Office de la Proprieté Canadian CA 2587529 C 2011/07/12

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 587 529
Findustie Canada Industry Ganada 12 BREVET GANALIEN
CANADIAN PATENT
13) C
(86) Date de depot PCT/PCT Filing Date: 2005/12/06 (51) Cl.Int./Int.Cl. GO6F 77/30(2006.01)
(87) Date publication PCT/PCT Publication Date: 2006/06/22 | (72) Inventeurs/Inventors:
(45) Date de délivrance/lssue Date: 2011/07/12 AN, NAMIT, US
' AGARWAL, NIPUN, US:
(85) Entree phase nationale/National Entry: 200//05/03 SEDLAR, ERIC, US:
(86) N° demande PCT/PCT Application No.: US 2005/044134 IDICULA, SAM, US

PANNALA, SYAM, US

T (73) Proprietaire/Owner:
(30) Priorité/Priority: 2004/12/16 (US11/014,354) ORACLE INTERNATIONAL CORPORATION US

(74) Agent: SMITHS IP

(87) N° publication PCT/PCT Publication No.: 2006/065587

(54) Titre : INFRASTRUCTURE POUR L'EXECUTION D'OPERATIONS DE FICHIER PAR UN SERVEUR DE BASE DE
DONNEES

(54) Title: INFRASTRUCTURE FOR PERFORMING FILE OPERATIONS BY A DATABASE SERVER

DATABASE SERVER 122~
LOOKUP
PROTOCOL INTERPRETER 210 |-y an s 212
200

'—" I

RESOURCE PRIVILEGE |

{ LOCKER 222 VERIFIER 230 =XPANSION 222

NFS PACKET AUTHORIZER
x EXPORTER 220 l READER 224 239
FTP PACKET HTTP PACKET

READER 226 READER 228 |

(57) Abréegée/Abstract:

A method and apparatus for processing a file system operation at a database server Is provided. A request to perform a file system
operation on a resource stored In a database Is recelved at a database system. The request may be implemented using the NFS
protocol. The request may Include state identification data that identifies state information associated with the request. State
Information associated with the request Is retrieved within the database system based on the state identification data. State
Information Is Information that describes the operational state of the requestor for a particular file. The request Is then processed
based, at least In part, on the state identification. File system operations may be processed a database management system to
access any data, such as a file, relational data, and object-relational data.

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

W .
‘ l an a dH http.:vvopic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC
OPIC - CIPO 191

/0655877 A1 0L V10 AT T NP0 VA 0 00 0

\&

CA 02587529 2007-05-08

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization [

International Bureau

(43) International Publication Date
22 June 2006 (22.06.2006)

(51) International Patent Classification:
GO6F 17/30 (2006.01)

(21) International Application Number:
PCT/US2005/044134

(22) International Filing Date:
6 December 2005 (06.12.2005)

(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
11/014,354 16 December 2004 (16.12.2004) US

(71) Applicant (for all designated States except US): ORACLE
INTERNATIONAL CORPORATION [US/US]; 500 Or-
acle Parkway, Redwood Shores, CA 94065 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): JAIN, Namit
[IN/US]; 2234 Gianera Street, Santa Clara, California
95054 (US). AGARWAL, Nipun [US/US]; 4768 Cheeney
Street, Santa Clara, California 95054 (US). SEDLAR,
Eric [US/US]; 4270 Cesar Chavez Street, San Francisco,
California 94131 (US). IDICULA, Sam [US/US]J; 550
Kiely Boulevard, Apt. 38, San Jose, California 95117
(US). PANNALA, Syam [IN/US]; 405 Rancho Arroyo
Parkway, #281, Fremont, California 94536 (US).

(10) International Publication Number

WO 2006/065587 Al

(74) Agent: BROKAW, Christopher; HICKMAN PALERMO
TRUONG & BECKER LLP, 2055 Gateway Place, Suite
550, San Jose, CA 95110-1089 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

Al, AU, AZ,BA, BB, BG, BR, BW,BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, L.C, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: INFRASTRUCTURE FOR PERFORMING FILE OPERATIONS BY A DATABASE SERVER

DATABASE SERVER 122\

r____‘----------'.-.‘-‘“-.‘-.------------'.,-.,.,—-_..a----------------vvvvv-vvv-v—h‘-'A‘-----""""““ ---------------

PROTOCOL INTERPRETER 210

LOOKUP
MECHANISM 212

RESOURCE
LOCKER 222

| — 200

PRIVILEGE
VERIFIER 230

NFS PACKET

FTP PACKET HTTP PACKET
READER 226 READER 228

e e e m m A E E e PW P YR E Y R YA A AAARERER RS S EEEEEEEYTE VT A hkAidAASEEEE WYY YYPYS-m—haAATEEY Y YSYYTERSRSRYYFFYFSS oL AansmmssRRRsee.

(57) Abstract: A method and apparatus for processing a file system operation at a database server is provided. A request to perform
& a file system operation on a resource stored in a database is received at a database system. The request may be implemented using
& the NFS protocol. The request may include state identification data that identifies state information associated with the request.
N State information associated with the request is retrieved within the database system based on the state identification data. State
information is information that describes the operational state of the requestor for a particular file. The request is then processed
based, at least in part, on the state identification. File system operations may be processed a database management system to access

any data, such as a file, relational data, and object-relational data.

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

INERASTRUCTURE FOR PERFORMING FILE OPERATIONS BY A DATABASE SERVER

FIELD OF THE INVENTION

[0001] The present invention relates to performing file operations in a database

management system.

BACKGROUND

[0002] Data may be stored in many types of storage mechanisms, such as databases and
file servers. Each storage mechanism typically has its own means of access. For example,
the SQL protocol is typically used to perform operations on a database, and the NFS
protocol is typically used to perform operations on a file system. The SQL protocol 1s an
ANSI standard for accessing and manipulating data stored in a database. The NFS protocol
is a distributed file system protocol that supports the performance of file operations on files
across a network. NFS is a well-known standard for sharing files between UNIX hosts. In
the NFS protocol, file system operations are performed on files using a filehandle, which 1s
an identifier that identifies a particular file. The current version of NFS, version 4, which 1s
specified in RFC 3010, supports additional functionality over version 3, such as
enhancements to security and to the performance of stateful operations.

[0003] Currently, database management systems do not support accessing data items
within a database using the NFS protocol. Thus, when a user wishes to access data, the
user must ascertain which type of storage mechanism is storing the data to determine to the
appropriate manner in which to access the data. For example, to determine whether the
NFS protocol may be used, the user must determine whether the data 1s stored relationally
in a database or in a file system. In many circumstances it may be cumbersome for the user
to determine in which storage mechanism the data is actually stored.

[0004] Further, for a variety of reasons, it 1s desirable to store as many kinds of data as
possible in a single storage mechanism. For example, minimizing of the number of
different types of storage mechanisms that are used to store data tends to reduce the amount
of resources required to maintain the storage mechanisms. Also, storing many kinds of
data in a central location, such as a database, promotes ease of use and security, as data 1s
not stored in a plurality of mechanisms, each of which may implement security differently.
[0005] Consequently, an approach for performing file system operations within a
database management system is desirable. The approaches described in this section are
approaches that could be pursued, but not necessarily approaches that have been previously
conceived or pursued. Therefore, unless otherwise indicated, 1t should not be assumed that
any of the approaches described in this section qualify as prior art merely by virtue of their

inclusion i1n this section.

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

BRIEF 'DESCRIRTIONOF FHE DRAWINGS
[0006] Embodiments of the present invention are illustrated by way ot example, and

not by way of limitation, in the figures of the accompanying drawings and in which like

reference numerals refer to similar elements and in which:

[0007} FIG. 1 is a block diagram of a system capable of processing requests

implemented in a stateful protocol according to an embodiment of the invention;

[0008] FIG. 2 is a block diagram of the functional components of a database server

according to an embodiment of the invention;

[0009] FIG. 3 is a flowchart illustrating the functional steps of processing a file

operation according to an embodiment of the invention;

[0010] FIG. 4 1s a flowchart illustrating the functional steps of using database locks and
file-based locks according to an embodiment of the invention;

(0011} FIG. 5 is a block diagram of storing prior version information for a schema-
based resource according to an embodiment of the invention;

[0012] FIG. 6A and 6B are block diagrams of storing prior version information for a
non-schema-based resource according to embodiments of the invention;

[0013] FIG. 7 is a table illustrating various types of file-based locks, and their
compatibility, according to an embodiment of the invention; and

[0014] FIG. 8 is a block diagram that illustrates a computer system upon which an

embodiment of the invention may be implemented.

DETAILED DESCRIPTION

[0015] In the following description, for the purposes of explanation, numerous specific
details are set forth in order to provide a thorough understanding of embodiments of the
present invention. It will be apparent, however, that embodiments of the present invention
may be practiced without these specific details. In other instances, well-known structures
and devices are shown in block diagram form in order to avoid unnecessarily obscuring the

embodiments of the present invention described herein.

FUNCTIONAL OVERVIEW
[0016] A framework is presented that enables a database server to process a request to
perform a stateful operation, such as a stateful file system operation, on data stored 1n a
database. A “stateful operation” is an operation that (1) is requested within a session, and
(2) in some manner takes into account that were actions previously performed in the
session. The performance of certain operations may influence the pertormance of a stateful

operation. For example, the result of performing a database operation may be required to

b

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

“successtlly ‘perform™ Statefill peration. Most file system operations performed using
NFS are stateful operations. When performed by a database server, a stateful file system
operation may span one or more database transactions.

[0017] In an embodiment, a request is received at a database system. The request may
be, for example, a request to perform a stateful operation using the NFS protocol. The
request may include state identification data, which is data that identifies state information
assoclated with the request. State information, described in further detail belov?, 1S
information that describes any actions previously performed, by a requestor, on a resource,
In any session. For example, if several stateful operations were performed on a resource by
a requestor 1n different sessions, then the state information for that resource would describe
a state of the resource that reflects the performed stateful operations.

[0018] When a stateful operation is performed on a resource, state information
associated with the resource is retrieved so that the performance of the stateful operation
reflects any other stateful operation previously performed. State information associated
with the request is retrieved within the database system based on the state identification
data contained within the request. The request is then processed based, at leést In part, on
the state information.

[0019] Embodiments of the invention advantageously provide for processing file
system operations, at a database management system, to access any data maintained by the
database management system, such as files, relational data, and object-relational data. The
framework described herein advantageously allows requests that conform to stateful
protocols, such as NFS, to be processed at a database server. While embodiments of the
invention shall chiefly be described with respect to processing a request implemented using
the NFS protocol, the framework may be used to process any stateful or stateless protocol.
Embodiments of the invention may be used to process a request that conform to the NFS

protocol, including version 4 or any later developed version.

ARCHITECTURAL OVERVIEW
[0020] FI1G. 1 1s a block diagram of a system 100 capable of processing a request to
perform a file system operation according to an embodiment of the invention. System 100
includes a client 110, database management system (DBMS) 120, and a communications
link 130. A user of client 110 may issue a request that specifies performance of one or
more file system operations to DBMS 120. For the purpose of explanation, examples shall
be given 1n which the requests conform to a version of NFS, such as version 4.
[0021] Client 110 may be implemented by any medium or mechanism that is capable of
1ssuing a request to DBMS 120. Client 110 may issue a stateful request to DBMS 120. As

used herein, a “stateful request” is a request for performance of a stateful operation.

