
(19) United States
US 2009.0076983A1

(12) Patent Application Publication (10) Pub. No.: US 2009/0076983 A1
Scumniotales et al. (43) Pub. Date: Mar. 19, 2009

(54) METHOD AND SYSTEM FOR
OBJECTORIENTED MANAGEMENT OF
MULT-DIMIENSIONAL DATA

(76) Inventors: John Scumniotales, Redmond, WA
(US); Eric Burke, Seattle, WA
(US); Robert Cahn, Federal Way,
WA (US); Thomas Fannon,
Redmond, WA (US); Mitchel
Burns, Woodinville, WA (US);
Michael Lester, Monroe, WA (US);
Jeff Hill, Snohomish, WA (US)

Correspondence Address:
SEED INTELLECTUAL PROPERTY LAW
GROUP PLLC
701 FIFTHAVE, SUITE 5400
SEATTLE, WA 98104 (US)

(21) Appl. No.: 12/323,410

(22) Filed: Nov. 25, 2008

Related U.S. Application Data

(62) Division of application No. 10/613,534, filed on Jul. 3,
2003.

(60) Provisional application No. 60/471,811, filed on May
19, 2003.

Publication Classification

(51) Int. Cl.
G06O 40/00 (2006.01)
G06Q 10/00 (2006.01)

(52) U.S. Cl. 705/36 R; 705/7; 705/1

(57) ABSTRACT

Methods and systems for managing and analyzing multi
dimensional data are provided. Example embodiments pro
vide a Meta-Object Data Management System “MODMS.”
which enables users to arrange and to rearrange the hierar
chical relationships of the data on an ad-hoc basis and allows
the data to be analyzed using any set of attributes (dimen
sions) while the system is running. The MODMS represents
heterogeneous data in a normalized (standardized) fashion
using an object type management system that allows the
arbitrary coercion of one type of object into another different
type of object and automatically resolves attribute dependen
cies. In one embodiment, the MODMS comprises an object
type management Subsystem; a meta-object instantiation
Subsystem; one or more data repositories that hold, for
example, the data used to populate objects and object type
definitions; and an input/output interface. These components
cooperate to allow the creation, management, and analysis of
relationships between many different types of single and
multi-dimensional data. In one embodiment, the MODMS is
used to implement an enterprise portfolio management sys
tem.

OO

/Meta- Object Pat 2. towagene Systew

&
S

s

(

29 -vancial - O3

investment
% Dar

US 2009/0076983 A1 Mar. 19, 2009 Sheet 1 of 28

O Ol

Patent Application Publication

Patent Application Publication Mar. 19, 2009 Sheet 2 of 28 US 2009/0076983 A1

/Meta-Object Cat
tvavagerwelt System

Setup (a ?eate) Process
2O 13 Idol attributes -haules

Sev?o create)
02eet r- 202

US 2009/0076983 A1 Mar. 19, 2009 Sheet 3 of 28 Patent Application Publication

Patent Application Publication Mar. 19, 2009 Sheet 4 of 28 US 2009/0076983 A1

- O2

<Atly vide 2 11s is a shri
of ala VucuW werics oy otw.
ey- represeuwia, we value

-foy athnute i < 7Atly lowe |>
<A hybvie 2.7 , , , valve fi?
Othylaw?e 2 < / An owe ZY <Ath
rbwe 27, , ,

of e

(Athye wie rv) value for
(/ Attrib-vue vula

Z Ca (weiv1044)
LO(~. Pou?ewit - D

Chill?ea? Pointe?s e?uld objects
O - Lifecycle fov/v4.thom lo3.

US 2009/0076983 A1 Mar. 19, 2009 Sheet 5 of 28 Patent Application Publication

spowy, wº

US 2009/0076983 A1 Mar. 19, 2009 Sheet 6 of 28 Patent Application Publication

US 2009/0076983 A1 Mar. 19, 2009 Sheet 7 of 28 Patent Application Publication

Patent Application Publication Mar. 19, 2009 Sheet 8 of 28 US 2009/0076983 A1

C, O (dowd laterpreter)
feegest Ovo (Jieu

Add/ modify |
delete me - -u 80 3.
objects 6?ow
Yveta-obje ut,
Aétue wife ?aucy

Patent Application Publication Mar. 19, 2009 Sheet 9 of 28 US 2009/0076983 A1

Clue-age Otject- Type
Defwuchuy
(objeet - hype-LD, feud

Zety eje object | auty o-d typede? R. to-dehu)
ColyeCt-type (D) ad

Patent Application Publication Mar. 19, 2009 Sheet 10 of 28 US 2009/0076983 A1

Reiyue clo?es
Powl-wo, vvu) Cuttybus

1No O3

5 bye m) OO
Vitute w
outlawre block

y

joos

38

\OCo

Remove attribute autoo
its/value 2 Air -6 egrit-ture
tocle of object of

Fla... O

Patent Application Publication Mar. 19, 2009 Sheet 11 of 28 US 2009/0076983 A1

Add Pollup
ŽJevi (cu??e node 12allop Attrib)

I O2 /
mo?e y

(loilop Altibules

FG 11

Patent Application Publication Mar. 19, 2009 Sheet 12 of 28 US 2009/0076983 A1

Rollup aleu (Node-ph?,
Afty byte)

Dee/nu/al
kott of cham-rael o?- f:

Update ?e
atted with
Wild attribute
Val U (2.

ea total-cost2
X, child, total cost

F74. 1 2.

US 2009/0076983 A1 Mar. 19, 2009 Sheet 13 of 28 Patent Application Publication

Patent Application Publication Mar. 19, 2009 Sheet 14 of 28 US 2009/0076983 A1

?h Presetia.how 17e/ |- A/o

1. 142O

wev4-c vices, 1a12faces
(sh/Uchu?ee. Aft)
434

(Ayelyaefs dee? evu?
Pauahua Wiz faces)

| Low level Dod. Access
uayanes C. AOO, Na)

As 4

Patent Application Publication Mar. 19, 2009 Sheet 15 of 28 US 2009/0076983 A1

- 540 Cleat(Wew frowser)

(Pulitz?aehn way 41
Wew 4-e? (cé CAM 6)

F14 5

US 2009/0076983 A1 Patent Application Publication Mar. 19, 2009 Sheet 16 of 28

US 2009/0076983 A1

Y

G

Mar. 19, 2009 Sheet 17 of 28 Patent Application Publication

V/

US 2009/0076983 A1 Mar. 19, 2009 Sheet 18 of 28 Patent Application Publication

Patent Application Publication Mar. 19, 2009 Sheet 19 of 28 US 2009/0076983 A1

O 1) Portfolio management
— 8 s () (u cut foy use? wipur or

5ult zu modu e)

n- 19 ol

FIG 9

Patent Application Publication Mar. 19, 2009 Sheet 20 of 28 US 2009/0076983 A1

Add New Meta-Ooject
(object-type, pered)

e3, (add telo 200
In Westwiévi

Fu w
Oldhavute block
UUtv Sof (3/lifeS
O? defaul's

Patent Application Publication Mar. 19, 2009 Sheet 21 of 28 US 2009/0076983 A1

Movelcopy (Wet -Ovech
(object éou? cell objeef

target - otreet)
?et?ieve
instunatee
object (p object) 1- 2 O

p neu) a
inst vuhafe feu)
ury et al-O762c (pe -dobject)

2 O2

y Delete ?lett
6bject (pdbéct, E. 21C e

Patent Application Publication Mar. 19, 2009 Sheet 22 of 28 US 2009/0076983 A1

O 1) Delete Meta- Objech
(p - objec? source-object)

^n ad

OZ

Patent Application Publication Mar. 19, 2009 Sheet 23 of 28 US 2009/0076983 A1

O) Cuala e Meta-Object
Co-object, list of
(trowie- value pa?s)

é 3 chaunae
five Strye
PWope/hes

Patent Application Publication Mar. 19, 2009 Sheet 24 of 28 US 2009/0076983 A1

Porfolio Ayalysis
(Walt for user wi?puh
6? 6witzu rvuodules)

Patent Application Publication Mar. 19, 2009 Sheet 25 of 28 US 2009/0076983 A1

View) CO2 eet-type)

Define columns e.g., new) dot sheet
(aka,ayes, views,
dimens dyns)

V01ee-fuild
Prescularlow

(33. Pe. Cots fitters Y

25OS

Patent Application Publication Mar. 19, 2009 Sheet 26 of 28 US 2009/0076983 A1

Bud Presewan M
(Sulaiyee-ph? cle - type
Cols, filter, group to")
soyt security role-py)

Quey ustance Mera?eky
&t subtee pir accovding

O: ob-troe COS
fire?, grip-list So?t

?ind matzaing
meta-objects

F1 key ?eaw-tub le
eggs. segg (ty ?oleS

- ?elf- City

320 2.

New VO-1 ?ee it, crea?e
YJ-WYtvoluld loyee) .

Patent Application Publication Mar. 19, 2009 Sheet 27 of 28 US 2009/0076983 A1

YYONQ Oy
Yulti-game?is UYual View)
(VO Trey source-node,
to ger-node)

37O é9. move / coey
d-cutz-Sweet

Buld. Preserv12 hou
enode y , , , 27O2-1 '''Eri.

Deletel (Y D View) 270
(source-node 3
VO-?ee)

Patent Application Publication Mar. 19, 2009 Sheet 28 of 28 US 2009/0076983 A1

Delete Wulf-2 me/S10?al
View (pauw, V01e)

e8. delete datasheef
13 evoye (eference
- Y. uh-dimenSloyal
view) CVO-1 ?ee). 3O) 6.Nvu pauenh node

US 2009/0076983 A1

METHOD AND SYSTEM FOR
OBJECTORIENTED MANAGEMENT OF

MULT-DIMIENSIONAL DATA

BACKGROUND OF THE INVENTION

0001 1. Field of the Invention
0002 The present invention relates to methods and sys
tems for managing multi-dimensional data and, in particular,
to methods and systems for creating, maintaining, and ana
lyzing portfolios of multi-dimensional data, Such as project,
asset, and product investments, using an object-oriented para
digm.
0003 2. Background Information
0004 Today's companies, institutions, and other organi
Zations are plagued by the vast amount of data which is now
stored electronically and often needs to be analyzed by a
variety of persons within the organization relative to business
or organizational goals. The need to determine efficiently
what data is available for analysis and how to analyze dispar
ate data across organizational management boundaries is an
ever-increasing problem as the data being tracked increases
and as organizations implement more specialized or distrib
uted functions. Managers, executives, employees, and other
personnel, each with possibly differing needs for particular
content and detail, need to analyze how different changes
might effect the projects, products, resources, finances, and
assets that each are responsible for. Rapid planning cycles,
optimizing the use of critical resources, eliminating low
value, non-strategic, redundant, and poorly performing assets
and projects, and real time visibility of results are common
goals in today's organizations.
0005. The idea of “portfolio management has evolved
within Such organizations as a way to emphasize that all
assets of an organization, be they financial, human, equip
ment resources, human resources or other assets, require
management and oversight in the same manner as traditional
investments such as real property, commercial paper, and
equity investments. Managing a group of assets as a portfolio
encourages decision makers to view the member investments
as a whole but also be able to analyze and scrutinize each
discrete investment. Portfolio-based management of IT
assets, such as technology investments, has become a popular
example of applying portfolio management in a modern day
organization. With portfolio-based management, IT informa
tion Such as inventory lists, spreadsheets, and project man
agement data are managed as assets that need to be analyzed
as to how well they are meeting IT and organizational level
objectives.
0006 Traditionally, discrete systems have been developed
to handle the data management and analysis needs of various
entities within an organization. This phenomenon has grown
out of the situation that the data for each entity is typically
stored in its own Subsystem and analysis tools have been
developed that are targeted for the specific needs of that
entity. Thus, to date, portfolio management systems have
been created to separately manage each type of investment.
For example, extensive financial management and analysis
systems have been developed and used to analyze the finan
cial assets of an organization Such as stocks, bonds, and other
commercial paper. Classically, the data for these systems is
stored in a variety of (typically) relational database manage
ment systems (RDBMS) so that queries can be executed to
gain historical insight into the data. “What-if” scenarios are
often handled by separate analysis packages that are specific

