10 to 40 µm or otherwise.
[0023] The inventor has found that one advantageous technique to form a prosthetic tooth element with a roughened surface is through a specific moulding method.

[0024] In more detail, and in accordance with one aspect of the present disclosure, there is provided a method of forming a prosthetic tooth element comprising:

- filling a mould that is formed at least partially from flexible polymeric material with a dental mixture comprising ceramic; and
- applying pressure to the filled mould to form a prosthetic tooth element comprising ceramic with a roughened surface.

[0025] When pressure is applied to the mould, since the mould is at least partially formed of flexible polymeric material, the inventor has found that vibration or other types of relative motion can occur at the interface between the dental mixture and the mould, introducing irregularities and therefore roughness in the surface of the prosthetic tooth element comprising ceramic. Again, the roughened surface may have surface irregularities with depth of e.g., greater than 5µm, 5 to 50µm, or 10 to 40µm or otherwise. The roughened surface may provide a favourable surface for bonding of additional components and materials.

[0026] The dental mixture comprising ceramic may comprise ceramic powder and a binding agent, for example. The ceramic may be zirconia, zirconia-oxide or aluminium oxide, for example. The binding agent may be any adhesive typically used to bind ceramic powder together.

[0027] The roughened surface may extend around all or part of the prosthetic tooth element. The dental composite that is used to form the veneer may be applied to a first portion of the roughened surface and/or the dental composite that is used to bond the prosthetic tooth element to the mount may be applied to a second portion of the roughened surface.

[0028] When the veneer is formed on the roughened surface (e.g. the first portion of the roughened surface), the veneer may have a relatively strong bond to the prosthetic tooth element. For example, the bond between the veneer and the prosthetic tooth element may be considerably stronger than if the surface of the prosthetic tooth element were smooth, as would be typical if the prosthetic tooth element were formed by a milling process as discussed above, for example.
Similarly, when the bonding material is applied to the roughened surface (e.g. the second portion of the roughened surface), to bond the prosthetic tooth element to the mount, the prosthetic tooth element may have a relatively strong bond to the mount. For example, the bond between the prosthetic tooth element and the mount may also be considerably stronger than if the surface of the prosthetic tooth element were smooth. In general, any weak bond between the veneer and the prosthetic tooth element and/or between the prosthetic tooth element and the mount could otherwise leave the prosthetic tooth element and/or dental prosthesis vulnerable to damage such as delamination, dislocation and falling out.

The use of a mould that is at least partially formed of flexible polymeric material, and the application of high pressure to this mould, may provide a particularly efficient and effective means of forming the prosthetic tooth element. For example, it may not be necessary to provide roughening of a surface of the mould. Thus, to the extent that the mould is formed by making an at least partial impression of a tooth to arrive at a negative of the prosthetic tooth element, for example, further processing of the mould to introduce a negative roughened surface may not be necessary. The surface of the mould at the interface with the dental mixture may therefore be smooth in some embodiments. This may make release of the prosthetic tooth element from the mould more straightforward. Flexibility of the mould due to the inclusion of flexible polymeric material may also assist with release of the prosthetic tooth element from the mould after forming.

The use of a mould that is at least partially formed of flexible polymeric material, and the application of high pressure to this mould, may also cause a more fibrous prosthetic tooth element to be formed. In essence, the roughness may extend beyond the surface and throughout all or part of the body of the prosthetic tooth element. Such a configuration may reduce the ease at which cracks may propagate through the prosthetic tooth element, e.g. in contrast to ceramic prosthetic tooth element formed through standard techniques, which prosthetic tooth elements can be susceptible to fine cracks causing failure of the dental prosthesis.

The mould may comprise a first mould part and a second mould part adapted to be brought together to form a prosthetic tooth element-shaped recess into which the dental mixture is filled prior to the application of the pressure. At least one of the first and second
mould parts may comprise the flexible polymeric material. In one embodiment, both the first and second mould parts comprise the flexible polymeric material.

[0033] When the first mould part comprises flexible polymeric material, the flexible polymeric material of the first mould part may define a first flexible mould surface of the prosthetic tooth element-shaped recess.

[0034] When the second mould part comprises flexible polymeric material, the flexible polymeric material of the second mould part may define a second flexible mould surface of the prosthetic tooth element-shaped recess.

[0035] One of the first and second mould surfaces may be shaped to form an inner surface of the prosthetic tooth element to bond to the mount and the other of the first and second mould surfaces may be shaped to form an outer surface of the prosthetic tooth element to which the veneer is applied.

[0036] In order to determine appropriate shapes for the inner and outer surfaces, a dental impression of one or more mounts of the patient may be obtained. Alternatively, the shapes may be based on generic models of teeth and mounts of different sizes, determined through computer analysis of average representations of patients' teeth, for example.

[0037] According to one aspect of the present disclosure, there is provided a compression mould for creating a prosthetic tooth element comprising ceramic, the mould comprising:

- a first mould part and a second mould part adapted to be brought together to form a prosthetic tooth element-shaped recess, at least one of the first and second mould parts comprising flexible polymeric material;

- wherein the mould is configured such that, upon filling of the recess with dental mixture comprising ceramic and applying pressure to the mould, a prosthetic tooth element comprising ceramic with a roughened surface is formed.

[0038] The flexible polymeric material may be sufficiently rigid to enable the mould parts to form the prosthetic tooth element of a desired shape under pressure, yet be sufficiently flexible to vibrate or undertake other movements under pressure in order to cause a roughened surface to be formed on the surface of the prosthetic tooth element as described above.
Examples of such materials include but are not limited to natural and synthetic rubbers (e.g. silicone rubber) and elastic dental impression material, which material may comprise elastomers, polysulfides, polyethers and/or hydrocolloids such as agar reversible, agar irreversible and alginate.