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

i TR
'.. ‘
=¥ i

Fypically, StdteHal rédublts-afe'tssued using a stateful protocol, such as NFS. Non-limiting,
illustrative examples of client 110 include an application executing on a device accessible
to communications link 130. While only one client is shown in FIG. 1 for ease of
explanation, system 100 may include any number of clients 110 that each communicate
with DBMS 120 over communications link 130.

[0022] Client 110 may be implemented by a medium or mechanism that 1s capable of
issuing multiple requests concurrently. For example, a client 110 may correspond to an
application executing on a device, and the application may be comprised of multiple
processes that each may transmit requests to DBMS 120. Therefore, to avoid confusion,
the term “requestor” is used herein to refer to any entity that issues a request to DBMS 120.
Thus, a requestor may correspond to client 110, a process executing on client 110, or a
process spawned by client 110.

[0023] DBMS 120 is a software system that facilitates the storage and retrieval of
electronic data. DBMS 120 comprises a database server 122 and a database 124. Database
server 122 is implemented using a framework that allows the database server 122 to
process any stateful request, such as a request to perform a tile operation, on a file
maintained in database 124.

[0024] The database server 122 may be implemented in a multi-process single-threaded
environment, being emulated as a multi-threaded server. A pool of processes that are each
capable of performing work reside at database server 122. When database server 122
receives a request, the database server 122 may assign any process in the pool of processes
to process the received request. Implementing database server 122 in a multi-process
single-threaded environment allows the database server 122 to scale to support a large
number of clients 110.

[0025] Communications link 130 may be implemented by any medium or mechanism
that provides for the exchange of data between client 110 and DBMS 120. Examples of
communications link 130 include, without limitation, a network such as a Local Area
Network (LAN), Wide Area Network (WAN), Ethernet or the Internet, or one or more

terrestrial, satellite or wireless links.

FRAMEWORK
10026] FIG. 2 is a block diagram of the functional components of a database server 122
according to an embodiment of the invention. As explained above, database server 122 1s
implemented using a framework 200 that allows the database server 122 to process stateful
requests on files maintained in database 124. Additionally, the same framework 200 may
allow the database server 122 to process stateless requests, such as a request implemented

in the HTTP or FTP protocol, on data maintained in database 124. Further, as explained

4

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

Eelgw, Fﬂ@'"ﬁ%’woﬂ@%@ﬁma[)&}be configured to include additional components to support
new stateless or stateful protocols or to add new functionality to existing protocols
supported by the framework 200.

[0027] Each component in the framework 200 of database server 122 1s discussed
below, and thereafter an explanation of processing an illustrative statetul request using the
framework 200 shall be presented in the section entitled “Processing File Operations Using
the Framework.”

[0028] The framework 200 may be implemented with additional components, not
shown in FIG. 2, that provide additional functionality required by stateful or stateless
requests. For example, expansion 234 refers a component that may be plugged into the
framework 200 that allows the framework 200 to support new stateless or stateful protocols
or to add new functionality to existing protocols supported by the framework 200. To plug
expansion component 234 into the framework 200, protocol interpreter 210 1s configured to

call expansion component 234 at the appropriate time with the appropriate information.

THE PROTOCOL INTERPRETER
10029] The protocol interpreter 210 receives packets sent to the DBMS 120 over
communications link 130. Protocol interpreter 210 may be implemented using any
software or hardware component capable of receiving packets tfrom client 110 over
communications link 130, and processing the packets as described below. Protocol
interpreter 210, upon recelving a packet, identifies a packet type associated with the packet,
and sends the packet to a component that 1s configured to read packets of that packet type.
For example, if protocol interpreter 210 determines, by inspecting the header of the packet,
that the packet contains a NFS request, then protocol interpreter 210 sends the packet to
NFS packet reader 224. After the packet containing the NFS request 1s read by the NFS
packet reader 224, NFS packet reader 224 sends information about individual file system
operations specified within the packet back to the protocol interpreter 210 for further
processing.
[0030] Protocol interpreter 210 contains a lookup mechanism 212. Lookup mechanism
212 may be implemented using any software or hardware component capable of storing
state information for requestors of DBMS 120.. Lookup mechanism may store state
information in volatile storage, and may be implemented using any mechanism, such as B-
trees and hash tables, that facilitates the retrieval of state information. An illustrative
embodiment of a lookup mechanism 212 is presented in additional detail below 1n the
section entitled “Maintaining State Information.”
[0031] Protocol interpreter 210 1s configured to process operations requested by

packets received by the protocol interpreter 210. Protocol interpreter 210 may be

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134
%%-giﬂ&é&%&?féh“ﬁ theepgeration requested by a received packet, or as explained in

further detail below, protocol interpreter 210 may communicate with one or more
components of the framework 200 to perform an operation requested by a packet received

by the protocol interpreter 210.

THE EXPORTER
[0032] Exporter 220 may be implemented using any software or hardware component
capable of performing an export operation. An export allows a requestor to view a portion
of a directory tree as if the directory tree resided at the requestor, instead of the directory
tree residing at a server.
[0033] In an embodiment, after framework 200 successfully performs an export
operation, framework 200 transmits, to the requestor of the export operation, (a)
information 1dentifying which directory folders are exported to the requestor, and (b)
information 1dentifying whether the requestor has read and/or write access to the exported
directory folders. When a requestor receives access to a directory folder through an export
operation, the requestor may view all the contents, including any child directory folders, of
the directory folders to which the requestor has access.
[0034] In an embodiment, exporter 220 may maintain information about (a) which
requestors have been exported directory folders, and (b) the access permissions associated
with any exported directory folders. A directory folder may be exported to a specific client
110 (e. g.,' exporting a directory folder to a specific IP address or domain name) or to one or
more clients, e.g., a directory folder may be exported to a group of related machines by

exporting a directory folder to an IP mask.

THE RESOURCE LOCKER

[0035] Resource locker 222 may be implemented using any software or hardware
component capable of locking a resource. In an embodiment, resource locker 222 is
configured to perform byte range locking on files stored in the database 124.

[0036] When a lock 1s required to be performed on a resource, resource locker 222
performs the lock. In the performance of a request to grant a file-based lock, resource
locker 222 may update information maintained by the lookup mechanism 212. File-based
locks are described in further detail below.

[0037] For example, 1f one embodiment, protocol interpreter 210 may instruct resource
locker 222 to perform a file system operation that requests the grant of a file-based lock on
a file. Resource locker 222 may access a B-tree to initially determine if the file-based lock
may be granted, and if the requested file-based lock may be granted, then the resource

locker 222 may update one or more B-trees to reflect that the file-based lock has been

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

’g-ra%lte‘dgﬁii‘éﬁ@u file: *I'%“e’;ipélmeﬁiar B-trees that the resource locker 222 may access or

update are discussed in further detail below.

THE PACKET READERS
[0038] Framework 200 includes several packet readers. Each packet reader 1s designed
to read information from packets that conform to a particular protocol. For example,
framework 200 includes an NFS packet reader 224, an FTP packet reader 226, and an
HTTP packet reader 228.
[0039] NFS packet reader 224 may be implemented using any software or hardware
component capable of reading and parsing packets that conform to the NFS protocol. Such
packets may request one operation, or many operations. A packet that requests two or
more file system operations is referred to as a “compound request”. The NFS packet reader
224 is configured to read the first operation specified in the packet, and return data that
identifies that operation to the protocol interpreter 210. The protocol interpreter 210 may
thereafter cause the NFS packet reader 224 to read another operation from the packet once
the prior operation has been processed.
[0040] FTP packet reader 226 may be implemented using any software or hardware
component capable of reading and parsing packets containing FTP requests. FTP packet
reader 226 is configured to read and parse the FTP operation information contained within
the FTP packet, and thereafter communicate the FTP operation information to the protocol
interpreter 210 for processing.
[0041] HTTP packet reader 228 may be implemented using any software or hardware
component capable of reading and parsing packets containing HT'TP requests. HT'TP
packet reader 226 is configured to read and parse the HT TP operation information
contained within the HTTP packet, and thereafter communicate the HTTP operation
information to the protocol interpreter 210 for processing.
[0042] While FIG. 2 illustrates packet readers for three different types of packet types,
namely NFS, FTP, and HTTP packets, other embodiments may comprise additional packet
readers for additional types of packets. In this manner, the framework may include

components capable of reading any stateless or stateful protocol.

THE PRIVILEGE VERIFIER
[0043] Privilege verifier 230 may be implemented using any software or hardware
component capable of verifying whether a particular requestor has a permission level
sufficient to perform a particular file system operation. Protocol interpreter 210 may
instruct privilege verifier 230 to determine whether a particular requestor has a permission

level sufficient to perform a particular file system operation each time that the protocol

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

#nte';‘pre%et’rltﬂj@ %%rfo%‘sga-ﬂﬁfé‘ %‘%’/‘stem operation. The determination of whether a particular
user has a permission level sufficient to perform a particular file system operation 1s

discussed in further detail below with reference to step 318 of FIG. 3.

THE AUTHORIZER
[0044] Authorizer 232 may be implemented using any software or hardware component
capable of determining whether the requestor tha;t issued a particular request, received by
the protocol interpreter 210, is actually the same requestor identified in the particular
request. In this way, the identity of the requestor may be veritied by the authorizer 232
before any operation specified in the request is performed. The protocol interpreter 210
may instruct the authorizer 232 to determine whether the requestor that i1ssued a particular
request, received by the protocol interpreter 210, is actually the same requestor 1dentitied 1n
the particular request each time the protocol interpreter 210 receives a request. The
determination of whether a particular request was issued by a particular client 110 1s

described in further detail below with reference to step 316.

MAINTAINING STATE INFORMATION
[0045] In the NFS protocol, file system operations are performed on a file that has been
“opened,” but not yet “closed.” A requestor requests the performance an OPEN file system
operation to open a file before the requestor may perform other file system operations on
the file. After the requestor has performed all desired file system operations on the file, the
requestor requests the performance of a CLOSE file system operation to close the file.
[0046] A file system operation that is performed by a database server may span one or
more database transactions. Consequently, one or more database transactions that each
change the state of a file may be performed on the file between the time when the file 1s
opened and when the file 1s closed.
[0047] As NFS is a stateful protocol, it is necessary for the framework 200 to maintain
state information when processing stateful requests. State information i1s information that
describes any actions previously performed, by a requestor on a resource, in any session.
According to one embodiment, state information is maintained for each file that a requestor
has opened. For example, if a requestor opened file A and file B, then the requestor would
be associated with a first set of state information for file A and a second set of state
information for file B.
[0048] State information is assigned or updated any time that a requestor: (a) opens or
closes a file, or (b) obtains a new lock on an open file. Thus, whenever a requestor either
(a) opens or closes a file, or (b) obtains a new lock on an open file, state information 1s

updated to reflect the stateful operations performed on the file.

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

”[00‘219] LI Sehdenfdinlitbraddociated with a requestor reflects all the stateful operations
performed on the file by the requestor since the file was opened. For example, when a
requestor first opens a file, state information A may be assigned. Thereatter, if the same
requestor obtains a lock on the file, the state information A becomes 1nvalid, and new state
information B is assigned. Note that the state information B reflects both the lock, and the
fact that the file is opened by the requestor. Thereafter, if the same requestor obtains a
second lock on the file, state information B becomes invalid, and new state information C
is assigned. Note that the state information C reflects both locks and the fact that the file 1s
opened by the requestor. When a requestor closes the file, the state information for that

requestor, for that file, no longer needs to be maintained.

