PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 00/33170
GOG6F 3/00, 9/445, 9/455 Al . L

(43) International Publication Date: 8 June 2000 (08.06.00)

(21) International Application Number: PCT/US99/26161 | (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,

(22) International Filing Date: 4 November 1999 (04.11.99)

(30) Priority Data:

09/201,350 30 November 1998 (30.11.98) US

(71) Applicant (for all designated States except US): INTEL COR-
PORATION [US/US]; 2200 Mission College Boulevard,
Santa Clara, CA 95052 (US). '

(72) Inventor; and
(75) Inventor/Applicant (for US only): DATTA, Sham [US/US];
532 North East Lenox Street, Hillsboro, OR 97124 (US).

(74) Agents: MILLIKEN, Darren, J. et al.; Blakely, Sokoloff, Taylor
& Zafman LLP, 7th floor, 12400 Wilshire Boulevard, Los

Angeles, CA 90025 (US).

BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,
ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD,
MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD,
SE, SG, SI, SK, SL, TJ, T™M, TR, TT, TZ, UA, UG, US,
UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS,
MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE), OAPI patent (BF, BJ, CF, CG, Ci, CM, GA,
GN, GW, ML, MR, NE, SN, TD, TG).

Published
With international search report.

(54) Titlee METHOD OF COMMUNICATION BETWEEN FIRMWARE WRITTEN FOR DIFFERENT INSTRUCTION SET ARCHI-

TECTURES

(57) Abstract

A firmware system (204, 208) comprises a legacy firmware module (204) [
and a native firmware module (208) written for native and legacy instruction set
architectures (ISAs), respectively. A data structure (234) is associated with the
legacy firmware module to provide access to one or more legacy routines (210)
through a first dispatcher (220). The native firmware module includes a prolog
routine (250). The prolog routine locates the data structure associated with the
legacy firmware module and initializes it to provide a link between the first and

second firmware modules.

e 208

a6
ROUTINES
N —
20 I T—

204

S

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CcM
CN
CU
CZ
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Céte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
18
IT
Jp
KE
KG
KP

KR
Kz
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
Us
vz
VN
YU
YA

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 00/33170 PCT/US99/26161

METHOD OF COMMUNICATION BETWEEN FIRMWARE WRITTEN FOR DIFFERENT INSTRUCTION
SET ARCHITECTURES

Background of the Invention

Technical Field The present invention relates to firmware and in particular to system and

methods for communicating between firmware written for different instruction set architectures.

Background Art Firmware refers to processor routines that are stored in non-volatile
memory structures such as read only memories (ROMs), flash memories, and the like. These
memory structures preserve the code stored in them, even when power is shut off. One of the
principle uses of firmware is to provide the routines thaf control a computer system when it is
powered up from a shut down state, before volatile memory structures have been tested and
configured. The process by which a computer is brought to its operating state from a powered
down or powered off state is referred to as bootstrapping. Firmware routines may also be used to
reinitialize or reconfigure the computer system following various hardware events and to handle

certain platform level events like system interrupts.

The bootstrapping process typically begins with the processor(s) in a computer system
and proceeds outward to system level resources. Initially, each processor tests its internal
components and interfaces. In multiprocessor systems, a single bootstrap processor (BSP) is
usually selected to handle initialization procedures for the system as a whole. These procedures
include checking the integrity of memory, identifying and initializing other resources in the
computer system, loading the operating system into memory, and initializing the remaining
processors. Since volatile memory structures such as caches and random access memory (RAM)
are not dependable until later in the boot process, the processor implements some of its early

firmware routines for the various bootstrapping procedures inside nonvolatile memory.

