wo 2012/087569 A1 | J1 ¥ 00 O A O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2012/087569 A1l

28 June 2012 (28.06.2012) WIPO I PCT
(51) International Patent Classification: (74) Agents: CLEVELAND, Michael, G. et al.; 505 Mont-
G11C 11/56 (2006.01) G11C 16/04 (2006.01) gomery Street, Suite 800, San Francisco, California 94111
G11C 16/34 (2006.01) (US).
(21) International Application Number: (81) Designated States (uniess otherwise indicated, for every
PCT/US2011/063584 kind of national protection available). AE, AG, AL, AM,
. - AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(22) International Filing Date: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
6 December 2011 (06.12.2011) DZ, EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, GT, HN,
(25) Filing Language: English HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(26) Publication Language: Enghsh MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(30) Priority Data: OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
12/974,817 21 December 2010 (21.12.2010) Us SE, 8G, SK, SL, SM, ST, SV, 8Y, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicant (for all designated States except US): . o
SANDISK TECHNOLOGIES INC. [US/US], Two Leg- (84) De51gnated States (unless otherwise indicated, fO}" every
acy Town Center, 6900 North Dallas Parkway, Plano, kind of regional protection available): ARIPO (BW, GH,
Texas 75024 (US). GM, KE, LR, LS, MW MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,
(72) Inventor; and TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
(75) Inventor/Applicant (for US only): LI, Yan [US/US]; 695 DK, EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

Kevenaire Drive, Milpitas, California 95035 (US).

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW,ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: ALTERNATE PAGE BY PAGE PROGRAMMING SCHEME

10

L

1"

OHOIOIOIO
OHOIOIO

ONO

IRellole

FIG. 18

(57) Abstract: An alternate page by page
scheme for the multi -state programming of
data into non-volatile memory is presented.

WiL4 Pages of data are written a page at a time onto
word lines of the memory. After all of the
pages of data are written to, first level of res-

WL3 olution onto one word line, the memory goes
back to the adjacent word line (on which all
of the pages of data have previously been
written to the first level of resolution) and re-

W2 fines the accuracy with which the data had
been written on this preceding word line. This
can reduce the effects on the data of capacit-

WL ive coupling between the word lines.

WLO

S

WO 2012/087569 A1 |IIWAT 00N 0O AR

Published:
— with international search report (Art. 21(3))

WO 2012/087569 PCT/US2011/063584

ALTERNATE PAGE BY PAGE PROGRAMMING SCHEME

BACKGROUND

[0001] This application relates to the programming of re-programmable non-volatile
memory systems, such as semiconductor flash memory, and, more specifically, to the

order in which pages of data are written word lines of the memory.

[0002] Solid-state memory capable of nonvolatile storage of charge, particularly in
the form of EEPROM and flash EEPROM packaged as a small form factor card, has
recently become the storage of choice in a variety of mobile and handheld devices,
notably information appliances and consumer eclectronics products. Unlike RAM
(random access memory) that is also solid-state memory, flash memory is non-
volatile, and retaining its stored data even after power is turned off. Also, unlike
ROM (read only memory), flash memory is rewritable similar to a disk storage
device. In spite of the higher cost, flash memory is increasingly being used in mass
storage applications. Conventional mass storage, based on rotating magnetic medium
such as hard drives and floppy disks, is unsuitable for the mobile and handheld
environment. This is because disk drives tend to be bulky, are prone to mechanical
failure and have high latency and high power requirements. These undesirable
attributes make disk-based storage impractical in most mobile and portable
applications. On the other hand, flash memory, both embedded and in the form of a
removable card is ideally suited in the mobile and handheld environment because of

its small size, low power consumption, high speed and high reliability features.

[0003] Flash EEPROM is similar to EEPROM (electrically erasable and
programmable read-only memory) in that it is a non-volatile memory that can be
erased and have new data written or “programmed” into their memory cells. Both
utilize a floating (unconnected) conductive gate, in a field effect transistor structure,
positioned over a channel region in a semiconductor substrate, between source and
drain regions. A control gate is then provided over the floating gate. The threshold
voltage characteristic of the transistor is controlled by the amount of charge that is

retained on the floating gate. That is, for a given level of charge on the floating gate,

-1-

WO 2012/087569 PCT/US2011/063584

there is a corresponding voltage (threshold) that must be applied to the control gate
before the transistor is turned “on” to permit conduction between its source and drain
regions. In particular, flash memory such as Flash EEPROM allows entire blocks of

memory cells to be erased at the same time.

[0004] The floating gate can hold a range of charges and therefore can be
programmed to any threshold voltage level within a threshold voltage window. The
size of the threshold voltage window is delimited by the minimum and maximum
threshold levels of the device, which in turn correspond to the range of the charges
that can be programmed onto the floating gate. The threshold window generally
depends on the memory device’s characteristics, operating conditions and history.
Each distinct, resolvable threshold voltage level range within the window may, in

principle, be used to designate a definite memory state of the cell.

[0005] The transistor serving as a memory cell is typically programmed to a
"programmed" state by one of two mechanisms. In "hot electron injection,” a high
voltage applied to the drain accelerates electrons across the substrate channel region.
At the same time a high voltage applied to the control gate pulls the hot electrons
through a thin gate dielectric onto the floating gate. In "tunneling injection,” a high
voltage is applied to the control gate relative to the substrate. In this way, electrons
are pulled from the substrate to the intervening floating gate. While the term
“program” has been used historically to describe writing to a memory by injecting
electrons to an initially erased charge storage unit of the memory cell so as to alter the
memory state, it has now been used interchangeable with more common terms such as

“write” or “record.”

[0006] The memory device may be erased by a number of mechanisms. For
EEPROM, a memory cell is electrically erasable, by applying a high voltage to the
substrate relative to the control gate so as to induce electrons in the floating gate to
tunnel through a thin oxide to the substrate channel region (i.e., Fowler-Nordheim
tunneling.) Typically, the EEPROM is crasable byte by byte. For flash EEPROM,
the memory is electrically erasable either all at once or one or more minimum
crasable blocks at a time, where a minimum erasable block may consist of one or

more sectors and each sector may store 512 bytes or more of data.

-0

WO 2012/087569 PCT/US2011/063584

[0007] The memory device typically comprises one or more memory chips that may
be mounted on a card. Each memory chip comprises an array of memory cells
supported by peripheral circuits such as decoders and erase, write and read circuits.
The more sophisticated memory devices also come with a controller that performs

intelligent and higher level memory operations and interfacing.

[0008] There are many commercially successful non-volatile solid-state memory
devices being used today. These memory devices may be flash EEPROM or may
employ other types of nonvolatile memory cells. Examples of flash memory and
systems and methods of manufacturing them are given in United States patents nos.
5,070,032, 5,095,344, 5,315,541, 5,343,063, and 5,661,053, 5,313,421 and 6,222,762.
In particular, flash memory devices with NAND string structures are described in
United States patent nos. 5,570,315, 5,903,495, 6,046,935. Also nonvolatile memory
devices are also manufactured from memory cells with a dielectric layer for storing
charge. Instead of the conductive floating gate elements described earlier, a dielectric
layer is used. Such memory devices utilizing dielectric storage element have been
described by FEitan et al., “NROM: A Novel Localized Trapping, 2-Bit Nonvolatile
Memory Cell,” IEEE Electron Device Letters, vol. 21, no. 11, November 2000, pp.
543-545. An ONO diclectric layer extends across the channel between source and
drain diffusions. The charge for one data bit is localized in the dielectric layer
adjacent to the drain, and the charge for the other data bit is localized in the dielectric
layer adjacent to the source. For example, United States patents nos. 5,768,192 and
6,011,725 disclose a nonvolatile memory cell having a trapping diclectric sandwiched
between two silicon dioxide layers. Multi-state data storage is implemented by
separately reading the binary states of the spatially separated charge storage regions

within the dielectric.

