发明名称

电动机驱动控制系统及其控制方法

摘要

通过执行以下步骤设定转换器的电压指令值，所述步骤为：在从与电动机驱动器(MG1、MG2)的感应电压相对应的必要最小电压(VHmin)到转换器最大输出电压(VHmax)的电压范围内，决定作为转换器输出电压的系统电压VH的备选电压的步骤(S100～S140)；对各备选电压推定蓄电池、转换器、逆变器以及电动发电机的电力损失、计算系统整体的推定电力损失的总和的步骤(S150～S165)；根据上述备选电压中的推定电力损失的总和最小的备选电压设定电压指令值VH#的步骤(S170～S190)。
1. 一种电动机驱动控制系统，其特征在于，具有：

直流电源；

转换器，该转换器能够对上述直流电源的输出电压进行升压，按照电压指令值对上述直流电源的输出电压进行可变控制、向直流电源配线输出；

逆变器，该逆变器通过多个开关元件在上述直流电源配线上的直流电力和驱动电动机的交流电力之间进行电力变换，以便上述电动机按照动作指令动作；和

控制装置，该控制装置设定上述转换器的上述电压指令值；

上述控制装置包括：

第一损失推定部，该第一损失推定部根据预先设定的损失特性，推定上述直流电源中的电力损失；

第二损失推定部，该第二损失推定部根据预先设定的损失特性，推定上述转换器中的电力损失；

第三损失推定部，该第三损失推定部根据预先设定的损失特性，推定上述逆变器中的电力损失；和

电压指令值产生部，该电压指令值产生部基于上述电动机的动作状态、与上述电动机的感应电压相对应地求出必要最小电压，并在上述必要最小电压以上且上述转换器的输出上限电压以下的备选电压范围内，制定总和电力损失最小的上述直流电源配线上的直流电压，按照制定的直流电压设定上述电压指令值，所述总和电力损失包含由上述第一至第三损失推定部推定的电力损失的合计。

2. 如权利要求1所述的电动机驱动控制系统，其特征在于，

上述控制装置还包括第四损失推定部，该第四损失推定部根据预先设定的损失特性，推定上述电动机中的电力损失；

上述电压指令值产生部，基于由上述第一至第四损失推定部推定的电力损失的合计计算上述总和电力损失，并且，在上述备选电压范围内制定上述总和电力损失最小的上述直流电压，并按照制定的直流电压设
定上述电压指令值。

3. 如权利要求 1 所述的电动机驱动控制系统，其特征在于，从多种控制方式中选择出一种控制方式进行对上述逆变器的开关控制；

上述损失特性，根据按照上述各控制方式设定的上述损失特性，与上述电动机的转速和转矩以及所选择的控制方式相对应地推定上述逆变器中的电力损失。

4. 如权利要求 3 所述的电动机驱动控制系统，其特征在于，上述多种控制方式包括：

正弦波脉宽调制控制，其对上述逆变器进行开关控制，以使施加于上述电动机的各相电压成为与上述电压指令值相对应的脉宽调制波形电压；

过调制脉宽调制控制，其对上述逆变器进行开关控制，以使施加于上述电动机的各相电压成为调制度比上述正弦波脉宽调制控制高的上述脉宽调制波形电压；和

矩形波电压控制，其对上述逆变器进行开关控制，以使施加于上述电动机的各相电压成为与上述电压指令值相对应的矩形波电压。

5. 如权利要求 1 所述的电动机驱动控制系统，其特征在于，上述损失特性表示相对于上述电动机的转速和转矩以及上述直流电源配线上的直流电压中的至少一个的，上述电力损失的变化。

6. 一种电动机驱动控制系统的控制方法，其特征在于，

上述电动机驱动控制系统具有：

直流电源；

转换器，该转换器能够对上述直流电源的输出电压进行升压，按照电压指令值对上述直流电源的输出电压进行可变控制、向直流电源配线输出；和

逆变器，该逆变器通过多个开关元件在上述直流电源配线上的直流电力和驱动电动机的交流电力之间进行电力变换，以使上述电动机按照动作指令动作；

上述控制方法包括：

根据预先设定的损失特性，推定上述直流电源中的电力损失的步
骤；

根据预先设定的损失特性，推定上述转换器中的电力损失的步骤；
根据预先设定的损失特性，推定上述逆变器中的电力损失的步骤；
基于上述电动机的动作状态、与上述电动机的感应电压相对应地求出必要最小电压的步骤；
在为上述必要最小电压以上且上述转换器的输出上限电压以下的备选电压范围内，制定总和电力损失最小的上述直流电源配线上的直流电压的步骤，所述总和电力损失包含上述推定的电力损失的合计；和
按照制定的直流电压设定上述电压指令值的步骤。

7. 如权利要求 6 所述的电动机驱动控制系统的控制方法，其特征在于，还包括根据预先设定的损失特性推定上述电动机中的电力损失的步骤；

上述制定步骤，根据推定的上述直流电源中的电力损失、上述转换器中的电力损失、上述逆变器中的电力损失以及上述电动机中的电力损失的合计，计算上述总和电力损失，并且，在上述备选电压范围内制定上述总和电力损失最小的上述直流电压。

8. 如权利要求 6 所述的电动机驱动控制系统的控制方法，其特征在于，从多种控制方式中选择出一种控制方式进行对上述逆变器的开关控制；

推定上述逆变器中的电力损失的步骤，根据按照上述各控制方式设定的上述损失特性，与上述电动机的转速和转矩以及上述选择的控制方式相对应地推定上述逆变器中的电力损失。

9. 如权利要求 8 所述的电动机驱动控制系统的控制方法，其特征在于，上述多种控制方式包括：

正弦波脉宽调制控制，其对上述逆变器进行开关控制，以使施加于上述电动机的各相电压成为与上述电压指令值相对应的脉冲调制波形电压；

过调制脉宽调制控制，其对上述逆变器进行开关控制，以使施加于上述电动机的各相电压成为调制度比上述正弦波脉宽调制控制高的上述脉宽调制波形电压；和

4
矩形波电压控制，其对上述逆变器进行开关控制，以使施加于上述
电动机的各相电压成为与上述电压指令值相对应的矩形波电压。

10. 如权利要求6所述的电动机驱动控制系统的控制方法，其特征
在于，上述损失特性表示相对于上述电动机的转速和转矩以及上述直流
电源配线上的直流电压中的至少一个的、上述电力损失的变化。
说明书

电动机驱动控制系统及其控制方法

技术领域

本发明涉及电动机驱动控制系统及其控制方法，特别涉及包含有可对直流电压进行可变控制的转换器的电动机驱动控制系统。

背景技术

以往，作为对交流电动机进行驱动的电动机驱动控制系统的一种形式，使用这样的结构，即，将通过转换器进行可变控制的直流电压变换为通过逆变器驱动控制交流电动机的交流电压（例如，日本特开 2003-33071 号公报（下面称为专利文献 1）以及日本特开 2003-116280 号公报（下面称为专利文献 2））。

例如，在专利文献 1 中公开了一种电动机控制装置，该电动机控制装置具有作为 PAM（脉冲振幅调制）电路的转换器以及作为将该 PAM 电路的输出电压变换成交流电压的 PWM（脉宽调制）电路的逆变器。尤其是公开了如下的内容，即，在专利文献 1 所公开的控制装置中，通过使转换器以及逆变器的开关元件的耐久性均等，提高装置整体的寿命。

另外，在专利文献 2 所公开的驱动装置中，将电动机所要求的动力进行电力变换而得到蓄电池输出要求电力，通过将该蓄电池输出要求电力除以蓄电池的端子间电压来运算在转换器内的电抗器中流动的电流。然后，与运算的运算相对应地设定构成转换器的晶体管的载波频率以使转换器损失最小，由此可提高驱动装置的能量转换效率。

