发明名称
激光发光装置以及激光测量机

摘要
本发明涉及激光发光装置以及激光测量机。具备：激光发光器，其发出泵浦光；共振器，其使泵浦光进行振荡、放大而射出激光光线；以及模光纤，其将从上述激光发光器发出的泵浦光导向上述共振器，在该模光纤设置有搅拌器，通过上述搅拌器对在上述模光纤中传播的泵浦光进行搅拌来使光强度分布均匀化，并使泵浦光入射到上述共振器。
1. 一种激光发光装置，其中，具备：
激光发光器，其发出泵浦光；
共振器，其使泵浦光进行振荡、放大而射出激光光束，以及
多模光纤，其将从所述激光发光器发出的泵浦光导向所述共振器。
在该多模光纤设置有搅模器，通过所述搅模器对在所述多模光纤中传播的泵浦光进行
搅拌来使光强度分布均匀化，并使泵浦光入射到所述共振器。

2. 根据权利要求1所述的激光发光装置，其中，
所述搅模器设置于所述多模光纤的射出端部。

3. 一种激光测量机，将激光光线照射到测定位对象物，对来自该测定位对象物的反射光进
行光接收来进行距离测定，其中，作为所述激光光线的发光源而具备权利要求1所述的所
述激光发光装置。
激光发光装置以及激光测量机

技术领域
[0001] 本发明涉及一种使用多模光纤的激光发光装置以及具备该激光发光装置的激光测量机。

背景技术
[0002] 使由激光二极管所发光的泵浦光（pump light）经由多模光纤入射到共振部，通过该共振部对泵浦光进行抽运（pump）。泵浦光进行共振、放大并作为激光光而输出。
[0003] 将泵浦光导向共振部的多模光纤在设置于设备的过程中被弯曲、扭曲等被加以需要的变形。由于变形在多模光纤内部产生应力，所产生的应力对在多模光纤中传播的激光光线的行进状态施加影响，从而使光强度分布不均匀，使激光光线的质量劣化。
[0004] 例如，在将激光发光装置用于激光测量机的情况下，光强度分布的不均匀对反射光的光接收强度造成影响，因此，对测距精度施加影响。
[0005] 因此，要求入射到共振部的泵浦光的光强度分布的均匀化。
[0006] 以往，在将多模光纤安装于激光二极管的状态下，以从多模光纤射出的泵浦光的光强度分布为均匀的方式选择激光二极管或调整激光二极管的发光状态等。
[0007] 因此，激光发光装置的成品率差并且需要调整成本等，激光发光装置变得昂贵。

发明内容
[0008] 本发明的目的在于提供一种在具有多模光纤的激光发光装置中泵浦光的光强度分布容易均匀化的激光发光装置以及具备该激光发光装置的激光测量机。
[0009] 为了达成上述目的，本发明的激光发光装置具备：激光发光器，其发出泵浦光；共振器，其使泵浦光进行振荡，放大而射出激光光线；以及多模光纤，其将从所述激光发光器发出的泵浦光导向所述共振器，在该多模光纤设置有搅模器，通过所述搅模器对在所述多模光纤中传播的泵浦光进行搅拌而使光强度分布均匀化，并使泵浦光入射到所述共振器。
[0010] 此外，在本发明的激光发光装置中，所述搅模器设置于所述多模光纤的射出端部。
[0011] 进而，此外，本发明的激光测量机将激光光线照射到测定对象物，对于该测定对象物的反射光进行光接收来进行距离测定，其中，作为所述激光光线的发光源而具备所述激光发光装置。
[0012] 根据本发明，具备：激光发光器，其发出泵浦光；共振器，其使泵浦光进行振荡，放大而射出激光光线；以及多模光纤，其将从所述激光发光器发出的泵浦光导向所述共振器，在该多模光纤设置有搅模器，通过所述搅模器对在所述多模光纤中传播的泵浦光进行搅拌来使光强度分布均匀化，并使泵浦光入射到所述共振器，因此，即使在从多模光纤射出的泵浦光的光强度分布为不均匀的情况下，也不需要选择激光二极管或调整激光二极管的发光状态，从而能够提高激光发光装置的成品率，提供便宜的激光发光装置。
[0013] 此外，根据本发明，在将激光光线照射到测定对象物并对来自该测定对象物的反射光进行光接收来进行距离测定的激光测量机中，作为所述激光光线的发光源而具备所述
激光发光装置，因此，谋求激光测量机的制作费的降低。