KEEPING TRACK OF THE STATE OF REQUESTOR-TO-FILE RELATIONSHIPS

[0050] State identification data may accompany communications exchanged between
client 110 and database server 122 to refer to the current state of a file referenced in the
communication. When a requestor opens a file, state identification data is created by the
framework 200. The state identification data identifies the state information associated
with the particular requestor with respect to the particular file that the requestor has opened.
[0051] In order to keep track of the state of an open file, the newly created state
identification data is returned to the requestor. For example, assume that a requestor XYZ
issues a request to open a file ABC. The framework 200 generates state 1dentification data
that describes the state information associated with the newly opened file ABC, and returns
the state identification data to requestor XY Z.

[0052] When a requestor transmits a request, to database server 122, to perform a file
system operation on an open file, the request contains any state identification data
previously transmitted to the requestor, e.g., state identification data may have been
previously transmitted to the requestor in response to the file being opened. In this manner,
the request identifies the state information associated with the file. For example, if
requestor XYZ transmits a request for a lock on file ABC, the request will contain the state
identification information previously sent to requestor XYZ in response to the database
server 122 performing the OPEN f{ile system operation on file ABC. The framework 200
may use the state identification contained in the request to retrieve the corresponding state
information using lookup mechanism 212.

[0053] Thus, as illustrated above, the framework 200 generates state 1dentification data
in response to performing certain stateful file system operations, and the generated state
identification data is transmitted to the requestor of the file system operation. Thereafter,

the requestor may perform additional stateful file system operations on the same file by

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

including i Eh"eureqdlelkfyth& statd'identification data, which allows the framework 200 to
retrieve the state information for the file using the state identification data.

[0054] When a file system operation is performed on an open file, the state information
associated with the file is updated to reflect the new operational state of the file. New state
identification data is created to refer to the updated state information. Thereafter, the
framework 200 transmits the new state identification data to the requestor. In this way,
only one set of state identification data is exchanged between the requestor and the
framework 200. The state identification data transmitted from the framework 200, after the
framework successfully performs a stateful file system operation, identifies the most recent
state information associated with the resource that was the subject of the statetul file system
operation.

[0055] As explained in the next section, the framework 200 may store state information
in the lookup mechanism 212, and may retrieve state information stored 1n the lookup

mechanism 212 using the state identification data.

MAINTAINING STATE INFORMATION
[0056] According to one embodiment, state information 1s maintained using lookup
mechanism 212. In one embodiment, lookup mechanism 212 1s implemented using a
plurality of B-trees. The plurality of B-trees store state information used in processing
stateful file system operation requests. For example, the plurality of B-trees may store
requestor data, file data, and lock data. Requestor data is data that identifies requestors that
are registered to i1ssue file system operations. File data 1s data that identifies which files
have been opened by which requestors. Lock data is data that identifies which locks on
which files have been granted to which requestors.
[0057] In one embodiment, the plurality of B-trees include a “client B-tree,” a
“client exists B-tree,” a “requestor B-tree,” an “open_files B-tree,” an “opens B-tree,” a
“locks requestor B-tree,” and a “granted locks B-tree.” Each of these B-trees may store
state information, and shall be described in further detail below.
[0058] Other embodiments of the invention may implement lookup mechanism 212
using a different set of B-trees. For example, several B-trees mentioned above, e.g., the
client exists B-tree, store information that is also stored in other B-trees, and so all the B-
trees mentioned above may not be necessary for certain implementations ot lookup
mechanism 212. However, it may be advantageous to store the same or simtilar information
in more than one B-tree, as the information may be more efficiently accessed using a first

key in a first circumstance, and may be more efficiently accessed using a second key in a

second circumstance.

10

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

Li[00%9] L5 et dilibbdintent of the invention, lookup mechanism 212 may be
implemented using a plurality of hash tables, instead of a plurality of B-trees. The plurality
of hash tables implementing the lookup mechanism 212 stores information similar to that
described hereafter. Other mechanisms may also be employed by other embodiments of

the invention to implement lookup mechanism 212.

THE CLIENT B-TREE
[0060] The client B-tree is a B-tree that maintains information about clients. Each
client 110 that has registered with the framework 200 will be reflected in an index entry
within the client B-tree. A client 110 registers with the framework 200 by 1ssuing a request
to establish a client identifier, as explained in further detail below. The key of the client B-
tree is a client identifier previously assigned to the client by the database server. A client
identifier uniquely identifies a particular client 110 registered with the framework 200.
Each node of the client B-tree stores the information about a particular client, including the

client identifier and a client-provided identifier, such as a network address of the client.

THE CLIENT EXISTS B-TREE
[0061] Similar to the client B-tree, the client exists B-tree maintains information about
clients. While both the client B-tree and the client exists B-tree maintain information
about clients, the key of the client-exists B-tree is a client-provided identifier. The client-
provided identifier may be, for example, the network address of the client.
[0062] The client exists B-tree may be used to determine, based on the client-provided
identifier, whether a particular client 110 has registered with the framework 200. Each
index entry of the client_exists B-tree also stores the information about a particular chent,

including the client identifier and a client-provided identifier.

THE REQUESTOR B-TREE
[0063] The requestor B-tree is a B-tree that maintains information about requestors.
The key of the requestor B-tree reflects both a client identifier associated with a requestor
and a requestor identifier that uniquely identifies the requestor. The requestor B-tree may
be used to determine all requestors associated with a particular client 110, which may be
needed during the processing of an OPEN file system operation or when recovering a client
that has become inoperable.
[0064] Each index entry of the requestor B-tree stores the information about a
requestor. For example, an index entry of the requestor B-tree that corresponds to a
particular requestor may store information about which client is associated with the
requestor, when the last communication from the requestor was received, which files the

requestor has opened, and what state information is associated with the requestor.

11

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134
e T ey U ey B Y S HE OPEN FILES B-TREE

[0065] The open_files B-tree is a B-tree that maintains information about files that have
been opened. The key of the open_files B-tree is the filehandle of a file. The open_files B-
tree may be used to determine whether it is possible to perform a file system operation on a
particular file. Each index entry of the open_files B-tree may store information about an
open file. Such information may include, for example, the number of file-based locks on
the open file, the type of file-based locks on the open file, what state identification data

identifies state information associated with the open file, an object identifier for the open
file.

THE OPENS B-TREE
[0066] The opens B-tree is a B-tree that maintains information about files that have
been opened. The key of the opens B-tree is state identification data. By traversing the
opens B-tree, one can locate information about the open file associated with the state
information identified by the state identification data used as the key to the opens B-tree.
[0067] For example, assume that a client has opened a particular file. The state
information maintained for the client will indicate that the client has opened the particular
file. The state information will be assigned to a set of state identification data. The state
identification data may be used to traverse the opens B-tree to find an index entry that
indicates that the particular file is open.
[0068] Each index entry of the opens B-tree stores information about an open file, such
as state 1dentification data that identifies state information associated with the open file, the
requestor that opened the open file, whether the file was opened for reading or writing,
whether the open file has been modified, and whether reading or writing has been denied to
any other requestor other than the one which opened the open file.
[0069] To open a file, state identification data is generated to identify the open file.
The state 1dentification data is (a) transmitted to the requestor that requested the file to be
open, and (b) used to add an entry to the opens B-tree to reflect that the file has been

opened.

THE LOCKS _REQUESTOR B-TREE
[0070] The locks_requestor B-tree is a B-tree that maintains information about lock
requestors. The key to the locks requestors B-tree is a state identification data. Each index
entry of the locks B-tree contains information about the requestor of a lock, such as the
client identifier, the requestor identifier, and the lock owner identifier. The lock owner

1dentifier uniquely identifies a particular requestor that is granted a lock. The client

12

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134
“““ tdentifier aftd-the requestoridentifier are assigned by the framework 200, and the lock

owner 1dentifier is supplied by the requestor.

THE GRANTED LOCKS B-TREE
[0071] The granted_locks B-tree is a B-tree that maintains information about granted
locks. The key to the granted_locks B-tree tree is a filehandle. The granted locks B-tree
may be used to quickly determine which file-based locks, if any, have been granted on a
particular file.
[0072] When the protocol interpreter 210 instructs resource locker 222 to perform a file
system operation that requests the grant of a particular lock, resource locker 222 may '
access one or more B-trees of lookup mechanism 212. To illustrate, assume that protocol
interpreter 210 receives a request for a grant of a particular lock on a file, and thereafter
protocol interpreter 210 instructs resource locker 222 to process the file system operation.
Resource locker 222 may initially determine if a conflicting lock has already been granted
on the file by accessing the granted locks B-tree. The resource locker 222 may traverse the
granted locks B-tree using the filehandle of the file identified by the file system operation.
If an entry in the granted locks B-tree exists for the filehandle, an examination of the entry
will inform the resource locker 222 whether a conflicting lock has already been granted on
the file.
[0073] If the resource locker 222 determines that a conflicting lock has not already
been granted on the file, then the resource locker 222 may (a) generate new state
identification data to identify the new state of the resource, and (b) add an entry to the
granted_locks B-tree to reflect the grant of the requested lock. The resource locker 222
may add a new entry to the granted_locks B-tree using the newly generated new state
1dentification data for the resource, and thereafter, delete the prior entry in the locks B-tree
that was referenced by the prior state identification data. The new entry in the locks B-tree
contains reference to all the prior stateful operations performed on the resource, so it is

unnecessary to store the entry referenced by the prior state identification data.

PROCESSING FILE OPERATIONS USING THE FRAMEWORK
[0074] FIG. 3 1s a flowchart illustrating the steps for processing a file system operation
according to an embodiment of the invention. By performing the steps of FIG. 3, a stateful
operation, such as a stateful NFS operation, may be performed by DBMS 120.
[0075] In general, the framework maintains state information about the operations that
the framework performs. Upon performing a stateful operation, the framework passes back
to a requestor state 1dentification data that corresponds to the state of the operation. In a

subsequent request for a stateful operation, the requestor sends the state identification data

L2 NN AN L/ NYTN MmN 4 -~ e A A T ST

13

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134
back 0 HH&Fhniewotk: T He framework then uses the state identification data as a key to

identify the state information that applies to the operation in that subsequent request.

OBTAINING A FRAMEWORK-GENERATED CLIENT IDENTIFIER
[0076] Referring to FIG. 2, initially, in step 310, a first request to establish a client
identifier for a requestor is received at a database server. Step 310 may be performed by
protocol interpreter 210 receiving a packet, containing the first request, sent by client 110
over communications link 130.
[0077] Protocol interpreter 210 may receive packets of a variety of packet types. While
protocol interpreter 210 1s configured to 1dentify the packet type of a received packet, the
protocol interpreter 210 does not need to be configured to read each packet type. Protocol
interpreter 210 may determine the packet type of a received packet, for example, by
inspecting information contained within the header of the packet. Once the protocol
interpreter 210 determines the packet type of the received packet, the protocol interpreter
210 sends the packet to a component responsible for reading packets of that packet type.
[0078] For the purpose of explanation, it shall be assumed that the packet received in
step 310 1s an NFS packet that contains a request to establish a client identifier for a
requestor. Establishing a client identifier is a NFS operation. Under these circumstances,
the protocol interpreter will send the packet to NFS packet reader 224 to read the packet.
NFS packet reader 224 reads and parses the packet, and sends data that identifies the
requested file system operation (1.e. establishing a client identifier) back to the protocol
interpreter 210.
[0079] After receiving the data that identifies the file system operation, the protocol
interpreter 210 processes the file system operation. In the present example, the protocol
interpreter 210 processes the request to-establish a client identifier. As part of processing
the request, the protocol interpreter 210 may, for example, consult lookup mechanism 212
to determine (a) whether a client identifier has been established for the requestor yet, and
(b) if no client 1dentifier has been established for the requestor yet, then determining what
client identifier should be associated with the requestor.
[0080] In an embodiment, the database server may traverse the client exists B-tree
based on a client-provided identifier (such as the client’s network address) to determine
whether a client identifier has been established for the particular requestor. If a client
identifier has not been established tor the requestor, then the database server may generate
a client identifier for the client. After generating the client identifier for the client, the
database server may add index entries to the client B-tree and the client exists B-tree to

store information about the new client identifier assigned to the requestor.