[0039] One or both of the first and second mould parts may comprise a plate located at an outer surface thereof. The plate may be rigid and relatively hard in comparison to the flexible polymeric material. The plate may serve as a support for the flexible polymeric material and may provide a uniform surface to which pressure can be applied to the mould part. The plate may extend around one or more sides of the mould part. For example, the plate may extend around three sides of the mould part such as to substantially define a recess in which the flexible polymeric material is held.

[0040] Pressure application apparatus may be provided to apply pressure to the mould parts. The pressure application apparatus may include a hydraulic or pneumatic ram or other instrument/device capable of clamping and compressing the two mould parts together at the desired pressure for an extended period of time. The pressure application means may apply pressure directly to the plates, which pressure is transferred through the flexible polymeric material and to the dental mixture.

[0041] The plates may be formed from any suitable material which is able to withstand the pressure applied to the mould. For example, the plates may be formed of a metal such as steel. Other materials such as hard polymers, ceramics or composites thereof may be used.

[0042] Pressure, expressed herein in units of metric tonne (1000kg) per square centimetre, may be applied to the mould at greater than 0.5 tonnes per square centimetre, greater than 1 tonnes per square centimetre, greater than 2.0 tonnes per square centimetre, between 0.5 and 4 tonnes per square centimetre, between 1 and 4 tonnes per square centimetre, between 1.5 and 4.0 tonnes per square centimetre, about 1.5 tonnes per square centimetre, about 2 tonnes per square centimetre, about 2.5 tonners per square centimetre or otherwise.

[0043] Pressure may be applied to the mould non-uniformly or periodically in order to increase roughening of the surface of the prosthetic tooth element. For example, pressure may be applied once for a short duration, released, and then re-applied, providing for discrete and/or
cyclical applications of pressure. In another example, pressure may be applied continually, but the amount of pressure may be varied over time.

[0044] In one embodiment, the mould may be adapted to form multiple prosthetic tooth elements. For example, the mould may comprise a plurality of prosthetic tooth element-shaped recesses that are formed when the first and second mould parts are brought together, each recess being adapted for filling with the dental mixture and for forming a prosthetic tooth element comprising ceramic upon application of pressure to the mould. The mould may allow for manufacture of multiple non-patient specific prosthetic tooth elements at the same time. Having a number of pre-fabricated prosthetic tooth elements of several sizes at the clinic may save a patient multiple visits to the clinic and increase efficiency of a dental restoration procedure.

[0045] Throughout this specification the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.

Brief Description of Drawings

[0046] By way of example only, embodiments are now described with reference to the accompanying drawings, in which:

[0047] Fig. 1 shows a cross-sectional side view of a model of a row of teeth used in a method of preparing a dental prosthesis in accordance with an embodiment of the present disclosure;

[0048] Fig. 2 shows a cross-sectional side view of a combination of the model of Fig. 1 with a prosthetic tooth element;

[0049] Fig. 3 shows a cross-sectional side view of a divided portion of the combination of Fig. 2, in which the prosthetic tooth element has a coating of dental composite;

[0050] Fig. 4 shows a cross-sectional side view of the divided portion of Fig. 3, in which the coating of dental composite has been sculpted to a desired shape.
Fig. 5 shows a cross-sectional side view of the divided portion of Fig. 4 reconnected to the remaining portion of the model teeth.

Fig. 6 shows a cross-sectional side view of the combination of the prosthetic tooth element, having a sculpted coating, with the model teeth of Fig. 5, in which the coating is subjected to light curing to form a dental prosthesis having a veneer;

Fig. 7 shows a cross-sectional side view of the dental prosthesis of Fig. 6.

Fig. 8 shows a cross-sectional side view of the dental prosthesis of Fig. 7 located over a root in a mouth, with dental composite located between the dental prosthesis and the root and subjected to light curing;

Fig. 9 shows a cross-sectional side view of the dental prosthesis of Fig. 8 in which the dental composite located between the dental prosthesis and the root has been light cured such that the dental prosthesis is fixed to the root.

Fig. 10 shows a cross-sectional side view of a prosthetic tooth element located over a root in a mouth in accordance with another embodiment of the present disclosure;

Fig. 11 shows a cross-sectional side view of the prosthetic tooth element and mouth of Fig. 10, in which dental composite has been located between the prosthetic tooth element and the root and subjected to light curing to fix the prosthetic tooth element to the root;

Fig. 12 shows a cross-sectional side view of the prosthetic tooth element and mouth of Fig. 11, in which the prosthetic tooth element has a coating of dental composite;

Fig. 13 shows a cross-sectional side view of the prosthetic tooth element and mouth of Fig. 12, in which the coating of dental composite has been sculpted to a desired shape and is subjected to light-curing;

Fig. 14 shows a cross-sectional side view of the prosthetic tooth element and mouth of Fig. 14, in which the light-cured dental composite has formed a veneer over the prosthetic tooth element to form a finished dental prosthesis fixed to the root;
Fig. 15 shows a cross-sectional exploded side view of a mould used in a method of forming a prosthetic tooth element with a roughened surface according to an embodiment of the present disclosure;

Fig. 16 shows a cross-sectional side view of the mould of Fig. 15 with mould parts engaged;

Fig. 17 shows a cross-sectional side view of a mould part of the mould of Fig. 15 having a dental mixture contained therein;

Fig. 18 shows a cross-sectional side view of the mould of Fig. 15 subject to pressure with dental mixture contained therein;

Fig. 19 shows a cross-sectional side view of a prosthetic tooth element formed using the mold of Fig. 15; and

Fig. 20 shows an oblique view of a mould according to another embodiment of the present disclosure.