Mar. 19, 2009

to the type of data being analyzed and the type of analysis
conducted. On-line analysis processing packages (OLAP
packages) have been developed to support such “what-if
analysis with data that have a large number of axes/variables
(often referred to as multi-dimensioned data). For example,
an inventory control system of a geographical distributed
company may have resource data that can be viewed, ana
lyzed, and Sorted by geographic location, region, type of
resource, date placed in operation, organization, responsible
party, etc. An OLAP package attempts to collect and store
Such data according to how the data is expected be analyzed
So as to optimize analysis efficiency (by reducing search
times). In order to analyze the same data according to differ
ent views, the system is taken off-line and the data structures
are recalculated to prepare for additional analysis. This can be
a very time consuming and burdensome process if the data set
is very large, as is typical.
0007 Similarly, to handle project management, separate
project management and analysis systems have been devel
oped to aid managers and other executives in the project
planning and execution lifecycles of projects within an orga
nization. For example, there are systems that offer extensive
milestone, critical path, and resource analysis for organiza
tion data that can be defined as a project. There exist tools
today that allow a group of projects to be viewed as “invest
ments' within a portfolio. These tools provide a way for
project managers and other executives within an organization
to analyze the costs and benefits of Such projects in a similar
manner to how financial analysts analyze financial invest
mentS.

BRIEF SUMMARY OF THE INVENTION

0008 Embodiments of the present invention provide
enhanced computer- and network-based methods and sys
tems for managing and analyzing multi-dimensional data.
Multi-dimensional data is data having a large plurality of
attributes. Such as data found in enterprise management sys
tems. Example embodiments provide a Meta-Object Data
Management System (“MODMS), which enables users to
arrange and to rearrange the hierarchical relationships of the
data on an ad-hoc basis so that the data may be analyzed using
any set of attributes (dimensions) while the system is running.
The MODMS stores heterogeneous data in a normalized
(standardized) fashion using an object type management sys
tem, which allows the arbitrary coercion of one type of object
into another different type of object and automatically
resolves attribute dependencies. The arbitrary coercion of one
type of object into another different type of object permits and
Supports a system whereby any type of investment can be
contained within any other type of investment, so investments
can be moved within and across portfolios at will.
0009. The Meta-Object Data Management System pro
Vides techniques for creating, managing, and analyzing rela
tionships between, typically, heterogeneous, multi-dimen
sional data. In one example embodiment, the Meta-Object
Data Management System comprises one or more functional
components/modules that work together to implement an
enterprise portfolio management system.
0010. According to one approach, a Meta-Object Data
Management System comprises an object type management
Subsystem, a meta-object instantiation Subsystem, one or
more data repositories that hold the data used to populate
objects and object type definitions (for whatever other data is
being managed), and an input/output interface. For example,

US 2009/0076983 A1

the data repositories may store the financial investment data
and the project management (investment) data of the enter
prise. The object type management Subsystem is used to
define objects that correspond to the various data types (e.g.,
investment types) that will be created and managed by the
MODMS. The meta-object instantiation subsystem is used to
create instances of object types defined by the object type
management system. The input/output interface represents
any interface to the components of the MODMS and make
take the form of a user command interface or a programmatic
interface. Such as an application programming interface defi
nition.
0011. In one aspect, each meta-object comprises an object

identifier, an object type, and an attribute block. In another
aspect, each object type is a collection of attributes defined
from a global attributes data structure. An object type defini
tion can be dynamically and automatically changed, by modi
fying one of the global attributes associated with that object
type. When an object type definition is changed, the MODMS
automatically adjusts each instantiated meta-object that is
associated with that object type without recompiling or rec
reating the meta-objects. In yet another aspect, meta-objects
do not obey traditional inheritance rules, and thus each meta
object can be type cast into a different object type. In another
aspect, an attribute block stores all of the attribute values for
a single meta-object. Each attribute value is stored between a
beginning attribute tag and an ending attribute tag that iden
tifies the attribute. The attribute tag-value pairs are stored in a
serialized single variable within the meta-object. In one of
these aspects, the tags are XML tags.
0012. In another aspect, multi-dimensional views of the
data can be dynamically created through the use of
datasheets. A datasheet attribute specification is defined, and
a corresponding datasheet is computed based upon the object
instance associated with the datasheet. When datasheets are
moved and copied to different locations, their resultant data
and presentation is automatically adjusted for the new loca
tion. In one of these aspects, a datasheet is represented using
a virtual object tree. A virtual object is generated for each
grouping of data that matches a discrete combination of Val
ues of the attributes identified by the datasheet attribute speci
fication. Then, a virtual object is generated for each specified
group of groups, until all groupings and Sub-groupings have
been associated with virtual objects.
0013. In yet another aspect, charts that represent multi
dimensional views of the data can also be dynamically cre
ated. Each chart is associated with a datasheet and the struc
ture of the chart can automatically reflect the dimensions of
the datasheet, or be manually controlled. Once a chart struc
ture has been created, the presentation displayed by the chart
structure can be automatically modified by selecting a differ
ent axis of the data to be presented. The resulting chart is then
automatically populated using values of the underlying
datasheet.
0014. According to another approach, a portfolio manage
ment system is created using the MODMS. The portfolio
management system comprises a portfolio manager for
instantiating meta-objects to correspond to portfolio data and
a portfolio analyzer for displaying instantiated meta-objects
whose attribute values match an attribute specification.
0015. In an example portfolio management system, het
erogeneous investment data, for example financial invest
ments and project management resource investments are
managed and analyzed using a single abstraction, a meta

Mar. 19, 2009

object. In addition, each investment data item can be con
verted to a different type of investment data item without
reentering the original data. Investment data can be dynami
cally organized within other investment data irrespective of
the type of investment data.
0016 All of these approaches and aspects and other
approaches and aspects are supported by the methods and
systems of a Meta-Object Data Management System.

BRIEF DESCRIPTION OF THE DRAWINGS

0017 FIG. 1 is an example block diagram of components
of an example Meta-Object Data Management System.
0018 FIG. 2 is an example overview flow diagram of
typical operations of an example Meta-Object Data Manage
ment System.
0019 FIG. 3 is an example block diagram abstraction of
an object type definition created and managed by an example
object type management component of a Meta-Object Data
Management System.
0020 FIG. 4 is an example block diagram of an example
meta-object.
0021 FIG. 5 is an example block diagram of an
in-memory data structure representation of time-phased
attribute.
0022 FIG. 6 is a block diagram of an example storage
representation of a meta-object.
0023 FIG. 7 is a block diagram of an abstraction of an
example meta-object instance hierarchy created using an
example Meta-Object Data Management System.
0024 FIG. 8 is an example overview flow diagram of a
command interpreter for an example Meta-Object Data Man
agement System.
0025 FIG. 9 is an example flow diagram of a Change
Object Type Definition routine for modifying an object type
definition in an example Meta-Object Data Management Sys
tem.

0026 FIG. 10 is an example flow diagram of an Update
Meta-Object routine for modifying an instantiated meta-ob
ject in an example Meta-Object Data Management System
when its object type definition has changed.
0027 FIG. 11 is an example flow diagram of an Adjust
Rollups routine for adjusting rollup attributes.
0028 FIG. 12 is an example flow diagram of steps
executed by a typical rollup event.
0029 FIG. 13 is an example block diagram of a general
purpose computer system for practicing embodiments of a
Meta-Object Data Management System.
0030 FIGS. 14 and 15 are example block diagrams of a
client-server, network-based tiered architecture for imple
menting embodiments of a Meta-Object Data Management
System.
0031 FIG.16 is an example block diagram of components
of an example object services layer of a Meta-Object Data
Management System used to implement an example Enter
prise Portfolio Management System.
0032 FIG. 17 is a block diagram of an example Enterprise
Portfolio Management System implemented using an
example Meta-Object Data Management System.
0033 FIG. 18 is a block diagram of an example investment
instance hierarchy of a hypothetical enterprise portfolio man
agement system created using a Meta-Object Data Manage
ment System.

US 2009/0076983 A1

0034 FIG. 19 is an overview flow diagram of example
portfolio management functions of a portfolio manager com
ponent of an example Enterprise Portfolio Management Sys
tem.

0035 FIG. 20 is an example flow diagram of an Add New
Meta-Object routine for adding a new meta-object (invest
ment).
0036 FIG.21 is an example flow diagram of a Move/Copy
Meta-Object routine for moving/copying a new meta-object
(investment).
0037 FIG. 22 is an example flow diagram of a Delete
Meta-Object routine for deleting a meta-object (investment).
0038 FIG. 23 is an example flow diagram of a Change
Meta-Object routine for changing an existing meta-object
(investment).
0039 FIG. 24 is an overview flow diagram of example
portfolio analysis functions of a portfolio analyzer compo
nent of an example Enterprise Portfolio Management System.
0040 FIG. 25 is an example flow diagram of a Create
Multi-Dimensional View routine for creating a multi-dimen
sion view (datasheet) of an example portfolio.
0041 FIG. 26 is an example flow diagram of a Build
Presentation routine for building a presentation for a multi
dimension view.
0042 FIG.27 is an example flow diagram of a Move/Copy
Multi-Dimensional View routine for moving/copying a
multi-dimension view.
0043 FIG. 28 is an example flow diagram of a Delete
Multi-Dimensional View routine for deleting a multi-dimen
sion view.