[0009] In order to improve read and program performance, multiple charge storage
elements or memory transistors in an array are read or programmed in parallel. Thus,
a “page” of memory elements are read or programmed together. In existing memory
architectures, a row typically contains several interleaved pages or it may constitute
one page. All memory elements of a page will be read or programmed together. In a
multi-state memory, several pages of data will be written onto each word line. There

are various algorithms for how these pages of data can be written and on how the

-3-

WO 2012/087569 PCT/US2011/063584

multiple pages on a word line are encoded. The different schemes have various
relative advantages and disadvantages with respect to one another and there is an

ongoing need for improving the accuracy and performance of write operations.

SUMMARY OF THE INVENTION

[0010] According to a general aspect of the invention, a method of writing multiple
pages of data into a non-volatile memory is presented. The non-volatile memory has
multi-state memory cells formed along a plurality of word lines, so that the memory
can store N pages of data on a word line so that each memory cell stores N bits of
data, where N is an integer greater than one. The method includes writing N pages of
data on a page by page basis into a first word line and writing N pages of data on a
page by page into a second word line. The second word line is adjacent to the first
word line and at least one of the N pages of data is written into the second word line is
written subsequent to writing all of the N pages of data into the first word line. The
method also includes subsequently performing a programming operation on the first
word line to refine the accuracy with which the N pages of data written into the first

word line have been written.

[0011] Various aspects, advantages, features and embodiments of the present
invention are included in the following description of exemplary examples thereof,
which description should be taken in conjunction with the accompanying drawings.
All patents, patent applications, articles, other publications, documents and things
referenced herein are hereby incorporated herein by this reference in their entirety for
all purposes. To the extent of any inconsistency or conflict in the definition or use of
terms between any of the incorporated publications, documents or things and the

present application, those of the present application shall prevail.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIG. 1 illustrates schematically the main hardware components of a memory

system suitable for implementing the present invention.
[0013] FIG. 2 illustrates schematically a non-volatile memory cell.

[0014] FIG. 3 illustrates the relation between the source-drain current I and the

_4.-

WO 2012/087569 PCT/US2011/063584

control gate voltage Vg for four different charges Q1-Q4 that the floating gate may

be selectively storing at any one time.

[0015] FIG. 4A illustrates schematically a string of memory cells organized into an

NAND string.

[0016] FIG. 4B illustrates an example of an NAND array 210 of memory cells,
constituted from NAND strings 50 such as that shown in FIG. 4A.

[0017] FIG. 5 illustrates a page of memory cells, organized for example in the

NAND configuration, being sensed or programmed in parallel.

[0018] FIG. 6(0) - 6(2) illustrate an example of programming a population of 4-state

memory cells.

[0019] FIGs. 7A-7E illustrate the programming and reading of the 4-state memory

encoded with a given 2-bit code.

[0020] FIG. 7F illustrates a foggy-fine programming for an §-state memory encoded

with a given 3-bit code.

[0021] FIG. 8 illustrates the memory being managed by a memory manager with is a

software component that resides in the controller.
[0022] FIG. 9 illustrates the software modules of the back-end system.

[0023] FIGs. 10A(i) — 10A(iii) illustrate schematically the mapping between a logical
group and a metablock. FIG. 10B illustrates schematically the mapping between

logical groups and metablocks.

[0024] FIG. 11 illustrates a host operating with the flash memory device through a

series of caches at different levels of the system.

[0025] FIG. 12 shows one word line order for a page by page data write for a typical

2-bit per cell embodiment.

[0026] FIG. 13 illustrates the programming and state distributions for a 2-bit per cell

alternate page by page write operation.

WO 2012/087569 PCT/US2011/063584

[0027] FIG. 14 shows the exemplary programming order of data pages into word
lines for the alternate page by page programming scheme of FIG. 13.

[0028] FIG. 15 illustrates the programming and state distributions for a typical 3-bit

per cell page by page write operation.

[0029] FIG. 16 shows one word line order for a page by page data write for a typical

3-bit per cell embodiment.

[0030] FIG. 17 illustrates the programming and state distributions for a 3-bit per cell

alternate page by page write operation.

[0031] FIG. 18 shows the exemplary programming order of data pages into word
lines for the alternate page by page programming scheme of FIG. 17.

[0032] FIG. 19 shows some waveforms for an alternate page by page write operation.

DETAILED DESCRIPTION

MEMORY SYSTEM

[0033] FIG. 1 to FIG. 7 provide example memory systems in which the various

aspects of the present invention may be implemented or illustrated.

[0034] FIG. 8 to FIG. 11 illustrate one memory and block architecture for

implementing the various aspects of the present invention.

[0035] FIG. 1 illustrates schematically the main hardware components of a memory
system suitable for implementing the present invention. The memory system 90
typically operates with a host 80 through a host interface. The memory system is
typically in the form of a memory card or an embedded memory system. The
memory system 90 includes a memory 200 whose operations are controlled by a
controller 100. The memory 200 comprises of one or more array of non-volatile
memory cells distributed over one or more integrated circuit chip. The controller 100
includes an interface 110, a processor 120, an optional coprocessor 121, ROM 122
(read-only-memory), RAM 130 (random access memory) and optionally
programmable nonvolatile memory 124. The interface 110 has one component

interfacing the controller to a host and another component interfacing to the memory
-6 -

WO 2012/087569 PCT/US2011/063584

200. Firmware stored in nonvolatile ROM 122 and/or the optional nonvolatile
memory 124 provides codes for the processor 120 to implement the functions of the
controller 100. Error correction codes may be processed by the processor 120 or the
optional coprocessor 121. In an alternative embodiment, the controller 100 is
implemented by a state machine (not shown.) In yet another embodiment, the

controller 100 is implemented within the host.

Physical Memory Structure

[0036] FIG. 2 illustrates schematically a non-volatile memory cell. The memory cell
10 can be implemented by a field-effect transistor having a charge storage unit 20,
such as a floating gate or a diclectric layer. The memory cell 10 also includes a

source 14, a drain 16, and a control gate 30.

[0037] There are many commercially successful non-volatile solid-state memory
devices being used today. These memory devices may employ different types of

memory cells, each type having one or more charge storage element.

[0038] Typical non-volatile memory cells include EEPROM and flash EEPROM.
Examples of EEPROM cells and methods of manufacturing them are given in United
States patent no. 5,595,924. Examples of flash EEPROM cells, their uses in memory
systems and methods of manufacturing them are given in United States patents nos.
5,070,032, 5,095,344, 5,315,541, 5,343,063, 5,661,053, 5,313,421 and 6,222,762. In
particular, examples of memory devices with NAND cell structures are described in
United States patent nos. 5,570,315, 5,903,495, 6,046,935. Also, examples of
memory devices utilizing dielectric storage element have been described by Eitan et
al., “NROM: A Novel Localized Trapping, 2-Bit Nonvolatile Memory Cell,” IEEE
Electron Device Letters, vol. 21, no. 11, November 2000, pp. 543-545, and in United
States patents nos. 5,768,192 and 6,011,725.

[0039] In practice, the memory state of a cell is usually read by sensing the
conduction current across the source and drain electrodes of the cell when a reference
voltage is applied to the control gate. Thus, for each given charge on the floating gate
of a cell, a corresponding conduction current with respect to a fixed reference control
gate voltage may be detected. Similarly, the range of charge programmable onto the

floating gate defines a corresponding threshold voltage window or a corresponding
-7 -

WO 2012/087569 PCT/US2011/063584

conduction current window.

[0040] Alternatively, instead of detecting the conduction current among a partitioned
current window, it is possible to set the threshold voltage for a given memory state
under test at the control gate and detect if the conduction current is lower or higher
than a threshold current. In one implementation the detection of the conduction
current relative to a threshold current is accomplished by examining the rate the

conduction current is discharging through the capacitance of the bit line.

[0041] FIG. 3 illustrates the relation between the source-drain current I and the
control gate voltage Vg for four different charges Q1-Q4 that the floating gate may
be selectively storing at any one time. The four solid Ip versus Vg curves represent
four possible charge levels that can be programmed on a floating gate of a memory
cell, respectively corresponding to four possible memory states. As an example, the
threshold voltage window of a population of cells may range from 0.5V to 3.5V.
Seven possible memory states “07, “17, “27, “37, “4” 57 “6”, respectively
representing one erased and six programmed states may be demarcated by partitioning
the threshold window into five regions in interval of 0.5V each. For example, if a
reference current, IREF of 2 pA is used as shown, then the cell programmed with Q1
may be considered to be in a memory state “1” since its curve intersects with Iggr in
the region of the threshold window demarcated by VCG = 0.5V and 1.0V. Similarly,

Q4 is in a memory state “5”.