Description of Embodiments

Methods of preparing a dental prosthesis according to embodiments of the present disclosure are now described. The methods may be carried out by a dentist, dental surgeon, clinician, and/or technician, for example.

In an embodiment as now described with reference to Figs. 1 to 9, a dental prosthesis 2, e.g., a crown or bridge, is formed externally to a patient's mouth. The method of forming the prosthesis 2 may therefore be considered an indirect method.

Impressions of the patient's teeth are obtained from which a model of a row of the patient's teeth 1 is prepared. With reference to Fig. 1, the model 1 comprises a plurality of model teeth 11-15 and a base section 16 corresponding to a portion of the patient's gums. The model 1 further comprises a model of a tooth root (partial tooth) 18 that is located between two of the model teeth 13, 14.
After the model 1 is prepared, a prosthetic tooth element 20 is selected, formed of zirconia or another dental ceramic, which has a substantial tooth-like configuration and includes a recess 21 on its bottom surface for locating over the model tooth root 18. Outer surfaces of the prosthetic tooth element 20, which are to receive a veneer, are roughened through grinding, chemical (acid) etching or abrasion, or through manufacturing of the prosthetic tooth element 20 using a moulding technique such as the technique described further below with reference to Figs. 15 to 20.

In this embodiment, the prosthetic tooth element is selected from a plurality of prosthetic tooth elements of different shapes and sizes in order to provide as close as possible initial match between the prosthetic tooth element and the shape and size of the original tooth and the adjacent teeth. The initial match can be checked by locating the tooth element over the model tooth root 18 as shown in Fig. 2.

Next, as represented in Fig. 3, a portion 1a of the model 1, comprising the model root 18, is divided from the remaining portion 1b of the model 1, including the remainder of the model teeth 11-15. With the prosthetic tooth element 20 located over the model root 18, a coating of dental composite 22 is applied to the outer roughened surfaces of the prosthetic tooth element 20, including the occlusial or incisal surface 23. The coating 22 is a paste of dental composite initially stored in a dispenser, which is squeezed and/or spread over the prosthetic tooth element of otherwise.

Subsequently, as represented in Fig. 4, the coating 22 is sculpted to achieve a desired outer profile for the prosthetic tooth element, corresponding to a desired shape of the finished dental prosthesis.

The sculpted, coated prosthetic tooth element 20 and the associated portion 1a of the model may be reconnected with the remaining portion 1b of the model teeth as represented in Fig. 5. This enables a check to be made that the coated prosthetic tooth element 20 has a final match of shape and size with the adjacent teeth.

With reference to Fig. 6, the coating 22 is then subjected to light curing through the application of light 30 from a light source such as a tungsten halogen light, LED light or otherwise, which light 30 has a suitable intensity, duration and wavelength to effect the
curing. The curing causes the coating 22 to harden, forming a dental composite veneer 24 on the surface of the prosthetic tooth element 20 and thus forming a substantially finished dental prosthesis 2 as also illustrated in Fig. 7.

[0076] Referring to Fig. 8, the dental prosthesis 2 is then located in a row of teeth 4 of the patient's mouth, over the root 180 upon which the model tooth root 18 was based, the root 180 providing a form of mount for the dental prosthesis 2. To fix the dental prosthesis 2 in place on the root 180, the same type of dental composite that was used to form the coating 22 is dispensed from the dispenser for use as a bonding material 25 between the root 180 and the recess 21 of the dental prosthesis 2. The dental composite is subjected to light curing through the application of light 30 from a light source such as a tungsten halogen light, LED light or otherwise, which light 30 has a suitable intensity, duration and wavelength to effect the curing. The light source can be the same light source as used to cure the coating 22 to form the veneer 24. Once the bonding material has cured, insertion of the dental prosthesis 2 is complete, as illustrated in Fig. 9.

[0077] The dental composite used in this or any other embodiment may comprise a resin matrix, e.g. a resin-based oligomer matrix. The resin matrix may comprise, for example, Bis-GMA (bisphenol-A glycidyl methacrylate), or other dimethacrylate monomers such as UDMA (urethane dimethacrylate), TEGDMA (triethylene glycol dimethacrylate), or HDDMA (hexane diol dimethacrylate).

[0078] The dental composite may additionally comprise filler particles, such as silica particles, quartz or glass. The filler particles may determine the surface smoothness and hardness of the dental composite and can therefore be adjusted to achieve a balance between strength of the veneer and reduced abrasiveness to other teeth. The filler content can also be adjusted to achieve desired flowability of the dental composite.

[0079] The dental composite may additionally comprise a coupling agent for the filler particles and the resin matrix. The coupling agent may include a bifunctional molecule such as organosilane, which bonds to both the resin and filler particles.

[0080] The dental composite may additionally comprise optical modifiers and pigments to adjust the colour and the opacity or translucency of the composite to natural tooth material.
For example, the dental composite may comprise metal oxide particles such as titanium oxide or aluminium oxide.

[0081] The dental composite may include a photoinitiator molecule such as camphorquinone, phenylpropanedione or lucirin.

[0082] In another embodiment as now described with reference to Figs. 10 to 14, a dental prosthesis 5, e.g., a crown or bridge, is formed (or at least finished) within the patient's mouth. The method of forming the prosthesis may therefore be considered a direct method.

[0083] In particular, a prosthetic tooth element 50 is selected, formed of zirconia or another dental ceramic, which has a substantial tooth-like configuration and includes a recess 51 on its bottom surface for locating over a tooth root 180 in the patient's mouth. Outer surfaces of the prosthetic tooth element 50, which are to receive a veneer, are roughened through grinding, chemical (acid) etching or abrasion, or through manufacturing of the prosthetic tooth element 50 using a moulding technique such as the technique described further below with reference to Figs. 15 to 20.