DETAILED DESCRIPTION OF THE INVENTION

0044) Embodiments of the present invention provide
enhanced computer- and network-based methods and sys
tems for managing and analyzing multi-dimensional data.
Multi-dimensional data is data having a large plurality of
attributes, such as data found in enterprise management sys
tems. Example embodiments provide a Meta-Object Data
Management System (“MODMS), which enables users to
arrange and to rearrange the hierarchical relationships of the
data on an ad-hoc basis and allows the data to be analyzed
using any set of attributes (dimensions) while the system is
running. Thus, analysis of the data can appear to occur con
currently with transactions on the underlying data. The
MODMS represents heterogeneous data in a normalized
(standardized) fashion using an object type management sys
tem that allows the arbitrary coercion of one type of object
into another different type of object and automatically
resolves attribute dependencies. Attribute dependencies
occur when the values of attributes of one object are calcu
lated or dependent upon attribute values of another object.
Such dependencies are useful in portfolio management appli
cations where, for example, values that correspond to a cost
attribute of multiple investment line items are aggregated
(rolled-up) into a Summary line item that represents the cost
attribute of the portfolio as a whole. The arbitrary coercion of
one type of object into another different type of object permits
and Supports a system whereby any type of object can be
contained within any other type of object, so, for example,
investments in a portfolio management system can be moved
within and across portfolios at will.
0045. The Meta-Object Data Management System pro
Vides techniques for creating, managing, and analyzing rela
tionships between, typically heterogeneous, multi-dimen

Mar. 19, 2009

sional data. In one example embodiment, the Meta-Object
Data Management System comprises one or more functional
components/modules that work together to implement an
enterprise portfolio management system. One skilled in the
art will recognize, however, that the techniques of a MODMS
may be used for the creation, management, and analysis of
relationships between many different types of single and
multi-dimensional data, and is not limited to use with portfo
lio management.
0046 FIG. 1 is an example block diagram of components
of an example Meta-Object Data Management System. One
skilled in the art will recognize that these components may be
implemented in software or hardware or a combination of
both. As shown, a Meta-Object Data Management System
may comprise an object type management Subsystem 101; a
meta-object instantiation Subsystem 102; one or more data
repositories 103-104 that hold, for example, the data used to
populate objects and object type definitions (for whatever
data is being managed); and an input/output interface 105.
For example, the data repository 103 may store the financial
investment data of an enterprise and the data repository 104
may store the project management (investment) data of the
enterprise. The object type management Subsystem 101 is
used to define object types that correspond to the various data
types (e.g., investment types) that will be created and man
aged by the MODMS. The meta-object instantiation sub
system 102 is used to create instances of the object types
defined by the object type management system 101. The
input/output interface 105 represents any interface to the
components of the MODMS and make take the form of a user
command interface or a programmatic interface, such as an
application programming interface definition.
0047 More specifically, the object type management sub
system 101 defines and manages global attributes and creates
and manage object type definitions, which are each a collec
tion of one or more global attributes. An excerpt from an
example set of global attribute definitions for an example
enterprise portfolio management system is attached as
Appendix B, which is herein incorporated by reference in its
entirety. Example global attributes may include characteris
tics of the data to be stored and analyzed such as a description,
cost to date, tangible benefits, intangible benefits, etc., or any
other definable characteristic whose value can be specified.
Global attributes can be added, deleted, and modified while
the MODMS is running. Once an object type definition is
created, its collection of attributes can be adjusted. For
example, attributes can be added to or deleted from an object
type definition. Further, when an attribute definition is
adjusted, any changes are percolated throughout the object
type definitions that include that attribute.
0048. The meta-object instantiation subsystem 102 Sup
ports the creation of instances of objects that are defined by
the object type management system 101. The meta-object
instantiation Subsystem 102 implements an abstraction of a
“higher level” object, known as a meta-object, that is not tied
to a particular object type, but rather implements a broader
object concept that is used to unify the creation and manage
ment of all object types that correspond to user data. For
example, within a portfolio management system, a meta
object is instantiated (created) to correspond to each “invest
ment' type in the system, including, for example, portfolios,
projects, products, financial assets, equipment, initiatives,
operations, applications, processes, activities, human
resources, other resources, other assets, etc. A representation

US 2009/0076983 A1

of a hierarchy of investments is created based upon the rela
tionships desired between investments by instantiating a
meta-object that corresponds to one investment as a child of
another meta-object that corresponds to another investment.
The object type definitions themselves do not define the con
tainment or inheritance relationships as common in other
object-oriented systems. Rather, the containment hierarchy
of instantiated meta-objects defines the relationships between
the investments. Once meta-objects are instantiated, they can
be moved, copied, deleted, and their attributes changed.
When a meta-object is moved or copied, the attribute values
of the original parent meta-object instance and the new parent
meta-object instance that are dependent upon children meta
object instances are automatically adjusted (rolled up) to
reflect the new containment structure. Thus, for example,
when an instantiated investment object is moved to a new
portfolio, the attributes of the original parent portfolio and the
new parent portfolio are automatically recomputed. Simi
larly, when an object type definition is changed, instantiated
meta-objects of the modified object type are automatically
adjusted to reflect changes to the object type definition. Thus,
for example, if the definition of a human resource object type
is changed to add an “age' characteristic, then instances of
human resource objects already created by the meta-object
instantiation system 102 are automatically updated to include
an “age' attribute with a default value.
0049. In addition to defining representations for types of
objects and for managing the data associated with them, the
MODMS supports the concurrent analysis of data (e.g.,
investment data) through the use of datasheets. A datasheet is
a multi-dimensional view of the underlying instance hierar
chy based upon a datasheet attribute specification (e.g., a
property sheet). For example, a new multi-dimensional view
of the portfolio investment hierarchy can be formed dynami
cally by instantiating a new datasheet based upon specified
properties. In one embodiment, the datasheet properties (the
attribute specification) specify axes (data columns of inter
est), grouping, Sorting, and filtering. A corresponding
datasheet is then determined (calculated) by the system and
displayed. Once a datasheet is generated, its properties can be
adjusted, thereby causing an automatic adjustment and recal
culation of the resultant datasheet. In one example embodi
ment, a datasheet is associated with a particular meta-object
in the instance hierarchy and relates to the objects within that
sub-tree of the containment hierarchy. A datasheet (or more
precisely, its attribute specification) can be deleted, moved, or
copied, thereby automatically causing adjustments to be
made to the resultant datasheet dependant upon revised loca
tion and adjustments to be made to the associated meta-object
if applicable.
0050 Although the techniques of a Meta-Object Data
Management System are generally applicable to any type of
investment, the terms “investment” and “asset’ are used gen
erally to imply any type of data having one or more attributes
whose cost or benefit can be assessed. One skilled in the art
will recognize that an investment is not limited to traditional
investment types such as real property, commercial paper, and
equity investments. Rather, a MODMS can be used to support
the creation, management, and analysis of any type of data
object, whether commonly considered an “investment” or
not.

0051. Also, although the examples described herein often
refer to portfolio management and enterprise portfolio man
agement, one skilled in the art will recognize that the Sub

Mar. 19, 2009

systems (components) of a MODMS are defined generically
and that the techniques of the present invention can also be
used in any system that desires to create and manage different
types of data objects whose relationships to each other may
change over time. In addition, the concepts and techniques
described are applicable to other data management systems,
including other types of applications that use data repositories
to store related information, for example, inventory control
systems, product databases, manufacturing systems, corpo
rate finances, etc. Essentially, the concepts and techniques
described are applicable to any data management environ
ment. In the following description, numerous specific details
are set forth, Such as data formats and code sequences, etc., in
order to provide a thorough understanding of the techniques
of the methods and systems of the present invention. One
skilled in the art will recognize, however, that the present
invention also can be practiced without some of the specific
details described herein, or with other specific details, such as
changes with respect to the ordering of the code flow.
0052. In addition, although certain terms are used prima
rily herein, one skilled in the art will recognize that other
terms could be used interchangeably to yield equivalent
embodiments and examples. For example, it is well known
that equivalent terms could be substituted for such terms as
“object,” “attribute.” “dimension,” etc. In addition, terms may
have alternate spellings which may or may not be explicitly
mentioned, and one skilled in the art will recognize that all
such variations of terms are intended to be included.

0053 FIG. 2 is an example overview flow diagram of
typical operations of an example Meta-Object Data Manage
ment System. In step 201, the MODMS supports the setup
(creation) or management of a global attribute tables. The
global attribute tables are used in step 202 to define (create)
object types. One skilled in the art will recognize that any
well-known technique can be used to implement a global
attributes table, and that any data structure equivalent of a
“table' may be employed. Each object type definition is based
upon a collection of global attribute definitions and a set of
methods (functions) shared by all meta-objects. Typically, as
shown in the example global attributes table excerpt of
Appendix B, each global attribute is associated with one or
more attribute values and the table contains one or more
“attribute value definitions” (fields) that describe how each
attribute value to be used or interpreted. Each attribute may
define more than one set of values. For example, an attribute
may define one set of values that correspond to target values
and define a different set of values (and potentially calcula
tions) that correspond to actual values. An attribute that
defines multiple sets of values is referred to as a “dimen
sioned' attribute. One skilled in the art will recognize that a
dimensioned attribute is an attribute that defines multiple
value sets and that each dimension instead could be repre
sented as its own attribute. In the example global attribute
table excerpted in Appendix B, each attribute definition con
tains a tag name for identification, a descriptive name, an
indication of whether multiple attribute values (dimensions)
are associated with the attribute and, for each dimension of
the attribute or for a single valued attribute, an attribute value
definition, which is a set of fields as that further define that
value. For example, each attribute value definition typically
defines:

0054 if dimensioned, a type of dimension (e.g., target,
plan, baseline, Scenario, actual);

US 2009/0076983 A1

0055 an indication of whether the attribute value can be
rolled up to a corresponding parent attribute value and, if
So, the type of roll-up function associated with that
value;

0056 an indication of whether the attribute value is
calculated, and, if so, the calculation function for that
attribute value;

0057 an indication of whether the attribute value is a
time-phased attribute and, if so, then the type of time
phased attribute is indicated.

Generally, time-phased attributes are attributes that have dis
crete values or ranges of values over periods of time, and
described in more detail with reference to FIG.S. Other fields
and types of values (not shown) may also be defined in an
attribute value definition and in an attribute definition. In step
203, meta-objects are instantiated using the created object
types to correspond to the data that is to be managed and
analyzed. In step 204, these meta-objects are persisted into
storage. Then in step 205, a command interpreteris invoked to
handle requests to manipulate the instantiated meta-objects
and to manage the object type management Subsystem.
0058 An administrator of an application that incorporates
the MODMS typically uses an interface to the object type
management system to define object types for the data to be
manipulated by the application. The administrator creates a
new object type (using well-known types of interfaces such as
dialog boxes, tables, forms, Q&A etc.) by determining which
of the global attributes are grouped together to form the new
object type. FIG.3 is an example block diagram abstraction of
an object type definition created and managed by an example
object type management component of a Meta-Object Data
Management System. Each object type definition 301 created
by the object type management component of a MODMS
comprises at least an object type identifier 302 and a collec
tion of one or more attributes 303. Each attribute of the
collection 303 is an indicator to an attribute definition 310
stored in the MODMS, for example as one or more rows of a
table similar to the table described in Appendix B. The data
structures shown in FIG.3 are abstract representations of the
data, and one skilled in the art will recognize that any well
known method for storing tabular or linked information may
be used. An attribute definition 310 defines all of the fields
that comprise the attribute. As described with reference to
FIG. 2, each attribute definition 310 typically comprises a
descriptive name field 311, an identification tag name field
312, and an indicator to one or more attribute value defini
tions, for example, attribute value definition 314. When the
attribute definition 310 defines a dimensioned attribute, then
an indicator 313 is present that refers to multiple attribute
value definitions 330 through a dimensioned attribute table
320. Specifically, for each value set that comprises a dimen
sion of the attribute, there is an indicator. Such as indicators
321-325 in the dimensioned attribute table 320 that refers to
an attribute value definition330. The different value sets for a
dimensioned attribute may correspond, for example, to target
values 321, plan values 322, baseline values 323, actual val
ues 325, and other such value sets 324. These different dimen
sions of an attribute are present to convey the concept that a
single attribute may have different values depending upon its
purpose, lifecycle state, or for other reasons. Each attribute
value definition 314 or 330 comprises, for example, a type of
value; an indication of whether the attribute value roles up to
a parent node and, if so, a rollup function; an indication of
whether the value is a calculated value and, if so, a calculation