[0042] As can be seen from the description above, the more states a memory cell is
made to store, the more finely divided is its threshold window. For example, a
memory device may have memory cells having a threshold window that ranges from
—1.5V to 5V. This provides a maximum width of 6.5V. If the memory cell is to store
16 states, each state may occupy from 200mV to 300mV in the threshold window.
This will require higher precision in programming and reading operations in order to

be able to achieve the required resolution.

[0043] FIG. 4A illustrates schematically a string of memory cells organized into an
NAND string. An NAND string 50 comprises of a series of memory transistors M1,
M2, ... Mn (e.g., n= 4, 8, 16 or higher) daisy-chained by their sources and drains. A

pair of select transistors S1, S2 controls the memory transistors chain’s connection to

-8-

WO 2012/087569 PCT/US2011/063584

the external via the NAND string’s source terminal 54 and drain terminal 56
respectively. In a memory array, when the source select transistor S1 is turned on, the
source terminal is coupled to a source line (see FIG. 4B). Similarly, when the drain
select transistor S2 is turned on, the drain terminal of the NAND string is coupled to a
bit line of the memory array. Each memory transistor 10 in the chain acts as a
memory cell. It has a charge storage element 20 to store a given amount of charge so
as to represent an intended memory state. A control gate 30 of each memory
transistor allows control over read and write operations. As will be seen in FIG. 4B,
the control gates 30 of corresponding memory transistors of a row of NAND string
are all connected to the same word line. Similarly, a control gate 32 of each of the
select transistors S1, S2 provides control access to the NAND string via its source
terminal 54 and drain terminal 56 respectively. Likewise, the control gates 32 of
corresponding select transistors of a row of NAND string are all connected to the

same select line.

[0044] When an addressed memory transistor 10 within an NAND string is read or is
verified during programming, its control gate 30 is supplied with an appropriate
voltage. At the same time, the rest of the non-addressed memory transistors in the
NAND string 50 are fully turned on by application of sufficient voltage on their
control gates. In this way, a conductive path is effective created from the source of
the individual memory transistor to the source terminal 54 of the NAND string and
likewise for the drain of the individual memory transistor to the drain terminal 56 of
the cell. Memory devices with such NAND string structures are described in United

States patent nos. 5,570,315, 5,903,495, 6,046,935.

[0045] FIG. 4B illustrates an example of an NAND array 210 of memory cells,
constituted from NAND strings 50 such as that shown in FIG. 4A. Along each
column of NAND strings, a bit line such as bit line 36 is coupled to the drain terminal
56 of cach NAND string. Along each bank of NAND strings, a source line such as
source line 34 is couple to the source terminals 54 of ecach NAND string. Also the
control gates along a row of memory cells in a bank of NAND strings are connected
to a word line such as word line 42. The control gates along a row of select
transistors in a bank of NAND strings are connected to a select line such as select line

44. An entire row of memory cells in a bank of NAND strings can be addressed by

-9.

WO 2012/087569 PCT/US2011/063584

appropriate voltages on the word lines and select lines of the bank of NAND strings.
When a memory transistor within a NAND string is being read, the remaining
memory transistors in the string are turned on hard via their associated word lines so
that the current flowing through the string is essentially dependent upon the level of

charge stored in the cell being read.

[0046] FIG. 5 illustrates a page of memory cells, organized for example in the
NAND configuration, being sensed or programmed in parallel. FIG. 5 essentially
shows a bank of NAND strings 50 in the memory array 210 of FIG. 4B, where the
detail of each NAND string is shown explicitly as in FIG. 4A. A “page” such as the
page 60, is a group of memory cells enabled to be sensed or programmed in parallel.
This is accomplished by a corresponding page of sense amplifiers 212. The sensed
results are latches in a corresponding set of latches 214. Each sense amplifier can be
coupled to a NAND string via a bit line. The page is enabled by the control gates of
the cells of the page connected in common to a word line 42 and each cell accessible
by a sense amplifier accessible via a bit line 36. As an example, when respectively
sensing or programming the page of cells 60, a sensing voltage or a programming
voltage is respectively applied to the common word line WL3 together with

appropriate voltages on the bit lines.

Physical Organization of the Memory

[0047] One important difference between flash memory and of type of memory is that
a cell must be programmed from the erased state. That is the floating gate must first
be emptied of charge. Programming then adds a desired amount of charge back to the
floating gate. It does not support removing a portion of the charge from the floating
to go from a more programmed state to a lesser one. This means that update data

cannot overwrite existing one and must be written to a previous unwritten location.

[0048] Furthermore erasing is to empty all the charges from the floating gate and
generally takes appreciably time. For that reason, it will be cumbersome and very
slow to erase cell by cell or even page by page. In practice, the array of memory cells
is divided into a large number of blocks of memory cells. As is common for flash
EEPROM systems, the block is the unit of erase. That is, each block contains the

minimum number of memory cells that are erased together. While aggregating a large

-10 -

WO 2012/087569 PCT/US2011/063584

number of cells in a block to be erased in parallel will improve erase performance, a
large size block also entails dealing with a larger number of update and obsolete data.
Just before the block is erased, a garbage collection is required to salvage the non-

obsolete data in the block.

[0049] Each block is typically divided into a number of pages. A page is a unit of
programming or reading. In one embodiment, the individual pages may be divided
into segments and the segments may contain the fewest number of cells that are
written at one time as a basic programming operation. One or more pages of data are
typically stored in one row of memory cells. A page can store one or more sectors. A
sector includes user data and overhead data. Multiple blocks and pages distributed
across multiple arrays can also be operated together as metablocks and metapages. If
they are distributed over multiple chips, they can be operated together as megablocks

and megapage.

Examples of Multi-level Cell (“MLC”) Memory Partitioning

[0050] A nonvolatile memory in which the memory cells each stores multiple bits of
data has already been described in connection with FIG. 3. A particular example is a
memory formed from an array of field-effect transistors, each having a charge storage
layer between its channel region and its control gate. The charge storage layer or unit
can store a range of charges, giving rise to a range of threshold voltages for each
field-effect transistor. The range of possible threshold voltages spans a threshold
window. When the threshold window is partitioned into multiple sub-ranges or
zones of threshold voltages, each resolvable zone is used to represent a different
memory states for a memory cell. The multiple memory states can be coded by one
or more binary bits. For example, a memory cell partitioned into four zones can
support four states which can be coded as 2-bit data. Similarly, a memory cell
partitioned into eight zones can support eight memory states which can be coded as 3-

bit data, etc.

All-bit, Full-Sequence MLC Programming

[0051] FIG. 6(0) - 6(2) illustrate an example of programming a population of 4-state
memory cells. FIG. 6(0) illustrates the population of memory cells programmable

into four distinct distributions of threshold voltages respectively representing memory
-11 -

WO 2012/087569 PCT/US2011/063584

states “07, “17, “2” and “3”. FIG. 6(1) illustrates the initial distribution of “‘erased”
threshold voltages for an erased memory. FIG. 6(2) illustrates an example of the
memory after many of the memory cells have been programmed. Essentially, a cell
initially has an “erased” threshold voltage and programming will move it to a higher
value into one of the three zones demarcated by verify levels vVy, vV, and vVi. In
this way, each memory cell can be programmed to one of the three programmed state
“17, “2” and “3” or remain un-programmed in the “erased” state. As the memory gets
more programming, the initial distribution of the “erased” state as shown in FIG. 6(1)

will become narrower and the erased state is represented by the “0” state.

[0052] A 2-bit code having a lower bit and an upper bit can be used to represent each
of the four memory states. For example, the “0”, “1”, “2” and “3” states are
respectively represented by “117, “017, “00” and ‘10”. The 2-bit data may be read
from the memory by sensing in “full-sequence” mode where the two bits are sensed
together by sensing relative to the read demarcation threshold values rV,, rV, and rV;

in three sub-passes respectively.

