) 000 0 A0 O

0 01/50256 A1l

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
12 July 2001 (12.07.2001)

PCT

0 0 O 0 0

(10) International Publication Number

WO 01/50256 Al

(51) International Patent Classification’: GO6F 9/38

(21) International Application Number: PCT/US00/32030

(22) International Filing Date:
21 November 2000 (21.11.2000)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/475,922 30 December 1999 (30.12.1999) US

(71) Applicant (for all designated States except US): INTEL
CORPORATION [US/US]; 2200 Mission College Boule-
vard, Santa Clara, CA 95052 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CHOWDHURY,
Muntaquim, E. [BD/US]; 245 S.W. Lincoln Street #5512,
Portland, OR 97201 (US). CARMEAN, Douglas, M.
[US/US]; 14815 S.W. Bonnie Brae, Beaverton, OR 97007
(US).

(74) Agents: MALLIE, Michael, J. et al.; Blakely, Sokoloff,
Taylor & Zafman LLP, 7th Floor, 12400 Wilshire Boule-
vard, Los Angeles, CA 90025 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,

AZ,BA, BB, BG, BR,BY,BZ, CA, CH, CN, CR, CU, CZ,

DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,

HU,ID,IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,

LS,LT,LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,

NO,NZ,PL, PT,RO,RU, SD, SE, SG, SI, SK, SL, TJ, TM,

TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian

patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European

patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,

IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,

CG, CIL, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
— With international search report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND APPARATUS FOR MAINTAINING PROCESSOR ORDERING

821
850 800
~1 FSDB R 35 e
811 ' 8511
!]
STD 1 : :
! :
i1 stoRe |!
'l BUFFER [
i] 871
813 831 81 ! |
]
sl Lo STA |1 :'
]
T
DATA TLB i !
1 845 855 ! 861
815 L0 ! i DATA
— LD] LD ! ' STORE CACHE
Sl
8683 | Loap [t
DGUARD BUFFER |
SNOOP { t 865
LOGIC ! | |CROSS-THREAD/
T a i J EXTERNAL
! ™| SNOOP LOGIC
1
DGUARD R '
‘ EXTERNAL STORE

t

(57) Abstract: According to one aspect of the invention, a method is provided in which store addresses of store instructions dis-
patched during a last predetermined number of cycles are maintained in a first data structure of a first processor. It is determined
whether a load address of a first load instruction matches one of the store addresses in the first data structure. The first load instruction
is replayed if the load address of the first load instruction matches one of the store addresses in the first data structure.

WO 01/50256 PCT/US00/32030
METHOD AND APPARATUS FOR MAINTAINING

PROCESSOR ORDERING
BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to the field of processor technology.
More specifically, the present invention relates to a method and apparatus for

maintaining processor ordering in a processor.

2. Background Information

Various multithreaded processors and multi-processor systems have been
considered in recent times to further improve the performance of processors, especially
to provide for a more effective utilization of various processor resources and to speed
up the performance of the overall system. In a multithreaded processor, by executing
multiple threads in parallel, the various processor resources are more fully utilized
which in turn enhance the overall performance of the respective processor. For
example, 1f some of the processor resources are idle due to a stall condition or other
delay associated with the execution of a particular thread, these resources can be
utilized to process another thread. Consequently, without multithreading capabilities,
various available resources within the processor would have been idle due to a long-
latency operation, for example, a memory access operation to retrieve the necessary
data from main memory that is needed to resolve the cache miss condition. In a multi-
processor systems, tasks or workloads can be distributed among the various processors
to reduce the workload on each processor in the system and to take advantage of the
parallelism structure that may exist in certain programs and applications, which in turn
improves the overall performance of the system. For example, a program or an
application may contain two or more processes (also referred to as threads herein) that
can be executed concurrently. In this instance, instead of running the entire program or

application on one processor, the two or more processes can be run separately and

-1-

WO 01/50256 PCT/US00/32030

concurrently on the various processors in the multi-processor system which will result
in faster response time and better overall performance.

Multithreaded processors may generally be classified into two broad categories,
fine or coarse designs, based upon the particular thread interleaving or switching
scheme employed within the respective processor. In general, fine multithreaded
designs support multiple active threads within a processor and typically interleave two
different threads on a cycle-by-cycle basis. Coarse multithreaded designs, on the other
hand, typically interleave the instructions of different threads on the occurrence of
some long-latency event, such as a cache miss. A coarse multithreaded design is

discussed in Eickmayer, R., Johnson, R. et al. “Evaluation of Multithreaded

Uniprocessors for Commercial Application Environments”, The 23" Annual

International Symposium on Computer Architecture, pp. 203-212, May 1996. The

distinctions between fine and coarse designs are further discussed in Laudon, J., Gupta,
A. “Architectural and Implementation Tradeoffs in the Design of Multiple-Context

Processors”, Multithreaded Computer Architectures: A Summary of the State of the

Art. edited by R.A. Iannuci et al., pp. 167-200, Kluwer Academic Publishers, Norwell,
Massachusetts, 1994.

While multithreaded processors and multi-processor systems offer advantages
over single-threaded processor and single-processor systems, respectively, there are
certain challenges and issues associated with the design and implementation of these
systems. There are some particular issues that arise with respect to the concept of
multithreading and multithreaded processor design, especially with respect to the
parallel or concurrent execution of instructions. One of the difficult issues that arise in
connection with multithreading and/or multiprocessing systems 1s the coordination and
synchronization of memory accesses by the different threads in a multithreaded and/or
multi-processor environment. In particular, it is a complex problem to maintain
processor ordering or memory ordering among the different threads and/or different
processors in a processing system in which the different threads and/or different

processors share a common memory. In this situation, the various threads and/or
2-

WO 01/50256 PCT/US00/32030

processors communicate using data or variables in a shared memory via various
memory access instructions or commands such reads (loads) and writes (stores).
Processor ordering or memory ordering is an important aspect of a multithreaded
processor and/or a multi-processor system. Processor ordering or memory ordering
refers to the ability of a system to perform or execute memory instructions correctly.
Processor ordering or memory ordering is maintained properly if the value or data
obtained by a read (load) instruction from a particular memory location is the same
value that was written to (stored in) that particular memory location by the most recent
write (store) instruction. Likewise, processor or memory ordering requires that an older
load instruction cannot get data which is newer than the data obtained by a younger
load instruction. The problem is further complicated by the fact that each of the
processor in the system may execute both instruction and/or data speculatively and out-
of-order. For example, assuming a program contains two store instructions and two

load instructions in the following logical sequence order (the original program order):

Store 1: Store 1000 X(store the value X in memory location 1000)
Load 1: Load 1000 (read the value stored at memory location 1000)
Store 2: Store 1000 Y (store the value Y in memory location 1000)
Load 2: Load 1000 (read the value stored at memory location 1000)

It can be appreciated that maintaining processor or memory ordering with
respect to the four instructions in this example is not an easy task, considering that
these four instructions may be executed speculatively out-of-order in multiple threads
on multiple processors. Depending on the order in which these four instructions are
executed, the results may or may not violate the processor or memory ordering rule.