另外，在日本特开 2003-348892 号公报（以下称为专利文献 3）以及日本特开 2001-238490 号公报（以下称为专利文献 4）中公开了如下的电动机控制装置，该电动机控制装置由多个电动机驱动电路（带电动机控制功能的逆变器）共有带直流电压控制功能的转换器的输出，可高效率地控
制多个电动机。在专利文献3以及4所公开的结构中，公开了根据各逆变器的导通比、电动机负载等变更转换器所输出的电流电压值。

在如专利文献1～4所公开那样的、通过逆变器将被可变控制的转换器的输出电压变换成交流电压而驱动交流电动机的结构中，可以预想到：系统的各构成要素的损伤按照转换器的输出电压、即逆变器的直流线路侧电压的电压水平而变化，所以系统整体的效率也变化。

但是，在专利文献1～4中，在上述那样结构的电动机驱动控制系统中，对于考虑系统整体的效率而确定转换器可变控制的直流电压值的技术没有进行公开也没有给出任何启示。

发明内容

本发明的目的是，在包含有可对直流电压进行可变控制的转换器以及将转换器的输出电压变换成交流电压的逆变器的电动机驱动控制系统中，适当设定转换器的输出电压以使系统整体的电力损失最小，提高系统整体的效率。

简言之，本发明提供一种电动机驱动控制系统及其控制方法，该电动机驱动控制系统具有直流电源、转换器、逆变器、控制装置。转换器可对上述直流电源的输出电压进行升压，按照电压指令值对上述直流电源的输出电压进行可变控制、向直流电源配线输出。逆变器通过多个开关元件在直流电源配线上的直流电力和驱动电动机的交流电力之间进行电力变换，以使电动机按照动作指令动作。控制装置包括第一至第三损失推定部、和电压指令值推定部。第一损失推定部根据预先设定的损失特性推定直流电源的电力损失。第二损失推定部根据预先设定的损失特性推定转换器的电力损失。第三损失推定部根据预先设定的损失特性推定逆变器的电力损失。电压指令值推定部根据电动机的动作状态与电动机的感应电压相对应地求出必要最小电压，并且，在为必要最小电压以上且转换器的输出上限电压以下的备选电压范围内，制定总和电力损失最小的直流电源配线上的直流电压，按照制定的直流电压设定电压指令值，所述总和电力损失包
由第一至第三损失推定部推定的电力损失的合计。

或者，提供一种电动机驱动控制系统的控制方法，上述电动机驱动控制系统具有上述直流电源、上述转换器以及上述逆变器，该控制方法包括如下步骤：根据预先设定的损失特性，推定直流电源中的电力损失的步骤；根据预先设定的损失特性，推定转换器中的电力损失的步骤；根据预先设定的损失特性，推定逆变器中的电力损失的步骤；基于电动机的动作状态、与电动机的感应电流相对应地求出最小电压的步骤；在必要最小电压以上且转换器的输出上限电压以下的必选电压范围内，制定总和电力损失最小的直流电源配线上的直流电压的步骤，所述总和电力损失包含推定的电力损失的合计；和按照制定的直流电压设定电压指令值的步骤。

优选，控制装置还包括第四损失推定部，该第四损失推定部根据预先设定的损失特性，推定电动机的电力损失。并且，电压指令值产生部根据通过第一至第四损失推定部推定的电力损失的合计，计算总和电力损失，并且，在备选电压范围内制定总和电力损失最小的直流电压，并按照制定的直流电压设定电压指令值。

或者，控制方法还包括如下步骤，即，根据预先设定的损失特性推定电动机的电力损失。并且，上述制定步骤，根据推定的直流电源的电力损失、转换器的电力损失、逆变器的电力损失以及电动机的电力损失的合计计算总和电力损失，并且，在备选电压范围内制定总和电力损失最小的直流电压。

根据上述电动机驱动控制系统及其控制方法，在具有能够使直流电源电压升压的转换器以及将该转换器的输出电压变换成电动机驱动控制用的交流电压的逆变器的结构中，可根据直流电源、转换器、逆变器以及电动机各自的电力损失推定，与系统整体的电力损失总和为最小值的最佳电压相对应地、且在比电动机的感应电压高的范围内设定转换器的输出电压指令值。由此，可适当设定转换器的输出电压，提高系统的整体效率。

另外，优选，从多种控制方式中选择出一种控制方式进行对逆变器的开关控制，第三损失推定部，根据按照各控制方式设定的损失特性，与
电动机的转速和转矩以及由控制方式选择单元所选择的控制方式相对应地推定逆变器中的电力损失。

或者，推定逆变器的电力损失的步骤，根据按照各控制方式设定的损失特性，与电动机的转速以及转矩和通过控制方式选择单元选择的控制方式相对应地推定逆变器的电力损失。

由此，在与电动机的动作状态相对应地切换逆变器的控制方式的控制结构中，可反映出各控制方式下的逆变器的电力损失特性不相同地，更正确地推定系统整体的电力损失。因此，可更适当地进行用于提高系统的整体效率的转换器输出电压的设定。

另外，优选，多种控制方式包括：正弦波脉宽调制控制，其对逆变器进行开关控制，以使施加于电动机的各相电压成为与电压指令值相对应的脉宽调节波形电压；过调制脉宽调制控制，其对逆变器进行开关控制，以使施加于电动机的各相电压成为调制度比正弦波脉宽调制控制高的脉宽调节波形电压；和矩形波电压控制，其对逆变器进行开关控制，以使施加于电动机的各相电压成为与电压指令值相对应的矩形波电压。

由此，在作为逆变器的控制方式可切换正弦波脉宽调制方式、过调制脉宽方式以及矩形波电压控制方式的控制结构中，通过适当设定转换器输出电压，可提高系统的整体效率。

或者，优选，损失特性表示电力损失相对于电动机的旋转速度、转矩以及直流电源配线上的直流电压中的至少一个的变化。

由此，通过在直流电源、转换器、逆变器、电动机的各自中设定相对于电动机的旋转速度、转矩以及转换器输出电压的电力损失特性，可更切实地推定与转换器输出电压相对应的系统整体上的电力损失总和的变化。由此，可更适当地进行用于提高系统的整体效率的转换器输出电压的设定。

因此，本发明的主要优点如下：在包含有可对直流电压进行可变控制的转换器、以及将转换器的输出电压变换成交流电压的逆变器的电动机控制驱动系统中，通过适当设定转换器的输出电压，可以使系统整体的电力
损失最小、提高整体效率。

附图说明

图 1 是说明混合动力车辆的结构的方框图，表示搭载有本发明的实施方式的电动机驱动控制系统结构的一例。

图 2 是说明图 1 的电动机驱动控制系统中使用的逆变器控制方式的图。

图 3 是正弦波 PWM 控制以及过调制 PWM 控制中的控制方框图。

图 4 是矩形波控制时的控制方框图。

图 5 是说明本发明实施方式的电动机驱动控制系统中的系统电压指令值设定的流程图。

图 6 是表示电动发电机的转矩以及旋转速度和必要电压（感应电压）的关系的概念图。

图 7 是表示蓄电池电流的形态的概略波形图。

图 8 是说明蓄电池损失的变化特性概念图。

图 9 是说明转换器损失的变化特性的概念图。

图 10 是说明逆变器损失的变化特性的概念图。

图 11 是一概念图，说明逆变器损失以及 MG 损失的和的变化特性的例子。

图 12 是一方框图，说明本发明的实施方式的电动机驱动控制系统各构成要素的电力损失推定的例子。

图 13 是一方框图，说明本发明的实施方式的电动机驱动控制系统各构成要素的电力损失推定的其它例子。

具体实施方式

下面，参照附图对本发明的实施方式进行详细说明。另外，下面，对附图中的相同或者相当的部分使用相同的符号并且原则上不进行重复说明。

图 1 是说明混合动力车辆 100 的结构的方框图，表示搭载有本发明的
实施方式的电动机驱动控制系统结构的一例。

参照图1，混合动力车辆100具有发动机110、动力分配机构120、电动发电机MG1、MG2、减速器130、驱动轴140以及车轮（驱动轮）150。混合动力车辆100还具有用于驱动控制电动发电机MG1、MG2的直流电压产生部10#、平滑电容器C0、逆变器20、30以及控制装置50。