Mar. 19, 2009

function; and an indication of whether the attribute is a time
phased attribute and, if so, the type of time phased attribute,
etc. One skilled in the art will recognize that even if the
attribute is not a dimensioned attribute, the attribute value
definition 314 may be stored in the table 320 using the same
mechanism as for a dimensioned attribute instead of being
stored directly in the attribute definition 310 as shown in FIG.
3. (Although attribute value definition 314 can be represented
by the same structure as 330, storing the attribute value defi
nition outside of the dimensioned attribute table may yield
processing efficiencies.)
0059. Once the object type definitions have been created
using the object type management component of the
MODMS, then a user of the application that incorporates the
MODMS can instantiate meta-objects using a meta-object
instantiation component of the MODMS. FIG. 4 is an
example block diagram of an example meta-object. Meta
object 400 includes an identifier of the type of object that is
instantiated 401, a name 402, an identifier of the instantiated
object 403, and an attribute block 404, which stores the col
lection of attribute values for all of the attributes defined for
the object type denoted by object type identifier 401. The
attribute value definitions of each attribute (such as those
described with reference to FIG. 3) are used to determine how
each attribute value in attribute block 404 is to be interpreted
and treated. In one embodiment, the attribute block is imple
mented as a "tagged' data structure of typically, alphanu
meric text that represents the value for each attribute between
a set of tags, such as XML tags. So, as shown in FIG. 4, the
first attribute value is delimited with the beginning tag
“<Attribute 1 > and with the ending tag".</Attribute 1 >.” The
tag used in the attribute block 404 corresponds to the tag
defined as tag name 312 in FIG. 3. Each meta-object 400
typically includes other fields, such as: an indicator 405 to a
table of methods 420 that define the behavior of each meta
object 400; an indication of a parent meta-object 406 in an
instance hierarchy; a flag 407 that indicates whether the
object has any associated children meta-objects; indicators
408 to the children meta-objects of meta-object 400 in the
instance hierarchy: lifecycle information 409; and other fields
(not shown) 410.
0060. One perspective of the attribute block 404 is that of
a serialized "cache' of attribute values within an instantiated
object. Because the attribute block 404 contains serialized
data and stores each attribute value in a normalized (standard)
fashion, the values of the attributes can be easily persisted, for
example, using well-known database management technol
ogy. In addition, the tag methodology of the block 404 allows
the attribute cache to be searched efficiently. Because a meta
object is an abstraction provided by the MODMS, one skilled
in the art will recognize that the abstraction can be physically
implemented according to a variety of techniques. For
example, when an already instantiated meta-object is read
and assembled from persistent storage to be manipulated by
the MODMS, the various implementations of an MODMS
may temporarily store the attribute values of attribute block
404 information as discrete data structures using traditional
object-oriented techniques that instantiate objects for each
value based upon the attribute type, etc. Other techniques,
Such as more traditional monolithic programming techniques
may also be employed to implement a meta-object abstrac
tion. From the perspective of a user of an application built
upon MODMS, however, each meta-object looks and acts the
same regardless of the type of object that is instantiated.

US 2009/0076983 A1

0061. If one of the attribute values of the attribute block
404 is a time-phased value, then the value is more specifically
described as a series of time-phased values, where each time
phased value is in effect over a range of time. For example, a
time-phased attribute may have a discrete value for each week
over a three-year period. FIG. 5 is an example block diagram
of an in-memory data structure representation of time-phased
attribute. Each time-phased attribute 501 has an associated
time-phased attribute type 502; an indicator 503 to a collec
tion of one or more time-phased buckets 510; and pointers to
the methods 504 that can be used to manipulate the type of
time-phased attribute denoted by type 502. For example, a
time-phased attribute typically defines methods for getting
and setting values for a particular range. Each time-phased
bucket 510 is a data structure that indicates the range over
which a value is effective. For example, each bucket 510 may
comprise a bucket type 511, a value 512 for the range indi
cated, a start time period indication 513, a duration 514 that
defines the range (for example, in number of hours, days,
quarters, years, etc.), and an indicator 515 to the next bucket
in the collection or that signifies the end of the list.
0062. Note that the values of a time-phased attribute can
be stored in the attribute block 404 delimited by tags in a
manner that is similar to every other attribute value. In this
case, a bucket collection is delimited by a pair of tags, which
in turn contains nested tags that define the values (value, start
time period, duration) for each time bucket. For example, if
“Administration' is the tag name of a time-phased (labor)
attribute type, then the cache for the time buckets may read as:

<Administration>
<Bucket Collection>

< Buckets
100, 1/1/2003, 30

</Buckets
<Buckets

250, 2/1/2003, 28
</Buckets

</Bucket Collection>
</Administration>

The text “100, 1/1/2003, 30” in this example indicates 100
units (of labor), a start date of Jan. 1, 2003, and a duration of
30 days. The value of each bucket type is preferably stored in
its smallest unit, so that it can be easily converted to other time
period units as needed.
0063. Since a typical application that incorporates a
MODMS creates and manages a very large collection of data,
the physical representation of meta-objects can effect the
efficiency of the application. In a typical implementation of a
MODMS, each meta-object is stored as records in a multitude
of tables, which are accessed by the management and analysis
components of the MODMS as needed. FIG. 6 is a block
diagram of an example storage representation of a meta
object. In FIG. 6, instantiated meta-object 601 is an abstract
data structure representation of the meta-object 400 shown in
FIG. 4 and contains the same fields: name 602; an object
identifier 603; an identification of the object type 604; an
attribute block 605, and other fields (not shown). The instan
tiated meta-object 601 is shown stored as records in object
table 610 and native attribute tables 620 and 630. Only some
of the tables used to represent meta-object 601 are shown in
FIG. 6. For each object, the MODMS stores a recordin object

Mar. 19, 2009

table 610 that contains the object identifier 611, the name of
the object 612, an identifier of the object type 613, and an
indicator 614 to the (tagged) attribute block. One skilled in the
art will recognize that instead of an indicator to the attribute
block, the tagged text may be stored in the object table itself.
The fields in each record in object table 610 thus correspond
to the meta-object data structure 601. For each attribute indi
cated by the attribute block indicator 614, the MODMS also
stores a record in a table that corresponds to the “native' type
of the attribute, thus cross-referencing the meta-objects by
native attribute type. For example, if the attribute block con
tains an attribute that ultimately resolves to a “number, then
a record is created in a number attribute table 620 that indexes
the meta-object 601. Or, for example, if the attribute block
contains an attribute that is of a type that is ultimately a money
attribute, then a record is created in a money attribute table
630. Example native attribute types include such types as
numbers, dates, money, text, flags, and time-phase attributes,
although one skilled in the art will recognize that depending
upon the use of the MODMS, different native types may be
useful. Storage of each attribute in these various native
attribute type tables allows attributes to be indexed and
accessed efficiently based upon their types, as opposed to
searching each instantiated meta-object for instances that
have attributes of a specific type. This capability may be
useful, for example, when an attribute definition is changed
and all of the objects that have been instantiated using that
definition need to be updated accordingly. Thus, each record
in a native type attribute table indicates the object identifier
623 of the corresponding instantiated meta-object 601 that
contains an attribute value of that type. For example, each
record in number attribute table 620 stores the attribute name
621; an identifier of the attribute (sub)type 622; the identifier
of the corresponding instantiated meta-object 623; and the
value 624 specified for that attribute in the instantiated meta
object.
0064. As previously mentioned, a meta-object is instanti
ated as part of a hierarchy of object instances. FIG. 7 is a block
diagram of an abstraction of an example meta-object instance
hierarchy created using an example Meta-Object Data Man
agement System. The meta-object instance hierarchy defines
the containment relationships of the instantiated meta-objects
and is independent of the object type definitions. That is, any
meta-object can be a child of any other meta-object providing
it is instantiated as a child of that meta-object. This allows, for
example, different types of investments to become part of
other types of investments and to “behave like they belong to
the parent investment without worrying about the strict inher
itance rules of traditional object-oriented programming tech
niques. (Using traditional object-oriented techniques, an
object can be manipulated using the same methods as its
“parent’ object of a different object type only if the child
object type definition is derived when it is created from the
parent object type definition.) So, in FIG. 7, for example, a
portfolio 'A' meta-object 701 contains a portfolio “B” meta
object 720; two product “F” and “G” meta-objects 721 and
722; and an asset “I” meta-object 723. Further, the portfolio
“B” meta-object 720 contains a project collection “E” meta
object 732; program “C” meta-object 730, and program “D’
meta-object 731. The program “C” meta-object 730 further
contains a project collection “F” meta-object 740. Con
versely, project collection “E” meta-object 732 contains a
program “J” meta-object 741. Thus, in one case a program
type meta-object is a parent of a project collection type meta

US 2009/0076983 A1

object; whereas, in the other case, a project collection meta
object is a parent of a program meta-object. Thus, the con
tainment relationships define the object ancestral
relationships and not the object definitions themselves.
0065. Once meta-objects have been instantiated to corre
spond to the initial data set, a command interpreter is invoked
to manage the data and to provide analysis functions. FIG. 8
is an example overview flow diagram of a command inter
preter for an example Meta-Object Data Management Sys
tem. In step 801, the MODMS allows a user (for example, an
administrator of an application that incorporates the
MODMS) to add, modify, or delete global attributes. An
example global attributes table was described with reference
to FIG. 2. In step 802, the MODMS allows a user to add,
modify, or delete an object type definition Such as that
described with reference to FIG. 3. In step 803, the MODMS
allows a user to add, modify, or delete instantiated meta
objects from the meta-object instance hierarchy, for example,
the hierarchy shown with reference to FIG. 7.
0066. One skilled in the art will recognize that there are
many well-known methods for implementing the addition,
deletion, and modification of global attributes and the addi
tion and deletion of object type definitions and of instantiated
meta-objects. For example, an interface Such as a dialog box
based interface, a form based application, or a direct manipu
lation interface can be used to modify tables that store global
attributes, object type definitions, and meta-objects. As men
tioned previously, modifications to an object type definition,
however, result in automatic adjustments to instantiated
objects. Thus, when an object type definition is modified, the
MODMS preferably locates all instantiated objects of that
object type and modifies their contents accordingly to bring
them up to date. FIGS. 9-12 describe some of the routines
used to modify object type definitions and to automatically
adjust instantiated objects as a result. Analysis routines are
typically tied to the applications that incorporate the
MODMS and so are discussed as they relate to datasheet
capabilities of an example portfolio management system
embodiment described with reference to FIGS. 17-28.
0067 FIG. 9 is an example flow diagram of a Change
Object Type Definition routine for modifying an object type
definition in an example Meta-Object Data Management Sys
tem. This routine can be used, for example, to change the
attributes of an investment type such as a “project.” The
routine is shown with steps for modifying an object type by
adding a new attribute definition, and assumes a higher level
user interface for selection of the change to be made (i.e.,
what attribute to delete or add). One skilled in the art will
easily recognize how to modify the routine to change an
existing attribute by deleting a designated one and replacing
it with a new attribute definition or how to modify it in other
ways. The routine thus takes as input a designation of the
object type whose definition is to be modified, and a new
attribute definition.

0068 Specifically, in step 901, the MODMS retrieves the
object type definition designated by the object type ID input
parameter. In step 902, the MODMS modifies the retrieved
object type definition by adding the new attribute definition
that was designated as an input parameter to the routine. This
new attribute definition is typically provided, for example, by
an I/O interface to an administrator that is permitted to change
the definition of attributes in a global attribute table. Next, in
step 903, the MODMS queries the meta-object instantiation
hierarchy to locate all of the instantiated objects of the des

Mar. 19, 2009

ignated object type. Since each stored meta-object includes
an indication of its object type, the instantiation hierarchy is
searched based upon that field. Steps 904-907 execute a loop
that, for each matching meta-object, updates the meta-object
with the new attribute definition and adjusts attributes that
have rollup characteristics as necessary. More specifically, in
step 904, the routine determines whether there are more meta
objects to process and, if so, continues in step 905, else
continues in step 907. In step 905, the next instantiated meta
object is determined. Then, in step 906, an Update Meta
Object routine is invoked to add the new attribute definition to
the current instantiated meta-object being processed and to
perform any specified calculations, and the routine returns to
the beginning of the loop in step 904. The Update Meta
Object routine is described further with reference to FIG. 10.
In step 907, once all of the meta-objects that need to be
updated have been updated, an Adjust Rollups routine is
invoked to update the entire instantiation tree by adjusting any
attributes with rollup values, since the definitions of instanti
ated meta-objects may have changed. The Adjust Rollups
routine described further with reference to FIG. 11.