SUMMARY OF THE INVENTION

According to one aspect of the invention, a method is provided in which store
addresses of store instructions dispatched during a last predetermined number of cycles
are maintained in a first data structure of a first processor. It is determined whether a

load address of a first load instruction matches one of the store addresses in the first

WO 01/50256 PCT/US00/32030

data structure. The first load instruction is replayed if the load address of the first load
instruction matches one of -he store addresses in the first data structure.

BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of the present invention will be more fully
understood by reference to the accompanying drawings, in which:

Figure 1 shows a block diagram of one embodiment of a multi-processor
system in which a common memory is shared between multiple processors;

Figure 2 illustrates an example of a processor or memory ordering problem;

Figure 3 is a block diagram of one embodiment of a processor pipeline in
which the teachings of the present invention are implemented;

Figure 4 shows a block diagram of one embodiment of a processor architecture
in which the teachings of present invention are implemented;

Figure 5 shows a block diagram of one embodiment of a memory execution
unit according to the teachings of the present invention;

Figure 6 illustrates a flow diagram of one embodiment of a method for
maintaining processor or memory ordering according to one aspect of the present
invention;

Figure 7 shows an example of a timing diagram illustrating an additional
problem with processor ordering;

Figure 8 illustrates a block diagram of another embodiment of a memory
execution unit according to the teachings of the present invention;

Figure 9 shows a flow diagram of one embodiment of a method for maintaining
processor ordering according to the teachings of the present invention;

Figure 10 illustrates a block diagram of one embodiment of a data structure in
accordance with the teachings of the present invention; and

Figure 11 is an example of a load buffer containing multiple load entries with

various statuses.

DETAILED DESCRIPTION

4

WO 01/50256 PCT/US00/32030

In the following detailed description numerous specific details are set forth in
order to provide a thorough understanding of the present invention. However, it will be
appreciated by one skilled in the art that the present invention may be practiced without
these specific details.

In the discussion below, the teachings of the present invention are utilized to
implement a method, an apparatus, and a system for maintaining processor or memory
ordering in a multithreaded and/or multiprocessor system environment in which one or
more processors may execute instructions and/or data speculatively. In one
embodiment, a cross-thread snooping operation is performed to determine whether a
store address of a store instruction being executed in a first thread of a first processor
matches a load address of a load instruction in a second thread of the first processor that
has been completed but not yet retired. If the store address of the store instruction
being executed in the first thread matches the load address of the load instruction in the
second thread, a signal is generated which causes speculative load instructions to be
cleared and reissued in order to avoid processor ordering violation. In one
embodiment, an external snooping operation is also performed to determine whether a
store address of a store instruction being executed by a second processor matches a load
address of a load instruction in the first processor that has been completed but not yet
retired. If there is a match, a signal is generated which causes speculative load
instructions in the first processor to be cleared and reissued in order to avoid processor
ordering violation. In one embodiment, the store address of the store instruction
obtained from either the cross-thread snooping or the external snooping operation is
stored in a data structure. A load address of a load instruction being executed in the
first processor is compared with the store addresses in the data structure. If thereisa
match, the respective load instruction is replayed to avoid processor ordering violation.
The teachings of the present invention are applicable to any multithreaded processor
and/or multi-processor system that is designed to process multiple threads or multiple

processes concurrently. However, the present invention is not limited to multithreaded

WO 01/50256 PCT/US00/32030

processors and/or multiprocessor systems and can be applied to any processor and
machine in which resources are shared between tasks or processes.

Figure 1 shows a block diagram of one embodiment of a system 100 in which
the teachings of the present invention are implemented. The system 100 includes a
processor 110 that is capable of multithreading and executing instructions and/or data
speculatively, one or more agents 120A-N, a system bus 130, and a memory 140. The
processor 110, the agents 120A-N and the memory 140 are coupled to the system bus
130. Agents 120A-N may include other general purpose processors that may also be
capable of multithreading and executing instructions and/or data speculatively, and/or
other well-know devices such as disk controllers, graphics controllers, special purpose
processors, etc. In this configuration, the processor 110 and the agents 120A-N, in this
example, can access the common memory 140 concurrently via the system bus 130.
Accessing the memory 140 may include executing read (load) and write (store)
instructions. Maintaining processor or memory ordering in this system configuration is
a complex problem since the processor 110 can execute instructions from multiple
threads concurrently. The problem is further complicated because the processor 110
can also speculatively execute instructions and/or data within each thread. The
problem is further compounded when one of the agents (e.g., 120A) is a processor that
is capable of multithreading and may execute instructions and/or data speculatively. In
this situation, not only that processor or memory ordering needs to be maintained as
between the different threads being executed concurrently within one processor (e.g.,
processor 110), processor or memory ordering needs to be maintained also as between
the multiple processors (e.g., processor 110 and agent 120A) which share the same
common memory, i.e., the memory 140. Depending on the order in which instructions
from the multiple threads are being executed in one processor and the order in which
the instructions are being executed in the multiple processors, there can be many
different combinations of execution sequences which may yield different and
unpredictable results. As such, there is a need for some mechanisms to maintain the

processor or memory ordering as between the multiple threads in one processor (e.g.,

-6-

WO 01/50256 7 PCT/US00/32030

processor 110) and also as between the multiple processors in the system (e.g.,
processor 110 and agent 120A).

Figure 2 illustrates an example of processor or memory ordering problem that
can arise in the system configuration shown in Figure 1. In this example, assuming that
there are two threads (T1 and T2) that are executed concurrently by P1 (processor 110)
and that another thread (T3) is executed by P2 (e.g., agent 120A) concurrently with T1
and T2. Asshown in Figure 2, T1 includes two store instructions: “store X” at memory
location 1000 followed by “store Y” at the same memory location 1000. T2 includes
three successive load instructions (L1, L2, and L3) that read from the same memory
location 1000. T3 includes one store instruction to store a value Z in the memory
location 1000. Assuming that the logical sequence order of the instructions in these
three threads are as follows:

1. Store X in memory location 1000

2. Load from memory location 1000

3. Store Y in memory location 1000

4. Load from memory location 1000

5. Store Z in memory location 1000

6. Load from memory location 1000

As mentioned above, in a shared memory configuration as shown in Figure 1,
the results obtained in executing the instructions in the three threads can be very
different depending upon the order in which the various instructions in the multiple
threads are executed. For example, either load instruction executed by P1 can occur
either before or after any store instruction being performed by either P1 or P2. In this
case, the first load instruction (L1) may return either X, Y, or Z. Similarly, the second
load (L2) or the third load (L3) may also return uncertain result depending on the order
in which the different instructions are executed by P1 and P2. As described in detail
below, the present invention provides a mechanism to maintain processor or memory
ordering that is designed to solve the problem of processor ordering in a system

configuration (e.g., system 100) in which multiple threads can be processed

-7-

WO 01/50256 PCT/US00/32030

concurrently by one or more processors that may execute instructions and/or data in
each thread speculatively and out-of-order.