Bit-by-Bit MLC Programming and Reading

[0053] FIGs. 7A-7E illustrate the programming and reading of the 4-state memory
encoded with a given 2-bit code. FIG. 7A illustrates threshold voltage distributions
of the 4-state memory array when each memory cell stores two bits of data using the
2-bit code. Such a 2-bit code has been disclosed in US Patent Application No.
10/830,824 filed April 24, 2004 by Li et al., entitled “NON-VOLATILE MEMORY
AND CONTROL WITH IMPROVED PARTIAL PAGE PROGRAM
CAPABILITY”.

[0054] FIG. 7B illustrates the lower page programming (lower bit) in a 2-pass
programming scheme using the 2-bit code. The fault-tolerant LM New code
essentially avoids any upper page programming to transit through any intermediate
states. Thus, the first pass lower page programming has the logical state (upper bit,
lower bit) = (1, 1) transits to some intermediate state (x, 0) as represented by
programming the “unprogrammed” memory state “0” to the “intermediate” state
designated by (x, 0) with a programmed threshold voltage greater than Da but less
than Dc.

-12-

WO 2012/087569 PCT/US2011/063584

[0055] FIG. 7C illustrates the upper page programming (upper bit) in the 2-pass
programming scheme using the 2-bit code. In the second pass of programming the
upper page bit to “0”, if the lower page bit is at “1”, the logical state (1, 1) transits to
(0, 1) as represented by programming the “unprogrammed” memory state “0” to “1”.
If the lower page bit is at “0”, the logical state (0, 0) is obtained by programming from
the “intermediate” state to “3”. Similarly, if the upper page is to remain at “1”, while
the lower page has been programmed to “0”, it will require a transition from the
“intermediate” state to (1, 0) as represented by programming the “intermediate” state

to “2”‘

[0056] FIG. 7D illustrates the read operation that is required to discern the lower bit
of the 4-state memory encoded with the 2-bit code. A readB operation is first
performed to determine if the LM flag can be read. If so, the upper page has been
programmed and the readB operation will yield the lower page data correctly. On the
other hand, if the upper page has not yet been programmed, the lower page data will

be read by a readA operation.

[0057] FIG. 7E illustrates the read operation that is required to discern the upper bit
of the 4-state memory encoded with the 2-bit code. As is clear from the figure, the
upper page read will require a 3-pass read of readA, readB and readC, respectively

relative to the demarcation threshold voltages Da, Dy and De.

[0058] In the bit-by-bit scheme for a 2-bit memory, a physical page of memory cells
will store two logical data pages, a lower data page corresponding to the lower bit and

an upper data page corresponding to the upper bit.

Foggvy-Fine Programming

[0059] Another wvariation on multi-state programming employs a foggy-fine
algorithm, as is illustrated in FIG. 7F for a 3-bit memory example. As shown there,
this another multi-phase programming operation. A first programming operation is
performed as shown in the top line, followed the foggy programming stage. The
foggy phase is a full 3-bit programming operation from the first phase using all eight
of the final states. At the end of the foggy, though, the data in these states is not yet
fully resolved into well defined distributions for each of the 8 states (hence, the

“foggy” name) and is not readily extractable.
-13 -

WO 2012/087569 PCT/US2011/063584

[0060] As cach cell is, however, programmed to near its eventual target state, the sort
of neighboring cell to cell couplings, or “Yupin” effect, described in US patent
number 6,870,768 are presenting most of their effect. Because of this, when the fine
program phase (shown on the bottom line) is executed, these couplings have largely
been factored in to this final phase so the cell distributions are more accurately
resolved to their target ranges. More detail on these subjects is given in US patents
numbers 6,870,768 and 6,657,891 and in the US patent application number US
12/642,740 entitled “Atomic Program Sequence and Write Abort Detection” by
Gorobets et al. filed December 18, 2009, and which presents a “diagonal” first-foggy-

fine method, and references further cited therein.

Binary and MLC Memory Partitioning

[0061] FIG. 6 and FIG. 7 illustrate examples of a 2-bit (also referred to as “D2”)
memory. As can be seen, a D2 memory has its threshold range or window partitioned
into 4 regions, designating 4 states. Similarly, in D3, each cell stores 3 bits (low,
middle and upper bits) and there are 8 regions. In D4, there are 4 bits and 16 regions,
etc. As the memory’s finite threshold window is partitioned into more regions, the
resolution and for programming and reading will necessarily become finer. Two

issues arise as the memory cell is configured to store more bits.

[0062] First, programming or reading will be slower when the threshold of a cell must
be more accurately programmed or read. In fact in practice the sensing time (needed
in programming and reading) tends to increase as the square of the number of

partitioning levels.

[0063] Sccondly, flash memory has an endurance problem as it ages with use. When
a cell is repeatedly programmed and erased, charges is shuttled in and out of the
floating gate 20 (see FIG. 2) by tunneling across a dielectric. Each time some
charges may become trapped in the dielectric and will modify the threshold of the
cell. In fact over use, the threshold window will progressively narrow. Thus, MLC
memory generally is designed with tradeoffs between capacity, performance and

reliability.

[0064] Conversely, it will be seen for a binary memory, the memory’s threshold

window is only partitioned into two regions. This will allow a maximum margin of
-14 -

WO 2012/087569 PCT/US2011/063584

errors. Thus, binary partitioning while diminished in storage capacity will provide

maximum performance and reliability.

[0065] The multi-pass, bit-by-bit programming and reading technique described in
connection with FIG. 7 provides a smooth transition between MLC and binary
partitioning. In this case, if the memory is programmed with only the lower bit, it is
effectively a binary partitioned memory. While this approach does not fully optimize
the range of the threshold window as in the case of a single-level cell (“SLC”)
memory, it has the advantage of using the same demarcation or sensing level as in the
operations of the lower bit of the MLC memory. As will be described later, this
approach allows a MLC memory to be “expropriated” for use as a binary memory, or
vice versa. How it should be understood that MLC memory tends to have more

stringent specification for usage.

Binary Memory and Partial Page Programming

[0066] The charge programmed into the charge storage element of one memory cell
produces an electric field that perturbs the electric field of a neighboring memory cell.
This will affect the characteristics of the neighboring memory cell which essentially is
a field-effect transistor with a charge storage element. In particular, when sensed the
memory cell will appear to have a higher threshold level (or more programmed) than

when it is less perturbed.

[0067] In general, if a memory cell is program-verified under a first field environment
and later is read again under a different field environment due to neighboring cells
subsequently being programmed with different charges, the read accuracy may be
affected due to coupling between neighboring floating gates in what is referred to as
the “Yupin Effect”. With ever higher integration in semiconductor memories, the
perturbation of the electric field due to the stored charges between memory cells

(Yupin effect) becomes increasing appreciable as the inter-cellular spacing shrinks.

[0068] The Bit-by-Bit MLC Programming technique described in connection with
FIG. 7 above is designed to minimize program disturb from cells along the same
word line. As can be seen from FIG. 7B, in a first of the two programming passes,
the thresholds of the cells are moved at most half way up the threshold window. The

effect of the first pass is overtaken by the final pass. In the final pass, the thresholds
=15 -

WO 2012/087569 PCT/US2011/063584

are only moved a quarter of the way. In other words, for D2, the charge difference
among neighboring cells is limited to a quarter of its maximum. For D3, with three

passes, the final pass will limit the charge difference to one-eighth of its maximum.

[0069] However, the bit-by-bit multi-pass programming technique will be
compromised by partial-page programming. A page is a group of memory cells,
typically along a row or word line, that is programmed together as a unit. It is
possible to program non overlapping portions of a page individually over multiple
programming passes. However, owning to not all the cells of the page are
programmed in a final pass together, it could create large difference in charges
programmed among the cells after the page is done. Thus partial-page programming
would result in more program disturb and would require a larger margin for sensing

accuracy.