Firmware is typically written in assembly language. This is a low level computer
language that provides direct access to processor hardware and, consequently, is closely tied to
the processor architecture. The processor architecture is reflected in the rest of the platform, in
part, because of the assembly level firmware that ';s used to initialize, configure, and service
platform level resources. For example, platform resources may transfer data through specified

registers and/or memory locations defined by the Instruction Set Architecture (ISA), and

WO 00/33170 PCT/US99/26161

platform level interrupts may be handled by referring to specified processor registers.
Thus, initialization and configuration of platform level resources are tied to the ISA of
the underlying processor. These ties between assembly level firmware and the ISA also
mean that the firmware can not be converted to different ISAs without extensive

rewriting.

The ISA-specific nature of firmware is significant for processors that support
more than one ISA. For example, the Merced™ processor is the first of a line of
processors designed by Intel® Corporation of Santa Clara, California to implement an
Intel Architecture 64-bit ISA (IA-64). These 1A-64 processors also include resources to
execute programs coded in an Intel Architecture 32-bit ISA (IA-32). While the
Merced™ processor and its progeny support IA-32 instructions, they are not IA-32
processors. Among other things, their register structures, memory addressing schemes
and buses reflect their native IA-64 architecture rather than the legacy 1A-32

architecture.

The 1A-64 platform is new, and consequently, there are relatively few resources
designed specifically for the IA-64 platform. On the other hand, there is a wealth of
resources available for IA-32 platforms, including mass storage media controllers,
keyboards, mice, monitors, peripheral devices, and the IA-32 firmware that supports
them. Huge investments have also been made in IA-32 firmware for newer technologies
such as Advanced Configuration And Power Management Interface (ACPI), Wired For
Management (WFM). In addition, compression technology is available to significantly
reduce the space required to store IA-32 firmware. Approximately 1Megabyte
(“Mbyte”) of firmware code may be compressed to approximately 512 Kilobytes
(Kbytes), using this IA-32 firmware. Supporting these legacy resources and firmware
technologies on the IA-64 platform would allow developers to preserve the investments

they have already made in the IA-32 platform and reduce the time to market of IA-64
systems.

Supporting legacy firmware (IA-32) on a new processor architecture (IA-64) is a
relatively complex undertaking. For example, in addition to the obvious differences in

2

WO 00/33170 PCT/US99/26161

register sizes, and addressable memory, there are multiple addressing modes in the IA-32
ISA that are not present in the IA-64 ISA. IA-32 employs a mode called protected mode
to increase the addressable memory size from 1 megabyte to 4 gigabytes. The present

invention addresses these and other issues associated with the support of legacy firmware

in a different native environment.

Summary of the Invention

The present invention provides a system and method that support

communications between firmware modules based on different ISAs.

In accordance with the present invention, a system comprises a first firmware
module and a second firmware module written for legacy and native ISAs, respectively.
A data structure is associated with the first firmware module to provide access to one or
more legacy routines through a ﬁrSt dispatcher. The second firmware module includes a
prologue routine. The prolog routine locates the data structure associated with the first
firmware module and initializes it to provide a link between the first and second

firmware modules.

Brief Description of the Drawings

The present invention may be understood with reference to the following
drawings, in which like elements are indicated by like numbers. These drawings are
provided to illustrate selected embodiments of the present invention and are not intended

to limit the scope of the invention.

Fig. 1 is a block diagram of a computer system that includes a firmware system in

accordance with the present invention.

Fig. 2 is a block diagram of a firmware system stored in the non-volatile memory
of Fig. 1.

WO 00/33170 PCT/US99/26161

Fig. 3 is a flowchart representing a method for booting resources designed for a
platform that implements a first instruction set architecture on a platform designed for a

second instruction set architecture.

Fig. 4 is a flowchart representing a method for communicating between first and

second software modules written for first and second instruction set architectures.

Detailed Discussion of the Invention

The following discussion sets forth numerous specific details to provide a
thorough understanding of the invention. However, those of ordinary skill in the art,
having the benefit of this disclosure, will appreciate that the invention may be practiced
without these specific details. In addition, various well-known methods, procedures,
components, and circuits have not been described in detail in order to focus attention on

the features of the present invention.