0069 FIG. 10 is an example flow diagram of an Update
Meta-Object routine for modifying an instantiated meta-ob
ject in an example Meta-Object Data Management System
when its object type definition has changed. There are differ
ent ways that an object type definition may have been
changed and Subsequently affect instantiated objects. For
example, a new attribute (hence, a new attribute definition)
may have been added to the object type, an attribute may have
been removed from the object type, or other parts of the
definition of an attribute may have been changed. One skilled
in the art will recognize that there are may ways to implement
the Update Meta-Object function to update instantiated
objects of a modified object type and that, if an attribute was
changed in the underlying object type definition as opposed to
added or deleted, update operations can be simplified by
treating modification the same as an addition followed by a
deletion. The example routine shown in FIG. 10 either
removes an existing attribute tag/value pair from an attribute
block of an instantiated meta-object or adds a new attribute
tag/value pair to the attribute block. Any calculations indi
cated by the corresponding new attribute definition are per
formed as necessary. Thus, several input parameters are
specified for the Update Meta-Object routine including a
designated meta-object instance to update, the type of update
needed (e.g., add or delete or both for a modification), and a
designated attribute tag (from which a new attribute definition
can be determined).
(0070 More specifically, in step 1001, if a new attribute is
to be added to the meta-object instance indicated by the
designated object identifier, then the routine continues in step
1002, else continues in step 1007. In step 1002, the designated
new attribute tag and a corresponding ending tag are added to
the attribute block (for example, attribute block 605 in FIG.
6). In step 1003, the attribute definition that corresponds to the
designated tag is retrieved from, for example, the global
attributes table. In step 1004, if the retrieved attribute defini
tion indicates that the value of the attribute is to be calculated,
then in step 1005 the calculation is performed and the result
ant value stored in the attribute block of the indicated meta
object instance. Otherwise, in step 1006, a default value indi
cated by the retrieved attribute definition is stored between the
attribute tag pair in the attribute block. In step 1007, if an
attribute is to be removed from the meta-object instance indi

US 2009/0076983 A1

cated by the designated object identifier, then the routine
continues in step 1008, else returns. In step 1008, the attribute
tag/value pair that corresponds to the designated attribute tag
is removed from or somehow nullified in the attribute block,
and the routine then returns.

0071 FIG. 11 is an example flow diagram of an Adjust
Rollups routine for adjusting rollup attributes. This routine
takes a designated Sub-tree of a meta-object instantiation
hierarchy and, from the leafnodes on up, executes all attribute
rollup functions that exist in any node. The rollup functions
are preferably executed from the bottom of the tree upwardso
that they are properly aggregated progressively at each higher
level in the hierarchy and thus properly reflect the values of
the children nodes. There are many methods for performing
adjustment of rollups, and the one illustrated keeps track of in
a rollup event list (accumulates indicators to) all of the nodes
that need to have their rollup functions executed in the proper
order, and then executes the rollup functions of these nodes
(as rollup events) in order accordingly.
0072 Specifically, in step 1101, the routine obtains a
graph of all the objects in the meta-object instance hierarchy
from the designated sub-tree pointer downward to the leaf
nodes. One skilled in the art will recognize that the imple
mentation of this step is typically dependent upon the storage
representation for the instantiation hierarchy. In step 1102,
the routine determines a list of the leaf nodes of that sub-tree.
In steps 1103-1109, the routine executes a loop for each leaf
node to determine whether it has a rolled-up attribute and, if
so, adds an event corresponding to that rollup to a list of rollup
events to be executed. After the list is accumulated, the rollup
events are executed in the order that they were added to the
list, thus insuring proper aggregation. More specifically, in
step 1103, the routine determines whether there are any more
leaf nodes in the graph, and, if so, continues in Step 1105, else
continues in step 1104. In step 1105, the routine gets the next
leaf node indicated by the sub-tree graph. In step 1106, the
routine determines from the object type system whether the
current node corresponds to a type of object which has rolled
up attributes. In one embodiment, each object type has a list of
the attributes it contains (an object-specific rollup attribute
list) that have values that roll up (referred to for convenience
as rollup attributes). Alternatively, a list of attributes that need
to be rolled-up for that object type can be dynamically gen
erated. Steps 1107-1109 execute a loop for each of these
rollup attributes to add a rollup event to the roll up list.
Specifically, in step 1107, if there are more rollup attributes
for that object to be processed, then the routine continues in
step 1108, else returns to look at the next leaf node in step
1103. In step 1108, the routine gets the next rollup attribute
from the object-specific rollup attribute list. In step 1109, the
routine adds a rollup event that corresponds to that rollup
attribute to the rollup event list. A rollup event includes, for
example, an indication of the current node in the instantiation
sub-tree and a pointer to an attribute that needs to be rolled up
so that, when the event is executed, the correct rollup function
can be found and the corresponding value(s) of the attribute
can be determined. Example code for an example rollup event
is described with reference to FIG. 12. In step 1104, once the
routine determines that there are no more leaf nodes to pro
cess, the routine executes the Execute Rollup List routine
(not shown) to execute all of the rollup events on the rollup
event list that have been accumulated thus far, and then
returns. Note that it is only necessary to examine the leaf
nodes initially and to add rollup events for the leaf nodes,

Mar. 19, 2009

because each rollup event for a leaf node in turn will add
rollup events for the parent node of each of these nodes (see
FIG. 12). These nodes will in turn add rollup events for their
parent node, and the entire process will bubble up similarly so
that eventually all necessary rollup events from the leaf node
all the way to the highest parent node across each level of the
instantiation sub-tree will be added and executed.

0073. As described, rollup event code is executed for each
rollup event that has been added to the rollup event list. FIG.
12 is an example flow diagram of steps executed by a typical
rollup event. One skilled in the art will recognize that other
code are possible and that this is just one example for ensuring
that attributes are rolled up from the leaf nodes all the way to
the root node of the designated sub-tree. In step 1201, the
rollup event code determines, based upon a designated
attribute and node pointer, the particular rollup function for
the designated attribute. In step 1202, if there is no rollup
function specified (the definition is incomplete) then the code
returns, other continues in step 1203. In step 1203, the rollup
event code determines a list of the children of the current
designated node and the parent node of the designated node.
In steps 1204-1207, the routine executes a loop to aggregate
the corresponding attribute values of the designated attribute
of the children nodes with the designated node so that the
aggregated value can be stored in the parent node. The code
also adds a rollup event corresponding to the parent node and
the designated attribute so that the process can bubble up the
hierarchy. More specifically, in step 1204, the routine deter
mines whether there are more children nodes of the desig
nated node, and, if so, continues in step 1206, else continues
in step 1205. In step 1206, the routine gets the next child node
to process. In step 1207, the routine updates an (accumulat
ing) aggregated value with the corresponding attribute value
from the current child and saves it until all of the values are
retrieved from all the children of the designated node. For
example, if the total cost is the attribute being computed and
the rollup function is a summation function, then step 1207
contains a temporary variable for collecting a sum of the total
cost attribute of each of the children nodes. The routine then
returns to step 1204 to look for the next child node to process.
In step 1205, when there are no more children nodes of the
designated node to process, the routine adds a rollup event to
correspond to the parent node of the designated node and
designates the current attribute being processed, and then
returns.

0074 FIG. 13 is an example block diagram of a general
purpose computer system for practicing embodiments of a
Meta-Object Data Management System. The general purpose
computer system 1300 may comprise one or more server
and/or client computing systems and may span distributed
locations. In addition, each block shown may represent one or
more such blocks as appropriate to a specific embodiment or
may be combined with other blocks. Moreover, the various
blocks of the Meta-Object Data Management System 1310
may physically reside on one or more machines, which use
standard interprocess communication mechanisms to com
municate with each other.

0075. In the embodiment shown, computer system 1300
comprises a computer memory (“memory') 1301, an
optional display 1302, a Central Processing Unit (“CPU”)
1303, and Input/Output devices 1304. The Meta-Object Data
Management System (“MODMS) 1310 is shown residing in
the memory 1301. The components of the MODMS 1310
preferably execute on CPU 1303 and manage the generation,

US 2009/0076983 A1

management, and use of meta-objects, as described in previ
ous figures. Other downloaded code 1330 and potentially
other data repositories 1320 also reside in the memory 1310,
and preferably execute on one or more CPU's 1303. In a
typical embodiment, the MODMS 1310 includes an object
type management Subsystem 1311, a meta-object instance
management subsystem 1312, input/output interfaces 1315.
and one or more data repositories 1314, including, for
example, investment data.
0076. In an example embodiment, components of the
MODMS 1310 are implemented using standard program
ming techniques. One skilled in the art will recognize that the
components 1311-1315 lend themselves to distributed,
object-oriented implementations and can be implemented to
use relational database management systems, web-based (In
ternet or internet) interfaces, etc. However, any of the
MODMS components 1311-1315 may be implemented using
more monolithic programming techniques as well. In addi
tion, programming interfaces to the data stored by the
MODMS process can be available by standard means such as
through C, C++, C#, and Java API and through scripting
languages such as XML, or through web servers supporting
such interfaces. The data repositories 1313 and 1314 are
preferably implemented for scalability reasons as database
systems rather than as text files, however any method for
storing the application data and for storing the instantiated
meta-objects may be used. In addition, some routines of the
object type management Subsystem 1311 and the meta-object
instance management subsystems may be implemented as
stored procedures, or methods attached to table “objects.”
although other techniques are equally effective.
0077 One skilled in the art will recognize that the
MODMS 1310 may be implemented in a distributed environ
ment that is comprised of multiple, even heterogeneous, com
puter systems and networks. For example, in one embodi
ment, the object type management Subsystem 1311, the meta
object instance management Subsystem 1312, and the data
repositories 1313-1314 are all located in physically different
computer systems. In another embodiment, the type and
instance subsystem components 1311 and 1312 of the
MODMS 1310 are hosted each on a separate server machine
and may be remotely located from the instantiated object and
attribute tables which are stored in the data repositories 1313
1314. Different configurations and locations of programs and
data are contemplated for use with techniques of the present
invention. In example embodiments, these components may
execute concurrently and asynchronously; thus the compo
nents may communicate using well-known message passing
techniques. One skilled in the art will recognize that equiva
lent synchronous embodiments are also supported by an
MODMS implementation. Also, other steps could be imple
mented for each routine, and in different orders, and in dif
ferent routines, yet still achieve the functions of the MODMS.
0078 FIGS. 14 and 15 are example block diagrams of a
client-server, network-based tiered architecture for imple
menting embodiments of a Meta-Object Data Management
System. FIG. 14 illustrates how an MODMS may be imple
mented at the web services layer as web service interfaces and
how the MODMS interacts with any type of presentation tier
residing above it and with any data access tier residing below
it

0079 So, for example, in FIG. 14, the web services inter
faces 1420, which are typically structured application pro
gramming interfaces (API), communicate through encap

Mar. 19, 2009

Sulated data access (data abstractions) to various databases.
The layers in a data access layer bind the data abstractions
into the various databases physically used in the system in
order to manage the physical storage. For example, the web
services interfaces 1420 communicate (eventually) through
an accessor layer 1435 to a data access layer 1450, which
communicates to lower level data access libraries 1451 (for
example, ADO.NET). These access libraries 1451 provide
interfaces to the various physical database management sys
tems such as a relational database management systems
1452-1454. The web services layer 1430 contains web ser
vice interfaces (API) 1420 which are used by the presentation
tier 1410 to access the various web services.