[0070] In the case the memory is configured as binary memory, the margin of
operation is wider than that of MLC. In the preferred embodiment, the binary
memory is configured to support partial-page programming in which non-overlapping
portions of a page may be programmed individually in one of the multiple
programming passes on the page. The programming and reading performance can be
improved by operating with a page of large size. However, when the page size is
much larger than the host’s unit of write (typically a 512-byte sector), its usage will be
inefficient. Operating with finer granularity than a page allows more efficient usage

of such a page.

[0071] The example given has been between binary versus MLC. It should be
understood that in general the same principles apply between a first memory with a
first number of levels and a second memory with a second number of levels more than

the first memory.

LOGICAL AND PHYSICAL BLOCK STRUCTURES

[0072] FIG. 8 illustrates the memory being managed by a memory manager with is a
software component that resides in the controller. The memory 200 is organized into
blocks, each block of cells being a minimum unit of erase. Depending on
implementation, the memory system may operate with even large units of erase

formed by an aggregate of blocks into “metablocks” and also “megablocks”. For
-16 -

WO 2012/087569 PCT/US2011/063584

convenience the description will refer to a unit of erase as a metablock although it will
be understood that some systems operate with even larger unit of erase such as a

“megablock” formed by an aggregate of metablocks.

[0073] The host 80 accesses the memory 200 when running an application under a
file system or operating system. Typically, the host system addresses data in units of
logical sectors where, for example, each sector may contain 512 bytes of data. Also,
it is usual for the host to read or write to the memory system in unit of logical clusters,
cach consisting of one or more logical sectors. In some host systems, an optional
host-side memory manager may exist to perform lower level memory management at
the host. In most cases during read or write operations, the host 80 essentially issues a
command to the memory system 90 to read or write a segment containing a string of

logical sectors of data with contiguous addresses.

[0074] A memory-side memory manager 300 is implemented in the controller 100 of
the memory system 90 to manage the storage and retrieval of the data of host logical
sectors among metablocks of the flash memory 200. The memory manager comprises
a front-end system 310 and a back-end system 320. The front-end system 310
includes a host interface 312. The back-end system 320 includes a number of
software modules for managing erase, read and write operations of the metablocks.
The memory manager also maintains system control data and directory data
associated with its operations among the flash memory 200 and the controller RAM

130.

[0075] FIG. 9 illustrates the software modules of the back-end system. The Back-
End System mainly comprises two functional modules: a Media Management Layer

330 and a Dataflow and Sequencing Layer 340.

[0076] The media management layer 330 is responsible for the organization of logical
data storage within a flash memory meta-block structure. More details will be

provided later in the section on “Media management Layer”.

[0077] The dataflow and sequencing layer 340 is responsible for the sequencing and
transfer of sectors of data between a front-end system and a flash memory. This layer
includes a command sequencer 342, a low-level sequencer 344 and a flash Control

layer 346. More details will be provided later in the section on “Low Level System
-17 -

WO 2012/087569 PCT/US2011/063584

Spec”.

[0078] The memory manager 300 is preferably implemented in the controller 100. It
translates logical addresses received from the host into physical addresses within the
memory array, where the data are actually stored, and then keeps track of these

address translations.

[0079] FIGs. 10A(i) — 10A(iii) illustrate schematically the mapping between a logical
group and a metablock. The metablock of the physical memory has N physical
sectors for storing N logical sectors of data of a logical group. FIG. 10A(i) shows the
data from a logical group LG;, where the logical sectors are in contiguous logical
order 0, I, ..., N-1. FIG. 10A(ii) shows the same data being stored in the metablock
in the same logical order. The metablock when stored in this manner is said to be
“sequential.” In general, the metablock may have data stored in a different order, in

which case the metablock is said to be “non-sequential” or “chaotic.”

[0080] There may be an offset between the lowest address of a logical group and the
lowest address of the metablock to which it is mapped. In this case, logical sector
address wraps round as a loop from bottom back to top of the logical group within the
metablock. For example, in FIG. 10A(iii), the metablock stores in its first location
beginning with the data of logical sector £&. When the last logical sector N-/ is
reached, it wraps around to sector 0 and finally storing data associated with logical
sector k-1 in its last physical sector. In the preferred embodiment, a page tag is used
to identify any offset, such as identifying the starting logical sector address of the data
stored in the first physical sector of the metablock. Two blocks will be considered to

have their logical sectors stored in similar order when they only differ by a page tag.

[0081] FIG. 10B illustrates schematically the mapping between logical groups and
metablocks. Each logical group 380 is mapped to a unique metablock 370, except for
a small number of logical groups in which data is currently being updated. After a
logical group has been updated, it may be mapped to a different metablock. The
mapping information is maintained in a set of logical to physical directories, which

will be described in more detail later.

Memory Partitioned into Main and Binary Cache Portions

- 18 -

WO 2012/087569 PCT/US2011/063584

[0082] A number of memory system arrangements where the non-volatile memory
includes both binary and multi-level sections will now be described. In a first of
these, in a flash memory having an array of memory cells that are organized into a
plurality of blocks, the cells in each block being erased together, the flash memory is
partitioned into at least two portions. A first portion forms the main memory for
storing mainly user data. Individual memory cells in the main memory being
configured to store one or more bits of data in each cell. A second portion forms a
cache for data to be written to the main memory. The memory cells in the cache
portion are configured to store less bits of data in each cell than that of the main
memory. Both the cache portion and the main memory portion operate under a block
management system for which cache operation is optimized. A more detailed
presentation of this material is developed in the following US patent application or
provisional application numbers: 12/348,819; 12/348,825; 12/348,891; 12/348,895;
12/348,899; and 61/142,620, all filed on January 5, 2009

[0083] In the preferred embodiment, individual cells in the cache portion are each
configured to store one bit of data while the cells in the main memory portion each
stores more than one bit of data. The cache portion then operates as a binary cache

with faster and more robust write and read performances.

[0084] In the preferred embodiment, the cache portion is configured to allow finer
granularity of writes than that for the main memory portion. The finer granularity is
more compatible with the granularity of logical data units from a host write. Due to
requirement to store sequentially the logical data units in the blocks of the main
memory, smaller and chaotic fragments of logical units from a series of host writes
can be buffered in the cache portion and later reassembly in sequential order to the

blocks in the main memory portion.

[0085] In one aspect of the invention, the decision for the block management system
to write data directly to the main portion or to the cache portion depends on a number
of predefined conditions. The predefined conditions include the attributes and
characteristics of the data to be written, the state of the blocks in the main memory

portion and the state of the blocks in the cache portion.

[0086] The Binary Cache of the present system has the follows features and

-19 -

WO 2012/087569 PCT/US2011/063584

advantages: a) it increases burst write speed to the device; b) it allows data that is not
aligned to pages or meta-pages to be efficiently written; c) it accumulates data for a
logical group, to minimize the amount of data that must be relocated during garbage
collection of a meta-block after the data has been archived to the meta-block; d) it
stores data for a logical group in which frequent repeated writes occur, to avoid
writing data for this logical group to the meta-block; and e) it buffers host data, to
allow garbage collection of the meta-block to be distributed amongst multiple host

busy periods.

[0087] FIG. 11 illustrates a host operating with the flash memory device through a
series of caches at different levels of the system. A Cache is high-speed storage for
temporarily storing data being passed between a high-speed and a slower-speed
component of the system. Typically high-speed volatile RAM are employed as cache
as in a host cache 82 and/or in a controller cache 102 of the memory controller. The
non-volatile memory 200 is partitioned into two portions. The first portion 202 has
the memory cells operating as a main memory for user data in either MLC or binary
mode. The second portion 204 has the memory cells operating as a cache in a binary
mode. Thus, the memory 200 is partitioned into a main memory 202 and a binary
cache. More detail on the use of binary cache is given in US patent application
numbers 12/642,584, 12/642,740, 12/642,611, and 12/642,649, all filed on December

18, 2009, and references further incorporated therein.

ALTERNATE PAGE BY PAGE PROGRAMMING

[0088] Several different algorithms and ways of encoding data have been discussed
above, particularly with respect to FIGs. 6 and 7A-7F. The use of page by page
writing of data, where data is sequentially programmed with data one page at a time
lends itself to a flexible user interface, but suffers from the effects of the capacitive
coupling between word lines, or “Yupin” effect, also discussed above. This is also
true for the full-sequence program, as the entire data content of one word line is only

written in after the entire content of the previous word line is already written.