[0084] In this embodiment, the prosthetic tooth element 50 is again selected from a plurality of ceramic prosthetic tooth elements of different shapes and sizes in order to provide as close as possible initial match between the tooth element 50 and the shape and size of the original tooth and the adjacent teeth. The initial match can be checked by locating the tooth element over the tooth root 180 as shown in Fig. 10.

[0085] Next, as represented in Fig. 11, to fix the prosthetic tooth element 50 to the root 180, dental composite is dispensed as a bonding material 55 between the root 180 and the recess 51 of prosthetic tooth element 50 and is subjected to light curing through the application of light 30 from a light source such as a tungsten halogen light, LED light or otherwise, which light 30 has a suitable intensity, duration and wavelength to effect the curing.

[0086] As represented in Fig. 12, a coating 52 of the same dental composite that was used to fix the prosthetic tooth element 50 to the root 180 is then applied to outer surfaces of the prosthetic tooth element 50, including its occlusial or incisal surface 53. The coating 52 is a
paste of the dental composite, which is squeezed and/or spread over the prosthetic tooth element of otherwise.

[0087] Subsequently, as represented in Fig. 13, the coating 52 is sculpted to achieve a desired outer profile to the prosthetic tooth element 50, corresponding to desired shape of the finished dental prosthesis 5.

[0088] As also represented in Fig. 13, the coating 52 is then subjected to light curing through the application of light 30 from a light source such as a tungsten halogen light, LED light or otherwise, which light 30 has a suitable intensity, duration and wavelength to effect the curing. The curing causes the coating 52 to harden, forming a dental composite veneer 54 on the surface of the prosthetic tooth element 50 and thus forming a substantially finished dental prosthesis 5 as represented in Fig. 14. The light source can be the same light source as used to cure the bonding material 55.

[0089] According to an embodiment of the present disclosure, as illustrated with reference to Figs. 15 to 19, a method of forming a prosthetic tooth element with a roughened surface is disclosed herein. After forming, the prosthetic tooth element can be used in the preparation of a dental prosthesis using methods discussed above with reference to Figs. 1 to 14, or used to prepare a dental prosthesis by alternative methods.

[0090] The method of forming the prosthetic tooth element uses a mould 60 including a first mould part 61 and a second mould part 62. Each of the first and second mould parts 61, 62 includes a body 611, 621 of flexible polymeric material and a casing 612, 622 located at outer surfaces of the body 611, 621.

[0091] As seen in cross-section, the flexible body 611 of the first mould part 61 has three substantially straight/flat side surfaces that are bonded to the casing 612. A fourth side surface of the flexible body 611 remains exposed from the casing 612 and provides a flexible first engagement surface 613 of the mould 60.

[0092] The first engagement surface 613 includes a recess 614 that provides a flexible negative mould portion. The negative mould portion has a shape that is substantially the reciprocal of a shape of a desired outer surface of the prosthetic tooth element, including e.g.,
an occlusial or incisal surface 23 of a prosthetic tooth element as discussed above with reference to Fig. 3.

[0093] The casing 612 of the first mould part 61 includes a rear plate 6121 and side walls 6122, 6123 that depend from edges of the rear plate 6121. The side walls 6122, 6123 are substantially parallel to each other and have distal ends that extend beyond that first engagement surface 613 of the mould 60.

[0094] Similarly, the flexible body 621 of the second mould part 62 has three substantially straight/flat side surfaces that are bonded to the casing 622. A fourth side surface of the flexible body 621 remains exposed from the casing 622 and provides a flexible second engagement surface 623 of the mould 60.

[0095] The second engagement surface 623 includes a projection 624 that provides a flexible positive mould portion. The positive mould portion has a shape that is substantially the reciprocal of the shape of a desired inner surface of the prosthetic tooth element, e.g., including a surface of a recess 21 of a prosthetic tooth element as discussed above with reference to Fig. 3. The casing 622 includes a rear plate 6221 and side walls 6222, 6223 that depend from edges of the rear plate 6221. The side walls 6222, 6223 are substantially parallel to each other and have distal ends that are flush with the second engagement surface 623 of the mould 60.

[0096] When the first and second engagement surfaces 613, 623 are brought into abutment, the projection 624 extends into the recess 614 and a prosthetic tooth element-shaped recess 63 is defined between the projection 624 and the recess 614, as shown in Fig. 16. Moreover, the sidewalls 6122, 6123, 6222, 6223 of the casings 612, 622 overlap each other in a relatively snug-fit manner to prevent lateral relative movement of the first and second engagement surfaces 613, 623.

[0097] The mould 60 can be manufactured specifically for a patient. For example, during manufacture of the patient-specific mould, in order to determine appropriate shapes for the prosthetic tooth element-shaped recess 63, a dental impression may be obtained from the patient. Alternatively, the mould can be non-patient specific. For example, the shape of the prosthetic tooth element-shaped recess may be based on generic models of teeth and mounts.
of different sizes, determined through computer analysis of average representations of patients' teeth, for example.

[0098] In practice, prior to bringing the first and second engagement surfaces 613, 623 into abutment, the recess 614 of the first mould part 61 is filled with a dental mixture 64, generally as illustrated in Fig. 17.

[0099] During and/or subsequent to bringing the first and second engagement surfaces 613, 623 into abutment with the dental mixture in the first mould part 61, high pressure is applied in opposing directions to the first and second mould parts 61, 62, generally as illustrated by arrows 65 in Fig. 18. The pressure is transferred to the dental mixture 64, forcing the dental mixture 64 to take the shape of the prosthetic tooth element-shaped recess 63 and therefore form a prosthetic tooth element 70 as illustrated in Fig. 19.