0080. The web service layer 1430 provides support for the
MODMS functions. The various capabilities of a MODMS
are implemented as services, such as object services 1431,
licensing services 1432, and user permissions and related
services 1433. Access to the MODMS services is provided by
web services framework 1434 through calls to the web ser
vices interfaces 1420.

I0081. As continued in FIG. 15, presentation tier 1510
(1410 in FIG. 14) interfaces with the MODMS services
through calls to the various web services 1431-1433 using the
web service interfaces 1520. In addition, various connectors
1540 to other third-party environments can interface through
the web service interfaces 1520 to take advantage of the
underlying technology. For example, connectors to programs
such as Microsoft Project Server, and Pacific Edge's Project
Office can interface through the web services interfaces 1520
to import data into the MODMS and to export data to those the
third-party programs.
I0082. The presentation tier 1510 provides the input/output
interface between, for example, a client web browser 1540
and the web services layer 1530 of the MODMS. The presen
tation layer 1510 typically comprises some type of page
server 1514 (for example, ASP.NET); a navigation and user
interface framework 1515; and various page definitions 1512
which are transported through the page server 1514 to the
client web browser 1540. The pages 1512 may reference
various class libraries provided by the system 1513. In addi
tion, in some embodiments, the presentation layer 1510 may
provide charting Support 1511 and other application-specific
modules (not shown).
I0083. In an example embodiment, the majority of the
functions that were described with respect to FIGS. 1-12 are
implemented in the object services layer 1531 of the web
services 1530. FIG. 16 is an example block diagram of com
ponents of an example object services layer of a Meta-Object
Data Management System used to implement an example
Enterprise Portfolio Management System. To implement an
MODMS, the object services 1600 comprises a command
layer 1601; and various engines/subsystems 1602-1606 for
implementing the functionality of the object type system and
meta-object instantiation systems described earlier. For
example, a typical object services layer 1600 may comprise
an object instance system 1607; an object type system 1603
with an administration module 1604 for modifying object
types; a time-phased subsystem 1605; a milestone subsystem
1606; and a math engine 1602. As described earlier, admin
istrators use the type system module 1603 to define and man
age object types in the system. The instance system 1607 is
used to instantiate meta-objects of those types. The math
engine 1602, time-phased subsystem 1605, and milestone
Subsystem 1606 are shown as Supplemental components;

US 2009/0076983 A1

however, one skilled in the art will recognize that their func
tionality may be incorporated into the other modules as
appropriate.
0084 As described in FIGS. 1-12, a meta-object data man
agement system may be used to create applications such as an
enterprise portfolio management system. In an enterprise
portfolio management system, object types are created for
each “investment type to be managed by the system and, as
portfolios are added to the system that contain investments,
corresponding objects (meta-objects) are instantiated appro
priately.
0085 FIG. 17 is a block diagram of an example Enterprise
Portfolio Management System implemented using an
example Meta-Object Data Management System. In an
example embodiment, the enterprise portfolio management
system 1700 comprises a portfolio manager 1702, a portfolio
analyzer 1703, and a portfolio administration interface 1704.
These components provide the different enterprise (invest
ment) data management and analysis capabilities and are
accessed by a user of the portfolio management system
through an input/output interface 1705. Components 1702
1704 communicate with the meta-object data management
system 1701 through the different programmatic interfaces
(e.g., the web service interfaces shown in FIG. 14) that access
the object services layer of the MODMS 1701. In addition, as
discussed with respect to FIGS. 14 and 15, connector mod
ules 1706 to external systems may also be present and access
the meta-object data management system 1701. For example,
connector modules 1706 may connect to accounting systems,
human resource systems, and financial systems otherwise
available in the enterprise. Further, these systems may be
legacy applications that pre-existed the enterprise portfolio
management system 1701.
I0086 FIG. 18 is a block diagram of an example investment
instance hierarchy of a hypothetical enterprise portfolio man
agement system created using a Meta-Object Data Manage
ment System. For the purposes of FIG. 18, it is presumed that
the enterprise organization comprises several Sub-organiza
tions including corporate management 1810, engineering
1811, finance 1812, and information technology 1813 por
tions of the organization. It is presumed also that each of the
sub-organizations 1810-1813 comprise several departments,
which each may desire to organize their own portfolio data,
hence maintainandanalyze investments, in their own particu
lar ways. In addition, the investment data may be stored in
data formats and on databases that are specific to that portion
of the organization. So for example, as with most portfolio
management systems, some portions of organizations within
the enterprise may want to view the data in a partitioned
fashion to analyze investments at a lower (more detailed)
level, while other portions of the organization, Such as the
management executive committee members, may want to
view all of the data of the various Sub-organizations at a
summary level. The different size boxes shown in FIG. 18 and
linked to other size boxes, such as portfolio 1832, program
1840, project 1841, and project 1842 are provided to demon
strate that any type of investment can be contained in any
other type of investment simply by virtue of its containment
position within the hierarchy. So for example, a portfolio type
object 1832 contains a project type object 1841, which con
tains a program type object 1853, even though elsewhere in
the hierarchy, a program type object 1840 contains a project
type object 1850 demonstrating the opposite containment
relationship.

Mar. 19, 2009

I0087. As described with respect to FIG. 17, the example
enterprise portfolio management system comprises portfolio
management functions, portfolio analysis functions, and
portfolio administrative functions. Example screen displays
of some of the functionality provided by these components
are illustrated in Appendices A and C, which are herein incor
porated by reference in their entirety. Appendix A includes
screen displays from a portfolio management interface and a
portfolio analysis interface to an executing portfolio manage
ment system. Appendix C illustrates Screen displays that
exemplify the capabilities of a charting Subsystem, which
allows multi-dimensional data to be redisplayed in a chart
using modified sets of axes, without rebuilding the underlying
chart definition. In the examples shown, the charting system
is integrated into the portfolio analysis interface Such that
each chart is associated with a designated multi-dimensional
view of the data.

I0088 FIGS. 19-28 describe in greater detail example
functions of the portfolio manager and portfolio analyzer
components of an example enterprise portfolio management
system such as that shown in FIG. 17. One skilled in the art
will recognize that the capabilities shown can be modified
using well-known techniques to be suitable for the applica
tion desired.

I0089 FIG. 19 is an overview flow diagram of example
portfolio management functions of a portfolio manager com
ponent of an example Enterprise Portfolio Management Sys
tem. The portfolio manager component of an enterprise port
folio management system is responsible for creating and
managing the meta-object instances that correspond to invest
ment data. One skilled in the art will recognize that the func
tions displayed in FIG. 19 are merely examples, and a port
folio manager component may be built with the same, similar,
or altogether different functions. In step 1901, the portfolio
manager component determines what command the user has
designated to be executed. In step 1902, if the command
indicates that a new investment object is to be added, then the
portfolio manager continues in step 1903, else continues in
step 1904. In step 1903, the portfolio manager invokes an Add
New Meta-Object routine to add a new meta-object instance
that corresponds to the type of investment object desired, and
returns to step 1901 to determine and process the next user
command. An example Add New Meta-Object routine is dis
cussed further with reference to FIG. 20. In step 1904, if the
command indicates that a particular investment object is to be
deleted, then the portfolio manager continues in step 1905,
else continues in step 1906. In step 1905, the portfolio man
ager invokes a Delete Meta-Object routine to delete the par
ticular investment instance, and returns to step 1901 to deter
mine and process the next user command. An example Delete
Meta-Object routine is discussed further with reference to
FIG. 22. In step 1906, if the command indicates that the user
desires to move or copy an investment object to a different
location in the investment instance hierarchy, then the port
folio manager continues in step 1907, else continues in step
1908. In step 1907, the portfolio manager calls a Move/Copy
Meta-Object routine to move or copy the investment object
indicated, and returns to step 1901 to determine and process
the next user command. An example Move/Copy Meta-Ob
ject routine is discussed further with reference to FIG. 21. In
step 1908, if the command indicates that an investment object
is to be modified, then the routine continues in step 1909, else
continues in step 1910. In step 1909, the portfolio manager
invokes a Change Meta-Object routine to modify the object

US 2009/0076983 A1

instance passing appropriate information, and then returns to
step 1901 to determine and process the next user command.
An example Change Meta-Object routine is discussed further
with reference to FIG. 23. In step 1910, if the command
indicates that the user's view is to be changed to a different
component of the enterprise portfolio management system,
then the portfolio manager continues in step 1911, else
returns to step 1901 to determine and process the next user
command. In step 1911, the portfolio manager relinquishes
control to the indicated component.
0090 FIG. 20 is an example flow diagram of an Add New
Meta-Object routine for adding a new meta-object (invest
ment). The Add New Meta-Object routine is responsible for
instantiating and adding a new investment object to a parent
node in the investment object hierarchy. The routine takes as
input a designated object type and a destination location (new
parent object). In step 2001, the routine instantiates a new
meta-object to correspond to the investment type. In step
2002, the routine populates the attribute block with user
specified values or defaults for unspecified values. In step
2003, the routine invokes the Adjust Rollups routine (previ
ously described with reference to FIG. 11) on the sub-tree of
the instance hierarchy whose root is the parent node of the
added object. The routine then returns.
0091 FIG.21 is an example flow diagram of a Move/Copy
Meta-Object routine for moving/copying a new meta-object
(investment). The routine takes as input a designated object, a
Source location (current parent object), and a destination loca
tion (new parent object) in the instance hierarchy. In step
2101, the routine retrieves the instantiated object in the
instance hierarchy that corresponds to the designated object.
In step 2102, the routine instantiates a new object of the same
type of object as the designated object. In step 2103, the
routine adds the newly instantiated object as a child of the
designated new parent object (where the new object is being
moved to or copied to). In step 2104, the attribute block,
including the values, is copied from the designated object to
the new object. In step 2105, if the command has a indicated
that a move of the investment object is desired as opposed to
a copy of the investment object, then the routine continues in
step 2106 to delete the designated object from the current
parent, else continues in step 2107. Thus, a move operates
similar to a copy except that the original investment object is
deleted. In step 2107, the routine invokes the Adjust Rollups
routine (previously described with reference to FIG. 11) on
the entire instance hierarchy, and returns.
0092 FIG. 22 is an example flow diagram of a Delete
Meta-Object routine for deleting a meta-object (investment).
The Delete Meta-Object routine takes as input parameters a
designated object to be deleted and a source location (current
parent object). In step 2201, the routine removes the desig
nated child object from the source location. In step 2202, the
routine invokes the Adjust Rollups routine (previously
described with reference to FIG. 11) to adjust the rollups on
the Sub-tree whose root is the source location, since one of its
children objects has been deleted. The routine then returns.
0093 FIG. 23 is an example flow diagram of a Change
Meta-Object routine for changing an existing meta-object
(investment). The Change Meta-Object routine takes as input
a designate object and a list of attribute tag-value pairs that
describe values for the attributes of the designated object.
This routine is used, for example, to change the properties of
a particular investment. In step 2301, the routine retrieves the
instantiated object that corresponds to the designated object.
In steps 2302 through 2304, the routine executes a loop for
each designated attribute tag-value pair to update the attribute
block in the retrieved object. Specifically, in step 2302, the