14

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

fOOél] LI A R rthe 'H%%ﬁo#"rnénﬁcﬁé of step 310, processing proceeds to step 312. In step 312,
the client identifier, which was established above in step 310, is transmitted to the
requestor. Step 312 may be performed by protocol interpreter 210 transmitting a
communication that contains the client identifier to the requestor over communications link
130. In an embodiment, the requestor may verify the received client identifier with the
database server 122 by exchanging additional communications with the database server 122

to verify the client identifier. After the performance of step 312, processing proceeds to

step 314.
RECEIVING A COMPOUND REQUEST

[0082] In step 314, a second request to perform a file system operation is received.
Step 314 may be performed by protocol interpreter 210 receiving a packet, containing the
second request, sent by client 110 over communications link 130. The second request
includes the client identifier.

[0083] To illustrate the processing of a compound request, assume that the second
request received in step 314 is a compound request that contains two or more tile system
operations. File system operations specified in a compound request are processed
sequentially by the framework 200.

[0084] To illustrate the processing of a stateful file system operation request, further
assume that the first file system operation specified in the second request is a request for a
file-based lock on a file that has been previously opened by the requestor. After the
framework 200 opens a file, the framework 200 (a) generates state identification data that
identifies the state information associated with the opened file, and (b) transmits the state
identification data to the requestor. Thus, if the request received in step 314 is a request to
perform a file system operation on an open file, the request received 1n step 314 contains
the state identification data previously sent to the requestor. In this example, the state
identification data will allow the framework 200 to reference the state information
associated with the file that is the subject of the request for the file-based lock.

[0085] After the protocol interpreter 210 determines that the request ot step 314
contains a file system operation request, the protocol interpreter 212 may send the packet
containing the request of step 314 to the NFS packet reader 224 to read the packet.
Thereafter, the NFS packet reader 224 transmits information to the protocol interpreter 210
about the first unprocessed file system operation (referred to below as the “current” file
system operation) specified in the packet. The framework 200 shall process additional
unprocessed file system operations specified in the packet after the current file system

operation has been processed, as described in turther detail below.

13

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

Lol W0 5 " MASSIGRING THE REQUEST TO A SESSION

[0086] Once the protocol interpreter 210 receives the information about the current file
system operation specified in the compound request from the NFS packet reader 224, the
protocol interpreter 210 assigns the current file system operation to a database session. The
assigned database session, which may be selected from a pool of database sessions, 1s the
sessibn in which the database server will process the file system operations contained
within the compound request. As state information 1s maintained separately from sessions
(as explained above, state information 1s maintained in lookup mechanism 212), any
session may be selected from the pool of database sessions to service the current file

system operation. After the performance of step 314, processing proceeds to step 316.

AUTHENTICATING THE CLIENT
[0087] In step 316, a determination 1s made as to whether the request received 1n step
314 was 1ssued by the client identified by the client identifier contained within the request.
In an embodiment, each time a request 1s received, the request 1s authenticated to confirm
the 1dentity of the requestor. Step 316 may be performed by the protocol interpreter 210
communicating with authorizer 232 to cause authorizer 232 to authenticate the request.
Authorizer 232 may use the client identifier contained within the request in the
authentication process. After the authorizer 232 authenticates the request received in step
314, the authorizer 232 communicates the results of the authentication process to the
protocol interpreter 210. Authorizer 232 may authenticate the requestor using standard
authentication libraries and protocols, including Kerberos, LIPKEY, and SPKM-3.
[0088] If the request received 1n step 314 1s not authenticated by the authorizer 232,
then the protocol interpreter 210 sends a communication to the requestor that sent the
second request (received in step 314) to inform the requestor that the second request was

not authenticated. Once the second request 1s authenticated, then processing proceeds to

step 318.
DETERMINING WHETHER THE REQUESTED OPERATION IS PERMITTED

[0089] In step 318, a determination 1s made as to whether the requestor has a
permission level sufficient to perform the current file system operation. Step 318 may be
performed by the protocol interpreter 210 communicating with privilege verifier 230 to
cause privilege verifier 230 to verify whether the requestor has a permission level sutficient
to perform the current file system operation.

[0090] In an embodiment, privilege verifier 230 determines whether a requestor has a
permission level sufficient to perform a specified file system operation using an access

control list for each requestor. Privilege verifier 230 maintains an access control list for

16

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

tach reéiijfes% 5 dchtakkebs-@onitrol list contains a list of access control entries (ACEs).
Each ACE identifies whether the requestor is granted or denied a specitic privilege.

[0091] To illustrate, assume that requestor 1234 has issued a request to perform a file
system operation that requires privilege A and privilege B. Privilege verifier 230 maintains
a list of ACEs for requestor 1234. Privilege verifier 230 processes ACEs specified in the
access control list sequentially. If the access control list for requestor 1234 contained: a
first ACE that indicated that requestor 1234 was granted permission A, a second ACE that
indicated that requestor 1234 was granted permission B, and a third ACE that indicated that
requestor 1234 was denied permission A, then privilege verifier 230 will determine that
requestor 1234 has a sufficient permission level to perform the requested file system
operation, because the privilege verifier 230 will process ACEs in the access control list
sequentially until a determination can be made. Thus, once the privilege veritier 230 reads
the second ACE in the access control list for requestor 1234, the privilege veritier 230 can
make a determination about whether requestor 1234 has a sufficient permission level to
perform the requested file system operation, and privilege verifier 230 will not read the
remainder of the access control list. After the performance of step 318, processing

proceeds to step 320.

LOCATING THE APPROPRIATE STATE INFORMATION
[0092} In step 320, if the performance of the current file system operation requires state
information, then the appropriate state information is retrieved based on the state
identification data contained within the second request. The state 1dentification data may
have been previously assigned and communicated to the requestor, €.g., the requestor may
have previously opened a file or may have been previously granted a lock on a file. The
state information retrieved in step 320 may be associated with the current file system
operation if the request is a compound request. Step 320 may be performed by protocol
interpreter 210 retrieving state information using lookup mechanism 212. The state
information retrieved in step 320 includes any state information necessary to perform the

current file system operation. After the processing of step 320, processing proceeds to step
322.

EXECUTING THE REQUESTED FILE SYSTEM OPERATION
[0093] In step 322, the current file system operation is processed, within the selected
database session, based on the appropriate state information. In one embodiment, step 322
may be performed by protocol interpreter 210 itself. In another embodiment, protocol

interpreter 210 may communicate with other components of the framework 200 to cause

17

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

L | S B I ol IR i | I | T | N L | 0 .
the btheb-tohipottentsto Lpérfo}i'n% the current file system operation. After the current file

system operation has been processed, processing proceeds to step 324.

UPDATING THE STATE INFORMATION
[0094]} In step 322, the file system operation is performed in a session. The state used
by the session changes by virtue of the performance of the file system operation. In the
present example, the state information that represents the state of that session shall be
referred to as “updated state infoﬁnation.” The updated state information reflects state
changes that resulted from the processing of the current file system operation. For
example, the updated state information reflects whether the file, that is the subject of the
file system operation, has been opened and whether any locks have been granted on the
file. Thus, the updated state information reflects the current state of the file after the
current file system operation has been performed against the file.
[0095] In step 324, information stored within the lookup mechanism 212 is updated to
reflect the updated state information associated with the current file system operation. In
an embodiment, one or more B-trees comprising the lookup mechanism 212 are updated to
indicate the new state of the session. The B-trees comprising the lookup mechanism 212
may be updated by (a) generating a new state identification data to identity the updated
state information, and (b) updating or adding entries to the appropriate B-trees of lookup
mechanism 212 to reflect the updated state information.
[0096] For example, assume that in step 322, the current file system operation that was
processed in step 322 was an operation to perform a file-based lock on the first 100 bytes of
a particular file. Resource locker 222 may initially determine if a conflicting lock has
already been granted on the file by accessing the granted locks B-tree. The resource locker
222 may traverse the granted locks B-tree using the filehandle of the file 1dentified in the
current file system operation. If an entry in the granted locks B-tree exists for the
filehandle, an examination of the entry will inform the resource locker 222 whether a
conflicting lock has already been granted on the file.
[0097] If the resource locker 222 determines that a conflicting lock has not already
been granted on the file, then the resource locker 222 (a) generates new state 1dentification
data to identify the new state of the resource, and (b) adds an entry to the granted locks B-
tree to reflect the grant of the requested lock. Specifically, the resource locker 222 may add
a new entry to the granted locks B-tree using the newly generated new state identification
data for the resource, and thereafter, delete the prior entry in the locks B-tree that was
referenced by the prior state identification data. The new entry in the granted_locks B-tree

contains reference to the file-based lock granted on the first 100 bytes of the file, in

18

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

’ !!ztti; u jj qu” ""’ H!I.: !LJ" il 1 o7 15 ¥

" ddition 0“any"prior oc‘k*%réﬁf%’a on the resource, so it 1s unnecessary to store the entry
reterenced by the prior state identification data.

[0098] After the performance of step 324, processing proceeds to step 326.

ITERATING THROUGH OPERATIONS SPECIFIED IN A COMPOUND REQUEST
[0099] Each request may be a compound request that specifies one or more file system
operations to be performed. In step 326, if the request received in step 314 is a compound
request, and there are additional unprocessed file system operations specified in the
compound request, then processing proceeds to step 318, wherein the next unprocessed file
system operation specified in the second request of step 314 becomes the “current file
system operation.” In this manner, each file system operation specified in a compound
request 1s sequentially processed by the framework 200.

[0100] After all file system operations specified in the second request of step 314 have

been processed, processing proceeds to step 328.

PROVIDING THE REQUESTOR WITH RESULTS AND A REVISED STATE
IDENTIFIER

[0101] In step 328, the results of performing all the file system operations specified in
the request of step 314 are transmitted to the requestor in a communication. The
communication may contain any state identification data that identifies state information
that was assigned to a particular resource that was the subject of a successfully performed
file system operation. The performance of step 328 may be performed by protocol
interpreter 210 sending, to the requestor, the results of processing each file system
operation of a compound request, along with any state identification data generated in
response to performing a stateful file system operation. For example, if the requestor had
requested that a read-write lock be granted on a particular range of bytes on a file that the
requestor had previously opened, protocol interpreter 210 may perform step 328 by sending
the requestor a communication that includes new state identification data that identifies the
new state of the resource, i.e., that the read-write lock was granted on a particular range of
bytes on a particular file. Note that new state identification information is transmitted to
the requestor in response to the successful processing of stateful file system operations, but
not in response to the successful processing of stateless file system operations.
[0102] In the NFS protocol, the results of processing multiple file system operations
specified in a compound request may be transmitted in a single communication to the
requestor. Thus, the state identification data transmitted to the requestor in step 328 may

be sent 1n a single communication by the communication that includes state identification

19

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

'informationtfor-Sach suctessf f'l% performed stateful file system operation specified in a
compound request. -

[0103] [f the framework 200 1s unable to process a particular file system operation 1n a
compound request, then a single communication 1s transmitted to the requestor. The
communication includes information that describes (a) the results, including any new state
identification information, of processing the file system operations specified in the
compound request that were processed, and (b) information indicating which file system

operation could not be performed.