附图说明
[0014] 图 1 是本发明的实施例的激光发光装置的概略结构图。
[0015] 图 2 是示出在该激光发光装置中使用的搅模器的一个例子的说明图。
[0016] 图 3 是示出在该激光发光装置中使用的搅模器的另一例子的说明图。
[0017] 图 4 (A)、图 4 (B) 分别示出未设置上述搅模器的情况、设置了该搅模器的情况下
的泵浦光光束面的光强度的图像的图。
[0018] 图 5 (A)、图 5 (B) 是分别示出图 4 (A)、图 4 (B) 中的 X 射线上的光强度分布的
图表。
[0019] 图 6 (A) 是示出未设置搅模器的情况下光脉冲的振荡状态的图表，图 6 (B) 是
示出脉冲强度的图表，是按时间序列示出脉冲的发光的图表。
[0020] 图 7 (A) 是显示设置的搅模器的情况下光脉冲的振荡状态的图表，图 7 (B) 是
示出脉冲强度的图表，是按时间序列示出脉冲的发光的图表。
[0021] 图 8 是具备本发明的上述激光发光装置的激光测量机的概略图。

具体实施方式
[0022] 以下，参照附图并说明本发明的实施例。
[0023] 图 1 是本发明的实施例的激光发光装置的概略结构图。
[0024] 在图 1 中，为发出泵浦光的激光发光器 (LD 发光器)，3 为将从该 LD 发光器 2 发出
的泵浦光导至需要的位置 (例如共振部 4) 的光导纤维 (optical fiber) (多模光纤)。该
光导纤维 3 呈线圈状地弯曲或为了进行方向变换被弯曲，扭转等进行需要的处理。
[0025] 此外，在上述光导纤维 3 的需要位置优选为射出端附近，设置有搅模器 (mode
scrambler) 5。与上述光导纤维 3 的射出端相向地设置有泵光透镜 6。该泵光透镜 6 使从
上述光导纤维 3 射出的泵浦光 7 聚光，使该泵浦光 7 入射到上述共振部 4。
[0026] 入射到该共振部 4 的泵浦光在该共振部 4 中被振荡为基波，进行放大并从该
共振部 4 射出。或泵浦光被振荡为二次谐波，进行放大，作为所要求的激光光束而射出。
[0027] 对上述共振部 4 进行说明。
[0028] 在该共振部 4 的入射侧设置有第一共振振 11、在上述共振部 4 的射出侧设置
有第二共振振 12。在上述第一共振振 11、上述第二共振振 12 之间从上述第一共振振 11
侧起设置有光光介质 13、Q 开关器件 14。
[0029] 与从上述共振部 4 被 Q 开关脉冲输出的脉冲激光光束 15 的波长对应地选择上
述光光介质 13。
[0030] 例如，如果将 Nd :YVO4 用于上述光光介质 13，则振荡波长为 1064 nm。如果将 Nd :
YAG 用于上述光光介质 13，则 Nd :YAG 具有 946 nm、1064 nm、1319 nm 等的振荡波长。
此外，还能够使用振荡波长为 1.54 μm 带的 Er、Yb :Glass 等。
[0031] 上述 Q 开关器件 14 具有以下功能：在上述第一共振振 11 与上述第二共振振 12 之
间基波被放大而变为规定的能量以上的情况下，从上述共振部 4 射出基波。因而，从上述
共振部 4，脉冲激光光束 15 作为脉冲光而射出。
此外，作为上述 Q 开关器件 14，使用光电元件、声光元件、可饱和吸收体或电子快门等。

此外，还能够在上述光共振部 4 设置非线性晶体，激发二次谐波，产生二次谐波的脉冲激光光线。

接着，说明上述搅动器 5。

如上所述，使用上述光导纤维 3，由此，有时泵浦光的光强度分布变得不均匀。入射到上述光共振部 4 的泵浦光的光强度分布对上述脉冲激光光线 15 的光强度、脉冲宽度、重复频率、偏振光造成影响。上述搅动器 5 使入射到上述光导纤维 3 的泵浦光的光强度均匀化。

上述搅动器 5 对上述光导纤维 3 施加机械变形，使上述光导纤维 3 产生应力。在上述光导纤维 3 产生的应力对上述光导纤维 3 中传播的激光光线的行进状态施加影响，通过使该光导纤维 3 产生应力，从而对在该光导纤维 3 中传播的激光光线进行搅拌，促进光强度分布的均匀化。

图 2 示出对上述搅动器 5 中的上述光导纤维 3 施加变形的一个方法。

隔着上述光导纤维 3 设置有相对置的按压构件 17a, 17b。该按压构件 17a, 17b 分别在向面具有凸部 18a, 18b。该凸部 18a, 18b 相对于上述光导纤维 3 为交错状的排列。

在上述光导纤维 3 按压上述按压构件 17a, 17b，由此，上述光导纤维 3 通过上述凸部 18a, 18b 交替地在不同的方向上弯曲。因而，在上述搅动器 5 内部，上述光导纤维 3 以蛇行的方式变形。因而，在上述光导纤维 3 内部，沿着上述光导纤维 3 的轴心方向，应力的产生状态发生变化。