Figure 3 is a block ciagram of one embodiment of a processor pipeline within
which the present invention may be implemented. For the purposes of the present
specification, the term “processor” refers to any machine that is capable of executing a
sequence of instructions and shall be taken to include, but not be limited to, general
purpose microprocessors, special purpose microprocessors, graphics controller, audio
processors, video processors, multi-media controllers and microcontrollers. The
processor pipeline 300 includes various processing stages beginning with a fetch stage
310. At this stage, instructions are retrieved and fed into the pipeline 300. For
example, a macroinstruction may be retrieved from a cache memory that is integral
within the processor or closely associated therewith, or may be retrieved from an
external memory unit via a system bus. The instructions retrieved at the fetch stage 310
are then fed into a decode stage 320 where the instructions or macroinstructions are
decoded into microinstructions or micro-operations for execution by the processor. At
an allocate stage 330, processor resources necessary for the execution of the
microinstructions are allocated. The next stage in the pipeline is a rename stage 340
where references to external registers are converted into internal register references to
eliminate dependencies caused by register reuse. At a schedule/dispatch stage 350,
each microinstruction is scheduled and dispatched to an execution unit. The
microinstructions are then executed at an execute stage 360. After execution, the
microinstructions are then retired at a retire stage 370.

In one embodiment, the various stages described above can be organized into
three phases. The first phase can be referred to as an in-order front end including the
fetch stage 310, decode stage 320, and allocate stage 330, and rename stage 340.
During the in-order front end phase, the instructions proceed through the pipeline 300
in their original program order. The second phase can be referred to as the out-of-order
execution phase including the schedule/dispatch stage 350 and the execute stage 360.

During this phase, each instruction may be scheduled, dispatched and executed as soon
-8-

WO 01/50256 PCT/US00/32030

as its data dependencies are resolved and the appropriate execution unit is available,
regardless of its sequential position in the original program. The third phase, referred
to as the in-order retirement phase which includes the retire stage 370 in which
instructions are retired in their original, sequential program order to preserve the
integrity and semantics of the program.

Figure 4 is a block diagram of one embodiment of a processor, in the form of a
general-purpose microprocessor 400, in which the present invention may be
implemented. The microprocessor 400 described below is a multithreaded (MT)
processor and capable of processing multiple instruction threads simultaneously.
However, the teachings of the present invention described below are fully applicable to
other processors that process multiple instruction threads in an interleaved manner and
also to single thread processors which have the capabilities to process multiple
instructions either in parallel or in an interleaved manner. In one embodiment, the
microprocessor 400 may be an Intel Architecture (IA) microprocessor that 1s capable of
executing an Intel Architecture instruction set.

The microprocessor 400 comprises an in-order front end, an out-of-order
execution core and an in-order retirement back end. The in-order front end includes a
bus interface unit 402 which functions as an interface between the microprocessor 400
and other components (e.g., main memory unit) of a computer system within which the
microprocessor 400 may be implemented. The bus interface unit 402 couples the
microprocessor 400 to a processor bus (not shown) via which data and control
information are transferred between the microprocessor 200 and other system
components (not shown). The bus interface unit 400 includes a Front Side Bus (FSB)
404 that controls and facilitates communications over the processor bus. The bus
interface unit 402 also includes a bus queue 406 that is used to provide a buffering
function with respect to the communications over the processor bus. The bus interface
unit 402 receives bus requests 408 from a memory execution unit 412. The bus

interface unit 402 also sends snoops or bus returns to the memory execution unit 412.

WO 01/50256 PCT/US00/32030

The memory execution unit 412 (also referred to as the memory subsystem
herein) is structured and configured to function as a local memory within the
microprocessor 400. The memory execution unit 412 includes a unified data and
instruction cache 414, a data Translation Lookaside Buffer (TLB) 416, and a memory
ordering logic 418. The memory execution unit 412 receives instruction fetch requests
420 from a microinstruction translation engine (MITE) 424 and provides raw
instructions 425 to the MITE 424. The MITE 424 decodes the raw instructions 425
received from the memory execution unit 412 into a corresponding set of
microinstructions, also referred to as micro-operations or UOPs. Decoded
microinstructions 426 are sent by the MITE 424 to a trace delivery engine (TDE) 430.

The trace delivery engine 430 functions as a microinstruction cache and is the
primary source of microinstructions for a downstream execution unit 470. The trace
delivery engine 430 includes a trace cache 432, a trace branch predictor (BTB) 434, a
micro-code sequencer 436, and a micro-op (uop) queue 438. By having a
microinstruction caching function within the processor pipeline, the trace delivery
engine 430 and specifically the trace cache 432 can leverage the work done by the
MITE 424 to provide a relatively high microinstruction bandwidth. In one
embodiment, the trace cache 432 may comprise a 256 entry, 8 way set associate
memory. The term “trace”, in one embodiment, refers to a sequence of
microinstructions stored within the entries of the trace cache 432 with each entry
having pointers to preceding and proceeding microinstructions in the trace. Therefore,
the trace cache 432 can facilitate high-performance sequencing in that the address of
the next entry to be accessed to obtain a subsequent microinstruction is known before a
current access is completed. The trace cache branch predictor 434 provides local
branch predictions with respect to traces within the trace cache 432. The trace cache
432 and the microcode sequencer 436 provide microinstructions to the micro-op queue
438.

The microinstructions are then fed from the micro-op queue 438 to a cluster that

includes a scheduler 442, a register renamer 444, an allocator 446, a reorder buffer 448
-10-

WO 01/50256 PCT/US00/32030

and a replay queue 450. The scheduler 442 includes a set of reservation stations and
operates to schedule and dispatch microinstructions for execution to the execution unit
470. The register renamer 444 converts references to external registers into internal
register references to remove dependencies caused by register reuse. The allocator 446
operates to allocate resources that are required for the execution of the
microinstructions. In the event that the required resources are insufficient or
unavailable to process a microinstruction or a set of microinstructions, the allocator 446
will assert a stall signal 482 that is propagated to the trace delivery engine 430 and the
microinstruction translation engine 424. The replay queue 450 is used to store and
provide those microinstructions that need to be re-executed (replayed) to the execution
unit 470. The reorder buffer 448 is used to store the microinstructions in their original,
sequential program order. When the microinstructions stored in the reorder buffer 448
have completed execution and are ready for retirement, they are removed from the
reorder buffer in their original, sequential program order.

The execution unit 470 includes a floating point execution engine 474, an
integer execution engine 476, and a level 0 data cache 478. In one embodiment in
which the microprocessor 400 executes the IA instruction set, the floating point
execution engine 274 may also execute MMX® instructions.