PROCESSING STATELESS TRANSACTIONS USING THE FRAMEWORK
0104] The framework 200 may also process stateless requests, such as a stateless file
system operation or a request that conforms to a stateless protocol. When protocol
interpreter 210 receives a packet that contains a stateless request, the protocol interpreter
210 may transmit the packet to a component to read and parse the packet. For example,
protocol interpreter 210 sends packets containing FTP requests to FTP packet reader 226
and protocol interpreter 210 sends packets containing HTTP requests to HTTP packet
reader 228.

[0103] After reading and parsing a stateless request, FTP packet reader 226 and HTTP
packet reader 228 transmit information identifying the stateless request to protocol
interpreter 210. The protocol interpreter 210 may, in turn, perform the stateless request or
communicate with another component of the framework 210 to perform the stateless
request, €.g., resource locker 222 may be required to lock a resource. As the request is
stateless, 1t 1s not necessary to assign state information to the request once the request has

been successfully performed.

RELATIONSHIP BETWEEN FILE SYSTEM OPERATIONS AND DATABASE
TRANSACTIONS

[0106]} When a client wishes to write to a file, the client may request to performance of
an OPEN file system operation, then multiple write file system operations, and then the
CLOSE file system operation. For the purposes of this section, a single file system
operation refers to multiple NFS operations, starting from the OPEN file system operation
to the corresponding CLOSE file system operation. To perform a single file system
operation, the database server 122 may be required to cause one or more database
transactions to be performed. Each of the one or more database transactions 1s committed
before the file system operation is performed. Thus, changes made to database 124 by a
particular database transaction are committed before it 1s known whether the performance

of the file system operation will be successtul.

20

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

| g

fﬁlﬁ"/’] A 'fETEﬁs;%aéﬁgﬁg‘l%fﬁeﬂgé iﬁr‘"{l*“further detail below in the next several sections, a
requestor who wishes to view a resource may expect to view either (a) a version of the
resource that currently reflects any committed database transactions, or (b) a version of the
resource that only reflects completed file system operations, and does not reflect any
committed database transactions that correspond to a file system operation that has not yet

been completed.

OPEN COMMITTED CHANGES
[0108] Requestors may independently 1ssue OPEN and CLOSE commands on the same
resource. Thus, even though a CLOSE command may close a file relative to one requestor,
the file may still not be closed relative to all requestors. The term “last close” refers to a
CLOSE file system operation that results in a file being closed relative to all requestors.
Thus, any resource that is currently opened by one or more requestors has not had the last
close pertormed on the resource.
[0109] Multiple database transactions, that each change the state of a file, may be
performed between the time the file 1s opened, and the time of the last close. Changes
performed on a file may be committed before the last close on the file 1s performed.
Changes that (1) have been committed in the database, but (2) involve a file that has not

had the last close, are referred to herein as “open-committed changes.”

INCONSISTENT CLIENTS

[0110] When a last close has not been performed on a resource and a requestor sends a
request to obtain the resource, the state of the resource that the requestor should receive
depends on the type of client associated with the requestor. An “inconsistent client” 1s a
client that expects to view the “current state” of the resource. In this context, the current
state of the resource includes any open-committed changes made to the resource, but does
not include any uncommitted changes made to the resource.

[0111] For example, if two database committed transactions have changed the state of a
resource since the resource was first opened, and a last close has not been performed on the
resource, an inconsistent client that issues a request for the resource expects the view the
state of the resource that reflects the changes made by the two database transactions. A
client that accesses the DBMS 120 using the NFS, FTP or HTTP protocol i1s an example of
an inconsistent client. A requestor associated with an inconsistent client will be an
inconsistent requestor, i.€., the requestor will expect to view the current state of the

IréSourcc.

21

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

I L o 7 ey R EL L Mo ONSISTENT CLIENTS
[0112] A consistent client is a client that is not allowed to see any open-committed
changes. Rather, consistent clients see only committed changes that were made to a
resource either (a) before the resource was opened, if the resource has been opened, but not
closed, or (b) after a last-close has been performed on the resource. For example, assume
that a resource has been opened, but a last close has not been performed on the resource. A
consistent client, which requests access to the resource, expects to view a state of the
resource just prior to the performance of the OPEN operation.
[0113] Thus, if two committed database transactions have changed the state of a
resource since the resource was opened, and a last close has not been performed, then a
consistent client that issues a request for the resource expects the view the state of the
resource that does not reflect the changes made by the two transactions. For ease of
explanation, the state of the resource that must be seen by a consistent client shall be
referred to as the “closed-committed” version of the resource.
[0114] A client that accesses the DBMS 120 using the SQL protocol 1s an example of a
consistent client. Any requestor associated with a consistent client will be a consistent
requestor, i.e., the requestor will expect to view the state of the resource 1n a closed-
committed state.
[0115] To illustrate further, the following file system operations and points 1n time
occur 1n the following order:

(1) time t]

(2) Requestor 1 open file {1

(3) Requestor 1 commits a change to the file {1

(4) time t2

(5) Requestor 2 opens file {1

(6) Requestor 2 commits a change to the file 11

(7) time t3

(8) Requestor 1 closes the file t1

(9) time t4°

(10) Requestor 2 closes the file f1

(11) time t5
At time t3, the consistent version of the file f1 is the file at time t1, and the inconsistent
version of the file is the file at time t3. At time t4, the consistent version of the file f1 1s the
file at time t1, and the inconsistent version of the file is the file at time t4. At time t5, the

consistent version of the file f1 is the file at time t5, and the inconsistent version of the file

22

CA 02587529 2007-05-08

WO 2006/065587 PCT/US2005/044134
foe Jf if:i“ -
{rs the ﬁij 2 etS yti a%ons étent client expects to view a prior state of the resource, that

state must be preserved until the last close is performed on the resource.

RECONSTRUCTING THE CLOSE-COMMITTED VERSION
[0116] In order for the framework 200 to support consistent requestors and inconsistent
requestors, the framework 200 employs different types of locks, namely database locks and
file-based locks. A database lock is a lock that is obtained in response to performing a
database operation, and the database lock is released when the database operation has
successfully completed (committed). A file-based lock is a lock that 1s obtained 1n
response to performing an OPEN file system operation, and the file-based lock is released
when a CLOSE file system operation is performed.
(0117} FIG. 4 is a flowchart illustrating the functional steps of using database locks and
file-based locks according to an embodiment of the invention. In step 410, a requestor
requests an operation that involves a particular resource. Step 410 may be performed by
client 110 sending a request to database server 122 over communications link 130. After
the performance of step 410, processing proceeds to step 412.
[0118] In step 412, a determination is made as to the requestor type of the requestor.
Step 412 may be performed by the database server 122. Based on the requestor type, the
database server 122 determines which version of the particular resource to send to the
requestor. If the requestor is an inconsistent requestor, then the database server 122 sends
the current version of the particular resource. However, if the requestor 1s a consistent
requestor, then the database server 122 sends an older version of the particular resource,
namely, the closed-committed version of the resource.
[0119] The determination of the requestor type may be performed based on the type of
protocol to which the request conforms. If the request conforms to the SQL protocol, then
the requestor is a consistent requestor. However, if the request conforms to the NFS, FTP,
or HTTP protocol, then the requestor is an inconsistent requestor. After the performance of
step 412, processing proceeds to step 414.
10120] In step 414, to perform the requested operation, a first lock on the particular
resource is obtained. The first lock is a first type of lock, such as a file-based lock. After
the performance of step 414, processing proceeds to step 416.
[0121] In step 416, to perform each database operation required by the requested
operation, a second lock is obtained. The second lock is a second type of lock, such as a
database lock.
[0122] In an embodiment, prior to performing any database operation that changes the
state of a particular resource, a temporary copy of the resource is stored in the database

124. When a file-based lock has been granted on the particular resource, changes to the

23

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

gargiiculgr” résb fée atd tdfiécted n the temporary copy of the resource, rather than the
actual resource itself. Because the original version of the resource remains unmoditied, the
original version may be used by database server 122 in servicing consistent requestors.
The database server 122 may use the temporary copy of the resource in servicing
inconsistent requestors, as the temporary copy reflects all the changes that have been made
to the resource by committed database operations. After the performance of step 416,
processing proceeds to step 418.

[0123] In step 418, database locks are released in response to successful completion of
the corresponding database operation. When the operation is performed by a database
system, the database system commits the transaction used to perform the operation, and
releases the database locks that are held on all resources that were modified during the
operation. After all database operations required by the requested operation have been
performed, processing proceeds to step 420.

[0124] In step 420, file-based locks are released in response to successful completion of
the file system operation. Specifically, when the last close 1s performed on the resource,
the file-based lock on the resource is released, and the temporary copy of the resource may
be established as the current version of the resource. The temporary copy may be
established as the current version, for example, by copying the temporary copy over the
original copy, and then deleting the temporary copy.

[0125] After the file system operation 1s performed, the inconsistent version of the
resource and the closed-committed version of the resource are the same. Consequently,
both consistent requestors and inconsistent requestors may be serviced using the original
version of the resource until the resource 1s opened again.

[0126] By performing the steps of FIG. 4, file-based locks and database locks may be
used to enable database server 122 to service both consistent requestors and inconsistent
requestors. When a file-based lock 1s maintained on a resource, the state of the resource
prior to the performance of the OPEN file system operation 1s maintained, thus allowing

the database server 122 to service consistent requestors.

MANAGING CONCURRENT ACCESSES
[0127] The use of file-based locks is equally advantageous when multiple requestors
are performing operations that involve the same resource. For example, multiple requestors
may each issue requests to perform file system operations on the same file. More than one

requestor may open a file, and more than one requestor may make changes to the state of

the resource.

[0128] To illustrate, assume that a first requestor has opened a file and has made

changes to the file. When a second requestor sends a request, to database server 122, for a

24

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

g0 I

verSion o the S Eine ﬁﬁ‘ég;‘gﬂgtébaﬁ server 122 determines the requestor type of the second
requestor. If the second requestor is a consistent requestor, then the database server 122
provides a version of the file that does not reflect any changes made to the file by the first
requestor since the file has been opened. If the second requestor is an inconsistent
requestor, then the database server 122 provides a version of the file that reflects the
changes made to the file by the first requestor since the file has been opened.

[0129] Further information about how a database server may maintain the state of a
resource while the resource is the subject of a file-based lock 1s described below in the

section entitled “Performing Transaction Semantics.”

' PERFORMING TRANSACTION SEMANTICS
[0130] There are numerous reasons why 1t 1s advantageous to maintain information
about a prior version of the resource once the resource has been the subject of an OPEN file
system operation. First, as explained above, maintaining a prior version of the resource
once the resource has been the subject of an OPEN file system operation, but has not been
the subject of a last close, allows the database server 122 to service requests for resources
from consistent requestors. Second, maintaining a prior version of a resource allows the
database server to revert the resource to the prior version. It may be necessary to revert a
resource to a prior version in a variety ot circumstances, such as when (a) a requestor
creates an Incorrect version of a resource, (b) a requestor creates a version of a schema-
based resource that 1s not compatible with the schema, or (¢) the changes performed on a
resource by multiple requestors are not compatible with each other.
[0131] Significantly, the changes that need to be removed from a resource to revert the
resource to a prior state may include committed changes. Consequently, conventional undo
mechanisms used by database systems to remove changes made by uncommitted
transactions are not sufficient to perform the necessary reversion.
[0132] Embodiments of the invention advantageously allow a resource to be reverted to
a prior state, even if committed database transactions that have changed the state of the
resource from the prior state have been performed. According to an embodiment of the
invention, one or more changes are made to a resource by committed database transactions.
After the committed database transactions have change the state of the resource, a request
to revert the resource to a state prior to the changes made by the committed database
transactions 1s received. For example, client 110 may 1ssue a request to database server
122 to revert a particular file to a state prior to a particular point in time, such as the closed-
committed version of the file.
[0133] In response to receiving the request, the resource i1s reverted to the state prior to

the particular point in time, such as the point in time when the file was opened. In reverting

23

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

L1 8= | 24 ¢

i‘ﬁl’-:m!{:és"‘(‘)”uﬂlé%i%gfmﬁcﬁ}r"égﬂft’gst%té‘f’dﬁthe resource ceases to reflect the changes that were made
to the file by the committed database transactions. Techniques for reverting resources to a

prior state shall be discussed in further detail in the next section.