发动机110例如由汽油发动机、柴油发动机等的内燃机构成。在发动机110中设置有用于检测冷却水的温度的冷却水温传感器112。冷却水温传感器112的输出向控制装置50送出。

动力分配机构120可将发动机110所产生的动力向通向驱动轴140的路径和通向电动发电机MG1的路径分配。作为动力分配机构120可以使用具有太阳齿轮、行星齿轮以及环形齿轮（ring gear，齿圈）这三个旋转轴的行星齿轮机构。例如，通过将电动发电机MG1的转子做成中空、在其中心穿过发动机110的曲轴，可以机械地将发动机110和电动发电机MG1、MG2与动力分配机构120相连接。具体的是，将电动发电机MG1的转子与太阳齿轮相连接，将发动机110的输出轴与行星齿轮相连接，并且，将输出轴125与环形齿轮相连接。也与电动发电机MG2的旋转轴连接的输出轴125，与经由减速器130旋转驱动驱动轮150的驱动轴140连接。另外，也可以进一步组装相对于电动发电机MG2的旋转轴的减速器。

电动发电机MG1作为由发动机110驱动的发电机进行动作，并且作为进行发动机110的起动的电动机进行动作，同时具有电动机以及发电机的功能。

同样地，电动发电机MG2作为经由输出轴125以及减速器130、向驱动轴140传递输出的车辆驱动力产生用装置而组装在混合动力车辆100中。另外，电动发电机MG2，以通过产生与车轮150的旋转方向相反方向的输出转矩而进行再生发电的方式，同时具有电动机以及发电机的功能。

接着，对用于驱动控制电动发电机MG1、MG2的结构进行说明。

直流电压产生部10#包括行驶用蓄电池B（下面也称为主蓄电池B）、平滑电容器C1以及升降压转换器15。主蓄电池B与本发明中的“直流电
源”相对应，升降压转换器 15 与本发明中的“转换器”相对应。

作为主蓄电池 B 可以使用镍氢或者锂离子等的二次电池。另外，下面，在本实施方式中，对将由二次电池构成的主蓄电池 B 作为“直流电源”的结构进行说明，但是也可以代替主蓄电池 B 使用双电层电容器等的蓄电装置。

通过电压传感器 10 检测主蓄电池 B 输出的蓄电池电压 Vb，通过电流传感器 11 检测输入输出于主蓄电池 B 的蓄电池电流 Ib。而且，在主蓄电池 B 上设置温度传感器 12。另外，由于主蓄电池 B 的温度可能局部不同，所以，温度传感器 12 可以设置在主蓄电池 B 的多个位置。通过电压传感器 10、电流传感器 11 以及温度传感器 12 检测出的蓄电池电压 Vb、蓄电池电流 Ib 以及蓄电池温度 Tb，向控制装置 50 输出。

平滑电容器 C 连接于接地线 5 以及电源线 6 之间。另外，在主蓄电池 B 的正极端子以及电源线 6 之间、和主蓄电池 B 的负极端子以及接电线 5 之间设置继电器（未图示），该继电器在车辆运转时被接通、在车辆运转停止时被断开。

升降压转换器 15（下面也简单地称为转换器）包括电抗器 L1、被开关控制的电力（功率）用半导体开关元件（下面称为“开关元件”）Q1、Q2。电抗器 L1 连接于开关元件 Q1 以及 Q2 的连接节点和电源线 6 之间。另外，平滑电容器 C0 连接于电源线 7 和接电线 5 之间。

开关元件 Q1 以及 Q2 串联连接于电源线 7 以及接电线 5 之间。开关元件 Q1 以及 Q2 的导通、截止由来自控制装置 50 的开关控制信号 S1、S2 进行控制。

在本发明的实施方式中，作为开关元件可以用 IGBT(Insulated Gate Bipolar Transistor)、电力（功率）用 MOS（Metal Oxide Semiconductor）晶体管或者电力（功率）用双极晶体管等。相对于开关元件 Q1、Q2 配置反向并联二极管 D1、D2。

逆变器 20 以及 30 的直流电压侧经由共同的接地线 5 以及电源线 7 与转换器 15 连接。即，电源线 7 与本发明的“直流电源配线”相对应。另外，电动发电机 MG1、MG2 与本发明的“电动机”相对应，逆变器 20 以及 30
与本发明中的“逆变器”相对应。

逆变器 20 包括并联设置于电源线 7 以及接地线 5 之间的 U 相臂 22、V 相臂 24、W 相臂 26。各相臂包括串联连接于电源线 7 以及接地线 5 之间的开关元件。例如，U 相臂 22 包括开关元件 Q11、Q12，V 相臂 24 包括开关元件 Q13、Q14，W 相臂 26 包括开关元件 Q15、Q16。另外，相对于开关元件 Q11～Q16 分别连接反向并联二极管 D11～D16。开关元件 Q11～Q16 的导通、截止通由来自控制装置 50 的开关控制信号 S11～S16 控制。

电动发电机 MG1 包括设置在定子上的 U 相线圈绕组 U1、V 相线圈绕组 V1 以及 W 相线圈绕组 W1 和未图示的转子。U 相线圈绕组 U1、V 相线圈绕组 V1 以及 W 相线圈绕组 W1 的一端通过中性点 N1 相互连接，另一端分别与逆变器 20 的 U 相臂 22、V 相臂 24 以及 W 相臂 26 连接。逆变器 20 通过响应来自控制装置 50 的开关控制信号 S11～S16 的开关元件 Q11～Q16 的导通、截止控制（开关控制），在直流电压产生部 10 # 以及电动发电机 MG1 之间进行双向的电力变换。

具体的是，逆变器 20 可按照控制装置 50 进行的开关控制将从电源线 7 接受的直流电压变换成 3 相交流电压，并将该变换的 3 相交流电压向电动发电机 MG1 输出。由此，电动发电机 MG1 被驱动以产生指定的转矩。另外，逆变器 20 可按照控制装置 50 的开关控制，将电动发电机 MG1 接受发动机 110 的输出而发电产生的 3 相交流电压变换成直流电压，并将该变换的直流电压向电源线 7 输出。

逆变器 30 与逆变器 20 同样地构成，包括通过开关控制信号 S21～S26 进行导通、截止控制的开关元件 Q21～Q26 以及反向并联二极管 D21～D26。

电动发电机 MG2 与电动发电机 MG1 同样地构成，包括设置在定子上的 U 相线圈绕组 U2、V 相线圈绕组 V2 以及 W 相线圈绕组 W2 和未图示的转子。与电动发电机 MG1 同样地，U 相线圈绕组 U2、V 相线圈绕组 V2 以及 W 相线圈绕组 W2 的一端通过中性点 N2 相互连接，其另一端分
别与逆变器 30 的 U 相臂 32、V 相臂 34 以及 W 相臂 36 连接。