Figure 5 shows a block diagram of one embodiment 500 of the memory
execution unit 412 according to the teachings of the present invention. In this
embodiment, the memory execution unit 500 is responsible for servicing various types
of memory access instructions (UOPs) including read (load) and write (store)
instructions. In one embodiment, the memory execution unit 500 receives memory
dispatches (e.g., memory reads (loads) and writes (stores)) from the
scheduler/dispatcher 442. As described above, the scheduler/dispatcher 442 includes a
set of reservation stations (RS) and operates to schedule and dispatch UOPs for
execution to the execution unit 470 and the memory execution unit 500. The memory
execution unit 500, in one embodiment, receives memory dispatches (e.g., LOAD and

STORE UOQOPs), processes these memory dispatches and returns data and fault
-11-

WO 01/50256 PCT/US00/32030

information back to the RS and other units including the ROB 448. In one
embodiment, the memory ¢xecution unit 500, upon receiving a memory read
instruction (LOAD UOP), may issue a request to read data from an external memory
(i.e., the memory 140 in Figure 1) via the bus interface unit 402. In one embodiment,
upon receiving a memory WRITE instruction (STORE UQP), the memory execution
unit 500 may issue a write request to write data to the memory 140 or another unit (e.g.,
I/O device or agent) coupled to the processor 400 via the bus interface unit 402.

As shown in Figure 5, the memory execution unit 500 includes a memory order
buffer (MOB) 550 that is used to control the memory dispatching within the memory
execution unit 500. The MOB 550, in one embodiment, includes a store buffer 551 and
a load buffer 555 that are used to store the STORE and LOAD UOQOPs that are
dispatched from the scheduler/dispatcher unit 442. The store buffer 551 and the load
buffer 555 are also used to keep track of the progress of the dispatched STORE and
LOAD UOPs until they are retired. In one embodiment, the STORE buffer 551
contains 24 entries and the LOAD buffer 555 contains 48 entries. In this embodiment,
the MOB 550 is responsible for enforcing memory ordering, as describe in detail
below. The memory execution unit 500 further includes a data transiation look-aside
buffer (DLTB) 531 that is used to translate the linear addresses of the load and store
UOPs into physical addresses. In one embodiment, the DTLB includes a small page
array and a large page array. In one embodiment, the small page array contains 64
entries for 4 KB pages and the large page array contains 8 entries for 4 MB pages. The
memory execution unit 500 also includes a data cache unit (also referred to as level 0 or
L0 data cache) 571. In one embodiment, the LO data cache 571 includes an 8 KB, 4-
way set associative data array with 64-byte cache line. In one embodiment, the
memory execution unit 500 further includes a page miss handler (PMH) (not shown in
Figure 4). The PMH is responsible for servicing page misses for the DLTB 531. It
also handles splits and TLB reloading.

Continuing with the present discussion, as explained above, the memory

execution unit 500 receives load and store UOPs dispatched from the
-12-

WO 01/50256 PCT/US00/32030

scheduler/dispatcher 442. In the present embodiment, store instructions are decoded
into two UOPs: a store address UOP (STA), illustrated by block 511 and a store data
UOP (STD), illustrated by block 513. Load instructions are decoded into one UOP
(LD), shown as block 515. As described above, the store buffer 551 and the load buffer
555 are used to keep track of store and load UOPs dispatched by the
scheduler/dispatcher 442. The store data UOPs 511 are delivered directly to the store
buffer 551. The store address UOPs 513 and load UOPs are delivered to the DTLB 531
which translates the linear addresses associated with these respective UOPs into their
corresponding physical addresses, as illustrated by blocks 541 and 545. The physical
store address UOPs 541 are delivered to the store buffer 551. The physical load
address UOPs 545 are delivered to data cache unit 571 and the load buffer 555.

As shown in Figure 5, the memory execution unit 500 also includes a
forwarding store data buffer (FSDB) 521 that is used to store data and address
associated with store UOPs 511 and 513. In the present embodiment, the memory
execution unit 500 is responsible for issuing a full store dispatch, illustrated as block
561, to store data into the data cache unit 571, when both store address and store data
UOPs have been dispatched and are ready for full execution.

The memory execution unit 500 further includes an ordering mechanism or
logic 565 that is used to maintain processor or memory ordering in the present
embodiment. In one embodiment, to ensure that memory operations are executed
correctly, the ordering logic 565, in response to a detection of either a full store
dispatch at block 561 or an external store operation present on the bus 130, snoops the
load buffer 555 to compare the address of the detected store dispatch with the addresses
in the load buffer. In one embodiment, the ordering logic 565 compares the address of
the store dispatch (either the full store in the first processor or the external store from
the other agent) to addresses of all load UOPs that have been completed but not yet
retired. If a match is found, then a processor ordering violation 1s indicated for the
respective load instruction for which the match is found. In one embodiment, the

processor ordering violation is indicated for the respective load instruction by flagging
-13-

WO 01/50256 PCT/US00/32030

an appropriate field in the matching entry in the load buffer to indicate a snoop hit. Ifa
processor ordering violation is indicated, a signal referred to as NUKE or CRNUKE is
generated which causes the respective load and subsequent speculatively executed
UOPs to be aborted (cleared) and reissued in order to avoid processor ordering
violation. In one embodiment, each entry in the load buffer includes a status field to
indicate the current progress or status of the respective load. In one embodiment, as
shown in Figure 5, the ordering logic 555 includes a cross-thread snoop logic that
supports cross-thread snooping of stores in one thread against completed loads in
another thread. As described above, the first processor is capable of executing a first
thread and a second thread concurrently. When both the first thread and the second
thread are being executed concurrently, the processor is said to operate in a
multithreading (MT) mode. In MT mode, the addresses of the load UOPs from both
the first and second threads are stored in their respective portions in the load buffer.
When a full store dispatch from one of the two threads is detected, the cross-thread
snoop logic snoops the load buffer to compare the address of the full store dispatch
from one thread against all completed loads from the other thread that have not yet
been retired. In one embodiment, the cross-thread snoop logic compares the address of
the full store dispatch from either thread (thread 1 or thread 0) to the addresses of the
load instructions in the other thread in the load buffer whose corresponding status field
has been set to “completed”. If a match is found, then the corresponding entry in the
load buffer is flagged accordingly to indicate a processor ordering violation.

In the present embodiment, to maintain processor or memory ordering as
between the first processor and another processor (e.g., agent A1) that share the
common memory 140, the ordering logic 565 also includes an external snooping
mechanism to maintain processor ordering in this multiprocessor (MP) environment.
The external snooping mechanism, in response to a store instruction being detected on
the bus 130, compares the address of the respective store instruction to the addresses of

load UOPs in the load buffer that have been completed but not yet retired. If a match is

-14-

WO 01/50256 PCT/US00/32030

found, the corresponding load buffer entry is flagged accordingly to indicate a
processor ordering violation.

In one embodiment, snooping of the load buffer is implemented in the physical
address domain at cache-line granularity. Loads that split across a line boundary are
snooped with decremented physical address. In one embodiment, a load is considered
bound to data if the “physical address valid” bit is set for that load in the load buffer.
This bit will be changed to a “complete” bit to indicate that the load has gone replay-
safe. If either the cross-thread snoop and the external snoop of the load buffer results in
at least one “hit” in the load buffer, the MOB will generate an appropriate signal to the
ROB to request the ROB to abort the speculative state of the machine and restart from
the aborted load. In one embodiment, in response to a “nuke” request from the MOB,
the ROB will assert a “nuke” signal on the first eligible load that it tries to retire. This
will cause all instructions that have not yet been retired to be cleared and reissued in
order to avoid processor ordering violation. In one embodiment, there is no
synchronization between the load(s) that were hit by the snoop and the retirement point
when the nuke signal is asserted because of the transition delay between the MOB and
the ROB.