RESOURCE REVERSION TECHNIQUES

[0134] Various techniques may be used to revert resources to a state prior to a
particular point in time. The particular technique used may depend, for example, on
whether the resource is a schema-based resource or a non-schema-based resource. A
schema-based resource is a resource that conforms to a defined schema. For example, a
purchase order document conforming to a given schema is an example of a schema-based
resource. A non-schema-based resource is any resource that i1s not a schema-based

ICSOUrce.

STORING RESOURCES IN DECONSTRUCTED FORM
[0135] Schema based resources may be stored in a constructed form by storing the
entire resource together, e.g., storing an XML document in a lob column of a database
table. Alternatively, it may be advantageous to store a schema-based resource 1n a
deconstructed form by storing the elements comprising the schema-based resource
separately. For example, data describing individual XML tags, and their associated data, of
the XML document may be stored in a column of a database table. Because the elements
of the schema-based resource are stored separately, the elements of the schema-based
resource may need to be reconstructed before the schema-based resource 1s read.
{0136} FIG. 5 illustrates a resource table that shows a mechanism for storing a schema-
based resource in a deconstructed form. The table of FIG. 5 contains a reference column
504. Data describing the schema-based resource may be stored in or referenced by the
resource table. For example, reference column 504 of the resource table contains a pointer
506 that identifies another table, namely the XML Type table 510, where data regarding the
schema-based resource is stored. The XML type table 510 may itself refer to one or more
other tables that store other data elements of the schema-base resource. For example, XML
Type table 510 is shown with a reference 512 to nested table 520.
[0137] XML Type table 510, and any nested table 502, stores data about elements of
the schema-based resource. When a requestor wishes to read the first 100 bytes of a
schema-based resource, the resource must be reconstructed to service that request, because
the XML Type table 510 does not store information that describes at which byte does each
data element of a schema-based resource appear. Consequently, when data is read from a
schema-based resource, the schema-based resource must be reconstructed and stored 1n a

XML lob column 502. If a requestor wishes to read the first 100 bytes of a schema-based

26

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

" ilesgurcg,hthé{‘rlk%’cha[”égcfiué‘stfn“a"y easily be performed, by database server 122, by reading
the tirst 100 bytes of the reconstructed resource stored in the XML lob column 502,
[0138] As shall be explained in further detail below, subsequent operations may be
performed on the reconstructed copy of the resource stored in the XML lob column 502,

while leaving the deconstructed elements of the resource stored in the XML Type Table

510, and any nested table 520, intact.

REVERTING A SCHEMA BASED RESOURCE
[0139] According to one embodiment, schema based resources are reverted based on
“prior version information.” FIG. 5 is a block diagram of a system that stores prior version
information for a schema-based resource according to an embodiment of the invention.
The prior version information may be maintained in the XML Type Table 510, and any
nested table 520, while changes made to the schema-based resource may be performed on
the reconstructed copy of the resource stored in the XML lob column 502 until a last-close
1s performed on the schema-based resource.
[0140] In an embodiment of the invention, when a file-based lock is granted on a
resource, immediately prior to the performance of a database operation that may change the
state of the resource, a constructed copy of the schema-based resource is created. For
example, the constructed copy of the schema-based resource may be created and stored in
XML lob column 502.
[0141] Thereafter, the constructed copy of the resource (the copy of the resource stored
in the XML lob column 502) 1s treated as the current version of the resource, and the
changes required by the database operation are made to the constructed copy of the
resource (the copy of the resource stored in the XML lob column 502). In effect, the copy
of the resource 1n the XML lob column 502 becomes a cache of the dirty version of the
resource. Note that the deconstructed version of the schema-based resource is still
maintained in the XML Type Table 510.
[0142] To revert a schema-based resource to the deconstructed copy of the resource,
the copy of the resource that 1s stored in the XML lob column 502 is deleted. Thereafter,
the deconstructed version of the resource that is stored in the XML Type table 510, and any
nested table 520, is treated as the current version of the resource instead of the constructed
copy stored in the XML Type table 510.
[0143] When a CLOSE file system operation i1s performed on the resource, the changes
made to the deconstructed copy of the resource stored in the XML Type table 510 may be
made permanent by changing the deconstructed version of the resource stored in the XML
Type table 510, and any nested table 520, to reflect the constructed copy of the resource
stored in the XML lob column 502.

27

CA 02587529 2010-10-14

USING A SNAPSHOT TIME TO REVERT A NON-SCHEMA-BASED RESOURCE
[0144] FIG. 6A and 6B are block diagrams of storing prior version information for a
non-schema-based resource according to embodiments of the invention. FIG. 6A and 6B
shall be used to discuss three different approaches for storing prior version information for
non-schema-based resources.

[0145] According to a first approach, as shown in FIG. 6A, a resource table 600 stores
a non-schema-based resource in a LOB column 602. In this approach, when an OPEN file
system operation is performed on the resource, a snapshot time is stored in a column 604 of
the resource table 600. The snapshot time indicates a logical time immediately prior to
when the OPEN file system operation is performed on the resource.

[0146] After one or more database transactions have committed changes to the
resource, the database transactions may not be “undone,” but the resource may be reverted
to the state as of the snapshot time using undo information associated with the resource
since the snapshot time, Undo information refers to information, maintained by the DBMS
120, that may be used to “roll back” or undo a database transaction that has been
performed, but not committed.

[0147] The snapshot time and the undo information are used to apply a set of changes
to the resource to change the state of the resource to reflect the state of the resource at the
time of the snapshot time, Once the resource has been reverted to reflect the state of the
resource at the time of the snapshot time, the snapshot time is removed from column 604 of
the resource table 600.

[0148] In an embodiment, a “flashback query” may be used to apply a set of changes to
the resource to change the state of the resource to reflect the state of the resource at the time

of the snapshot time. Techniques for performing a flashback query are described in U,S.
Patent Application Serial No. 10/427,511, entitled “Flashback Database,” filed April 30,
2003,.

USING A CACHE COLUMN TO REVERT A NON-SCHEMA-BASED RESOURCE
[0149] According to a second approach, as shown in FIG. 6B, a resource table 650
stores a non-schema based resource in a LOB column 652. In this approach, when an
OPEN file system operation is performed on the resource, a copy of the resource is stored
in column 654 of resource table 650. Column 654 is used as a “cache column.”
Specifically, the copy of the resource stored in column 654 is treated as the current version
of the resource. When a database transaction effects a change to the resource, the change is
made to the copy of the resource stored in column 654 instead of the original resource

stored in column 652.

8-

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

iﬂl%O] L GO SEMAR- y‘si{gm operation is performed on the resource, then the copy of
the resource stored in 654 may be stored in column 652, so the original resource will reflect
any changes made to the resource by committed database operations. Until the CLOSE file
system operation is performed, the current value of the resource stored in column 652
reflects the state of the resource just prior to the performance of the OPEN file system
operation. Therefore, if it is necessary to revert the resource to the state of the resource just
prior to the performance of the OPEN file system operation, then the only change to
resource table 650 that needs to occur is to remove the copy of the resource stored 1n
column 654. Before the last close is performed on the resource, inconsistent requestors
may view the copy of the resource in column 654, and consistent requestors may view the

resource stored in column 652.

HYBRID APPROACH
[0151] Due to storage space constraints, undo information older than a certain time 1s
typically overwritten by newer undo information. Consequently, using a snapshot time to
perform the reversion (i.e. the first approach) is not always feasible. However, when the
undo information is available, the snapshot-time based reversion may be preterable to
cache-column reversion (i.e. the second reversion).
[0152] Consequently, in a third (hybrid) approach, the snapshot-based approach
discussed above is performed, unless the database server 122 determines that undo
information for the resource may not be available at the time that the resource may need to
be reverted. If the database server 122 determines that undo information for the resource
may not be available at the time that the resource may need to be reverted, then the cache-
column approach discussed above is then performed.
[0153] The database server 122 may determine that undo information for the resource
may not be available at the time the resource may need to be reverted if the amount of time

that undo information is maintained by the database server 122 is less than a configurable

amount of time.

CONSISTENCY CHECKING
[0154] According to one embodiment, the consistency of a modified file is checked at
the time the file is closed, and there are no more pending OPEN file system operations. For
example, a schema-based resource may be checked to ensure that the schema-based
resource conforms to the rules of the schema. If the schema-based resource does not

conform to the corresponding schema, then the resource may be reverted back to the state

of the resource at the time it was opened.

29

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

n

[01$5] LI PR cudskblaBove Hif a resource is the subject of a granted file-based lock, and
either the requestor issues a request to revert the resource back to an earlier state, or if the
resource fails a consistency check, then the resource may be reverted back an earlier state
as discussed above. Further details and advantages of file-based locks shall be presented

below.

FILE-BASED LOCKS
[0156] File-based locks enable database server 122 to perform file system operations
on files maintained in database 124. Resource locker 222 may manage the file system
locks on resources stored in database 124. The behavior of file-based locks 1s different
than other locks used for stateless protocols, such as HTTP, in three important aspects.
[0157] First, file-based locks may be granted on a portion of a resource, instead of just
on the entire resource. In particular, file-based locks may be granted on a range of bytes on
a resource. Thus, a single file may be the subject of multiple file-based locks, wherein each
file-based lock covers a different byte range of the file.
[0158] Second, file-based locks are leased based, which means that once a particular
file-based lock is granted to a requestor, the particular lock is granted for a first period of
time, after the expiration of which the particular lock expires. However, any
communication received by the requestor renews the particular lock for a second period of
time. Thus, a requestor may continually renew a file-based lock as long as the requestor
communicates with the database server 122 before the file system lock expires.
[0159] Once a particular file system lock expires, the lookup mechanism 212 1s updated
to reflect that the particular lock is no longer granted. Data maintained within lookup
mechanism 212 may be periodically checked to ensure that each lock requested by a
requestor is still valid.
[0160] When a particular requestor requests a lock that conflicts with another lock
previously granted, the lock that was previously granted may be checked to ensure that the
prior granted lock is still valid. If the prior granted lock i1s no longer valid, then
information stored in lookup mechanism 212 is updated to reflect that the lock 1s invalid
(e.g., information about the lock may be deleted). Also, all locks that have been granted to
a particular client are released when the particular client has expired. In an embodiment, a
client may expire after a configurable amount of time elapses since the client last
communicated with the framework 200. Thus, if a prior granted lock conflicts with a lock
that is requested to be granted, then the client associated with the prior granted lock may be
checked to verify that the client is still valid. If the client is not valid, then the prior granted

lock is released, and the lock that is requested to be granted may be performed. The

30

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

" detérmihatibh’ofwheéthét4-particular client has expired may be performed by checking the
client B-tree, in an embodiment of the invention.
[0161] The third difference of file-based locks over stateless protocol locks is that there
are no file-based locks that solely offer read access. Instead, to the extent that file-based
locks grant read access, file-based locks also grant read-write access.
[0162] In an embodiment of the invention, the file-based locks include a first set that
covers the entire resource, and a second set that covers a part of the resource, such as a
range of bytes of the resource. FIG. 7 is a table illustrating various types of file-based
locks, and their compatibility, according to an embodiment of the invention. Each of the
various file-based locks shown in FIG. 7 shall be briefly described below.
[0163] The byte-read-write file-based lock is a lock upon a part of the resource. The
byte-read-write file-based lock may be used to grant read and write access to a range of
bytes on a resource.
[0164] The byte-write file-based lock is a lock upon a part of the resource. The byte-
write file-based lock may be used to grant write access to a range of bytes on a resource.
[0165] The deny-read file-based lock is a lock upon the entire resource. The deny-read
file-based lock may be used to deny read access to a resource to any requestor other than
the one granted the deny-read lock.
[0166] The deny-write file-based lock is a lock upon the entire resource. The deny-
write file-based lock may be used to deny write access to a resource to any requestor other
than the one granted the deny-write lock.
[0167] File-based locks are not compatible with lock-shared or lock-exclusive locks,
such as WebDAYV locks. FIG. 7 describes the compatibility of various file-based locks.
When a particular file-based lock is incompatible with another lock previously granted,
then the file-based lock will not be granted. Thus, a byte-read-write lock may be granted
on a resource that already has a byte-write lock granted upon it, if the ranges of the byte-
read-write lock and the byte-write lock do not conflict. However, a deny-read lock cannot

be granted on a resource that already has a byte-write lock granted upon it.