逆变器 30 通过响应于来自控制装置 50 的开关控制信号 S21 ~ S26 的
开关元件 Q21 ~ Q26 的导通、截止控制（开关控制）、在直流电压产生部
10 # 以及电动发电机 MG2 之间进行双方向的电力变换。

具体的是，逆变器 30 可按照控制装置 50 进行的开关控制将从电源线
7 接受的直流电压变换成 3 相交流电压，将该变换的 3 相交流电压向电动
发电机 MG2 输出。由此，电动发电机 MG2 被驱动以产生指定的转矩。另
外，逆变器 30 能够在车辆的再生制动时，按照控制装置 50 的开关控制将
电动发电机 MG2 接受车轮 150 的旋转力而发电产生的 3 相交流电压变换
成直流电压，并将该变换的直流电压向电源线 7 输出。

另外，此处所述的再生制动包括：在驾驶混合动力车辆的驾驶者进行
脚制动的情况下伴随再生发电的制动；或者虽然不进行脚制动操作但在行
驶中通过关闭加速踏板而一边行驶进行再生发电一边使车辆减速（或者中止加
速）的情况。

在电动发电机 MG1、MG2 上分别设置电流传感器 27 以及旋转角传感
器（旋转变压器（resolver））28。由于三相电流 iu、iv、iw 的瞬时值的和
为零，所以如图 1 所示那样将电流传感器 27 配置成检测两相部分的电动机
电流（例如，V 相电流 iv 以及 W 相电流 iw）即可。旋转角传感器 28 检测
电动发电机 MG1、MG2 的未图示的转子的旋转角 θ，并将该检测出的旋
转角 θ 向控制装置 50 送出。在控制装置 50 中，可根据旋转角 θ 计算电动
发电机 MG1、MG2 的转速 Nmt（旋转角速度 ω）。另外，在本发明的实
施方式中，“转速”这个术语，如果没有特别说明则表示每单位时间（代表
性的为每分钟）的旋转数、即“旋转速度”。

通过这些传感器检测出的电动发电机 MG1 的电动机电流 MCRT（1）
以及转子旋转角 θ (1)、电动发电机 MG2 的电动机电流 MCRT（2）以及
转子旋转角 θ (2)，被输入控制装置 50。另外，控制装置 50 接受如下的
电动机指令的输入，即，电动发电机 MG1 的转矩指令值 Tqcom (1) 以及
表示再生动作的控制信号 RGE (1)、和电动发电机 MG2 的转矩指令值
Tqcom（2）以及表示再生动作的控制信号 RGE（2）。

由电子控制单元（ECU）构成的控制装置50，包括微型计算机（未图示）、RAM（Random Access Memory）51以及ROM（Read Only Memory）52，按照规定的程序处理生成转换器15以及逆变器20、30的开关控制用的开关控制信号S1、S2（转换器15）、S11～S16（逆变器20）以及S21～S26（逆变器30），以便于电动发电机MG1、MG2按照从上位的电子控制单元（ECU）输入的电动机指令动作。

而且，向控制装置50中输入与主蓄电池B相关的、充电率（SOC：State of Charge）、表示充放电限制的可输入电力Win、Wout等的信息。由此，控制装置50具有如下的功能，即，根据需要限制电动发电机MG1、MG2的消耗电力以及发电电力（再生电力），以防止发生主蓄电池B的过充电或者过放电。

另外，在本实施方式中，对通过单一的控制装置（ECU）50切换逆变器控制中的开关频率的构成进行了说明，但是，也可以通过多个控制装置（ECU）的协调动作实现同样的控制构成。

下面，对电动发电机MG1、MG2的驱动控制中的转换器15以及逆变器20、30的动作进行说明。

在转换器15的升压动作时，控制装置50根据电动发电机MG1、MG2的运转状态设定直流电压VH（下面将相当于逆变器20、30的直流侧电压的该直流电压也称为“系统电压VH”）的电压指令值VH#（下面也称为系统电压指令值VH#），根据系统电压指令值VH#以及电压传感器13的检测值，生成开关控制信号S1、S2使得转换器15的输出电压与系统电压指令值VH#相等。

转换器15在升压动作时，将从主蓄电池B供给的直流电压（蓄电池电压）Vb升压成系统电压VH，然后将该系统电压VH向逆变器20、30共同供给。更具体的是，相应于来自控制装置50的开关控制信号S1、S2设定开关元件Q1、Q2的占空比（导通期间比率），升压比对应于占空比。

另外，转换器15在降压动作时，将经由平滑电容器C0从逆变器20、
30 供给的直流电压（系统电压）进行降压，对主蓄电池 B 进行充电。具体的是，响应于来自控制装置 50 的开关控制信号 S1、S2，交替设置仅开关元件 Q1 为导通的期间和开关元件 Q1、Q2 双方为截止的期间，降压比对应于上述导通期间的占空比。

平滑电容器 C0 使来自转换器 15 的直流电压（系统电压）平滑化，将该平滑化的直流电压向逆变器 20、30 供给。电压传感器 13 检测平滑电容器 C0 的两端电压、即系统电压 VH，并将该检测值向控制装置 50 输出。

逆变器 30 通过响应于来自控制装置 50 的开关控制信号 S21～S26 的开关元件 Q21～Q26 的导通、截止动作（开关动作）驱动电动发电机 MG2，以输出按照转矩指令值 Tqcom (2) 的转矩。转矩指令值 Tqcom (2) 按照与运转状况相对应的向电动发电机 MG2 的输出（转矩×转数）要求，适当设定为正值 (Tqcom (2) > 0)、零 (Tqcom (2) = 0) 或者负值 (Tqcom (2) < 0)。

尤其是，在混合动力车辆的再生制动时，将电动发电机 MG2 的转矩指令值设定成负值 (Tqcom (2) < 0)。在这种情况下，逆变器 30 通过响应于开关控制信号 S21～S26 的开关动作、将电动发电机 MG2 发电产生的交流电压变换为直流电压，并将该变换的直流电压（系统电压）经由平滑电容器 C0 向转换器 15 供给。

另外，逆变器 20 与上述逆变器 30 的动作同样地、通过按照来自控制装置 50 的开关控制信号 S11～S16 的开关元件 Q11～Q16 的导通、截止控制，进行电力变换，使得电动发电机 MG1 按照指令值动作。

这样，控制装置 50 按照转矩指令值 Tqcom (1)、Tqcom (2) 驱动控制电动发电机 MG1、MG2，由此，在混合动力车辆 100 中，与车辆的运转状态相对应地适当进行由电动发电机 MG2 的电力消耗引起的车辆驱动力的产生、由电动发电机 MG1 的发电引起的主蓄电池 B 的充电电力或者电动发电机 MG2 的消耗电力的产生、以及由电动发电机 MG2 的再生制动动作（发电）引起的主蓄电池 B 的充电电力的产生。

接着，对控制装置 50 进行的逆变器 20、30 中的电力变换控制进行详
细说明。另外，下面所说明的逆变器控制，对逆变器 20 以及 30 来说相同。

图 2 是说明图 1 的电动机驱动控制系统中使用的逆变器控制方式的图。

如图 2 所示，在本发明的实施方式的电动机驱动控制系统中，对于逆变器 20、30 进行的电动机控制切换三种控制方式而进行使用。

正弦波 PWM（脉宽调制）控制作为一般的 PWM 控制而使用，按照
正弦波优的电压指令值和载波（代表性的是三角波）的电压比较控制各相
臂的开关元件的导通、截止。其结果，对与上臂元件的导通期间相对应的
高电平期间和与下臂元件的导通期间相对应的低电平期间的集合进行占
空比控制，使得在一定期间内其基本分量成为正弦波。众所周知，在正弦
波 PWM 控制中，仅能将该基本分量振幅提高到逆变器的直流侧电压（即，
系统电压 VH）的 0.61 倍。