Fig. 1 is a block diagram of one embodiment of a computer system 100 that is
suitable for implementing the present invention. The disclosed embodiment of computer
system 100 includes one or more processors 110(1)-110(n) (collectively, processors 110)
that are coupled to system logic 130 through a processor bus 120. A system memory 140
is coupled to system logic 120 through bus 150. A non-volatile memory 170 and one or
more peripheral devices 180(1)- 180() (collectively, devices 180) are coupled to system
logic 130 through peripheral bus 160. Peripheral bus 160 represents, for example, one or
more peripheral component interconnect (PCI) buses, industry standard architecture
(ISA) buses, extended ISA (EISA) buses, and comparable peripheral buses. Non-volatile
memory 170 may be a static memory device such as a read only memory (ROM) or flash
memory. Peripheral devices 180 include, for example, a keyboard, mouse or other
pointing devices, mass storage devices such as hard drives and digital video discs
(DVD), a display, and the like. These devices, together with system logic 130 define the
computing platform for system 100.

WO 00/33170 PCT/US99/26161

For the disclosed embodiment of system 100, processors 110 may implement a
first instruction set architecture (ISA), e.g., IA-32 and a a second ISA, e.g., IA-64. As
noted above, IA-32 has enjoyed widespread use and there is a significant infrastructure
in place to support IA-32-based platforms. This infrastructure includes a large number
of peripheral devices 180 and the basic input output systems (BIOS or firmware)
necessary to boot, configure, and support these devices. On the other hand, IA-64 is a

relatively new platform and has correspondingly less infrastructure support.

The present invention provides a means to support legacy resources, €.g.
resources developed for the IA-32 platform, on a different platform, e.g. IA-64. For one
embodiment, non-volatile memory 170 stores a hybrid firmware system that includes
first and second modules for legacy and native platforms, respectively. A mechanism is

provided to allow communications between the first and second modules.

Fig. 2 is an expanded block diagram of a firmware system 200, including a first
firmware module (FW1) 204 and a second firmware module (FW2) 208. The disclosed
embodiment of FW1 204 includes one or more routines 210, a dispatcher 220, and a data
structure 230. Data structure 230 is tagged by an identifier block 240 that allows it to be
identified and validated by FW2 208.

Routines 210 provide firmware level support for resources associated with the
legacy platform. For example, routines 210 may include IA-32 code sequences that
initialize and configure keyboards, input devices, video displays or similar devices that
have been developed for IA-32 platforms. Routines 210 may also include procedures for
handling platform level interrupts and procedures to implement newer computer
technologies like ACPI, WFM.

For one embodiment of firmware system 200, a call table 242 associated with
FW1 204 may be used to store pointers 244 to different routines 210. Each pointer 244
is assigned an index through which the pointer (and its associated routine 210) may be
accessed. For example, dispatcher 220 may receive an indexed input from FW2 208 and

use the included index to access one of routines 210 via call table 242.

WO 00/33170 PCT/US99/26161

Data structure 230 includes multiple storage locations 234, which may be used to
point to different components of firmware system 200. This information allows routines
from one firmware module to access routines in another firmware module. For the
disclosed embodiment, locations 234 are provided to store pointers to dispatcher 220
(DISP1), a return address (RADD1) in FW1 204, a shared memory location
278(SH_DATA) , a dispatcher 260 (DISP2) in FW2, and a return address (RADD?2) in
FW2 208. The value of DISP2, SH_DATA, and an initial value of RADD2 may be
provided by FW2 208 when it first accesses data structure 230. For the disclosed
embodiment, shared memory location 278 is associated with FW2 208, but it may be
defined by either FW1 204 or FW2 208.