FILE-BASED LOCKS IN A REAL APPLICATION CLUSTER
[0168] Database 122 may be implemented in a Real Application Cluster (RAC), such
as using Oracle Corporation’s RAC 10g option. In a RAC environment, when a file-based
lock 1s granted on a resource, data must be stored in database 124 that describes which
database server granted the file-based lock on the resource.
[0169] For example, a resource, stored in a database, may be associated with (a) a flag

that indicates that a file-based lock has been granted on the resource and (b) information

31

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

i’dergtlfyi'ﬁjgnﬁ'fengéétab% &-Setver that granted the file-based lock on the resource. Lookup
mechanism 212 maintains data about the granted file-based locks in memory. If
information about the granted file-based locks is to be visible to other nodes in a RAC
instance, then the information stored in memory must be persistently stored or be
transportable to other nodes of the RAC in a manner that maintains data consistency. If
information stored in lookup mechanism 212 is not visible to other database servers of the
RAC other than the database server in which it resides, then any file-based lock granted by
a first database server could conflict with the file-based locks of a second database server.
[0170] The above described file-based locks, employed by database server 122, allow
database server 122 to process stateful requests, such as requested NFS operations, on files
maintained by database 124. Consequently, client 110 may access files stored 1n database
124 using the NFS protocol in a manner that perverse data consistency, as database 122

may employ the above described file system operations locks.

IMPLEMENTING MECHANISMS
[0171] A client 110, database server 122, and a database 124 may each be implemented
on a computer system according to an embodiment. FIG. 8 is a block diagram that
illustrates a computer system 800 upon which an embodiment of the invention may be
implemented. Computer system 800 includes a bus 802 or other communication
mechanism for communicating information, and a processor 804 coupled with bus 802 for
processing information. Computer system 800 also includes a main memory 806, such as a
random access memory (RAM) or other dynamic storage device, coupled to bus 802 for
storing information and instructions to be executed by processor 804. Main memory 806
also may be used for storing temporary variables or other intermediate information during
execution of instructions to be executed by processor 804. Computer system 800 further
includes a read only memory (ROM) 808 or other static storage device coupled to bus 802
for storing static information and instructions for processor 804. A storage device 810,
such as a magnetic disk or optical disk, is provided and coupled to bus 802 for storing
information and instructions.
[0172] Computer system 800 may be coupled via bus 802 to a display 812, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device
814, including alphanumeric and other keys, is coupled to bus 802 for communicating
information and command selections to processor 804. Another type of user input device 1s
cursor control 816, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selections to processor 804 and for

controlling cursor movement on display 812. This input device typically has two degrees

32

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

b freedbm-irl-bwd axes "k firstdxis (e. g., X) and a second axis (e.g., y), that allows the
device to specify positions in a plane.

[0173] The invention is related to the use of computer system 800 for implementing the
techniques described herein. According to one embodiment of the invention, those
techniques are performed by computer system 800 in response to processor 804 executing
one or more sequences of one or more instructions contained in main memory 806. Such
instructions may be read into main memory 806 from another machine-readable medium,
such as storage device 810. Execution of the sequences of instructions contained in main
memory 806 causes processor 804 to perform the process steps described herein. In
alternative embodiments, hard-wired circuitry may be used in place of or in combination
with software instructions to implement the invention. Thus, embodiments of the invention
are not limited to any specific combination of hardware circuitry and software.

[0174] The term “machine-readable medium” as used herein refers to any medium that
participates in providing data that causes a machine to operation in a specific tashion. In an
embodiment implemented using computer system 800, various machine-readable media are
involved, for example, in providing instructions to processor 804 for execution. Such a
medium may take many forms, including but not limited to, non-volatile media, volatile
media, and transmission media. Non-volatile media includes, for example, optical or
magnetic disks, such as storage device 810. Volatile media includes dynamic memory,
such as main memory 806. Transmission media includes coaxial cables, copper wire and
fiber optics, including the wires that comprise bus 802. Transmission media can also take
the form of acoustic or light waves, such as those generated during radio-wave and intra-
red data communications.

[0175] Common forms of machine-readable media include, for example, a floppy disk,
a flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any
other optical medium, punchcards, papertape, any other physical medium with patterns of
holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave as described hereinafter, or any other medium from which a
computer can read.

[0176] Various forms of machine-readable media may be involved in carrying one or
more sequences of one or more instructions to processor 804 for execution. For example,
the instructions may initially be carried on a magnetic disk of a remote computer. The
remote computer can load the instructions into its dynamic memory and send the
instructions over a telephone line using a modem. A modem local to computer system 800
can receive the data on the telephone line and use an infra-red transmitter to convert the

data to an infra-red signal. An infra-red detector can receive the data carried in the infra-

33

CA 02587529 2007-05-08
WO 2006/065587 | PCT/US2005/044134
" ted Signal shd‘approptiate-tiFeuitry can - place the data on bus 802. Bus 802 carries the data

to main memory 806, from which processor 804 retrieves and executes the instructions.
The 1nstructions received by main memory 806 may optionally be stored on storage device
810 either before or after execution by processor 804.

[0177] Computer system 800 also includes a communication interface 818 coupled to
bus 802. Communication interface 818 provides a two-way data communication coupling
to a network link 820 that 1s connected to a local network 822. For example,
communication interface 818 may be an integrated services digital network (ISDN) card or
a modem to provide a data communication connection to a corresponding type of telephone
line. As another example, communication interface 818 may be a local area network
(LAN) card to provide a data communication connection to a compatible LAN. Wireless
links may also be implemented. In any such implementation, communication interface 818
sends and receives electrical, electromagnetic or optical signals that carry digital data
streams representing various types of information.

[0178] Network link 820 typically provides data communication through one or more
networks to other data devices. For example, network link 820 may provide a connection
through local network 822 to a host computer 824 or to data equipment operated by an
Internet Service Provider (ISP) 826. ISP 826 in turn provides data communication services
through the world wide packet data communication network now commonly referred to as
the “Internet” 828. Local network 822 and Internet 828 both use electrical, electromagnetic
or optical signals that carry digital data streams. The signals through the various networks
and the signals on network link 820 and through communication interface 818, which carry
the digital data to and from computer system 800, are exemplary forms of carrier waves
transporting the information.

[0179] Computer system 800 can send messages and receive data, including program
code, through the network(s), network link 820 and communication interface 818. In the
Internet example, a server 830 might transmit a requested code for an application program
through Internet 828, ISP 826, local network 822 and communication interface 818.

[0180] The received code may be executed by processor 804 as it is received, and/or
stored 1n storage device 810, or other non-volatile storage for later execution. In this
manner, computer system 800 may obtain application code in the form of a carrier wave.
[0181] In the foregoing specification, embodiments of the invention have been
described with reference to numerous specific details that may vary from implementation to
implementation. Thus, the sole and exclusive indicator of what is the invention, and is
intended by the applicants to be the invention, is the set of claims that issue from this

application, in the specific form in which such claims issue, including any subsequent

34

CA 02587529 2007-05-08
WO 2006/065587 PCT/US2005/044134

borfectibh Akl defifit ff’;néle)épf’l%ssly set forth herein for terms contained in such claims
shall govern the meaning of such terms as used in the claims. Hence, no limitation,
element, property, feature, advantage or attribute that is not expressly recited in a claim
should limit the scope of such claim in any way. The specification and drawings are,

accordingly, to be regarded in an illustrative rather than a restrictive sense.

33

10

5

20

23

30

CA 02587529 2010-10-14

What is claimed is:

1.

A machine-implemented method, comprising the steps of:

a database server receiving a request from a requestor to perform a file system operation

defined by a file system protocol on a resource, wherein said request includes state

identification data:

said database server retrieving, using a lookup mechanism in said database server, state
information associated with said request, wherein said state information specifies an
operational state of the resource, wherein said operational state reflects one or more

stateful operations previously performed on said resource by the requestor;

wherein said Jookup mechanism comprises certain data that associates said state

identification data with said state information;

wherein using said lookup mechanism comprises using said certain data and said state

identification data to lookup said state information;

said database server processing said request based, at least in part, on said state

information;

In response to processing said request, updating the state information in the lookup
mechanism to specify an updated operational state of the resource after the file system
operation has been performed on the resource and creating a second state identification
data that 1dentifies the updated state information and that is associated with the requestor,

wherein the updated operational state also reflects said one or more stateful operations

previously performed on said resource by the requestor; and

transmitting said second state identification data to said requestor.

36

10

15

20

25

30

CA 02587529 2010-10-14

2. The method of claim 1, wherein said step of retrieving said state information associated

with said request comprises:

using said state identification data as a key value in said lookup mechanism to retrieve

said state information.

3. The method of claim 2, wherein said lookup mechanism is one member selected from the

group consisting of: a b-tree and a hash table.

4. The method of claim 1, wherein said updated state information specifies a file opened by

said requestor in response to processing said request.

3. The method of claim 1, wherein said updated state information specifies a new lock on a
file-granted to said requestor in response to processing said request, wherein said updated state

information specifies any locks previously granted to said requestor.

6. The method of claim 35, wherein said new lock covers a specified byte range of said file,

wherein said specliﬁed byte range does not span all of said file.

7. The method of claim 1, wherein said request is a second request, and the method further

comprises the steps of:

prior to receiving said second request, receiving, at said database server, a first request to

establish a client identifier for a requestor; and

transmitting said client identifier to said requestor, wherein said second request comprises

said client identifier.

8. The method of claim 1, wherein said request identifies a particular requestor, and the

method. further comprises the step of:

37

10

15

20

23

30

CA 02587529 2010-10-14

prior to said step of retrieving said state information associated with said request,

determining whether a requestor that issued the request is actually the particular requestor

that is identified in the request.

9. The method of claim 1, wherein said request is issued by a requestor, and the method

further comprises the step of:

prior to performing a particular operation requested by said request, determining if said

requestor has a permission level sufficient to perform said particular operation.

10. The method of claim 1, wherein said request is issued by a requestor, and wherein said

step of updating the state information comprises the step of:

updating requestor data, maintained at said database server, to specify said requestor,

wherein said requestor data identifies requestors registered to issue file system

operations.