另一方面，在矩形波电压控制中。在上述一定期间内，在电动发电机
MG 上施加高电平期间以及低电平期间的比为 1:1 的矩形波 1 个脉冲量。
由此，将调制度提高到 0.78。

过调制 PWM 控制是这样的控制，即，以缩小载波的振幅的方式使其
变形，并且在此基础上进行与上述正弦波 PWM 控制相同的 PWM 控制。
其结果，可使基本分量变形，并能够将调制度提高到 0.61～0.78 的范围。

在电动发电机 MG（总括表示 MG1、MG2，下同）中，如果转速以
及/或转矩增加，则逆电动势增加、感应电压升高，因此，其必要电压升高。
随之，转换器 15 的输出电压（系统电压 VH），需要设定得比该必要电压
高。另一方面，转换器 15 的升压是有限的，其输出电压存在上限值（即，
最大系统电压）。

因此，在必要电压（感应电压）比最大系统电压低的区域，使用基于
正弦波 PWM 控制或者过调制 PWM 控制的最大转矩控制，通过按照矢量
控制的电动机电流控制将输出转矩控制为转矩指令值 Tqcom。

另一方面，在电动机必要电压（感应电压）达到最大系统电压时，在
保持系统电压 VH 的基础上使用相当于弱磁控制（磁场削弱控制）的矩形
波电压控制。在矩形波电压控制方式下，由于固定了基本分量的振幅，所
以通过矩形波脉冲的电压相位控制进行转矩控制。

另外，在系统电压 VH 相同，即通过逆变器 20、30 进行开关的直流电压相同的情况下供给相同的电动机电流时，逆变器的开关损失依存于单位时间内的开关次数。因此，在这样的相同条件下，通过正弦波 PWM 控制、开关损失最大，通过矩形波电压控制、开关损失最小，通过过调制 PWM 控制、开关损失位于两者中间。

图 3 表示正弦波 PWM 控制方式以及过调制 PWM 控制方式中的控制方框图。通过以规定周期执行预先储存在控制装置 50 中的程序，可实现按照图 3 所示的方框图的电动机控制。

参照图 3，PWM 控制模块 200 包括电流指令生成部 210、坐标变换部 220、250、转速运算部 230、PI 运算部 240、PWM 信号生成部 260。

电流指令生成部 210 按照预先制成的映射等生成与转矩指令值 Tqcom（概括表示 Tqcom（1）以及 Tqcom（2），下同）相对应的 d 轴电流指令值 Idcom 以及 q 轴电流指令值 Iqcom。

坐标变换部 220 通过坐标变换（3 相→2 相）基于由电流传感器 27 检测出的 V 相电流 iv 以及 W 相电流 iw 计算 d 轴电流 id 以及 q 轴电流 iq，所述坐标变换使用通过旋转角传感器 28 检测出的电动发电机 MG 的旋转角 θ。转速运算部 230 根据旋转角传感器 28 的输出运算电动发电机 MG 的转速 Nmt（或者旋转角速度 ω）。

向 PI 运算部 240 输入相对于 d 轴电流的指令值的偏差 ΔId（ΔId=Idcom-id）以及相对于 q 轴电流的指令值的偏差 ΔIq（ΔIq=Iqcom-iq）。PI 运算部 240，对于 d 轴电流偏差 ΔId 以及 q 轴电流偏差 ΔIq 分别进行基于规定增益的 PI 运算，求出控制偏差，生成与该控制偏差相对应的 d 轴电压指令值 Vd#以及 q 轴电压指令值 Vq#。

坐标变换部 250 通过使用电动发电机 MG 的旋转角 θ 的坐标变换（2 相→3 相），将 d 轴电压指令值 Vd#以及 q 轴电压指令值 Vq#变换成 U 相、V 相、W 相的各相电压指令值 Vu、Vv、Vw。另外，在从 d 轴、q 轴电压指令值 Vd#、Vq#向各相电压指令值 Vu、Vv、Vw 变换时，也反映系统电
PWM 信号生成部 260 根据各相的电压指令值 Vu、Vv、Vw 和规定的载波的比较，生成图 1 所示的开关控制信号 S11～S16（S21～S26）。

逆变器 20（30），按照通过 PWM 控制模块 200 生成的开关控制信号 S11～S16（S21～S26）被开关控制，由此，向电动发电机 MG 施加用于输出按照转矩指令值 Tqcom 的转矩的交流电压。另外，如上所述，在过调制 PWM 控制方式时，从正弦波 PWM 控制方式时的一般的波切换 PWM 信号生成部 260 中的 PWM 调制时所使用的载波。

如上所述，关于正弦波 PWM 控制方式、过调制 PWM 控制方式以及矩形波电压控制方式的选择，考虑调制度。因此，在本发明的实施方式的电动机驱动控制系统中，为了根据需要的调制度选择控制方式，进一步设置电压指令值产生部 300、电压指令振幅计算部 320、调制度运算部 330 以及控制方式选择部 340。

电压指令值产生部 300，与电动发电机 MG1、MG2 的动作状态（转矩、转速）相对应地设定系统电压 VH 的电压指令值 VH#。并且，对于电压指令值 VH#在后面详细进行说明。

电压指令振幅计算部 320 使用通过 PI 运算部 240 生成的 d 轴电压指令值 Vd#和 q 轴电压指令值 Vq#以及电压相位 ϕ（以 d 轴为基准的电压相位），按照下述（1）、（2）式计算线电压振幅 Vamp。

\[
V_{\text{amp}} = |V_{d#}| \cdot \cos \phi + |V_{q#}| \cdot \sin \phi \quad (1)
\]

\[
\tan \phi = \frac{V_{q#}}{V_{d#}} \quad (2)
\]

调制度运算部 330 根据由电压指令振幅计算部 320 计算的线电压振幅 Vamp 和系统电压的电压指令值 VH#、按照下述（3）式计算实际的调制度 Kmd。

\[
K_{\text{md}} = \frac{V_{\text{amp}}}{V_{H#}} \quad (3)
\]

控制方式选择部 340 从正弦波 PWM 控制、过调制 PWM 控制以及矩形波电压控制中选择可实现由调制度运算部 330 计算的调制度 Kmd 的控制方式。
PWM 信号生成部 350，基于由电压传感器 10 以及 13 检测出的蓄电池电压 Vb 以及系统电压 VH 的检测值，按照规定的 PWM 控制方式生成开关控制信号 S1, S2，使得转换器 15 的输出电压与电压指令值 VH#一致。

图 4 表示矩形波电压控制时的控制方框图。如上所述，在通过调制 PWM 控制无法实现由调制度运算部 330 运算的调制度 Kmd 的情况下选择矩形波电压控制。对于按照图 4 所示的方框图的矩形波电压控制，也通过以规定的周期执行预先储存在控制装置 50 中的程序而实现。

参照图 4，矩形波电压控制模块 400 包括电力运算部 410、转矩运算部 420、PI 运算部 430、矩形波发生器 440、和信号产生部 450。

电力运算部 410，通过各相电流、各相（U 相、V 相、W 相）电压 Vu、Vv、Vw，按照下述（4）式计算电动机供给电力 Pmt，所述各相电流根据由电流传感器 27 检测出的 V 相电流 iv 以及 W 相电流 iw 求出。

\[ Pmt = iu \cdot Vu + iv \cdot Vv + iw \cdot Vw \quad (4) \]