[0089] The sort of foggy-fine algorithm discussed above with respect to FIG. 7F can
reduce the Yupin effect, but, at the end of the foggy phase, this leave the data content

stored in way where the differing data states are not well defined and the data content

-20 -

WO 2012/087569 PCT/US2011/063584

cannot be extracted. To execute the foggy fine write algorithm to the final state
requires the caching of data in a way that leads to quite a bit of cache usage. When
non-volatile memory is used for this caching, such as in the sort of binary cache
structure just discussed, this can lead to significant wear on the binary cache that,
given that a memory may undergo a large number of writes, can lead to wearing out

of the binary cache, even given binary’s more generous operating margins.

[0090] An alternate page by page programming scheme is presented in this section to
deal with these limitations. A 2-bit per cell example is presented first, followed by a

3-bit per cell example.

2-bit per cell example

[0091] Returning to FIGs. 7B and 7C above, these show the typical lower page,
upper page programming of 2-bits per cell. To reduce amount of programming error
due to the effects of word-line to word-line capacitive coupling, or Yupin effect,
rather than write in the lower page of data (FIG. 7B) into the word-line followed by
writing the next page of data in the sequence as the upper page (FIG. 7C) on the same
word-line, a sequence of pages of data is written into the word-lines is to using an
alternating order such as is illustrated in FIG. 12. FIG. 12 shows several word lines
of an array (WLO0-4) and the order in which a sequence of data pages (the circled
numbers 0-7) are written into these word lines, where the number on the left is the
lower page and the number on the right the upper. As shown there, after a page of
data is written in as a lower page (for example, data page 3 on WL2), the system
writes the next page of data in as the upper page in the preceding word line (here data
page 4 on WL1), after which the memory jumps to the following word line and writes
a lower page (here data page 5 on WL3), before it returns to write the upper page
(data page 6). The process goes back and forth between the word lines in this way for
the data set, where more detail on this word line order is presented in US patent and
patent publication numbers 7,619,922; 7,352,635; 7,463,521; US-2009-0237998-A1;
and US-2009-0237999-A1.

[0092] This sort of page by page 2-bit programming as shown in FIGs. 7B and 7C
with the order of FIG. 12 is useful since it allows for a fairly flexible user interface.

Also, since when programming in an upper page of data (for example, page 6 on

-21 -

WO 2012/087569 PCT/US2011/063584

WL2) the adjacent word line on one side already (here WL1) has both data pages
written and the word line on the other side (WL 3) has the lower page written in, the
Yupin effect will be diminished to some extent. However, when the upper page on,
here, WL 3 is written, this will affect the data previously written on WL 2.
Consequently, there can still be a significant amount of Yupin effect. Also,
depending on how much this affects the data after it is stored, accurately reading the
data may require the system to take into consideration the data content on adjacent
word lines by use of a “look-ahead” read process, such as is described in US patent

number 7,187,585.

[0093] The exemplary embodiment will still use a page by page programming
algorithm, but after finishing programming of the upper page of data on word line
WLn, the memory goes back and performs a fine programming operation on word
line WL(n-1). The distributions are shown in FIG. 13. The top line shows the lower
page of data programmed in, with a cell either still in the erased state or the
intermediate state IM, and this corresponds to situation of FIG. 7B. The upper page
is then programmed in, where the states are shown here in the notation A, B, C for the
non-erase state, as shown in the middle line. This situation is similar to what is shown
in FIG. 7C, except that the distributions for the non-erase states are not as tight. In
some respect, this is similar to a 2-bit version of the foggy-fine arrangement of FIG.
7F, except that, unlike in that case, the distributions are well enough defined that the
data content can still be extracted. Consequently, even without the caching of any
data content, which leads to cache wear, the data content of both pages of data could
be extracted if the process was halted at this point, rather for an actual read back of

the data or for the later fine programming phase.

[0094] The bottom line of FIG. 13 shows the result of the fine phase of re-
programming to refine the upper page. This can be done by reading back the data on
the word line WLm, in the exemplary embodiment with a look ahead read for better
accuracy, whether this is done just after finishing writing the upper page in word line
WL(m+1) or after an intervening operation or other interrupt. The programming

order for pages 0-8 of data is shown in FIG. 14.

[0095] In FIG. 14 the fine programming operations added to the page by page
process are indicated by the prime: 4’ refines the upper page (2) on WLO and is done
22

WO 2012/087569 PCT/US2011/063584

after the upper page 4 is written on WL1 and before the lower page 5 is written on
WL3; 6’ refines the upper page on WLI1 (4) and is done after the upper page 6 is
written on WL2 and before the lower page 7 is written on WL4; and so on. The extra
programming step of the alternate page by page write process foes not add any data
content, but refines what is already there. As the upper page is already written on
WLn before the process comes back and refines the upper page on WL(n-1), the
Yupin effect is reduced. When the upper page on WLn is then itself refined, this will

have only a relatively small residual Yupin effect left.

[0096] The reduction in Yupin effects means that the look ahead read process need
not be used for read out the data, making the data storage more compatible with
dynamic read. (The look ahead read may still be used, though, to read the data
content on a word line prior to the fine programming phase to improve its accuracy
and the initial upper page programming is not as well defined.) The final distribution

of states after the fine write will also leave more margin for data retention.

3-bit per cell embodiment

[0097] Before discussing the alternate page by page programming scheme in the 3-bit
per cell case, it would be useful to review the usual page by page programming
arrangement. FIG. 15 illustrate how 3 pages on stored onto a word line in this typical
page by page process. The top and middle line are for the first two pages written into
the word line and are the counterpart of FIGs. 7B and 7C, except the middle line now
corresponds to the second, or middle, page written on the word line. The bottom line
shown how the 4 distributions are then resolved into the full 8 states when the third,
or top, page is written in. FIG. 16 shows a conventional page order for programming
a series of data pages (0-11 are shown) on word lines WL0-4. As the data is written
in a page at a time, there is not the need for caching of additional data, as is the case
for the foggy-fine algorithm discussed below. The page by page arrangement also
allows for a flexible user interface. It has the drawbacks of a relatively large residual

Yupin effect and will typically need the use of a look ahead read process.

[0098] The amount of residual Yupin effect can be reduced by going to foggy fine
type of algorithm discussed above with respect to FIG. 7F. After the “first”, binary

write phase, all three pages are written onto the word line, but in a “foggy” write

-23 -

WO 2012/087569 PCT/US2011/063584

operation. Although this foggy write relies on all three pages of data, the data content
of the word line cannot be extracted at this point. Only after the completion of the
fine phase is the data readable. Consequently, although the amount of Yupin effect
may be less, the foggy fine algorithm requires a lot of cache usage, which can lead to

endurance issues in the sort of binary cache arrangement discussed above.

[0099] The alternate page by page programming operation for the 3-bit per cell case
is illustrated with respect to FIG. 17 and FIG. 18. The top three lines of FIG. 17
shows the distribution of states are the lower, middle and upper pages of data are
written into a word line. This is much the same as in FIG. 15, but with the non-erase
states labeled as A-G rather than any specific encoding, except that the states are less
well resolved after the writing of the upper page. In addition the difference that the
data is written a page at a time, this differs from the foggy state in that the data can be
read. Although fairly coarsely written, after the upper page has been written, the data
content can still extracted. Consequently, the data can be read back off the page for

the subsequent fine programming with the need to cache data.

[0100] The bottom line of FIG. 17 shows the distribution of states where the data is
read back and the fine program operation is performed to fine the distribution. To
more accurately determine that data content on the word line for the fine
programming operation, the read can use a look ahead type of read. To tighten up the
distribution, the fine phase can use, for example, shifted verify levels. Additionally,
or alternately, the fine programming operation could use smaller step size or other
changes for improved accuracy. In the exemplary embodiment, after finishing the
upper page program on a word line WLn, the system then goes back to word line
WL(n-1), reads in data content, and does the fine data write to refine the distribution

on page WL(n-1). FIG 18 shows the order in the exemplary embodiment.