Figure 6 shows a flow diagram of one embodiment of a method 600 for
maintaining processor or memory ordering according to one aspect of the present
invention. The method 600 starts at block 601 and proceeds to block 605. At block
6035, load addresses and other pertinent information of load UOPs that have been
dispatched but not yet retired are maintained in a load buffer of a first processor. As
described above, an entry in the load buffer is allocated for each UOP dispatched from
the scheduler/dispatcher. As the load UOP proceeds through the pipeline of the first
processor, other relevant information with respect to the load UOP 1is also updated
accordingly in the load buffer. For example, a load buffer entry allocated for a
dispatched load UOP also includes a status field that is used to indicate whether the
respective load UOP has been bound to data, whether the respective UOP has been

completed or being replayed, etc. At block 609, in response to a detection of a full
-15-

WO 01/50256 PCT/US00/32030

store dispatch from one thread (as shown in Figure 5), a cross-thread snooping
operation is performed to compare the address of the full store dispatch from one thread
to load addresses of the load UOPs from the other thread that have been completed but
not yet retired. At decisior. block 613, if a match is found, the method 600 proceeds to
block 615 to indicate a processor ordering violation (i.e., a snoop hit). Otherwise, the
method 600 proceeds to block 617. At block 617, in response to a detection of an
external store instruction on the bus (e.g., a store instruction from a second processor),
an external snooping operation is performed to compare the address of the external
store instruction to addresses of all load UOPs in the load buffer that have been
completed but not yet retired. At decision block 621, if a match is found, the method
600 proceeds to block 623 to indicate a processor ordering violation (i.e., a snoop hit).
Otherwise the method 600 proceeds to block 625. At block 625, the method 600
proceeds to block 629 if a processor ordering violation has been indicated. Otherwise
the method 600 loops back to block 605. At block 629, the speculative state of the first
processor is aborted and the first processor is restarted from the respective load for
which the snoop hit is indicated.

The following section describes an additional problem with processor ordering
that is not addressed by the ordering mechanism described above. The ordering
mechanism which performs either a cross-thread snooping operation or an external
snooping operation to check for a match between an address of a store instruction being
executed and addresses in the load buffer works fine as long as each load instruction
that has been bound to data is visible to the snooping logic at the time the snooping
operation is performed. However, due to a time delay between the time when a load
UOP is bound to data and the time when the snooping operation (either cross thread or
external snoop) 1s performed, there could be potentially some load UOPs that have been
bound to data in the load pipeline but are not visible to the snooping logic. In other
words, the ordering mechanism described above has some blind spot during which
loads are not guarded against processor ordering violation. Figure 7 shows an example

of a timing diagram which illustrates the additional problem due to the timing delay
-16-

WO 01/50256 PCT/US00/32030

explained above. It should be appreciated and understood by one skilled in the art that
the timing example shown in Figure 7 is for illustrative purposes only and does not in
anyway limit the scope of the present invention. The timing when a particular load gets
bound to data and the timing when the load buffer is snooped may be varied depending
on different implementations and/or applications. As shown in Figure 7, the snooping
of the load buffer to enforce processor ordering occurs in cycle 514 of the memory
store pipeline. However, loads get bound to data in the forwarding store data buffer
(FSDB) 521 in cycle 502 of the memory load pipeline. Therefore, when an external
snooping or a cross-thread snooping operation is performed to snoop the load buffer,
there could be potentially up to four loads in the load pipeline that have been bound to
data but are not visible to the snooping logic. Consequently, there could be up to four
stores in that time frame between cycle 502 of the load pipeline and cycle 514 of the
store pipeline. As such, a load in the shadow of these four stores will not be protected
against processor ordering by the ordering mechanism described above. The
description that follows describes the solution to this additional problem with processor
ordering.

Figure 8 shows a block diagram of one embodiment of a memory execution unit
that includes a mechanism to solve the problem just described above. In order to guard
loads that have been bound to data but not visible to the snooping logic against
processor ordering violation, these loads need to be guarded against conflict with stores
that happen during that gap. Specifically, stores that happen during that gap need to be
kept tracked of and a load being executed later needs to be checked against these stores.
If the address of the load being executed matches one of the addresses that took place
during the gap mentioned above then that particular load needs to be replayed or re-
executed to avoid processor ordering violation.

As described above with respect to Figure 5, the memory execution unit 800
shown in Figure 8 is responsible for servicing various types of memory access
instructions (UOPs) including read (load) and write (store) instructions and for

enforcing processor ordering with respect to these various memory access instructions.

-17-

WO 01/50256 PCT/US00/32030

As shown in Figure 8, the memory execution unit 800 includes a memory order buffer
(MOB) 850 that is used to control the memory dispatching within the memory
execution unit 800. The MOB 850, in one embodiment, includes a store buffer 851 and
a load buffer 855 that are used to store the STORE and LOAD UOPs that are
dispatched from the scheduler/dispatcher unit 442. The memory execution unit 800
further includes a data translation look-aside buffer (DLTB) 831 that is used to translate
the linear addresses of the load and store UOPs into physical addresses. The memory
execution unit 800 also includes a data cache unit (also referred to as level 0 or LO data
cache) 871. In one embodiment, the memory execution unit 800 further includes a
page miss handler (PMH) (not shown). As shown in Figure 8, the memory execution
unit 800 also includes a forwarding store data buffer (FSDB) 821. The memory
execution unit 800 further includes a ordering mechanism (logic) 865. The function(s)
and structure of these units are described above with respect to Figure 5.

However, the memory execution unit 800 also includes a data structure 881
(also referred to as the data ordering guard or DGUARD) that is used to keep track of
the stores that happen between the time when a load instruction gets bound to data and
the time when the cross-thread or external snoop is performed (also referred to as the
“gap” or the “window of vulnerability”). For explanation and illustration purposes
only, it is assumed that the “gap” or “window’ of vulnerability is four processing
cycles in the present embodiment. That “gap” or “window” of course can be different
in other embodiments or implementations. The teachings of the present invention
should not be restricted to any particular timing requirements and should be applicable
to other embodiments, implementations, and applications where processor or memory
ordering is to be enforced. In the present embodiment, the data structure 881 can be a
free-running stack that is used to maintain the physical address and other pertinent
information of the store instructions or operations dispatched during the last four
cycles. Accordingly, the data structure 881 may contain 4 entries. As described above,
the store instructions can be either internal full-stores dispatched within the memory

execution unit 800 or external stores from another agent (e.g., a second processor). To
-18-

WO 01/50256 PCT/US00/32030

enforce processor ordering against the “gap” or “window of vulnerability”, the memory
execution unit 800 further includes a snooping mechanism or logic 883. In the present
embodiment, in response to a load UOP being executed, the logic 883 compares the
address of the load UOP being executed with the addresses in the data structure 881. If
a match is detected, the respective load is replayed or re-executed to avoid processor
ordering violation. In one embodiment, once a match is detected, the logic 883 can
request a replay of the respective load UOP by sending an appropriate request or signal
to a checker and replay unit (not shown) in order to replay or re-execute the respective
load. With respect to the timing example shown in Figure 7, in cycle 505 of the load
pipeline, the physical address of the load UOP being executed is compared with the
physical address of qualified entries in the data structure 881. In one embodiment, in
MT mode, the qualified entries include all cross-thread full stores and external snoops
dispatched during the last four cycles. In single threaded (ST) mode, the qualified
entries include all external snoops. In one embodiment, the full stores include MOB
dispatched full stores as well as the PMH dispatched split-stores. In one embodiment,
the matching is done on a cache line granularity. If a match is detected then the
respective load is replayed to avoid processor ordering violation.