转矩运算部 420，使用由电力运算部 410 求出的电动机电力 Pmt 以及根据由旋转角传感器 28 检测出的电动发电机 MG 的旋转角 θ 计算的角速度 ω，按照下述（5）式计算转矩推定值 Tq。

\[ Tq = Pmt / \omega \quad (5) \]

向 PI 运算部 430 输入相对于转矩指令值 Tqcom 的转矩偏差 ΔTq（Δ Tq=Tqcom-Tq）的 PI 运算部 430 对于转矩偏差 ΔTq 进行基于规定增益的 PI 运算，求出控制偏差，根据所求出的控制偏差设定矩形波电压的相位 φv。具体的是，在产生正转矩（Tqcom > 0）时控制电压相位 φv，使得在转矩不足时提前电压相位，而在转矩过剩时延迟电压相位。另外，在产生负转矩（Tqcom<0）时控制电压相位 φv，使得在转矩不足时延迟电压相位，而在转矩过剩时提前电压相位。

矩形波发生器 440 按照通过 PI 运算部 430 设定的电压相位 φv 产生各相电压指令值（矩形波脉动）Vu、Vv、Vw。信号产生部 450 按照各相电压指令值 Vu、Vv、Vw 产生开关控制信号 S11 ~ S16（S21 ~ S26）。逆变器 20（30）进行按照开关控制信号 S11 ~ S16（S21 ~ S26）的开关动作，由此，
按照电压相位 $\Phi v$ 的矩形波脉冲作为电动机的各相电压而施加。

这样，在矩形波控制方式时，可通过转矩（电力）的反馈控制进行电动发电机 MG 的转矩控制。但是，在矩形波控制方式下电动机施加电压的操作量仅为相位，所以与可将电动机施加电压的振幅以及相位作为操作量的 PWM 控制方式相比较，其控制响应性降低。

接着，对作为本发明实施方式的电动机驱动控制系统的特点点的、系统电压指令值 VH#的设定进行详细说明。

图 5 是说明本发明的实施方式的系统电压指令值设定的流程图。

参照图 5，控制装置 50 通过步骤 S100，与车辆状态（车速、踏板操作等）相对应地、按照向电动发电机 MG1、MG2 的输出要求（转速 x 转矩）设定转矩指令值 Tqcom（1）、Tqcom（2）。

控制装置 50 进而通过步骤 S110，按照电动发电机 MG1 的转速以及转矩指令值 Tqcom（1），与电动发电机 MG1 的感应电压相对应地计算必要电压 Vmg1。同样地，控制装置 50 通过步骤 S120，按照电动发电机 MG2 的转速以及转矩指令值 Tqcom（2），与电动发电机 MG2 的感应电压相对应地计算必要电压 Vmg2。

在此，在电动发电机 MG 中，如果转速以及/或者转矩增加，则逆电动势增加、感应电压升高。因此，在步骤 S110 以及 S120 中，必要电压 Vmg1 以及 Vmg2 分别设定为电动发电机 MG1 以及 MG2 的感应电压以上。

即，如图 6 所示，与电动发电机 MG 的转矩以及转速相对应，具体来说，随着处于高转速・高转矩的区域，将必要电压 Vmg1 以及 Vmg2 设定成相对较高。例如，对于电动发电机 MG1 以及 MG2，分别将转矩指令值 Tqcom 及转速 Nmt 作为自变量而参照反映图 6 的特性的映射，由此可执行步骤 S110、S120 中的必要电压 Vmg1 以及 Vmg2 的计算。

再次参照图 5，接着，控制装置 50 通过步骤 S130，计算必要最小电压 VHmin，该必要最小电压 VHmin 是在步骤 S110 以及 S120 中分别计算的 MG1 必要电压 Vmg1 以及 MG2 必要电压 Vmg2 的最大值。即，必要最小电压 VHmin 设定为比电动发电机 MG1 以及 MG2 的感应电压高。
装置 50 通过步骤 S140，根据在步骤 S130 中求出的必要最小电压 VHmin，在转换器 15 的最大输出电压 VHmax 的电压范围内（下面也将该电压范围称为“备用电压范围”）设定多个备用电压 VH(1)～VH(n)。在此，n 为 2 以上的整数。并且，作为初始值设置为变量 i=1。另外，对于备用电压 VH(1)～VH(n) 的个数以及/或者电压间隔，可以作为固定值，也可以与电动发电机 MG1 以及 MG2 的动作状态相对应地进行可变设定。另外，对于备用电压 VH(1)～VH(n) 的电压间隔，未必限定为等间隔。

进而，控制装置 50 通过步骤 S150 推定备用电压 VH(i) 时的主蓄电池 B 的电力损失（蓄电池损失）Plb。同样地，控制装置 50 通过步骤 S152 推定备用电压 VH(i) 时的转换器 15 的电力损失（转换器损失）P1cv。而且，控制装置 50 通过步骤 S154 推定备用电压 VH(i) 时的逆变器 20、30 的电力损失（逆变器损失）Pliv1, Pliv2。进而，控制装置 50 通过步骤 S156 推定备用电压 VH(i) 时的电动发电机 MG1, MG2 的电力损失（MG 损失）Plmg1, Plmg2。

控制装置 50 计算分别由步骤 S150, S152, S154 以及 S156 推定的蓄电池损失 Plb、转换器损失 P1cv、逆变器损失 Pliv1, Pliv2 以及 MG 损失 Plmg1, Plmg2 的总计，即，电力损失的总和 Plt（步骤 S160）。接着，控制装置 50 通过步骤 S162 以及 S165 的反复处理、对备用电压 VH(1)～VH(n) 分别计算系统整体的电力损失的总和 Plt。

接着，控制装置 50 通过步骤 S170 从备用电压 VH(1)～VH(n) 中制定电力损失的总和 Plt 最小的备用电压 VH(j)。接着，控制装置 50 通过步骤 S180 根据备用电压 VH(j) 计算最佳电压 VHo,p。此时，可以将上述备用电压 VH(j) 直接作为最佳电压 VHo,p，或者可以通过备用电压 VH(j) 与邻接的备用电压 VH(j-1) 或者 VH(j+1) 的插入计算最佳电压 VHo,p。

接着，控制装置 50 按照由步骤 S180 求出的最佳电压 VHo,p 设定电压指令值 VH#（步骤 S190）。基本来说，设定为 VH#=VHo,p。由此，设定
系统电压指令值 VH#, 以获得电动机控制系统整体的电力损失的总和最小的系统电压 VH。

另外，在图 5 的流程图中省略图示，但是在通过步骤 S130 求出的必要最小电压 VHmin 与转换器 15 的最大输出电压 VHmax 相等的情况下，不存在系统电压 VH 的自由度，因此，省略步骤 S140～S190 的处理，设定为电压指令值 VH#=VHmax (=VHmin)。

接着，顺次详细说明电动机控制系统的各构成要素中的电力损失推定。

蓄电池损失 Plb 主要是内部电阻的焦耳损失，使用内部电阻值 r 以及蓄电池电流 Ib 用 Ib . r² 表示。

如图 7 所示，蓄电池电流 Ib 是在平均电流（直流分量）Ibase 上重叠脉动电流（交流分量）ΔIbr 而得到的。该脉动电流 ΔIbr，与系统电压 VH 以及蓄电池电压 Vb 的电压差 |VH-Vb| 相对应地增大。

如图 8 所示，蓄电池损失 Plb 用与平均电流（直流）Ibase 的平方成比例的电力损失 Plb1 以及与交流电流分量ΔIbr 的平方成比例的电力损失 Plb2 的和表示。在此，脉动电流引起的电力损失 Plb2 与上述电压差 |VH-Vb| 的上升绝对相地增大。