[0101] In FIG. 18 the circled number 0-11 are a sequence of data pages in the order
they are written. Those on the far left correspond to lower pages, the next column (2,
4, 7, 10) the middle pages, and then, left of center, the upper pages. The fine
programming operations added to the page by page process are indicated by the
prime: 8’ refines the upper page (page 8) on WLO and is done after the upper page 8
is written on WL1 and before the lower page 9 is written on WL4; 11’ refines the
upper page on WL1 (page 11) and is done after the upper page 11 is written on WL2
-4 -

WO 2012/087569 PCT/US2011/063584

and so on. In this way when the fine programming operation is performed on, for
example, WL1, as the upper page already in WL2 there will be little Yupin effect on
the WL1 data. Also, as the data can be read back off of WLI1 to use as the target state
data for the fine phase, this eliminates the needed caching of data specify to the
foggy-fine procedure. When the upper page data on WL2 is subsequently refined (
for example, in what would be a 14°, not shown), there will only be a relatively small
residual Yupin effect. (With respect to the upper page data, such as shown on WL2
which has yet to have the fine phase, this can left as is until subsequent data arrive and
programming continues, or could have just have a fine phase added on, particularly if
it known or likely there will not be any further for the block, such as for the last word

line in a block.)

[0102] FIG. 19 illustrates some timing waveforms that can be used with the alternate
page by page scheme. The waveform for writing both the lower and middle pages
onto a word line WLn are respectively shown at top and middle and can be as in the
standard page by page arrangement. For the upper page, though, the initial upper
page write on WLn is then followed by a read (here a look ahead read) of WL(n-1)
and the subsequent fine write of WLn. For consecutive write of multiple pages, this
allows for smooth series of sequential writes. However, in the multi-level write true
busy (time used for internal memory operations) time, if needed or desired the
programming can be suspended to other operations, such as a program to binary cache

or a data read (from either the binary or multi-state memory portions).

[0103] The described alternate page by page programming scheme consequently
allows for the writing of data with reduced Yupin effect and the reading back of data
without resort to a look ahead-type mechanism, while also not having the caching
requirements, and consequent binary cache wear, of a foggy-fine algorithm. As the
initial programming is done on a page by page basis, the memory is flexible in the
system’s page management. If advantageous, the data tightening of the fine program
can be done in the background. Similarly, as the fine phase can be suspended during
its execution or before initiated, other operations (such as a page by page read or a
lower page program) can be inserted between the upper page write on one word line
and the start of the fine programming phase of the previous word line, which can then

be subsequently resumed. The fine program can also be aborted in the middle of its

_25.-

WO 2012/087569 PCT/US2011/063584

execution, with process picked up later, with the system just remembering the page

and then performing a look ahead type read, if needed, before resuming.

[0104] Although the alternate page by page scheme has been described for 2-bit per
cell and 3-bit per cell embodiments, but readily extends to other numbers of states.
For higher numbers of bits, the usual page by page sequence is similarly extended so
that after programming the top-most page of data into a word line WLn, the system
goes back to word line WL(n-1), reads out its data content (where a look ahead
mechanism well be even more preferred as the number of stored levels in a cell
increases), and the execute the fine program on WL(n-1). As this alternate page by
page technique adds the extra fine phase, it would appear that there may a
performance penalty. In practice, this is not the case as it will typically provide
comparable or even better performance relative to the foggy-fine arrangement, while
still substantively reducing the amount of Yupin effects and also without the cache
wear found in the foggy-fine process. Also when compared to the more traditional
page by page case, as the top page is not initially written with as much accuracy, this
write will typically take less time, offsetting what is then used in the fine phase. The
alternate page by page can then be optimized as to the various parameters (pulse
duration, step size, and so on) of the constituent write operations to optimize the

process.
Conclusion

[0105] The foregoing detailed description of the invention has been presented for
purposes of illustration and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifications and variations are
possible in light of the above teaching. The described embodiments were chosen in
order to best explain the principles of the invention and its practical application, to
thereby enable others skilled in the art to best utilize the invention in various
embodiments and with various modifications as are suited to the particular use
contemplated. It is intended that the scope of the invention be defined by the claims

appended hereto.

-26 -

WO 2012/087569 PCT/US2011/063584

IT IS CLAIMED:

1. A method of writing multiple pages of data into a non-volatile memory
having multi-state memory cells formed along a plurality of word lines, wherein the
memory can store N pages of data on a word line so that each memory cell stores N
bits of data, where N is an integer greater than one, the method comprising:

writing N pages of data on a page by page basis into a first word line ;

writing N pages of data on a page by page into a second word line, where the
second word line is adjacent to the first word line and wherein at least one of the N
pages of data is written into the second word line is written subsequent to writing all
of the N pages of data into the first word line; and

subsequently performing a programming operation on the first word line to
refine the accuracy with which the N pages of data written into the first word line

have been written.

2.. The method of claim 1, further comprising;:

subsequent to writing the N pages of data into the second word and prior to
performing said programming operation, reading the data written into the first word
line, wherein the subsequent programming operation refines the accuracy with which
the N pages of data written into the first word line based upon the value of the N

pages of data as read therefrom.

3. The method of claim 2, wherein said reading the data written into the first

word line is performed using data content of the second word line.

4. The method of claim 1, wherein the programming operation to refine the
accuracy is performed using different verify levels than the writing of the N pages of

data into the first word line.

5. The method of claim 1, wherein N equals two and writing N pages of data
into the first and second word lines comprises:

writing a lower page of data into the first word line;

subsequently writing a lower page of data into the second word line;

subsequently writing an upper page of data into the first word line; and

subsequently writing a upper page of data into the second word line.
-7 -

WO 2012/087569 PCT/US2011/063584

6. The method of claim 5, further comprising;:

subsequent to writing the upper page of data into the first word line and prior
to writing the upper page of data into the second word line, writing a lower page of
data into a third word line, where the third word line is adjacent to the second word

line on the opposite side from the first word line.

7. The method of claim 1, wherein N equals three and wherein writing N
pages of data into the first and second word lines and the writing one or more pages of
data into the third word line comprises:

writing a lower page of data into the first word line;

subsequently writing a lower page of data into the second word line;

subsequently writing an middle page of data into the first word line;

subsequently writing an middle page of data into the second word line;
subsequently writing a upper page of data into the first word line; and

subsequently writing a upper page of data into the second word line.

8. The method of claim 7, wherein the method further comprises:

subsequent to writing the middle page of data into the first word line and prior
to writing the middle page of data into the second word line, writing a lower page of
data into a third word line, where the third word line is adjacent to the second word
line on the opposite side from the first word line;

subsequent to writing the upper page of data into the first word line and prior
to writing the upper page of data into the second word line, writing a lower page of
data into a fourth word line and writing a middle page of data into the third word line,
where the fourth word line is adjacent to the third word line on the opposite side from

the second word line.

9. The method of claim 1, further comprising:
subsequent to writing the N pages of data into the second word and prior to
performing said programming operation, performing one or more additional memory

operations.

-28 -

Programmable
Non-Volatile Memory
124

RAM 130

WO 2012/087569 PCT/US2011/063584
1/18
HOST 80
!
MEMORY SYSTEM 20
Controller 100 !
Interface 110
Processor 120
Optional CoProcessor
121 Flash Memory
200
ROM 122
Optional

FiG. 1

WO 2012/087569

2118
Control
Gate. re 10
' :30
/20
Source I Drain
14// \\16
FIG. 2
Bt S - S

IReF

PCT/US2011/063584

2.5

FIG. 3

1.5 2.0

WO 2012/087569

3/18
Drain
NAND STRING [~56
50\
Drain
Select J S2
32
20“\
] "10
Control Gate n t1 Mn /]
30J '

W W wn um Em Em mm

Control Gate 2

SOJ

Control Gate 1

SOJ

Source Select

.