[0100] The pressure is applied specially to outer surfaces of the rear plates 6121, 6221 of the casings 612, 622. The casings 612, 622, including the plates 6121, 6221, are formed of metal such as steel and are therefore relatively hard in comparison to the flexible polymeric bodies 611, 621. The casings 612, 622 therefore serve as supports for the bodies 611, 621, generally retaining the bodies 611, 621 therein when the pressure is applied. Moreover, the casings 612, 622, and specifically the rear plates 6121, 6221, provides solid, uniform surfaces to which pressure can be applied. Pressure applied to the rear plates 6121, 6221 is transferred through the respective bodies 611, 621 to the dental mixture 64, causing the formation of the prosthetic tooth element 70.

[0101] Once the prosthetic tooth element 70 is formed, since the surfaces of the prosthetic tooth element-shaped recess 63 are formed of flexible polymeric material, it is relatively easy to remove the prosthetic tooth element 70 from the mould 60. The ease of removal is further enhanced through the surfaces of the recess 63 being relatively smooth.

[0102] When the pressure is applied to the mould, since the bodies 611, 621 of the mould parts 61, 62 are flexible, vibration and other types of relative motion occur at the interface between the dental mixture 64 and the surfaces of the prosthetic tooth element-shaped recess 63. The motion causes irregularities and therefore roughness to be introduced to the surface of the prosthetic tooth element 70. The roughened surface has surface irregularities with
depth of greater than 5\(\mu\)m in this embodiment. Other degrees of surface roughening may be
achieved, however. In addition to the surface roughness, an increased fibrousness in the body
of the prosthetic tooth element is also caused by the relative motion at the interface, reducing
the ease at which cracks may propagate through the prosthetic tooth element during
subsequent use.

[0103] In this embodiment, pressure is applied to the plates 6121, 6221 at about 2 tonnes per
square centimetre. Moreover, this pressure is applied non-uniformly over time. In particular,
the pressure is applied for a period of 1 minute, released, and then re-applied for a further
period of 1 minute. Other pressure levels and periods of application may be employed,
however. Pressure is applied using pressure application apparatus (not shown) such as a
hydraulic or pneumatic ram.

[0104] In this embodiment, the entire outer surface of the prosthetic tooth element is
roughened by the manufacturing technique. A veneer may be applied to a first portion 71 of
the roughened surface, and bonding material, to bond the prosthetic tooth element to a mount
such as the root of a tooth, may be applied to a second portion 72 of the roughened surface.
In this regard, the prosthetic tooth element may be modified and implanted in a mouth
generally as described with respect to preceding embodiments, including with reference to
Figs. 1 to 13, for example.

[0105] The flexible polymeric material is sufficiently rigid to enable the bodies 612, 622 of
the mould parts to form the prosthetic tooth element 70 of a desired shape under pressure, yet
sufficiently flexible to vibrate/move under pressure in order to cause the roughened surface to
be formed. In this embodiment, the bodies 612, 622 of the mould parts 61, 62 are formed of
silicone rubber, although other flexible polymeric materials may be used.

[0106] The dental mixture 64 in this embodiment comprises a ceramic, in particular zirconia
powder mixed with a binding agent.

[0107] In one embodiment, as illustrated in Fig. 20, the mould is adapted to form multiple
prosthetic tooth elements at the same time. In particular, a mould 80 is provided that includes
first and second mould parts 81, 82, configured and used substantially in accordance with the
mould parts 61, 62 of the mould 60 described above with reference to Figs. 15 to 19, but each
with a plurality of recesses 814 and projections 824, respectively, that combine to form a plurality of prosthetic tooth element-shaped recesses when the first and second mould parts 81, 82 are brought together. The mould 80 can be used to manufacture multiple non-patient specific prosthetic tooth elements at the same time. Having a number of pre-fabricated non-patient specific prosthetic tooth elements of several sizes at a clinic may save a patient multiple visits to the clinic and increase efficiency of a dental restoration procedure, for example.

[0108] It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the above-described embodiments, without departing from the broad general scope of the present disclosure. For example, in one embodiment, dental composite used for the coating/veneer and the bonding material may be light-cured at the same time, rather than at different times. As another example, the dental composite used for the bonding material may be different from the dental composite used for the coating/veneer. As another example, the bodies of the mould parts may be formed only partially of flexible polymeric material, while still achieving the surface roughening due to movement of a portion of the bodies of the mould parts. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.
CLAIMS:

1. A method of forming a prosthetic tooth element comprising:
 filling a mould that is formed at least partially from flexible polymeric material with
 a dental mixture comprising ceramic; and
 applying pressure to the filled mould to form a prosthetic tooth element comprising
 ceramic with a roughened surface.

2. The method of claim 1, wherein the dental mixture comprises ceramic powder and a
 bonding agent.

3. The method of claim 1 or 2, wherein the roughened surface extends around all of the
 prosthetic tooth element.

4. The method of claim 1, 2 or 3, comprising forming a veneer on a first portion of the
 roughened surface.

5. The method of claim 4, wherein forming the veneer comprises applying a dental
 composite to the first portion and curing the dental composite.

6. The method of one of the preceding claims, comprising bonding a second portion of
 the roughened surface to a mount.

7. The method of claim 6, wherein bonding the second portion to the mount comprises
 applying a dental composite between the first portion and the mount and curing the dental
 composite.

8. The method of any one of the preceding claims, wherein the flexible polymeric
 material is silicone rubber.

9. The method of any one of the preceding claims, wherein the mould comprises a first
 mould part and a second mould and the method comprises bringing the first and second
 mould parts together to form a prosthetic tooth element-shaped recess in which the dental
 mixture is filled.
10. The method of claim 9, wherein surfaces of the prosthetic tooth element-shaped recess are defined by the flexible polymeric material of the mould.