Figure 9 shows a flow diagram of one embodiment of a method 900 for
maintaining processor ordering according to the teachings of the present invention. The
method 900 starts at block 901 and proceeds to block 905. At block 905, load
addresses and other pertinent information of load UOPs that have been dispatched but
not yet retired are maintained in a load buffer of a first processor. As described above,
an entry in the load buffer is allocated for each UOP dispatched from the
scheduler/dispatcher. As the load UOP proceeds through the pipeline of the first
processor, other relevant information with respect to the load UOP is also updated
accordingly in the load buffer. For example, a load buffer entry allocated for a
dispatched load UOP also includes a status field that is used to indicate whether the
respective load UOP has been bound to data, whether the respective UOP has been

completed or being replayed, etc. At block 909, in response to a full store dispatch
-19-

WO 01/50256 PCT/US00/32030

from one thread (as shown in Figure 8), a cross-thread snooping operation is performed
to compare the address of the full store dispatch from one thread to load addresses of
the load UOPs from the other thread that have been completed but not yet retired. At
decision block 913, if a match: is found, the method 900 proceeds to block 915 to
indicate a processor ordering violation (i.e., a snoop hit). Otherwise, the method 900
proceeds to block 917. The method also proceeds from block 909 to block 931 to store
the address of the full store dispatch in the data structure 881 shown in Figure 8. At
block 917, in response to an external store instruction being detected on the bus (e.g., a
store instruction from a second processor), an external snooping operation is performed
to compare the address of the external store instruction to addresses of all load UOPs in
the load buffer that have been completed but not yet retired. At decision block 921, if a
match is found, the method 900 proceeds to block 923 to indicate a processor ordering
violation (i.e., a snoop hit). Otherwise, the method 900 proceeds to block 925. The
method 900 also proceeds from block 917 to block 931 to store the address of the
external store dispatch in the data structure 881. At decision block 925, the method 900
proceeds to block 929 if a processor ordering violation has been indicated. Otherwise
the method 900 loops back to block 905. At block 929, the speculative state of the first
processor is aborted and the first processor is restarted from the respective load for
which the snoop hit is indicated. As illustrated in Figure 9, the method 900 also
proceeds from block 931 to block 933. At block 933, in response to a load UOP being
executed, the snoop logic 883 snoops the data structure 881 to compare the address of
the load being executed with the addresses stored in the data structure 881. At decision
block 935, if there is a match, the respective load is replayed at block 939. Otherwise,
the method 900 loops back to block 905.

Figure 10 illustrates a block diagram of one embodiment 1000 of the data
structure 881 shown in Figure 8. In this embodiment, the data structure 881 contains
four entries that are used to maintain the physical address and other pertinent
information of full-stores and external stores dispatched during the last four cycles. In

this embodiment, the data structure 881 is configured as a free-running stack. As
-20-

WO 01/50256 PCT/US00/32030

illustrated in Figure 10, each time a cross thread snoop operation or an external snoop
operation is performed by the cross-thread/external snoop logic 865, the physical
address and other pertinent information associated with the respective store operation
(e.g., either a full-store or an external store) are stored as an entry in the data structure
881. Accordingly, there can be up to four store entries in the data structure 881 at any
given time. As described above, the load address of a load UOP being executed is
compared with the addresses stored in the data structure 881. If there is a match, the
respective load is replayed to avoid processor ordering violation.

Figure 11 illustrates an example of the operation of the load buffer 555 in
Figure 5 or 855 in Figure 8. In this example, it is assumed that the load buffer contains
four entries with various statuses at the time the cross thread or external snooping
operation is performed. It is also assumed that the address of the store operation is
1000. Based upon the address and status of each load entry in the load buffer, the result
of the snooping operation is also shown in Figure 11. With respect to entry #1, there is
no snoop hit because the corresponding entry is already deallocated when the snooping
operation is performed. For entry #2, there is no snoop hit because the address of the
store and the address of the load corresponding to entry #2 do not match. With respect
to entry #4, there is no snoop hit because the load status indicates that the
corresponding load is still replaying. For entry #2, there is a snoop hit because the
address of the store and the address of the load match and the status bit indicates that
the load has completed. Accordingly, the snoop hit field is set to indicate a snoop hit
for load entry #2.

The invention has been described in conjunction with the preferred
embodiment. It is evident that numerous alternatives, modifications, variations and

uses will be apparent to those skilled in the art in light of the foregoing description.

21-

WO 01/50256 PCT/US00/32030
CLAIMS

What is claimed is:

1. A method comprising:

maintaining store addresses of store instructions dispatched during a last
predetermined number of cycles in a first data structure of a first processor;

determining whether a load address of a first load instruction matches
one of the store addresses in the first data structure; and

replaying the first load instruction if the load address of the first load

instruction matches one of the store addresses in the first data structure.

2. The method of claim 1 further comprising:

snooping a load buffer containing load addresses of load instructions
that have not been retired to determine whether an address of a store instruction
matches one of the load addresses in the load buffer; and

aborting a speculative state of the first processor if the address of the

store instruction matches one of the load addresses in the load buffer.

3. The method of claim 1 wherein maintaining store addresses comprises:
storing a store address associated with a cross-thread snooping operation

performed in response to a full-store dispatch from one thread.

4. The method of claim 1 wherein maintaining store addresses comprises:
storing a store address associated with an external snooping operation
performed in response to a store operation being executed by a second

processor.

5. The method of claim 1 wherein determining comprises:

22-

WO 01/50256 PCT/US00/32030

obtaining the load address of the first load instruction; and
comparing the load address of the first load instruction against the store

addresses in the first data structure.

6. The method of claim 1 wherein aborting comprises:

aborting a load operation whose address in the load buffer matches the
address of the store instruction and speculatively processed operations
following said load operation; and

reissuing the aborted operations from said load operation.