_/—}’O

_/—10

S

FIG. 4A

™\ 54

Source

PCT/US2011/063584

WO 2012/087569 PCT/US2011/063584
4718
56 ~ - 210
D S | 4
N
42 ~_|
Word o0 .o s 50
Unes:
427
44 7 Source
Line
54
N 34
e — JE— 1
: ae e
[] » »
[] » L]
» » »
NP e NO—
—
: [N]
™36

Bit Lines

FIG. 4B

PCT/US2011/063584

WO 2012/087569

5/18

QU7 |0INCG

L
- 1 I

:
[

SOSs

1M

LI

AN

w L-uwAg gd ¥d € AL L1d 01d
sdwy asuag Jo abed {eoisAud /mhw KSN
sayoje Bleq jo abied [eoIsAugd \py7

PCT/US2011/063584

WO 2012/087569

6/18

Threshold Window

Upper BEt/A

(Q)
(1)
(2)

Programming into Four States Represented by a 2-bit Code

FIG. 6

WO 2012/087569 PCT/US2011/063584

7718

U Bit L Bit
pper |—\ ;o ower Bi

‘01" 10" “00”

2 117
LA A TAA
" | ! ! = V7
) Threshold Voltage
Multistate Memory
FIG. 7A
0 “11” "X0”
S D
k) m |A @
B~ | - VT
Lower Page Programming (2-bit Code)
FIG. 7B
“Intermediate”
2 “11” ‘017 “10” “00”
©
" ! ! ! =Vt

Upper Page Programming {2-bit Code)

FIG. 7C

WO 2012/087569 PCT/US2011/063584

8§/18
Upper Bit —\ {—Lower Bit
117 017 “10” “00”
D
= Vo
Lower Bit = 0" i
Lower Page Read (2-bit Code)
Upper Bit = “0" Upper Bit = “0”
Da Dp D¢

IL,} 11! 1501 " “1 0!! “OO”

HO!! “’F n 552" " 3!5
- V1

Upper Page Read (2-bit Code)

FIG. 7E

WO 2012/087569 PCT/US2011/063584

9/18
First
— Program
ﬂ:\ /m (1st Stage)
Foggy
Program

AF T"BF TCF TDF TEF TFF TGF (2nd Stage)

:L,E 1 17# I£O1 1” 5(001” “101” “:EOO‘H “OOO!F 5‘0’1015 “‘IE 10!!

NN NN N

FIG. 7F

WO 2012/087569 PCT/US2011/063584

10/18

HOST 80

s/
File System

Application - >

)

Clusters (Logical Sectors)
Y

Host-Side Memory Manager (Optional)

Logical Sectors

‘MEMORY SYSTEM 90

L Memory Manager 300

Front-End System 370

312
(Host Interface }/

A
Y

N Flash Memory
™ " 200

Back-End System
320

FIG. 8

WO 2012/087569

11/18

BACK-END SYSTEM 320

PCT/US2011/063584

Host interface

Sequencing Layer

Datafiow &

340 1

Command

Media Management
Layer

|

Sequencer

342

4
|

Low-Level

L

Sequencer

344

I

Flash Control
Layer

346

FIG. 9

HOST

82\

FLASH MEMORY DEVICE

Host Cache
(RAM)

Controller
102
\

Cache
(RAM)

MLC Memory

Main Memory

Binary Cache

-200

1202

4204

FIG. 11

WO 2012/087569

Logical Group (i) LG;

(i) MBj
Physical Group

{Metablock)

(iii) MB,

1

PCT/US2011/063584

12718
0 1 k k+1 N—1
0 1 k Kk+1 N-1
k k+1 N-1 0 1 k—1
Page Tag

Logical Group

FIG. 10A

Physical Group
(Metablock)

380\ 370\
LG

LGX q\

Directories

FIG. 10B

MB
! DER— Logical to] !
LG, 1 Physical f—wu__ | MB

] MB

2

WO 2012/087569 PCT/US2011/063584

13/18

OJOJIORL

O

i

S101010
0101010108

&

I’

LL,

PCT/US2011/063584

WO 2012/087569

14718

aul4 ‘ebed t1addn

abed Jaddn

L "Old

abed 1amo]

PCT/US2011/063584

WO 2012/087569

15718

gL "OIld

0l 010 ﬁﬁ% 0 100 110

il

ZMd 8bed Joddn

0Ll 001 LOL

Ll

SIPPIA

OLi

LEL

lamo]

WO 2012/087569 PCT/US2011/063584

16/18

: 2 £ 2 £ O
oo
OO|O |
O
TN
OPP|G
olojolollo}
= ¢ £ 2 £]
OO|O |
o
Tn

@
O
O
O

PCT/US2011/063584

WO 2012/087569

17 /18

weaboud auy
pue peai gy

wesboug
abeg Aq abed

<

ZL "9OId

QQGGQGG _

(| “ |
9 E| 4 d 2 | 9 Yo EELAE

I {

Jaddn
N N\
o) asel]
9|PPIIN

asel

PCT/US2011/063584

WO 2012/087569

18/18

6} OId

weiboid abed s|ppIn

uAsngeanij

uAsngeniy

L wesbolg

abed Jamon

uAsngeniy

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2011/063584

A. CLASSIFICATION OF SUBJECT MATTER

INV. GI11C11/56
ADD. G11C16/34 G11C16/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G11C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, COMPENDEX, INSPEC, IBM-TDB, WPI Data

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X WO 2010/044993 Al (SANDISK CORP [US];
DUTTA DEEPANSHU [US]; LUTZE JEFFREY W
[US]) 22 April 2010 (2010-04-22)

Y figures 6a-c,7d-7h,8a

X US 2010/061151 A1l (MIWA TORU [JP] ET AL)
11 March 2010 (2010-03-11)

Y figures 8-11

Y US 2009/237999 Al (LI YAN [US])

24 September 2009 (2009-09-24)

figures 2,5

Y US 2007/297226 Al (MOKHLESI NIMA [US])
27 December 2007 (2007-12-27)
paragraphs [0059] - [0066], [0077] -
[0099]; figure 12

_/__

1,2,4-8

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

invention

which is cited to establish the publication date of another
citation or other special reason (as specified)

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
"L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,

"O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
"P" document published prior to the international filing date but inthe art.
later than the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
20 March 2012 02/04/2012
Name and mailing address of the ISA/ Authorized officer

Fax: (+31-70) 340-3016 Havard, Corinne

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2011/063584
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2006/221714 Al (LI YAN [US] ET AL) 2,3

5 October 2006 (2006-10-05)
figures 23-27

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2011/063584
Patent document Publication Patent family Publication

cited in search report date member(s) date

WO 2010044993 Al 22-04-2010 CN 102187399 A 14-09-2011
EP 2345038 Al 20-07-2011
KR 20110084256 A 21-07-2011
TW 201032235 A 01-09-2010
US 2010097861 Al 22-04-2010
WO 2010044993 Al 22-04-2010

US 2010061151 Al 11-03-2010 CN 102150216 A 10-08-2011
EP 2332147 A2 15-06-2011
JP 2012502408 A 26-01-2012
KR 20110056408 A 27-05-2011
TW 201017672 A 01-05-2010
US 2010061151 Al 11-03-2010
WO 2010030692 A2 18-03-2010

US 2009237999 Al 24-09-2009 NONE

US 2007297226 Al 27-12-2007 CN 101405813 A 08-04-2009
US 2007297226 Al 27-12-2007
US 2009103356 Al 23-04-2009

US 2006221714 Al 05-10-2006 CN 101218650 A 09-07-2008
EP 1866931 Al 19-12-2007
JP 4778553 B2 21-09-2011
JP 2008535144 A 28-08-2008
KR 20080016544 A 21-02-2008
TW 1323465 B 11-04-2010
TW 200845015 A 16-11-2008
TW 200901202 A 01-01-2009
TW 200901203 A 01-01-2009
US 2006221714 Al 05-10-2006
US 2007103975 Al 10-05-2007
US 2007103982 Al 10-05-2007
US 2007103987 Al 10-05-2007
US 2007109846 Al 17-05-2007
US 2007109850 Al 17-05-2007
WO 2006107731 Al 12-10-2006

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - claims
	Page 30 - claims
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - wo-search-report
	Page 50 - wo-search-report
	Page 51 - wo-search-report