Mar. 19, 2009

routine determines whether there are more designated
attribute tag-value pairs and, if so, continues in step 2303, else
continues in step 2305. In step 2303, the routines obtains the
next attribute tag-value pair in the designated list. In step
2304, the routine updates the attribute block of the retrieved
object with the particular attribute tag designated by the cur
rent attribute tag-value pair, and updates the value of that
attribute in the attribute block of the retrieved object. In step
2305, the routine invokes the Adjust Rollups routine (previ
ously described with reference to FIG. 11) on the sub-tree
whose root is the retrieved object, and returns.
0094 FIG. 24 is an overview flow diagram of example
portfolio analysis functions of a portfolio analyzer compo
nent of an example Enterprise Portfolio Management System.
The portfolio analyzer component of an enterprise portfolio
management system is responsible for creating and managing
multi-dimension views of the meta-object instances and
charts that correspond to investment data. One skilled in the
art will recognize that the functions displayed in FIG. 24 are
merely examples, and a portfolio analyzer component may be
built with the same, similar, or altogether different functions.
In step 2401, the portfolio analysis component determines the
command that was selected by the user as input. In step 2402.
if the command indicates that a new datasheet is to be added,
then the routine continues in step 2403, else continues in step
2404. In step 2403, the portfolio analyzer component invokes
a Create Multi-Dimensional View routine to add a new multi
dimensional view to the enterprise portfolio management
system, and then returns to step 2401 to determine and pro
cess the next user command. An example Create Multi-Di
mensional View routine for adding a new multi-dimensional
view is described further with reference to FIG. 25. In step
2404, if the command indicates that the user desires to move
or copy a datasheet, then the portfolio analyzer component
continues in step 2405, else continues in step 2406. In step
2405, the portfolio analyzer component invokes a Move/
Copy Multi-Dimensional View routine to move or copy an
existing multi-dimensional view, and then returns to step
2401 to determine and process the next user command. An
example Move/Copy Multi-Dimensional View routine is
described further with reference to FIG. 27. In step 2406, if
the command indicates that a particular datasheet is to be
deleted, then the routine continues in step 2407, else contin
ues in step 2408. In step 2407, the portfolio analyzer compo
nent invokes a Delete Multi-Dimensional View routine to
delete an existing multi-dimensional view, and then returns to
step 2401 to determine and process the next user command.
An example Delete Multi-Dimensional View routine is
described further with reference to FIG. 28. In step 2408, if
the command indicates that the user's view is to be changed to
a different component of the enterprise portfolio management
system, then the portfolio analyzer continues in step 2409.
else returns to step 2401 to determine and process the next
user command. In step 2409, the portfolio analyzer relin
quishes control to the indicated component.
(0095 FIG. 25 is an example flow diagram of a Create
Multi-Dimensional View routine for creating a multi-dimen
sion view (datasheet) of an example portfolio. As described
earlier, new datasheets (also referred to as multi-dimensional
views) can be defined for a particular portfolio or other object
instance by populating values in a datasheet property sheet
using well-known interfaces such as dialog windows or
forms. One skilled in the art will also recognize that the
equivalent input may be specified in a more “batch' oriented
process, so that other code can use the routine to build a
datasheet. Specifically, in step 2501, the routine implements a
mechanism to define the various columns for the new

US 2009/0076983 A1

datasheet view. In some environments, “columns are also
known as axes, views, dimensions, or by similar terminology.
In step 2502, the routine implements a mechanism to define
filtering rules. These rules are used filter out instances that do
not match the specified rule or that match the specified rule,
however indicated. In step 2503, the routine implements an
interface to define how instances that match the column speci
fication and filtering rules are to be grouped in the resultant
datasheet. In step 2504, the routine implements an interface to
define the particular sorting algorithm to be used to order
matching instances within each grouping. In step 2505, the
routine invokes a Build Presentation routine to build a pre
sentation that corresponds to the new datasheet properties
defined in steps 2501-2504. This presentation is referred to
herein as a “virtual object tree' since objects are temporarily
instantiated that correspond to the datasheet, which are not
stored in the actual hierarchy or using persistent storage. An
example Build Presentation routine is described further with
reference to FIG. 26.
0096 FIG. 26 is an example flow diagram of a Build
Presentation routine for building a presentation for a multi
dimension view. The routine takes as input a indicator of a
sub-tree in the instance hierarchy (typically a portfolio node)
and other attributes specified by the datasheet attribute speci
fication, such as an object type, list of relevant columns, filter
definition, grouping list, Sorting list, and a indication of an
applicable security role. In Summary, the build presentation
routine queries the investment object instance hierarchy to
determine all of the investment objects that match the
attribute specification of the datasheet and builds a virtual
object tree that corresponds to the matching instances. In
essence, a virtual object is a temporary object instance that is
used to group the real investment object instances based upon
the groups indicated in the attribute specification. That is,
since an instance does not exist that directly corresponds to
the 'group' itself and a grouping is a mere abstraction, in
order for all of the rollup functions etc. to work properly, a
virtual object needs to be created to correspond to each
matching group, as if the group were an entity. The virtual
objects look and behave like other investment objects to a
user; however they live for the life of the datasheet, and are
instantiated when needed to present the datasheet. Once the
virtual object tree is created, then rollups are adjusted appro
priately. One skilled in the art will recognize that there are

Mar. 19, 2009

other ways to implement a datasheet, and that FIG. 26 and
Table 1 correspond to one of these implementation
approaches.
0097 Specifically, in step 2601, the routine queries the
investment object instance hierarchy at the designated Sub
tree according to the designated parameters specified in the
datasheet attribute specification (see input parameter list) to
determine a results table. Specifically, the query locates
objects of the designated object type that have the designated
columns and that correspond to the grouping, filtering, and
sorting rules previously indicated and designated as input
parameters. The designated group list is a list of each group
ing of matching instances. For example, investments may be
grouped by “rank and then by geographic region. Once
grouped, then the designating sorting rules are used to order
matching instances within a group (the results of the query).
Appendix A shows examples of resultant datasheets with
attribute specifications having multiple groups and sorting
rules.

(0098. In step 2602, the routine filters the resulting table of
instances based upon the security roles that are indicated by
the designated security roles. For example, different security
roles can be defined for different users and organizational
groupings, etc., and the roles can be used to filter the data
users have access to and what types of investment data can be
viewed via the datasheets. Different security roles may be
defined that correspond to modification access permissions as
well as what data may be viewable. The security roles may
directly correlate to the organizational hierarchy, which may
also be reflected in the actual containment hierarchy of the
investment instances.

(0099. In step 2603, a new virtual object tree root node (a
virtual object) is created. In step 2604, a Build VO. Tree
routine is invoked to build a virtual object tree from the
resultant table of instances that was returned as a result of the
query. The pseudo code for an example Build VO. Tree rou
tine is described further with reference to Table 1. In step
2605, the routine invokes the Adjust Rollups routine
described with reference to FIG. 11 on the newly created
virtual object tree so that rollups can be properly computed
for the datasheet. The routine then returns the instantiated
virtual object tree, which corresponds to the datasheet.

TABLE 1.

1 Build VO Tree (root, group list, query string) {

11
12
13
14
15
16
17
18
19
2O
21
22
23

curr group = head (group list);
new grp list = rest (group list);
for each value in current group, starting with the first, ending with the last
for value = first value (curr group), next (curr group, last value (curr group) {

Subroot = create new virtual object;

if (new grp list = null) {
find all data that matches current sent of group values
leaf table = query results table (concat (query string,

curr group, Value));
for row in leaf table {

add pointers from Subroot to all data that matches
add row as child (Subroot, row);
update subroot attributes based on row data
update Subroot attributes (Subroot, row);

if (result = 0) {
integrate new leaf node (virtual object) into VO tree
add child (root, Subroot);
update root attributes based upon those of new VO

US 2009/0076983 A1

TABLE 1-continued

24 update root attributes (root, Subroot):
25 # no data exists with current group value
26 else delete (subroot):
27
28 else {
29 # recurse to build a child sub-tree with current group = value
30 child = Build VO. Tree (subroot, new grp list,
31 concat (query string, curr group, Value));
32 # add the newly built child into the current sub-tree
33 add child (root, child);
34 # update root attributes based upon those of child
35 update root attributes (root, child);

37 }: # end loop on current group values
38
39 return (root):
40 }

0100 Table 1 contains pseudo code for an example Build
VO Tree routine. As illustrated, the Build VO. Tree routine
implements a recursive process for building up a virtual
object tree from the results of a query of the investment
instance hierarchy based up a datasheet attribute specifica
tion. It is assumed that the results of the query are in tabular
form, or otherwise easily decomposed, and that the results are
grouped and sorted in the order that they should be displayed.
One skilled in the art will recognize that this is not a require
ment and that the pseudo code for the Build VO. Tree routine
could be modified appropriately. Also, iterative equivalents of
the recursive process could be equivalently substituted.
0101. In summary, the routine builds a virtual object tree
whose leaf nodes point to investment data. The routine oper
ates from the “inside out (leaf nodes up). That is, the
datasheet is effectively a tree turned sideways, where the
innermost groupings are the leaf nodes, the investment data
that matches the innermost grouping are indicated in these
leafnodes, and the next level of grouping is the next “level of
intermediate virtual object nodes in the tree, and so forth.
Virtual objects need to be created for each intermediate
(group) node in the tree, since instantiated objects exist only
for investment data. Thus, examining a datasheet excerpt
shown in a Summary View of the Portfolio Analyzer display
screens in Appendix A, a Subset of which is also displayed in
Table 2 below, the investment data results are grouped first by
Region values and grouped second by Score values. Under
each combination of Region/Score values, there are 0 to N
investment objects instances with those values. There are M
levels of virtual objects for each M levels of groups. Thus, a
virtual object is preferably created for each grouping (com
bination) value, with indicators to the instantiated invest
ments, and a virtual object is needed for each discrete value
(or combined value) of each group of groups, and so on.

TABLE 2

Name Budget Region Score Status Total Cost

Region: 2 $81,000 2 S72,000
Score: 2 $27,000 2 $24,000

Project 3 S13,000 2 2 Green $12,000
Project 2 S 9,000 2 2 Red $ 8,000
Project 1 S 5,000 2 2 Green $ 4,000

Score: 3 $26,000 3 S23,000
Project A S11,000 2 3 Yellow $10,000
Project 4 $ 8,000 2 3 Green S 7,000

Mar. 19, 2009

TABLE 2-continued

Name Budget Region Score Status Total Cost

Region: 1 1
Score: 1 1

1 1
Score: 3 3

0102 For example, looking at Table 2, a virtual object is
created for a region 2; Score-2 leaf node; a region 2;
score=3 leaf node; a region=1; score=1 leaf node; and a
region=1; score-3 leafnode. Each of these become children
of an “intermediate' virtual object node, in this case, on the
outermost grouping level: a virtual object is created for a
region 2 node and a virtual object is created for a re
gion 1 node, and so on. Thus, the resulting virtual object tree
has 2 levels (since there are 2 levels of groups) with a topmost
root, the first level corresponding to region values, and the
second level corresponding to score/region values.
0103) The pseudo code of Table 1 demonstrates an imple
mentation of this approach. The loop of lines 6-37, examines
each value of a current group. If the innermost group (leaf
nodes) has not yet been reached, then the routine is invoked
recursively in line 30 to build a virtual object tree starting with
a newly created virtual object sub-tree and the rest of the
group list. This process continues until the innermost group is
reached, in which case line 10 is true. At that point, all of the
matching investment instances for that combination of group
values is determined (line 12), each matching instances is
added to the virtual object leaf node (line 16), and the
attributes of the virtual object leaf node are determined (line
18). Once all of the matching instances have been referenced
by the virtual object leaf node (line 20), then the newly cre
ated leaf node is added into the virtual object sub-tree whose
root is the next closest intermediate node (the parent virtual
object of the leaf node) (line 22). The attribute values of the
current root (the parent virtual object) are then updated based
upon the attributes of the newly created virtual object leaf
node (line 24). When the current invocation of the routine
then pops back up to a prior recursive invocation (line 30
results), then the newly build virtual object sub-tree is added
a child node to the current root of that sub-tree (line 33). The
attributes of the current root are then updated to reflect the
built sub-tree (line 35). In the example shown in Table 2, the
current root at that point is the root of the datasheet the
entire virtual object tree. One skilled in the art will recognize

US 2009/0076983 A1

that other implementations, such as those that actually persist
the virtual objects that correspond to a datasheet are also
feasible.