因此，蓄电池损失 Plb 可根据蓄电池平均电流（直流）Ibase、即 MG1、MG2 的动作状态（转矩 × 转速）、和电压差 |VH-Vb| 推定。

在此，用平均电流 Ibase 和蓄电池电压 Vb 的积表示的蓄电池的输入输出电力，与各电动发电机 MG 的消耗电力或者发电电力的总和相对应，并非依存于系统电压 VH 而变化。因此，作为为了制定电压指令值 VH#的最佳值而应该评价的蓄电池损失 Plb，主要考虑 Plb2 即可。

因此，对于蓄电池损失 Plb，首先制作以电压差 |VH-Vb| 为自变量的反映图 8 的特性的映射，由此，可以推定蓄电池损失 Plb 相对于备选电压 VH (i) 的变化。

转换器 15 的损失主要是开关元件 Q1、Q2 的损失与电抗器 L1 的损失的和。它们都是转换器通过电流（即，蓄电池电流 Ib）越小且系统电压
VH 越低，则损失越小。另外，如果脉动电流 \( \Delta I_{br} \) 增大，则依存于电流的平方的损失增大，所以电压差 \(|VH-Vb|\) 成为决定转换器损失 \( PC_{lv} \) 的因素之一。

参照图 9，转换器损失 \( PC_{lv} \) 基本上与蓄电池电流 \( I_{b} \) 的平方相对应。因此，如图 9 所示，转换器损失 \( PC_{lv} \) 基本上是与蓄电池电流 \( I_{ave} \) 的平均电流 \( I_{bave} \) 的平方成比例的值，并且随着电压差 \(|VH-Vb|\) 的上升而增大。

因此，对于转换器损失 \( PC_{lv} \)，同样可以根据蓄电池平均电流 \( I_{bave} \)、即 MG1、MG2 的动作状态（转矩 \times 转速）、和电压差 \(|VH-Vb|\) 进行推定。如上所述，蓄电池平均电流 \( I_{ave} \) 并非依存于系统电压 \( VH \) 而变化。因此，对于为了制定电压指令值 \( VH \# \) 的最佳值而应该评价的转换器损失 \( PC_{lv} \)，预先制成将电压差 \(|VH-Vb|\) 作为自变量的、反映图 9 的特性的映射，由此，可以推定转换器损失 \( PC_{lv} \) 相对于备选电压 \( VH(\text{i}) \) 的变化。

逆变器 20、30 的逆变器损失，主要是开关元件的导通损失以及开关损失，流过开关元件的电流越小并且系统电压 \( VH \) 越低，则越小。

如图 10 所示，逆变器 20、30 进行的电动机控制方法，在低转速的区域 500 选择正弦波 PWM 控制，随着转速上升需要更大的调制度，从而在区域 510 中选择过调制 PWM 控制，在更高转速的区域 520 使用矩形波电压控制。例如，在一定转矩 T1 的输出时，伴随着 MG 转速的上升，在 MG 转速=N1 的附近从正弦波 PWM 控制向过调制 PWM 控制切换控制方式，如果转速进一步上升，则在转速=N2 的附近从过调制 PWM 控制向矩形波电压控制切换控制方式。

此时，如果与上述必要最小电压 \( VH_{min} \) 相对应地决定系统电压 \( VH \)，则系统电压 \( VH \) 与转速的上升相对应地从蓄电池电压 \( Vb \) 上升到转换器 15 的最大输出电压 \( VH_{max} \)。于是，在 MG 转速> N2 的区域，由于必要最小电压 \( VH_{min} \) 达到最大输出电压 \( VH_{max} \)，所以失去系统电压 \( VH \) 的设定自由度。

在此，逆变器电力损失 \( PL_{iv1} \)（或者 \( PL_{iv2} \），在 MG 转速为转速 N0～N1 的区域、即适用正弦波 PWM 控制的区域，在同一转矩（T1）输出时，
各开关元件的开关电压与系统电压 \( VH \) 的上升相对应地上升，由此开关损失增大。与此相伴，逆变器损失 \( Pliv1 \) （或 者 \( Pliv2 \) ）增加。

但是，以转速 \( N1 \) 为界，控制方式从正弦波 \( PWM \) 控制向单位时间内的开关次数相对较少的过调制 \( PWM \) 控制切换，由此尽管伴随着 \( MG \) 转速的上升、系统电压 \( VH \) 进一步上升，但逆变器损失 \( Pliv1 \) （或 者 \( Pliv2 \) ）减少。

如果转速进一步上升，则由于伴随着系统电压 \( VH \) 的上升，各开关元件的开关损失增大，逆变器损失 \( Pliv1 \) （或 者 \( Pliv2 \) ）缓缓增大。另外，在系统电压 \( VH \) 达到转换器最大输出电压 \( VHmax \) 而适用矩形波电压控制的区域，为了抑制电动发电机 \( MG \) 的感应电压，需要进行弱磁控制、降低逆变器效率，因此，每单位时间的开关次数减少，但是逆变器损失 \( Pliv1 \) （或 者 \( Pliv2 \) ）缓缓增加。

另一方面，电动发电机 \( MG1, MG2 \) 的 \( MG \) 损失，是由于流入各相线圈绕组的电流而产生的铜损和由于铁心部的磁通量变化而产生的铁损的和。因此，流过各相线圈绕组的电流越小，\( MG \) 损失也越小。

因此，一般情况下，对于电动发电机 \( MG1, MG2 \) 的 \( MG \) 损失，可以根据电动机的动作状态（转速以及转矩）进行推定。

例如，在图 11 中表示在某一定转速下，系统电压以及输出转矩、和逆变器 20 以及电动发电机 \( MG1 \) 的电力损失的和 \( Pliv1+Plmg1 \)（以及逆变器 30 和电动发电机 \( MG \) 的损失的和 \( Pliv2+Plmg2 \））的关系。图 11 显示了，能够考虑上述适用的控制方式的差异，根据电动发电机 \( MG \) 的转速、转矩（转矩指令值）以及系统电压，预先设定推定逆变器损失以及 \( MG \) 损失的映射。此时，逆变器损失可通过预先设定与电动发电机 \( MG \) 的动作状态（即，转速以及转矩指令值）相对应地应该选择的控制方式来推定。

其结果，如图 12 所示，能够主要将电动发电机 \( MG1 \) 的转速转矩（转矩指令值 \( Tqcom(1) \))、电动发电机 \( MG2 \) 的转速转矩（转矩指令值 \( Tqcom(2) \) ）以及系统电压 \( VH \) 中的至少一个作为自变量，构成推定蓄电池损失 \( Plb \) 的蓄电池损失推定部 550、推定转换器损失 \( P1cv \) 的转换器损失推定部
560、推定逆变器损失 Pinv1 以及 Pinv2 的逆变器损失推定部 570、以及推定电动发电机 MG1、MG2 的 MG 损失 Plmg1、Plmg2 的 MG 损失推定部 580。

例如，在蓄电池损失推定部 550 内，预先制成基于图 8 所示特性的映射 555，通过参照该映射 555 可推定此时的电动发电机 MG1、MG2 的动作状态以及系统电压 VH 的备选电压 VH (i) 下的蓄电池损失 Plb。

同样，在转换器损失推定部 560 内，预先制成基于图 9 所示特性的映射 565，通过参照该映射 565 可推定此时的电动发电机 MG1、MG2 的动作状态以及系统电压 VH 的备选电压 VH (i) 下的转换器损失 Plev。

另外，如上所述，对于推定蓄电池损失 Plb 的映射 555 以及推定转换器损失 Plev 的映射 565，可以构成以电压差 |VH-Vb| 或者系统电压 VH（备选电压 VH (i)）为自变量的映射。