DISP1 may be set when data structure 230 is compiled and built in FW1 204,
since the relative location of dispatcher 220 is available at build time. RADDI is set
when a routine 210 in FW1 204 accesses a routine in FW2 208. RADD1 points to a
location in firmware module 204 to which control is returned following execution of the
routine in FW2 208. Similarly, RADD?2 is set when a routine in FW2 208 accesses a
routine in FW1 204. RADD? points to a location in FW2 208 to which control is
returned following execution of the routine in FW1 204. SH_DATA is a pointer to a
shared memory location defined in block 278. The value of SH_DATA may be set when
data structure 230 is copied to system memory 140, and memory is allocated for
SH_DATA. The shared memory location is used to store the input arguments and output

parameters when a particular procedure in one firmware block calls another procedure in

the other firmware block.

Identifier block 240 is associated with data structure 230 and includes
information that allows FW2 208 to locate and validate data structure 230. One
embodiment of identifier block 240 includes an identification string (ID_STRING), a
size parameter (DS_SIZE), and a checksum value (CHK_SUM). ID_STRING is é string
of characters for which FW1 204 may be scanned. DS_SIZE indicates the size of data
structure 230 and CHK_SUM is a value derived from data structure 230. FW2 208 may

process the data of size DS_SIZE following identifier block 240 to determine a value.

6

WO 00/33170 PCT/US99/26161

Comparing the value with CHK_SUM indicates whether any errors have been generated

during transmission or storage of data structure 230.

FW2 208 includes prolog routine 250, dispatcher 260, and routines 270. The
disclosed embodiment of FW2 208 also defines a shared memory location 278. Routines
270 provide firmware support for platform infrastructure associated with the second ISA.
For example, routines 270 may include IA-64 code sequences that initialize and
configure processor(s) 110, system logic 130, system memory 140, and other resources
that operate in the native IA-64 environment. Dispatcher 260 provides access to routines
270. One embodiment of FW2 208 employs a call table 274 for dispatcher 260 similar to
that employed by FW1 204,

For the disclosed embodiment of the invention, prolog routine 250 coordinates
initialization and configuration procedures for system 100 when a boot or reset condition
is triggered. For example, following certain processor level initialization and checking
procedures, prolog routine 250 may establish a communication link with FW1 204. This
may be accomplished by scanning FW1 204 for identifier block 240 and processing it to
locate and validate data structure 230. The locatibn of data structure 230 is stored for
future reference, and one or more entries (DISP2, SH_DATA) in data structure 230 are

initialized for subsequent communications.

For one embodiment of the invention, FW2 208 includes system level software,
€.g. a system abstraction layer (SAL), which abstracts features of computer system 100
to ensure that a uniform set of system level features is available. FW2 208 may also
include a processor abstraction layer (PAL) that interacts primarily with the processor
core of the IA-64 platform. In this embodiment, FW?2 208 accesses legacy firmware
(e.g. IA-32 BIOS) via FW1 204 to intialize, test, and configure legacy platform
infrastructure. FW2 208, e.g. the SAL, emulates the IA-32 execution environment in
which the legacy firmware like IA-32 BIOS operates.

For one embodiment of the invention, FW2 208 scans legacy FW1 204 in non-
volatile memory 170 and copies parts of it to system memory 140 during boot

operations. Loading legacy FW1 204 into system memory140 allows FW2 208 to
7

WO 00/33170 PCT/US99/26161

initialize selected entries in data structure 230 and create an environment in which legacy
routines 210 may operate. Running routines 210 from system memory 140 is also faster

than running them from non-volatile memory 170.

The foregoing discussion refers to actions, procedures, etc implemented by FW1
204 and FW2 208. Persons skilled in the art will recognize that it is actually processors
110, e.g. the BSP, that perform these functions by implementing instructions in the

firmware modules.

Fig. 3 is a flow chart representing a method 300 for booting system 100 in
accordance with the present invention. When a reset condition is detected, the native
firmware module, e.g. FWM2, initiates 310 a boot sequence in processor(s) 110. This
may include, for example, a built in self test (BIST) and processor identity (ID) check.
For one embodiment of the invention, these boot steps are 'implemented by a PAL
firmware component, which hands control over to a SAL firmware component when the

initial steps are complete.