11. The method of any one of the preceding claims wherein the first and second mould parts each include a flexible polymeric body and a plate located at an outer surface of the flexible polymeric body.

12. The method of claim 11, wherein the pressure is applied to the plates of the mould parts.

13. The method of any one of the preceding claims, wherein the pressure is applied at greater than 0.5 tonnes per square centimetre or greater than 1.0 tonnes per square centimetre or about 2.0 tonners per square centimetre.

14. The method of any one of the preceding claims, wherein the pressure is applied non-uniformly.

15. The method of claim 14, wherein the pressure is applied over a first period, released and then reapplied.

16. A compression mould for forming a prosthetic tooth element comprising ceramic, the mould comprising:
 a first mould part and a second mould part adapted to be brought together to form a prosthetic tooth element-shaped recess, at least one of the first and second mould parts comprising flexible polymeric material;
 wherein the mould is configured such that, upon filling of the recess with dental mixture comprising ceramic and applying pressure to the mould, a prosthetic tooth element comprising ceramic with a roughened surface is formed.

17. A method of forming a dental prosthesis comprising:
 applying a curable dental composite to a surface of a prosthetic tooth element, the prosthetic tooth element comprising ceramic; and
 curing the dental composite to form a veneer on the prosthetic tooth element.
18. A method of forming a dental prosthesis comprising:
 providing a prosthetic tooth element comprising ceramic, the ceramic comprising at
 least one of zirconia, zirconia-oxide and aluminium oxide;
 applying a curable dental composite to the zirconia, zirconia-oxide or aluminium
 oxide ceramic at a surface of the prosthetic tooth element; and
 curing the dental composite to form a veneer on the prosthetic tooth element.

19. The method of claim 17 or 18, wherein the dental composite is light-curable and the
 method comprises curing the dental composite by exposing the dental composite to light.

20. The method of claim 17, 18 or 19, wherein the surface of the prosthetic tooth element
 is roughened.

21. The method of any one of claims 17 to 20, comprising fixing the prosthetic tooth
 element to a mount in a patient's mouth using dental composite.

22. The method of claim 21, wherein the dental composite used to fix the prosthetic
tooth element is light-curable and the method comprises curing the dental composite by
exposing the dental composite to light.

23. The method of claim 21 or 22, wherein the dental composite applied to the surface of
the prosthetic tooth element and the dental composite used to fix the prosthetic tooth element
to the patient's mouth has the same chemical composition.

24. The method of claim 23, comprising dispensing the dental composite applied to the
surface of the prosthetic tooth element and the dental composite used to fix the prosthetic
tooth element to the patient's mouth from the same dispenser.

25. A dental prosthesis formed by the method of any one of claims 17 to 24.

26. A dental prosthesis comprising:
 a prosthetic tooth element comprising ceramic, and
 a veneer located on a surface of the prosthetic tooth element, the veneer comprising
cured dental composite.
27. A dental prosthesis comprising a prosthetic tooth element comprising ceramic, the ceramic comprising at least one of zirconia, zirconia-oxide and aluminium oxide zirconia, and a veneer located on the zirconia, zirconia-oxide and aluminium oxide zirconia at a surface of the prosthetic tooth element, the veneer comprising cured dental composite.
AMENDED CLAIMS
received by the International Bureau on 08 October 2015 (08.10.2015)

1. A method of forming a prosthetic tooth element comprising:
 filling a compression mould that is formed at least partially from flexible polymeric material with a dental mixture comprising ceramic; and
 applying pressure to the outside of the filled compression mould to compress the dental mixture and form a prosthetic tooth element comprising ceramic with a roughened surface.

2. The method of claim 1, wherein the dental mixture comprises ceramic powder and a bonding agent.

3. The method of claim 1 or 2, wherein the roughened surface extends around all of the prosthetic tooth element.

4. The method of claim 1, 2 or 3, comprising forming a veneer on a first portion of the roughened surface.

5. The method of claim 4, wherein forming the veneer comprises applying a dental composite to the first portion and curing the dental composite.

6. The method of one of the preceding claims, comprising bonding a second portion of the roughened surface to a mount.

7. The method of claim 6, wherein bonding the second portion to the mount comprises applying a dental composite between the first portion and the mount and curing the dental composite.

8. The method of any one of the preceding claims, wherein the flexible polymeric material is silicone rubber.

9. The method of any one of the preceding claims, wherein the compression mould comprises a first mould part and a second mould part and the method comprises bringing the first and second mould parts together to form a prosthetic tooth element-shaped recess in which the dental mixture is filled.
10. The method of claim 9, wherein surfaces of the prosthetic tooth element-shaped recess are defined by the flexible polymeric material of the mould.

11. The method of any one of the preceding claims wherein the first and second mould parts each include a flexible polymeric body and a plate located at an outer surface of the flexible polymeric body.

12. The method of claim 11, wherein the pressure is applied to the plates of the mould parts.

13. The method of any one of the preceding claims, wherein the pressure is applied at greater than 0.5 tonnes per square centimetre or greater than 1.0 tonnes per square centimetre or about 2.0 tonners per square centimetre.

14. The method of any one of the preceding claims, wherein the pressure is applied non-uniformly.

15. The method of claim 14, wherein the pressure is applied over a first period, released and then reapplied.

16. The method of any one of the preceding claims, wherein the ceramic comprises at least one of zirconia, zirconia-oxide and aluminium oxide.

17. The method of claim 5 or 7, wherein the dental composite is light-curable and the method comprises curing the dental composite by exposing the dental composite to light.