11. The method of claim 1, wherein said request is issued by a requestor, wherein said file
system operation is an operation to open a file, and wherein said step of updating the state

Information comprises the step of:

updating file data, maintained at said database server, to reflect that said requestor has

opened said file.

12. The method of claim 1, wherein said request is issued by a requestor, wherein said file
system operation is an operation to lock a portion of a file, and wherein said step of updating the

state information comprises the step of:

updating lock data, maintained at said database server, to reflect said portion of said file

which said requestor has locked.

38

10

15

20

23

30

CA 02587529 2010-10-14

13. The method of claim 1, wherein the updated state information includes data specifying
information about a client or requestor involved in one or more stateful operations performed on
said resource, said information including one or more of: a client identifier, a requestor identifier,

an association of a client to a requestor, a time of a last communication from the client or

requestor, and a list of files that are open for the client or requestor.

14. The method of claim 1, wherein the updated state information includes data specifying
information about an open file, said information including one or more of: a file handle, a
number of file-based locks on the open file, a type of a file-based lock on the open file, a
requestor that opened the open file, a requestor having a lock on an open file, data indicating
whether the file was opened for reading or for writing, data indicating whether the open file has
been modified, and data indicating whether reading or writing has been denied to any requestor

other than the requestor which opened the open file.

15. The method of claim 1, wherein the updated state information includes data specifying

one or more locks granted on said resource.

16. A computer-readable storage medium storing one or more sequences of instruction

which, when executed by one or more processors, cause:

a database server receiving a request from a requestor to perform a file system operation

defined by a file system protocol on a resource, wherein said request includes state
identification data;

said database server retrieving, using a lookup mechanism in said database server: state
information associated with said request, wherein said state information specifies an
operational state of the resource, wherein said operational state reflects one or more

stateful operations previously performed on said resource by the requestor;

wherein said lookup mechanism comprises certain data that associates said state

identification data with said state information;

39

CA 02587529 2010-10-14

wherein using said lookup mechanism comprises using said certain data and said state

identification data to lookup said state information;

5 said database server processing said request based, at least in part, on said state

information;

In response to processing said request, updating the state information in the lookup
mechanism to specify an updated operational state of the resource after the file system
10 operation has been performed on the resource and creating a second state identification
data that identifies the updated state information and that is associated with the requestor,
wherein the updated state information operational state also speeifdes-reflects said one or

more stateful operations previously performed on said resource by the requestor; and
15 transmitting said second state identification data to said requestor.

17. The computer-readable storage medium of claim 16, wherein retrieving said state
information associated with said request comprises: using said state identification data as a key
value 1n said lookup mechanism to retrieve said state information.

20
18. The computer-readable storage medium of claim 17, wherein said lookup mechanism is

one member selected from the group consisting of: a b-tree and a hash table.

19. The computer-readable storage medium of claim 16, wherein said updated state

25 1nformation specifies a file opened by said requestor in response to processing said request.

20. The computer-readable storage medium of claim 16, wherein said updated state
information specifies a new lock on a file granted to said requestor in response to processing said

request, wherein said updated state information specifies any locks previously granted to said

30 requestior.

40

10

{5

20

25

30

CA 02587529 2010-10-14

21. The computer-readable storage medium of claim 20, wherein said new lock covers a

specified byte range of said file, wherein said specified byte range does not span all of said file.

22. The computer-readable storage medium of claim 16, wherein said request is a second

request, and the method further comprises the steps of:

prior to receiving said second request, receiving, at said database server, a first request to

establish a client identifier for a requestor; and

transmitting said client identifier to said requestor, wherein said second request comprises

sald client identifier.

23. The computer-readable storage medium of claim 16, wherein said request identifies a
particular requestor, and the method further comprises the step of: prior to said step of retrieving
said state information associated with said request, determining whether a requestor that issued

the request is actually the particular requestor that is identified in the request.

24. The computer-readable storage medium of claim 16, wherein said request is issued by a

requestor, and the method further comprises the step of:

prior to performing a particular operation requested by said request, determining if said

requestor has a permission level sufficient to perform said particular operation.

25. The computer-readable storage medium of claim 16, wherein said request is issued by a
requestor, and wherein updating the state information further comprises the step of: updating
requestor data, maintained at said database server, to specify said requestor, wherein said

requestor data identifies requestors registered to issue file system operations.

26. The computer-readable storage medium of claim 16, wherein said request is issued by a

requestor, wherein said file system operation is an operation to open a file, and wherein said step

41

10

15

20

25

CA 02587529 2010-10-14

of updating the state information further comprises the step of® updating file data, maintained at

sald database server, to reflect that said requestor has opened said file.

27. The computer-readable storage medium of claim 16, wherein said request is issued by a
requestor, wherein said file system operation is an operation to lock a portion of a file, and
wherein said step of updating the state information further comprises the step of: updating lock

data, maintained at said database server, to reflect said portion of said file which said requestor
has locked.

28. The computer-readable storage medium of claim 16, wherein the updated state
information includes data specifying information about a client or requestor involved in one or
more stateful operations performed on said resource, said information including one or more of:
a client 1dentifier, a requestor identifier, an association of a client to a requestor, a time of a last

communication from the client or requestor, and a list of files that are open for the client or

requestor.

29. The computer-readable storage medium of claim 16, wherein the updated state
information includes data specifying information about an open file, said information including
one or more of: a file handle, a number of file-based locks on the open file, a type of a file-based
lock on the open file, a requestor that opened the open file, a requestor having a lock on an open
file, data indicating whether the file was opened for reading or for writing, data indicating
whether the open file has been modified, and data indicating whether reading or writing has been

denied to any requestor other than the requestor which opened the open file.

30. The computer-readable storage medium of claim 16, wherein the updated state

information includes data specifying one or more locks granted on said resource.

42

CA 02587529 2007-05-08

WO 2006/065587 PCT/US2005/044134
1/8

DATABASE
124

DBMS 120

DATABASE
SERVER 122

-
P
w

FIG. 1

CLIENT 110

CA 02587529 2007-05-08

PCT/US2005/044134

WO 2006/065587

2/8

00¢

:'"l'--"----------""""l---'--"-'-""'""'l-"""'""""'l-‘-lll'--'-'-'--""----"“""l:

877 ¥3aY3 927 ¥3aVaN
1OV dLLH 130Vd d14
R
257 F2Z ¥3av3 K
HIZIMOHLNY 130V S4N 0c¢ ¥3180dX3
_mnw.zm_ww_ﬂxm | 052 ¥31443A 722 4DID0T
" L_ 39T AN 304N0S3Y
_
|
212 WSINVHOIN
oos| OTZ H3L34AIN 1000104
72} HIAY3S ISYAYLYC

¢ Ol

CA 02587529 2007-05-08

WO 2006/065587 PCT/US2005/044134
3/8

FIG. 3

RECEIVE, AT A DATABASE SERVER, A FIRST REQUEST TO ESTABLISH A }\31 0

CLIENT IDENTIFIER FOR A REQUESTOR

TRANSMIT THE CLIENT IDENTIFIER TO THE REQUESTOR i 312

RECEIVE, AT THE DATABASE SERVER, A SECOND REQUEST TO PERFORM A
FILE SYSTEM OPERATION

DETERMINE IF THE SECOND REQUEST WAS ISSUED BY A CLIENT ASSOCIATED
~ WITHTHE CLIENT IDENTIFIER 316

I DETERMINE IF THE REQUESTOR HAS A PERMISSION LEVEL SUFFICIENT TO ' 113

PERFORM AN OPERATION SPECIFIED BY THE SECOND REQUEST

314

RETRIEVE, WITHIN THE DATABASE, STATE INFORMATION ASSOCIATED WITH

THE FILE SYSTEM OPERATION
PROCESS THE FILE SYSTEM OPERATION 399
ASSOCIATE SECOND STATE INFORMATION TO THE SECOND REQUEST |\ 104
R READ NEXT FILE SYSTEM OP_I-ERATION OF SECOND REQUEST, IF ANY 208

‘ TRANSMIT THE NEW STATE IDENTIFICATION DATA TO THE REQUESTOR ~ [\-328
R _ |

CA 02587529 2007-05-08

WO 2006/065587 PCT/US2005/044134
4/8

FIG. 4

RECEIVE A REQUEST TO PERFORM A FILE SYSTEM OPERATION 410

l DETERMINE A REQUESTOR TYPE OF THE REQUESTOR 412

OBTAIN A FIRST SET OF LOCKS ON A PLURALITY OF RESOURCES 414

—_—
OBTAIN A SECOND SET OF LOCKS ON THE PLURALITY OF RESOURCES | 416
L - . -

RELEASING LOCKS IN THE SECOND SET OF LOCKS IN RESPONSE TO
SUCCESSFUL COMPLETION OF CORRESPONDING DATABASE OPERATIONS

RELEASING LOCKS IN THE SET FIRST OF LOCKS IN RESPONSE TO
SUCCESSFUL COMPLETION OF THE FILE SYSTEM OPERATION 420

418

CA 02587529 2007-05-08

PCT/US2005/044134

WO 2006/065587

5/8

318V1 031S3N

0¢S

4%

318V1 IdALTAX

01§

905

G Ol

705G

318V1 J04N0S3d

gdO1 1TAX

¢0S

00§

CA 02587529 2007-05-08

PCT/US2005/044134

WO 2006/065587

6/8

099

009

318V1 J0dM0S3d

do’l

80130 AdOD

¢99

d9 Ol

318V1 040534

yS9

1OHSdVNS d01

709 ¢09

V9 Ol

CA 02587529 2007-05-08

PCT/US2005/044134

WO 2006/065587

7/8

JLIIM-ANSd

JONVY
S3A S3A

ONILOTTANOD
31I4M-ANId Av3d-ANdQ JIRM-TIAG | JLIEM-OVIE-31AS

JONVY
ONILOINANOD
ON 4l

JONVY
ONILIINANOD
ON 4l

JLIIM-41AS
ON 4l

JONVS
ONILOITANOD
ON 4|

J1IHM-QVda-31A8

SHOO0T NOILYH3dO W3 LSAS FT1d 40 S3dAL SNOIFVA 40 ALNIGILYdNOO

. 9l

CA 02587529 2007-05-08

PCT/US2005/044134

WO 2006/065587

8/8

9¢8

8¢8

NHOMLAN

VOO0

0e8
g3AH3S

028

MNIT

AHOMLSN |

_
=V ANEIL . 08

J0SS300dd

_ NOILVOINNINNOD

808 o098
| uo_>mo AHOW3IW
| JOVHOLS NOY NIVIA
_

L — — _

918
1O4LINOD

< [ORt=1010

12%]
3OIA30 1NdNI

cl8
AV 1dSId

8 Ol

DATABASE SERVER 122:

'.M'——‘—-“Am‘-‘-A‘------‘---------------‘-‘.--.G.----.--.-.-.-..------...‘.----.--'-.---------------'-'-M

‘ LOOKUP—I
PROTOCOL INTERPRETER 210 MECHANISM 212
|
I

?‘\200

e — —‘——_L—_

|
| OCKER 222 VERIFIER 230 | EXPANSION 234 |

. 1

eoRTER 220 NFS PAGIET ATHORIZES

) I
{ RESOURCE | PRIVILEGE

 ——

FTP PACKET HTTP PACKET
READER 226 READER 228

-.-...-.-..-.-.-.--------'----'---‘-------'-"'——_-‘.-.—**.‘.-*-g--.—-.—-'-'-—‘*“n‘...--.----—-----------h‘-.‘-.-.--.-.-.-.M.

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - abstract drawing