The native firmware module also determines 330 whether the computer system is
a symmetric multi-processor system (SMP). If it is, a bootstrap processor (BSP) is
selected 334 to continue with the boot process. If it is not, the single processor is the
BSP. In either case, the BSP implements the native firmware module to initialize and
allocate memory 340 for portions of the native and/or legacy firmware modules. The
legacy firmware and its associated data structure are located 350 in the non-volatile
memory 170. For example, the legacy firmware module may be located through a
firmware Interface Table (FIT), which lists addresses and sizes for firmware components
in the non-volatile memory. The data structure may be located by scanning the legacy

firmware module for an identifier block associated with the data structure.

For one embodiment of method 300, an initialization routine in the native
firmware module, e.g. prolog routine 250, copies 360 the legacy firmware module to the
system memory, and locates and validates 370 the associated data structure. The data
structure may then be updated 380 with one or more pointers to resources in the native

firmware module. The order of events indicated in Fig. 3 is not essential to the present
8

WO 00/33170 PCT/US99/26161

invention. For example, the data structure may be located in the legacy firmware module
and validatéd before it is copiéd it to main memory. In this case, the location of the data
structure is updated when it is copied to the main memory, The native firmware module
may use pointer information in the data structure to call routines in the legacy firmware
module to initialize 390 legacy platform resources. These legacy routines may also refer
to routines in the native firmware module (via dispatcher 260) to complete various
initialization steps that are done using FW2 (208). Exemplary legacy routines that may
be invoked in the boot process include routines to set up an interrupt table for the IA-32
platform resources as well as various routines to initialize these resources. 1A-32
platform resources to be initialized may include a direct memory access (DMA)
controller, keyboard, mouse, video display, and PCI card. Legacy firmware routines

may also implement specifications like ACPI, WFM, and System Management BIOS 2.0
(SMBIOS).

In order to implement these and other IA-32 routines correctly, the native, e.g.
IA-64, platform virtualizes the legacy environment, e.g. IA-32. In the example above,
the virtual environment accommodates the mode switching behavior of IA-32 routines
and other features of the architecture and memory model for which these routines were
written. For example, in the IA-32 memory model, the IA-32 BIOS is copied to an entry
point in the system memory that is 16 bytes below 4GB, and the body of the IA-32
firmware is copied to the system memory beginning at IMB.. As described below, the
virtual environment replicates the entry point and address range of the IA-32 BIOS
within the IA-64 environment. It also handles the full memory range addressed by the
IA-32 BIOS in a single mode (Big Real Mode or BRM) with only a minor modification
of the legacy code.

For one embodiment of the present invention, an entry point for the native
firmware is located below 4GB in the system memory. The entry point provides access
to the native firmware module, which copies the legacy firmware (IA-32 BIOS) to a
memory location between 1MB and 1MB ~ 128 KB. This may be done when the

system is bootstrapped and the firmware is shadowed to the system memory. Thereafter,

9

WO 00/33170 PCT/US99/26161

when an interrupt or a hardware event generated by a legacy resource occurs, control is
transferred to the native firmware. The native firmware then uses the legacy firmware

dispatcher (pointed to by the data structure) to access the appropriate legacy routine.

Mode switching behavior in the legacy routines may be handled by removing the
mode switching function from the legacy firmware. In the legacy environment, the mode
switching function must precede calls to memory addresses above 1MB, which can only
proccéd in protected mode. This function switches the processor in and out of the
protected mode. Deleting these functions from the legacy firmware eliminates the mode
switching behavior, but leaves the subsequent call to access data in the protected mode
address. Since the native firmware sets up BRM before invoking any legacy firmware

routine, addresses above 1MB are accessed properly without mode switching. .

Fig. 4 is a flowchart representing one embodiment of a method 400 for using a
data structure, e.g. data structure 230, as a communication link between the native and
legacy firmware modules. It is assumed that the firmware modules (or parts thereof)
have been copied to system memory and the data structure has been initialized to indicate
the locations of their dispatchers, e.g. dispatchers 260 and 220 in the native and legacy

firmware module, respecti\iely.