18. A compression mould for forming a prosthetic tooth element comprising ceramic, the mould comprising:

 a first mould part and a second mould part adapted to be brought together to form a prosthetic tooth element-shaped recess, at least one of the first and second mould parts comprising flexible polymeric material;

 wherein the compression mould is configured such that, upon filling of the recess with dental mixture comprising ceramic and applying pressure to the outside of the filled compression mould, a prosthetic tooth element comprising ceramic with a roughened surface is formed.
19. The compression mould of claim 18, wherein surfaces of the prosthetic tooth element-shaped recess are defined by the flexible polymeric material of the mould.

20. The compression mould of claim 18 or 19, wherein the first and second mould parts each include a flexible polymeric body and a plate located at an outer surface of the flexible polymeric body.

21. The compression mould of claim 18, 19 or 20, wherein the flexible polymeric material is silicone rubber.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
A61C 13/083 (2006.01) A61C 13/09 (2006.01) A61C 13/20 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Epodoc/AVPIAP: IPC A61C 5/08/low, A61C 13/08/low, A61C 13/13, A61C 13/20; CPC A61C 5/05/low, A61C 13/08/low, A61C 13/20/low, using keywords (mould+, manufacturer+, tooth) and similar terms. TXTE, using keywords (mould+, flex+, surface+, rough+, pressure) and similar terms.

Google Patents & Espacenet: Applicant name search, Inventor name search. Google Patents, using keywords (dental, prosthesis, outer, surface, texture, rough, ceramic, mould, MPa, PSI) and similar terms.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Documents are listed in the continuation of Box C

Further documents are listed in the continuation of Box C

See patent family annex

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search
4 May 2015

Date of mailing of the international search report
04 May 2015

Name and mailing address of the ISA/AU
AUSTRALIAN PATENT OFFICE
PO BOX 200, WODEN ACT 2606, AUSTRALIA
Email address: pat@ipaaustralia.gov.au

Authorised officer
John Schweitzer
AUSTRALIAN PATENT OFFICE
(ISO 9001 Quality Certified Service)
Telephone No. 0262832400

Form PCT/ISA/210 (fifth sheet) (July 2009)
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. **☐** Claims Nos.;
 - because they relate to subject matter not required to be searched by this Authority, namely:
 - the subject matter listed in Rule 39 on which, under Article 17(2)(a)(i), an international search is not required to be carried out, including

2. **☐** Claims Nos.;
 - because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. **☐** Claims Nos;
 - because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)

Box No. II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

- See Supplemental Box for Details

1. **☐** As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. **☐** As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. **☐** As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. [X] No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-16

Remark on Protest

- **☐** The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- **☐** The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- **☐** No protest accompanied the payment of additional search fees.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2009/0104584 A1 (FERRILLI) 23 April 2009 fig, 1; para 0004, 0017, 0019, 0021-0023; claim 26.</td>
<td>1, 3-12, 14-16</td>
</tr>
<tr>
<td>X</td>
<td>US 2013/0177876 A1 (HOMANN et al.) 11 July 2013 para 0074, 0076-0077 para 0090.</td>
<td>1, 3, 8-12, 14-16, 6, 7</td>
</tr>
<tr>
<td>X</td>
<td>EP 2532322 A1 (WESTCAM PROJECKMANAGEMENT GMBH) 12 December 2012 para 0029-0030.</td>
<td>1, 3, 6-12, 14-16</td>
</tr>
<tr>
<td>X</td>
<td>US 3766650 A (GNECCO) 23 October 1973 col. 2, lines 16-41.</td>
<td>1-3, 6-12, 14-16</td>
</tr>
<tr>
<td>X</td>
<td>US 2003/0125189 A1 (CASTRO et al.) 03 July 2003 para 0051, 0055.</td>
<td>1, 3, 6-16</td>
</tr>
<tr>
<td>A</td>
<td>GB 499959 A (ERDLE & PRANGE, INC.) 31 January 1939 fig, 5; claims 1, 2.</td>
<td>1-16</td>
</tr>
<tr>
<td>A</td>
<td>GB 259812 A (CASPARI) 21 October 1926 figs. 1-4; page 1, lines 36-73; page 3, lines 16-38.</td>
<td>9-12, 14, 15</td>
</tr>
</tbody>
</table>
Continuation of: Box III

This International Application does not comply with the requirements of unity of invention because it does not relate to one invention or to a group of inventions so linked as to form a single general inventive concept.

This Authority has found that there are different inventions based on the following features that separate the claims into distinct groups:

- Claims 1 to 16 are directed to a method of forming a prosthetic tooth and a compression mould for forming a prosthetic tooth, at least part of the mould comprising a flexible polymeric material, the prosthetic tooth comprising ceramic formed with a roughened surface. A prosthetic tooth formed by a mould as defined is specific to this group of claims.
- Claims 17 to 27 are directed to a method of forming a dental prosthesis and a dental prosthesis, the dental prosthesis comprising a ceramic to which a curable composite veneer is applied. A prosthetic tooth as defined is specific to this group of claims.

PCT Rule 13.2, first sentence, states that unity of invention is only fulfilled when there is a technical relationship among the claimed inventions involving one or more of the same or corresponding special technical features. PCT Rule 13.2, second sentence, defines a special technical feature as a feature which makes a contribution over the prior art.

When there is no special technical feature common to all the claimed inventions there is no unity of invention.