0104. As described earlier with respect to FIG. 24, once a
datasheet is created, it can be moved or copied to another
investment object. In one embodiment, datasheets are asso
ciated with portfolio objects only; however, one skilled in the
art will recognize that it is possible to associate datasheets
with other investment objects as well. FIG. 27 is an example
flow diagram of a Move/Copy Multi-Dimensional View rou
tine for moving/copying a multi-dimension view. The routine
takes as input a virtual object tree, an indication of a source
node, and an indication of a target (destination) node. Note
that, if more than one datasheet can be associated with a node,
then an indication of which datasheet is also an input param
eter. In step 2701, the designated virtual object tree is asso
ciated with the designated target node so that the datasheet
will become part of that investment object. The property sheet
that defines the datasheet is also copied as appropriate to the
properties of the designated target node so that the target node
then has access to maintain the datasheet. In step 2702, the
routine invokes the Build Presentation routine described with
reference to FIG. 26 so that a new virtual object tree that
corresponds to the moved datasheet can be created for the
target node. This step is necessary since the values of the
datasheet typically depend upon the Sub-tree of nodes asso
ciated with the datasheet. In step 2703, if the portfolio ana
lyzer interface has specified that the datasheet is to be moved,
then the routine continues in step 2704, otherwise returns. In
step 2704, the routine calls a Delete Multi-Dimensional View
routine to delete the datasheet associated with the designated
Source node, and then returns.
0105 FIG. 28 is an example flow diagram of a Delete
Multi-Dimensional View routine for deleting a multi-dimen
sion view. This routine allows a user to delete an existing
datasheet. The routine takes as input an indication of the
parent (portfolio) node where the datasheet is to be deleted
from, and an indicator to the virtual object tree. In cases where
more than one datasheet is Supported, an indicator to the
datasheet is included as a parameter. In step 2801, the refer
ence to the datasheet that is specified by the virtual object tree
is removed from the designated parent node. In step 2802, the
property sheet is disassociated from the parent node that
corresponds to the designated virtual object tree. In step 2803,
the routine then invokes the Adjust Rollups routine described
with reference to FIG. 11 to recalculate the rollups on the
Sub-tree indicated by the parent node, in case values have
been modified. The routine then returns.

0106. In addition to creating and managing datasheets, the
example portfolio analyzer also supports dynamic charting
capabilities. Appendix C shows detailed display screens for a
charting sequence from a charting Subsystem of an example
enterprise portfolio management system. A chart “vector.”
which defines all of the potential axes for a particular set of
charts is associated with a datasheet. The axes thus preferably
correspond to all of the dimensions viewable in the datasheet.
Once a chart vector is created for a particular chart type (e.g.,
a bubble chart), the axes that correspond to the currently
displayed presentation are dynamically selectable. Thus, the
charts can redisplay the underlying datasheet investment
data, without having to be rebuild the chart structure.
0107 All of the above U.S. patents, U.S. patent applica
tion publications, U.S. patent applications, foreign patents,
foreign patent applications and non-patent publications
referred to in this specification and/or listed in the Application
Data Sheet, including but not limited to U.S. patent applica
tion Ser. No. 10/613,534, entitled “METHOD AND SYS

Mar. 19, 2009

TEM FOR OBJECTORIENTED MANAGEMENT OF
MULTI-DIMENSIONAL DATA filed Jul. 3, 2003; and U.S.
Provisional Patent Application No. 60/471,811, entitled
METHOD AND SYSTEM FOR OBJECTORIENTED
MANAGEMENT OF MULTI-DIMENSIONAL DATA
filed May 19, 2003, is incorporated herein by reference, in its
entirety.
0108. From the foregoing it will be appreciated that,
although specific embodiments of the invention have been
described herein for purposes of illustration, various modifi
cations may be made without deviating from the spirit and
scope of the invention. For example, one skilled in the art will
recognize that the methods and systems for creating, manag
ing, and analyzing heterogeneous investment data discussed
herein are applicable to other types of data management sys
tems other than enterprise portfolio management. For
example, the techniques used herein can be applied to homo
geneous data Such as streamlined inventory control systems
or project management systems. One skilled in the art will
also recognize that the methods and systems discussed herein
are applicable to differing network protocols other than the
Internet and web-based communication, communication
media (optical, wireless, cable, etc.) and devices (such as
wireless handsets, electronic organizers, personal digital
assistants, portable email machines, game machines, pagers,
navigation devices such as GPS receivers, etc.).

1. A method in a computing system for electronically man
aging a plurality of types of enterprise portfolio data, the
portfolio data having investment items, the computer system
defining an object type to correspond to each of the plurality
of types of portfolio data, each object type defining a plurality
of attributes, comprising:

under control of the computing system, for eachinvestment
item,
instantiating an object as an instance of the object type

that corresponds to the investment item, the instanti
ated object containing a plurality of attributes; and

setting values of the plurality of attributes of the instan
tiated object based upon data associated with the
investment item,

wherein at least one of the investment items is a financial
investment item that reflects financial investment data and at
least another one of the investment items is a project manage
ment item that reflects project related data and the instantiated
objects that correspond to the financial investment item and
the project management item are stored and managed by the
computing system as interchangeable items.

2. The method of claim 1, further comprising:
receiving additional portfolio data;
dynamically adding a new object type to correspond to the

received data, the new object type defining a new plu
rality of attributes; and

instantiating a new object as an instance of the new object
type to correspond to the received data and setting values
of the plurality of attributes defined by the new object
type based upon the received data.

3. The method of claim 1 wherein sources for the portfolio
data reside in a plurality of separate data repositories that
belong to distinct organizations within an enterprise.

4. The method of claim 1 wherein the investment items are
at least two of financial investments, project management,
collections of projects, products, programs, assets, human
resources, portfolios, initiatives, applications, operations,
processes, and activities.

5. The method of claim 1, the enterprise portfolio data
comprising at least two of engineering, marketing, product

US 2009/0076983 A1

management, manufacturing, sales, information technology,
finance, human resources, research, development, and pro
fessional services portfolios.

6. The method of claim 1 wherein at least one of the
attributes has multiple dimensions yielding multiple sets of
values for the at least one attribute.

7. The method of claim 6 wherein the attribute dimensions
are at least two of actual value, baseline value, plan value,
target value, and scenario value.

8. A computer-readable storage medium containing con
tent to control a computer processor when executed to man
age a plurality of types of enterprise portfolio data, the port
folio data having investment items, the computer system
defining an object type to correspond to each of the plurality
of types of portfolio data, each object type defining a plurality
of attributes, by performing a method comprising:

a memory;
for each investment item,

instantiating an object in the memory as an instance of
the object type that corresponds to the investment
item, the instantiated object containing a plurality of
attributes; and

setting values of the plurality of attributes of the instan
tiated object based upon data associated with the
investment item;

wherein at least one of the investment items is a financial
investment item that reflects financial investment data and at
least another one of the investment items is a project manage
ment item that reflects project related data and the instantiated
objects that correspond to the financial investment item and
the project management item are stored and managed as
interchangeable items.

9. The computer-readable storage medium of claim 8, the
method further comprising:

receiving additional portfolio data;
dynamically adding a new object type to correspond to the

received data, the new object type defining a new plu
rality of attributes; and

instantiating a new object in the memory as an instance of
the new object type to correspond to the received data
and setting values of the plurality of attributes defined by
the new object type based upon the received data.

10. The computer-readable storage medium of claim 8
wherein sources for the portfolio data reside in a plurality of
separate data repositories that belong to distinct organizations
within an enterprise.

11. The computer-readable storage medium of claim 8
wherein the investment items are at least two of financial
investments, project management, collections of projects,
products, programs, assets, human resources, portfolios, ini
tiatives, applications, operations, processes, and activities.

12. The computer-readable storage medium of claim 8, the
enterprise portfolio data comprising at least two of engineer
ing, marketing, product management, manufacturing, sales,
information technology, finance, human resources, research,
development, and professional services portfolios.

13. The computer-readable storage medium of claim 8
wherein at least one of the attributes has multiple dimensions
yielding multiple sets of values for the at least one attribute.

14. The computer-readable storage medium of claim 13
wherein the attribute dimensions are at least two of actual
value, baseline value, plan value, target value, and Scenario
value.

Mar. 19, 2009

15. The computer-readable storage medium of claim 8
wherein the medium is a memory in a computing system and
the contents are instructions that control a computer proces
sor to perform the method.

16. A portfolio management computing system for man
aging portfolios of investment items, comprising:

a memory;
an object type management system that is configured,
when executed, to define types of investments for which
objects can be instantiated in the memory and a plurality
of attributes that are associated with each type:

an object instantiation system that is configured, when
executed, to:
instantiate an object in the memory as an instance of the

object type that corresponds to an investment item, the
instantiated object containing a plurality of attributes;
and

set values of the plurality of attributes of the instantiated
object based upon data associated with the investment
item,

wherein at least one of the investment items is a financial
investment item that reflects financial investment data and at
least another one of the investment items is a project manage
ment item that reflects project related data and the instantiated
objects that correspond to the financial investment item and
the project management item are stored and managed as
interchangeable items.

17. The system of claim 16 wherein the portfolio manage
ment system is an enterprise portfolio management system.

18. The system of claim 16 wherein
the object type management system is further configured

tO:
dynamically add a new object type to correspond to a

received additional portfolio investment item, the new
object type defining a new plurality of attributes; and

the object instantiation system is further configured to:
instantiate a new object in the memory as an instance of

the new object type to correspond to the received
investment item; and

set values of the plurality of attributes defined by the new
object type based upon the received investment item.

19. The system of claim 16 wherein sources for the port
folio investment items reside in a plurality of separate data
repositories that belong to distinct organizations within an
enterprise.

20. The system of claim 16 wherein the investment items
are at least two of financial investments, project management,
collections of projects, products, programs, assets, human
resources, portfolios, initiatives, applications, operations,
processes, and activities.

21. The system of claim 16, the portfolio comprising at
least two of engineering, marketing, product management,
manufacturing, sales, information technology, finance,
human resources, research, development, and professional
services portfolios.

22. The system of claim 16 wherein at least one of the
attributes has multiple dimensions yielding multiple sets of
values for the at least one attribute.

23. The system of claim 22 wherein the attribute dimen
sions are at least two of actual value, baseline value, plan
value, target value, and Scenario Value.

c c c c c