另外，构成反映图 11 所示的特性的映射 575，由此能够一体构成逆变器损失推定部 570 以及 MG 损失推定部 580，使得将电动发电机 MG1、MG2 的动作状态（转速·转矩）以及备选电压 VH (i) 作为自变量，推定逆变器损失以及 MG 损失的和 Plmg1+Pliv1（或者 Plmg2+Pliv2）。

或者，逆变器损失推定部 570 也可以构成为反映上述控制方式而推定逆变器损失 Pliv1（Pliv2）。

参照图 13，逆变器损失推定部 570#独立于 MG 损失推定部 580 而构成。如上所述，MG 损失推定部 580 通过映射 585 而构成，所述映射 585 以电动发电机 MG1（MG2）的动作状态（转速·转矩）为自变量，并且基于铜损以及铁损的推定。MG 损失推定部 580 通过参照映射 585，根据电动发电机 MG1（MG2）的动作状态（转速·转矩）推定 MG 损失 Plmg1 以及 Plmg2。

逆变器损失推定部 570#包括按照各种控制方式设置的映射 575a、575b、575c 和输出切换部 576。

映射 575a 以正弦波 PWM 控制时的对应的电动发电机 MG1（或者 MG2）的动作状态（转速·转矩）以及系统电压（备选电压 VH (i)）为自
变量，推定主要反映开关元件的开关损失的逆变器损失 Pliv1 (Pliv2)。

同样，映射 575b 以过调制 PWM 控制时的对应的电动发电机 MG1 (或者 MG2) 的动作状态（转速·转矩）以及系统电压（备选电压 VH (i)）为自变量，推定主要反映开关元件的开关损失的逆变器损失 Pliv1 (Pliv2)。

并且，映射 575c 以矩形波电压控制时的对应的电动发电机 MG1 (或者 MG2) 的动作状态（转速·转矩）以及系统电压（备选电压 VH (i)）为自变量，推定主要反映开关元件的开关损失的逆变器损失 Pliv1 (Pliv2)。

输出切换部 576 根据当前选择的控制方式，从映射 575a、575b、575c 中选择一个映射，该当前选择的控制方式是根据控制方式选择部 340 的输出而选择的。由此，根据通过输出切换部 576 选择的映射的参照结果，推定逆变器损失 Pliv1 (Pliv2)。

在图 13 所示的结构中，即使在由于电动发电机 MG1、MG2 的特性偏差（代表性的是安装在转子上的永磁铁的磁性偏差）等而导致实际的控制动作方式的控制方式的切换点（转速·转矩）与设计不同的情况下，也可高精度地推定逆变器损失。

如以上说明，在本发明的实施方式的电动机驱动控制系统中，能够在确保电动发电机 MG1、MG2 的最小必要电压的电压区域，根据直流电源 (蓄电池)、转换器、逆变器以及电动发电机 MG 各自的电力损失推定，将系统电压 VH 设定为系统整体的电力损失的总和最小的最佳电压。由此，可以提高电动机驱动控制系统的整体效率。其结果，在搭载该电动机驱动控制系统的混合动力车辆中，可以提高燃料利用率。

特别是，通过在逆变器损失的推定中反映控制方式，可进一步高精度地实施相对于系统电压 VH 变化的电动机驱动控制系统整体损失的推定。其结果，可进一步使系统电压 VH 的设定最佳化，可进一步切实地提高电动机驱动控制系统的整体效率。

在此，在本实施方式中，图 5 的步骤 S150 或者图 12 的蓄电池损失推定部 550 与本发明的“第 1 损失推定部”相对应，图 5 的步骤 S152 或者图 12 的转换器损失推定部 560 与本发明的“第 2 损失推定部”相对应。另
外，图 5 的步骤 S154 或者图 12 的逆变器损失推定部 570 与本发明的“第 3 损失推定部”相对应，图 5 的步骤 S156 或者图 12 的 MG 损失推定部 580 与本发明的“第 4 损失推定部”相对应。此外，图 5 的步骤 S130、S160～S180 或者图 3 的电压指令值产生部 300 与本发明的“电压指令值产生部”相对应。

另外，在本实施方式中，蓄电池损失、转换器损失、逆变器损失以及 MG 损失的计算例只不过是表示代表性的例子，也可以根据其他方式或者其他变量推定这些损失。此时，同样能够按照图 5 所示的流程图，计算构成要素的损失推定值的总和，制定系统整体的电力损失最低的系统电压 VH，由此计算最佳电压 VHop 、设定与其相对应的电压指令值 VH#。

另外，也可以设为这样的控制构成：仅对蓄电池损失、转换器损失、逆变器损失以及 MG 损失中的、相对于系统电压 VH 的变化的变化程度大的部分，进行电力损失推定及求出其总和。在这种情况下，能够减轻运算负荷并且能够使系统电压 VH 的设定适当化。

另外，在本发明的实施方式中，对于搭载在混合动力车辆上的电动机驱动控制系统进行了代表性地例示，但是本发明的应用并不局限于这样的例子。即，本发明的电动机驱动系统，也可以适用于搭载在以电动汽车为代表的混合动力车辆以外的电动车辆上的电动机驱动控制系统。此外，只要包括能够可变控制直流电压的转换器的结构的电动机驱动控制系统即可，不限定被驱动控制的电动发电机（或者电动机·发电机）的个数和种类，以及由电动发电机（电动机）驱动的负荷，都能够适用本发明。

应该认识到本次公开的实施方式在所有方面也是例示而不是限定性的。本发明的范围由权利要求书而不是由上述说明限定，可以包括与权利要求书相同的意思和其范围内的所有的变更。
<table>
<thead>
<tr>
<th>控制方式</th>
<th>正弦波PWM</th>
<th>过调制PWM</th>
<th>矩形波(1脉冲)</th>
</tr>
</thead>
<tbody>
<tr>
<td>逆变器的输出电压波形</td>
<td>基波分量</td>
<td>基波分量</td>
<td>基波分量</td>
</tr>
<tr>
<td>调制度</td>
<td>0~0.61</td>
<td>0.61~0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>特征</td>
<td>转矩变动小</td>
<td>中速域的输出提高</td>
<td>高速域的输出提高</td>
</tr>
<tr>
<td>同一电压・电流下的开关损失</td>
<td>大</td>
<td>中</td>
<td>小</td>
</tr>
</tbody>
</table>

图 2
根据车辆状态（车速、踏板操作等）生成 MG1、MG2 的转矩指令值

根据 MG2 的转速、转矩指令值计算 MG2 必要电压 Vmg2 （Vmg2>M2 感应电压）

根据 MG1 的转速、转矩指令值计算 MG1 必要电压 Vmg1 （Vmg1>M1 感应电压）

计算必要最小电压 Vimin=MAX (Vmg1, Vmg2)

在 Vimin ~ Vimax 的电压范围内（备选电压范围）内决定备选电压 VH(1) ~ VH(n)，设置成 i=1

推定备选电压 VH(i) 时的蓄电池损失 P1b

推定备选电压 VH(i) 时的转换器损失 Plcv

推定备选电压 VH(i) 时的逆变器损失 Pliv1, Pliv2

推定备选电压 VH(i) 时的 MG 损失 P1mg1, P1mg2

i = i + 1

计算电力损失的总和 Plt

否

i = n？

是

制定电力损失的总和 Plt 最小的备选电压 VH(j), 1≤j≤n

根据备选电压 VH(j) 计算最佳电压 VHopt

根据最佳电压 VHopt 设定电压指令值 VH#
图 9

电力损失 $|V_H - V_b|$：大

图 10
图 13