7. A method comprising:

maintaining load addresses of load instructions that have not been retired
in a load buffer of a first processor;

snooping the load buffer to determine whether a store address associated
with a store instruction matches one of the load addresses in the load buffer of

the first processor;

aborting a speculative state of the first processor in response to a match
between the store address associated with the store instruction and one of the
load addresses in the load buffer;

storing the store address associated with the store instruction in a first
data structure; and

replaying a load instruction whose load address matches one of the store

addresses in the first data structure.

8. A method comprising:
storing addresses of dispatched load operations that have not been

retired in a load buffer of a first processor;

storing addresses of dispatched store instructions in a first data structure;

23-

WO 01/50256 PCT/US00/32030

aborting a speculative state of the first processor in response to a match
detected between an address of a first store instruction and an address in the
load buffer; and

replaying a first load instruction in response to a match detected between

an address of a first load instruction and an address in the first data structure.

9. A method comprising:

maintaining addresses of load operations associated with first and
second threads in a load buffer of a first processor;

in response to a first store operation, snooping the load buffer of the first
processor to determine whether there is a match between an address of the first
store operation and one of the addresses in the load buffer;

in response to a match between the address of the first store operation
and one of the addresses in the load buffer, aborting a first load operation whose
address matches the address of the first store operation and speculatively
processed operations following the first load operation;

storing the address of the first store operation in a first data structure;

determining whether an address of a second load operation matches one
of the addresses stored in the first data structure; and

replaying the second load operation in response to a match between the
address of the second load operation and one of the addresses stored in the first

data structure.

10. A method comprising:

storing load addresses of dispatched load operations that have not been
retired in a load buffer of a first processor;

in response to a store operation being dispatched, snooping the load
buffer to determine whether there is a match between a load address in the load

buffer and an address of the store operation;
24-

WO 01/50256 PCT/US00/32030

storing the address of the store operation in a data structure; and
in response to a load operation being executed, snooping the data
structure to determine whether an address of the load operation matches a store

address in the data structure.

11. An apparatus in a first processor comprising:

a load buffer to store addresses of issued load instructions that have not
been retired;

a first data structure to store addresses of a predetermined number of
issued store instructions; and

an ordering mechanism to maintain processor ordering by comparing an
address of a first store instruction with addresses in the load buffer and
comparing an address of a first load instruction with addresses in the first data
structure, the ordering mechanism to cause a speculative state of the first
processor to be aborted in response to a match between the address of the first
store instruction and an address in the load buffer, and the ordering mechanism
to cause the first load instruction to be replayed in response to a match between

the address of the first load instruction and an address in the first data structure.

12. A system comprising:

a first processor being capable of executing a first thread and a second
thread concurrently;

a bus coupled to the first processor;

an agent coupled to the bus, the first processor and the agent sharing a
common memory; and

an ordering mechanism to maintain memory ordering by comparing an
address of a first store instruction with addresses of load instructions that have
been dispatched but have not yet been retired by the first processor and

comparing an address of a first load instruction with addresses of a

25.

WO 01/50256 PCT/US00/32030

predetermined number of store instructions that have been dispatched by the
first processor or by the agent, the ordering mechanism to cause a speculative
state of the first processor to be aborted in response to a match between the
address of the first store instruction and one of the addresses of the load
instructions, and the ordering mechanism to cause the first load instruction to be
replayed in response to a match between the address of the first load instruction

and one of the addresses of the store instructions.

13. A first processor comprising:
an execution core that executes instructions from a first thread and a
second thread of the first processor; and
a memory unit comprising:
a load buffer that stores addresses of load instructions from the first and
second threads that have been issued but not yet retired;
first order logic to snoop the load buffer for a match between an address
of a completed load instruction and an address of a first store instruction,
the first order logic causes the completed load instruction to be cleared
and reissued in response to the match between the address of the
completed instruction and the address of the first store instruction, the
address of the first store instruction being stored in a first data structure
responsive to the snoop of the load buffer; and
second snoop logic to snoop the first data structure for a match between
an address of a first load instruction being executed and one of the
addresses in the first data structure, the second snoop logic causes the
first load instruction to be replayed in response to the match between the
address of the first load instruction and one of the addresses in the first

data structure.

26-

WO 01/50256 PCT/US00/32030

1/11

o

=

e
120N
>

N
=
g
[)
o [
N
~ L
(aV)
<C
o
= T
o
=
<C L
S =
=
—
O .
=\ =)
L
a

N

SUBSTITUTE SHEET (RULE 26)

PCT/US00/32030

WO 01/50256

2/11

o
(9]

¢ 9l

0001 NOILYO0T INOHd avOT

0001 NOILYO01 W04 av0T

0001 NOILYO0T LV A JHOLS

0001 NOILVYOO01 1Y Z 3401S

0001 NOILV30T NOY4 avon

0001 NOILYJO0T LY X 3HOLS

€l

¢l

H

SUBSTITUTE SHEET (RULE 26)

WO 01/50256 PCT/US00/32030

3/11

300
'/

FETeH [

\ 4

DECODE |

Y

ALLOCATE [\»~

\ 4

RENAME |7\~

Y

SCHEDULE/ 350
DISPATCH [=~

A4

EXECUTE [\~

A 4

RETIRE |2

FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 01/50256

PCT/US00/32030
4/11
400
TO PROCESSOR 402 /
BUS BUS INTERFACE UNIT e
D 406
404/\/| FSBLOGIC | [BUSQUELE |}
SNOOP/ l BUS
BUS RETURN REQUESTl
o MEMORY EXECUTION UNIT 408
UNIFIED CACHE |[pATA MEMORY 418
413 | (LEVELY) TLB ORDERING | 1= 412
RAW l INSTRUCTION FETCH
INSTRUCTIONS 416 REQUEST =_ 40,
MICROINSTRUCTION TRANSLATION ENGINE 424
426 (MITE) oY%
DECODE 434 MITE
INSTRUCTIONS v 2 STALLl
TRACE DELIVERY(ENGINE (TDE) 484
426
TRACE TRACE | | MICRO-CODE 436
435 =" CACHE BTB SEQUENCER
430
MS UOP QUEUE |« T
_________ 1 e
DECODE (‘“ 1
INSTRUCTIONS g 470 STALL
EXECUTION UNIT s 440
SCHEDULER FLOATING N/
|
442°"| (RESERVATION POINTAMMX [~ ~
STATIONS) EXECUTION
ENGINE REORDER
INTEGER 476 BUFFER
4ig | RENAMER EXECUTION [N} (CHECKER)
ENGINE
DATA 478
ALLOCATOR ~
446 1] CACHE
(LEVEL 0)
REPLAY QUEUE | ~—"4°0

SUBSTITUTE SHEET (RULE 26)

PCT/US00/32030

WO 01/50256

5/11

IHOLS TYNHILX3 .
| 1mm oo : G @_u_

01907dO0ONS || ! _
WNHALXT [T |
/QV3YH1-SSOHD] ! !
J] l I
s | w3dng |
“ avol “
“ "

Hovo [34018 ! I P —a
vlva ! !

s ¢ | §65 ' SbS GlIG"