Method 400 is initiated when an interrupt is detected 410 and processor control
jumps 420 to the native firmware module (FW2). This happens automatically under the
disclosed processor architecture, which takes control into native mode upon occurrence
of an interrupt event. FW2 updates 430 the data structure with a return address so that
control can be returned to the appropriate location in FW2 when the interrupt handler
completes. FW2 also generates 440 an indexed call, using the legacy dispatcher address
specified in the data structure and an index associated with the source of the interrupt.
Interrupt hardware may identify the source of the interrupt. The legacy dispatcher
address may be stored by FW2 or read on the fly from the data structure. In either case,
the indexed call accesses 450 the legacy routine (interrupt handler) in FW1 that is
identified by the index. For one embodiment, the legacy dispatcher uses a call table to

identify the handler associated with the index.

10

WO 00/33170 PCT/US99/26161

The legacy routine processes 460 the interrupt in the virtualized legacy mode
provided by the native mode. When interrupt processing completes, control is returned
470 to the native firmware, using the return address specified in the link data structure.
The native firmware may reflect any status changes to the native mode interrupt

resources when the interrupt completes 480.

The mechanism described above may also be used when an operating system
loader program requests the firmware to make a legacy firmware call, and when a
hardware interrupt occurs. A variation of this mechanism, which is described below,
may also be used to process selected hardware interrupts. For example, selected
hardware interrupts may be handled through a legacy interrupt vector table. This table
resides at architecturally specified address locations, eliminating the need to access it
through the data structure described above. When a hardware interrupt occurs, processor
control reverts to native mode (IA-64), and the native firmware determines if the
interrupt handler is legacy firmware code. If it is, the native firmware module reads the
legacy interrupt vector table, using architected legacy address locations, to determine the
address of the legacy interrupt routine. The native firmware sends the CPU directly to
the legacy service routine after adjusting the return stack pointer to point to an IA-32
illegal instruction. The illegal instruction may be planted in the legacy firmware module
by the native firmware module. After the legacy handler executes, the illegal instruction
is encountered, generating a voluntary fault that returns control to native mode. This
second method can not be used to access legacy firmware routines that are embedded in

code. Locating these routines requires recourse to the data structure described above.

There has been provided a system and method that allow routines, written for a
first instruction set architecture, to be implemented by routines, written for a second
instruction set architecture. The routines are initially embodied in first and second
firmware module. The first firmware module includes a data structure that specifies a
pointer to a first dispatcher. The first dispatcher provides access to a first set of routines
written for the first ISA. The second firmware module includes a prolog routine to

locate the data structure in the first firmware routine, update the data structure with a

11

WO 00/33170 PCT/US99/26161

second pointer, and copy portions of both modules to a dynamic memory structure. The

second pointer provides access to a second set of routines written for the second ISA.

The invention has been described with reference to specific embodiments.
Persons skilled in the art and having the benefit of this disclosure will recognize that
these embodiments may be modified in a variety of ways, without deviating from the
spirit of the invention. For example, while the disclosed embodiments refer to IA-32 and
IA-64 ISAs, the invention is applicable to other ISAs. Similarly, the invention has been
described for firmware that supports legacy platform resources. However, it may be
beneficially applied to code provided for other purposes on other media, where
translation between the different ISAs would be costly. The specific examples are
provided only to more clearly illustrate various features of the invention, which is limited

solely by the scope of the appended claims.

12

WO 00/33170 PCT/US99/26161
CLAIMS

A system comprising:

a first firmware module including one or more routines written for a first
instruction set architecture (ISA), the routines being accessible through a first
dispatcher;

a data structure associated with the first firmware module, the data

structure including a first entry to store a pointer to the first dispatcher; and

a second firmware module including a prolog routine written for a second
ISA to locate the data structure and access the routines in the first firmware

module using the first dispatcher.

13

WO 00/33170 PCT/US99/26161

. The sysetm of claim 1, wherein the data structure includes signature code to identify the data

structure to the second firmware module.