In the above groups of claims, the identified features may have the potential to make a contribution over the prior art but are not common to all the claimed inventions and therefore cannot provide the required technical relationship. Therefore there is no special technical feature common to all the claimed inventions and the requirements for unity of invention are consequently not satisfied a priori.
This Annex lists known patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2009/0104584 A1</td>
<td>23 April 2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DE 102007050439 A1</td>
<td>30 Apr 2009</td>
</tr>
<tr>
<td></td>
<td>EP 2052694 A1</td>
<td>29 Apr 2009</td>
</tr>
<tr>
<td></td>
<td>JP 2009101 158 A</td>
<td>14 May 2009</td>
</tr>
<tr>
<td></td>
<td>JP 5208668 B2</td>
<td>12 Jun 2013</td>
</tr>
<tr>
<td></td>
<td>JP 2012179433 A</td>
<td>20 Sep 2012</td>
</tr>
<tr>
<td></td>
<td>JP 541 1323 B2</td>
<td>12 Feb 2014</td>
</tr>
<tr>
<td>US 2013/0177876 A1</td>
<td>11 May 2013</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AU 2008201488 A1</td>
<td>06 Nov 2008</td>
</tr>
<tr>
<td></td>
<td>AU 2008201488 B2</td>
<td>27 Sep 2012</td>
</tr>
<tr>
<td></td>
<td>CA 262891 1 A1</td>
<td>19 Oct 2008</td>
</tr>
<tr>
<td></td>
<td>CN 101332130 A</td>
<td>31 Dec 2008</td>
</tr>
<tr>
<td></td>
<td>CN 101332130 B</td>
<td>22 Aug 2012</td>
</tr>
<tr>
<td></td>
<td>EP 1982670 B1</td>
<td>02 Sep 2009</td>
</tr>
<tr>
<td></td>
<td>JP 2008264545 A</td>
<td>06 Nov 2008</td>
</tr>
<tr>
<td></td>
<td>JP 5360642 B2</td>
<td>04 Dec 2013</td>
</tr>
<tr>
<td></td>
<td>US 2015056574 A1</td>
<td>26 Feb 2015</td>
</tr>
<tr>
<td></td>
<td>ZA 200802741 A</td>
<td>31 Dec 2008</td>
</tr>
<tr>
<td></td>
<td>US 3766650 A</td>
<td>23 October 1973</td>
</tr>
<tr>
<td></td>
<td>US 3621576 A</td>
<td>23 Nov 1971</td>
</tr>
<tr>
<td></td>
<td>EP 1458304 A1</td>
<td>22 Sep 2004</td>
</tr>
<tr>
<td></td>
<td>EP 1458304 B1</td>
<td>22 Jan 2014</td>
</tr>
<tr>
<td></td>
<td>JP 2005514305 A</td>
<td>19 May 2005</td>
</tr>
<tr>
<td></td>
<td>JP 4510462 B2</td>
<td>21 Jul 2010</td>
</tr>
<tr>
<td></td>
<td>WO 03057065 A1</td>
<td>17 Jul 2003</td>
</tr>
<tr>
<td></td>
<td>GB 499959 A</td>
<td>31 January 1939</td>
</tr>
<tr>
<td></td>
<td>US 6287490 B2</td>
<td>11 Sep 2001</td>
</tr>
</tbody>
</table>

Due to data integration issues this family listing may not include 10 digit Australian applications filed since May 2001.

Form PCT/ISA/270 (Family Annex)(July 2009)
This Annex lists known patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication Number</td>
<td>Publication Date</td>
</tr>
<tr>
<td>CA 2235220 A1</td>
<td>18 Oct 1998</td>
</tr>
<tr>
<td>JP H10305045 A</td>
<td>17 Nov 1998</td>
</tr>
<tr>
<td>JP 2977526 B2</td>
<td>15 Nov 1999</td>
</tr>
<tr>
<td>US 7806694 B2</td>
<td>05 Oct 2010</td>
</tr>
<tr>
<td>US 6322728 B1</td>
<td>27 Nov 2001</td>
</tr>
<tr>
<td>US 6354836 B1</td>
<td>12 Mar 2002</td>
</tr>
<tr>
<td>US 2002125592 A1</td>
<td>12 Sep 2002</td>
</tr>
<tr>
<td>US 6808659 B2</td>
<td>26 Oct 2004</td>
</tr>
<tr>
<td>US 2002064745 A1</td>
<td>30 May 2002</td>
</tr>
<tr>
<td>US 6821462 B2</td>
<td>23 Nov 2004</td>
</tr>
<tr>
<td>US 2002033548 A1</td>
<td>21 Mar 2002</td>
</tr>
<tr>
<td>US 6994549 B2</td>
<td>07 Feb 2006</td>
</tr>
<tr>
<td>US 2002155412 A1</td>
<td>24 Oct 2002</td>
</tr>
<tr>
<td>US 2004262797 A1</td>
<td>30 Dec 2004</td>
</tr>
<tr>
<td>US 7563397 B2</td>
<td>21 Jul 2009</td>
</tr>
<tr>
<td>US 7655586 B1</td>
<td>02 Feb 2010</td>
</tr>
<tr>
<td>US 2010047743 A1</td>
<td>25 Feb 2010</td>
</tr>
<tr>
<td>US 2010323328 A1</td>
<td>23 Dec 2010</td>
</tr>
<tr>
<td>US 2012178042 A1</td>
<td>12 Jul 2012</td>
</tr>
<tr>
<td>US 8741050 B2</td>
<td>03 Jun 2014</td>
</tr>
<tr>
<td>US 2005023710 A1</td>
<td>03 Feb 2005</td>
</tr>
<tr>
<td>US 2005 110177 A1</td>
<td>26 May 2005</td>
</tr>
<tr>
<td>US 2010038807 A1</td>
<td>18 Feb 2010</td>
</tr>
<tr>
<td>US 2014300013 A1</td>
<td>09 Oct 2014</td>
</tr>
<tr>
<td>GB 259812 A</td>
<td>21 October 1926</td>
</tr>
</tbody>
</table>

End of Annex

Due to data integration issues this family listing may not include 10 digit Australian applications filed since May 2001.
Form PCT/ISA/21(0)(Family Annex)(July 2009)