“ ! g1L v1va

«) m _
i
“ p

“ VLS < vis
| l

1,67 ! |15 165 erg
Ll o43ddng |
| oS |
| _
i i

! “t d—{ aLs |
| l

I 1667 J L1g—
L ___ ._

126~

SUBSTITUTE SHEET (RULE 26)

WO 01/50256 PCT/US00/32030

6/11
/ 600
601
(START)
605
4 ~
MAINTAIN LOAD
ADDRESSES IN
LOAD BUFFER
609
A 4 —~
PERFORM A
CROSS THREAD
SNOQP
~
INDICATE PO
VIOLATION

l

PERFORM AN
EXTERNAL
SNOOP
r\/
INDICATE PO |
VIOLATION
| 6
625 ABORT
NO PO vES | SPECULATIVE

VIOLATION STATE AND
NDICATED? RESTART
EXECUTION

FIG. 6

SUBSTITUTE SHEET (RULE 26)

PCT/US00/32030

INIJOONS A8 033H04NT ONIHIAHO HOSS3I00Hd
advnaa
A8 030404N3 SFHOLS 3S3HL HO4 INIHIAHO0 HOSS3D0Hd

ANIT3dId avOl

WO 01/50256

7777
m 9 t\&\ \\...x\ %518 AN 6 \:“\ ﬂ...\.\ A ‘:“\ .,.\.\ C ‘:n\ ‘.c.\‘\ g x.v\ \“..A\ / ..3\
:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\N\M\\\\\\\\\\\
7 7
g K0G)

LA g i
=

Wz, T i i v, w\\ Wﬂm\o\w\\\\\\\\
\\»._\\\i\\\ A e 8 1655 Lo s e Vs Ve

Z 2 77 \ A% /
2 3H01S %umw_\w %Wﬂ&\&\ \u:ww%\\\\\\\\\\\\\\\\\\ \\ I gt \

H %7 Z

L
@\@\ \\ 4.9 \.\ .R\“\ \ 10150 1°H J \\ 41494 \ () |

R G %ﬂw\v&\%@g\w\&m\\@\v@\@vﬁw\m&\\\\@;\w\\ ;

SUBSTITUTE SHEET (RULE 26)

IdNOD AV1d34 | JOONS av3d

135 | 6060 | 8060 | 2050 | INMA |jauvnoa| v0so | €059 [3HOWD | 1osy | 00SH
0150 9080 | S0S9 €08

PCT/US00/32030

WO 01/50256

811

(o

8 Yl

al

Glg-~

IHO1S TYNHILX3
| it eEEE ayvnoa
. |
21901400NS | ! “ 1087
YNY3LX3 i ! v
/QYIHL-SSOHI| | _ 01907
, _ | dOONS
698" | w3dang | L a4vnaa
1| avol “ £gg—"
! |
| "
Hwy [JHOLS “ i—a «
viva ! _
1987 ¢ | 6587 1| sp8~
| |
_ ! 411 vlva
! “
! “
! “—] VIS [-
| |
1187 ! |18 1E8~
Ll Y3dang |
(| oIS | |
I
| |
| _ |
1168~ _
— —
_ S —— - 8054
w.\\\x 0587 -

4: 4

VIS [«

€18

p— 41S f——

L8

SUBSTITUTE SHEET (RULE 26)

WO 01/50256 PCT/US00/32030

9/11
/ 900
901
(" START Y
\ 4
MAINTAIN LOAD
ADDRESSES IN [_ gg5
LOAD BUFFER
\ 4
PERFORM A
CROSS THREAD | =909
SNOOP
915
913 ~
ADDR IN LB INDICATE PO
- SADDR? VIOLATION
931 |
{V /\/
STORE SADDR PERFORM AN _g17
INDGUARD | +— EXTERNAL
SNOOP
l 933 923
~ o~
PERFORM A
INDICATE PO
DGUARD VIOLATION
SNOOP
, f\gzg
925 ABORT |
VIOLATION SEEE}JEL’XH[\)’ g
NDICATED? DESTART
EXECUTION
REPLAY LOAD

SUBSTITUTE SHEET (RULE 26)

WO 01/50256

10/11

FULL-STORE / EXTERNAL SNOOPS

STATUS

AV

STORE ADDRESS (T)

LOAD
ADDRESS

STORE ADDRESS (T-1)

STORE ADDRESS (T-2)

STORE ADDRESS (T-3)

FIG. 10

SUBSTITUTE SHEET (RULE 26)

PCT/US00/32030

| LOAD
—_—;J> REPLAY

PCT/US00/32030

WO 01/50256

11/11

138

LE9I

INIAVIdIY TI1LS S1Av0TISNYI3d LIH JOONS ON—

HOLVIN SS34aav ON 3SNv3d LIH JOONS ON —

1118 313dW0J aNY HOLYIN SSIHaaY 3SNvD39 LIH dJOONS —

(31v30T1v3a AQYIHTY SI AYLNI 3SNYI3F LIH JOONS ON —>

ON ONIAY1d3Y 0001 QY01 ¥
ON 3137409 0002 QY01 €
S3A 3131409 0001 QV01 2
oN | @avooTivaa 0001 QY071
11H SNLVLS avoT

dOONS

0001 Qvo1 v

000¢ avo1 '€

0001 Av01 ¢

0001 @vO1 't

43040 Wvd90Hd

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

In. _..onal Application No

PCT/US 00/32030

CLASSIFICATION OF SUBJECT MATTER

A.
IPC 7 GO6F9/38

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

5 May 1998 (1998-05-05)

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X WO 99 31594 A (AKKARY HAITHAM ;INTEL CORP 1,5-8,
(US)) 24 June 1999 (1999-06-24) 10,11
Y abstract 2-4,12
A 13
page 32, line 8 - line 16
page 33, line 9 -page 34, line 2
page 36, line 14 -page 37, line 23
page 38, line 8 - line 12
Y US 5 751 986 A (FETTERMAN MICHAEL A ET 2-4,12
AL) 12 May 1998 (1998-05-12)
A column 2, line 47 - line 63 13
A US 5 748 937 A (KONIGSFELD KRIS G ET AL)

D Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

A document defining the general state of the art which is not
considered to be of particuiar relevance

E earlier document but published on or after the international
filing date

*L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*0O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

'T* later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y*® document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
ments, such combination being obvious to a person skilled
in the art.

‘&' document member of the same patent family

Date of the actual completion of the international search

2 March 2001

Date of mailing of the international search report

09/03/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,
Fax: (+31-70) 340-3016

Authorized officer

Moraiti, M

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

information on patent family members

Im

.vonal Application No

PCT/US 00/32030

Patent document Publication

Patent family

Publication

cited in search report date member(s) date

WO 9931594 A 24-06-1999 AU 1911199 A 05-07-1999
BR 9813653 A 12-12-2000
EP 1040423 A 04-10-2000

US 5751986 A 12-05-1998 NONE

US 5748937 A 05-05-1998 DE 4429921 A 09-03-1995
GB 2281422 A,B 01-03-1995
IE 940337 A 08-03-1995
JP 7084965 A 31-03-1995
SG 49220 A 18-05-1998

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