. The system of claim 1, wherein the data structure includes a second entry to store a pointer to

a dispatcher associated with the second firmware module.

. The system of claim 3, wherein the second firmware module includes one or more routines in

the second ISA, the one or more routines being accessible through the associated dispatcher.

. The system of claim 1, wherein the second firmware module includes one or more routines in
the second ISA and a shared memory region is defined in the second firmware module to

accommodate data from the one or more routines in the first and second instruction sets.

The system of claim 1, wherein the prolog code of the second firmware module copies
portions of the first firmware module to a location in a random access memory, stores a
location associated with the data structure, and updates the second entry of the data structure

with a dispatcher address for the second firmware module.

A processor system comprising:
a processor;
a system memory; and
a non-volatile memory in which is stored:

a first firmware module including a data structure and routines in a first
instruction set architecture (ISA) accessible through the data structure, the

routines to provide access to legacy resources in the system; and

14

8.

9.

10.

11.

12.

WO 00/33170 PCT/US99/26161

a second firmware module including a prolog routine to identify the data

structure in the first firmware module and access the first set of routines.

The system of claim 7, wherein the second firmware module further includes routines in a

second ISA to access native resources in the system.

The system of claim 8, wherein the prolog routine copies portions of the first firmware

module into the system memory and updates the data structure to provide the first firmware

module with access to the routines in the second ISA.

The system of claim 7, wherein the second firmware module includes a boot routine that

generates an operating environment for the first firmware module when the system is
booted.

The system of claim 10, wherein the first ISA includes first and second operating modes
and wherein an operating environment generated by the second firmware module

virtualizes the first and second operating modes of the first ISA.

A method for communicating between first and second firmware routines written in first

and second instruction sets, respectively, the method comprising:

associating a data structure with the first firmware routine, the data

structure including an entry through which routines in the first firmware module

may be accessed;

assigning a signature code to identify the data structure; and

providing the second firmware routine with a prolog function to locate the
data structure and to update the data structure with pointer information for the

second firmware module.

15

13.

14.

15.

16.

17.

18.

WO 00/33170 PCT/US99/26161

The method of claim 12, wherein the pointer information provides the first firmware

module with access to the routines in the second firmware module.

The method of claim 12, further comprising using the prolog function to copy portions of

the first and second firmware modules to a dynamic memory structure .

A method for implementing legacy routines, written for a first instruction set architecture

(ISA), on a platform implementing a second ISA, the method comprising:
locating a data structure associated with the legacy routines;

storing a return address to a routine written for the second ISA in the data

structure; and

calling a selected legacy routine through a dipatcher identified by the data
structure.

The method of claim 15, wherein locating a data structure comprises:
initializing a boot routine written for the second ISA;

scanning a boot routine written for the first ISA for the data structure, the boot

routine including the legacy routines; and

recording a location for the data structure.

The method of claim 15, wherein calling a selected legacy routine comprises generating
an indexed call to the identified dispatcher, the indexed call including an index for

identifying a pointer to the selected routine.

The method of claim 15, further comprising returning control to the routine written for

16

19.

20.

21.

22.

WO 00/33170 PCT/US99/26161

the second ISA, using the stored return address, when the selected legacy routine

completes.
The method of claim 15, further comprising executing the selected legacy routine.

The method of claim 19, wherein executing the selected legacy routine includes:

storing a return address associated with the selected legacy routine in the data

structure;

accessing a native routine through a second dispatcher specified in the data

structure by the native boot routine; and

returning to the selected legacy routine, via the stored return address, when the

native routine tompletes.

A machine readable medium on which are stored instructions in a native ISA, executable

by a processor to implement a method comprising:
scanning a code block written in a legacy ISA to locate a data structure;

determining a dispatcher location specified in the data structure, the dispatcher

location to provide access to a plurality of legacy routines; and

writing a return address to the data structure, the return address pointing to a

location in the block of instructions in the native ISA; and

accessing a selected one of the plurality of legacy routines through the dispatcher.

The machine readable medium of claim 21, wherein scanning a code block comprises:
locating the code block using a firmware identification table; and

scanning the located code block for a locator block associated with the data

structure.

17

WO 00/33170 PCT/US99/26161

23. The machine readable medium of claim 22, wherein scanning the located code block

comprises:
copying a portion of the located code block to a system memory; and

scanning the copied portion for the locator block.

18

WO 00/33170 PCT/US99/26161

1/4
100
Processo Processor
110(1) & o ¢ 110(n)
h Y
Jr \ 4

120

System Logic System Memory
130 140

160
A A A
A \ 4 v
Non-Volatile peripheral .
Memory device(1) o o o Peﬂphfggl(jl)aewce
170 180

Fig. 1

WO 00/33170

240

2/4

PCT/US99/26161

250
PROLOG

260
DISPATCHER

270
ROUTINES

278

208

L

ID_STRING

DS_SIZE

CK_SUM

' o
>
3
wmn
3
Cc
o
c
bl
m- .

230

DISP1
RADD1
SH_DATA

RADD2

220
DISPATCHER_1

L

UL

204

234

\

j 244

210
ROUTINES

Fig. 2

WO 00/33170

3/4

310
INITIATE
PROCESSOR BOOT

ALLOCATE MEMORY

340

PCT/US99/26161

334
SELECT BSP

INITIALIZE & <

.

350
LOCATE LEGACY FW

Y

360
COPY LEGACY FW
TO MAIN MEMORY

'

370
LOCATE/NALIDATE
DS

'

380
UPDATE DS W/
NATIVE FW DATA

\ 4

390
INITIALIZE
PLATFORM

Fig. 3

WO 00/33170

414

~ 410
INTERRUPT?

420
JUMP TO FW2

y

430
UPDATE RADD2 IN DS

y
440
GENERATE INDEXED CALL
FOR SELECTED ROUTINE

\ 4

450
ACCESS INDEXED LEGACY
ROUTINE

A 4

460
PROCESS INTERRUPT

A 4

470

RETURN TO FW2 VIA RADD.

Y

480
END INTERRUPT

Fig. 4

PCT/US99/26161

INTERNATIONAL SEARCH REPORT International application No.
PCT/US99/26161

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GOGF 3/00, 9/445, 9/455
US CL :395/500.48; 713/2
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 395/500.44, 500.47, 500.48; 713/1, 2, 100; 703/27

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No
A US 5,388,215 A (BAKER et al) 07 February 1995 1-23
A US 4,077,058 A (APPELL et al) 28 February 1978 1-23
A US 3,891,974 A (COULTER et al) 24 June 1975 1-23

D Further documents are listed in the continuation of Box C. D See patent family annex.

Special categories of cited documents: T later document pubiished after the international filing date or priority
date and not in conflict with the application but cited to understand

"A* document defining the general state of the art which is not considered the principle or theory underlying the invention
to be of particular relevance
e . X . S .
g carlier document published on or after the international filing date X docu_mem of particular relevanf:e, the claimed invention cannot be
considered novel or cannot be considered to involve an mvenuve step
‘L document which may throw doubts on priority claim(s) or winch is when the document is taken alone
cited to establish the pubbcauon date of another citation or other . . .
special reason (as specified) "Y" documcnt of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
0 document referrmg to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
*P" document published prior to the international filing date but later than g+ document member of the same patent family
the priority date claimed .
Date of the actual completion of the international search Date of mailing of the international search report
12 JANUARY 2000 zl JANQOOO
Name and mailing address of the ISA/US Authorized officer

Commissioner of Patents and Trademarks

Box PCT
Washington, D.C. 20231 DENNIS M. BU?‘}M ﬁ mmp

Facsimile No. (703) 305-3230 Telephone No. (7€3) 305-3900

Form PCT/ISA/210 (second sheet)(July 1992)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