此外，作为使上述光导纤维 3 以蛇行的方式弯曲的方法，可想到各种方法。也可以将规定的直径的销 (pin) 以规定的间隔竖立设置在直线上，一边使销之间弯曲一边使上述光导纤维 3 插通。

图 3 示出上述搅动器 5 中的上述光导纤维 3 的另一变形例。

在其它变形例中，在圆筒状的芯棒 19 多次缠绕上述光导纤维 3。在该变形例中，也通过缠绕上述光导纤维 3 来对该光导纤维 3 施加弯曲变形，在该光导纤维 3 的内部产生应力。

此外，可以将上述变形合成，或者也可以进一步附加扭曲变形。

在图 4 (A)、图 4 (B) 中，说明了在上述光导纤维 3 设置有上述搅动器 5 的情况下

图 4 (A) 示出未设置上述搅动器 5 的情况下的泵浦光光束截面的光强度的图像，图 4 (B) 中示出设置了该搅动器 5 的情况下的泵浦光光束截面的光强度的图像。在图 4 (A)、图 4 (B) 中，亮的部分示出光强度强的部分，暗的部分示出光强度弱的部分。

在图 4 (A) 中，可知中央部分暗，光强度弱。此外，在图 4 (B) 中，可知整体是亮的，光强度均匀。

此外，图 5 (A)、图 5 (B) 是分别将图 4 (A)、图 4 (B) 中的 X 射线上的光强度分布图表化后的图。图 5 (A) 是未设置上述搅动器 5 的情况，图 5 (B) 是设置了上述搅动器 5 的情况。

图 5 (A) 中，在光束的中央部观察到大的下降。但是，在图 5 (B) 中，成为在光束的中央部光强度最大并且光强度朝向周围逐渐减小的优选的光强度分布。
图 6 (A)、图 6 (B) 示出未设置上述测模器 5 的情况下的光脉冲的振荡状态。此外，图 6 (A) 示出脉冲强度波形 15a，是重叠描绘的图像，图 6 (B) 示出脉冲强度 15b，按时间序列示出脉冲的发光。

在未设置上述测模器 5 的情况下，在发光强度的峰值存在偏移，如图 6 (B) 所示，脉冲强度交替地减半。发光强度的变动起因于从上述光导纤维 3 射出的泵浦光的偏振光方向发生变动。

与图 6 (A)、图 6 (B) 同样地，图 7 (A)、图 7 (B) 示出设置了上述测模器 5 的情况下的光脉冲的振荡状态。此外，图 7 (A) 示出脉冲强度波形 15a，是重叠描绘的图像，图 7 (B) 示出脉冲强度 15b，按时间序列示出脉冲的发光。

在设置了上述测模器 5 的情况下，如图 7 (A) 所示，发光强度的峰值为固定，发光状态稳定。此外，如图 7 (B) 所示，脉冲强度为固定。这示出了所射出的泵浦光的偏振光方向稳定。

此外，作为其它效果，确认了子脉冲的产生被抑制，此外脉冲抖动（jitter）减少。

而且，通过在上述光导纤维 3 设置上述测模器 5，其 Ultrasonic 装置 1 中，能够使泵浦光的光强度分布均匀化，提高激光光束的品质。

作为具备本发明的激光发光装置的装置，例如能够例如出图 8 的激光测量机。

激光测量机 21 主要由经由透平圆（未图示）设置的主体部 22 以及旋转自由地设置于该主体部 22 的转动部 23 构成。

该转动部 23 经由轴承 24 设置于上述主体部 22，以铅直的旋转轴为中心而旋转自由。

在上述主体部 22 中收纳有测距光学系统 26、控制运算部 27、电源部 28 等。

上述测距光学系统 26 具有与上述旋转轴心吻合的光轴。在该光轴上设置有分束器 29、聚光透镜 31，以及设置于上述分束器 29 之间的作为偏振光光学构件的反射镜 32，在与该反射镜 32 相向的位置设置有激光发光装置 10。该激光发光装置 10 具有与在图 1 中示出的上述激光发光装置 1 同等的结构。

从该激光发光装置 10 射出作为测距光的脉冲激光光 33（波长 λ1）。该脉冲激光光波长 33 被上述反射镜 32 反射，在上述光轴上偏转。

上述分束器 29 具有形成有波长选择膜的反射面 29a，通过该反射面 29a 分割上述光轴。在所分割的反射光轴上设置有光接收部 35，在穿过上述反射面 29a 的透射光轴上设置有摄像元件 36。

上述反射面 29a 将波长 λ1 的测距反射光轴向上述光接收部 35 反射，而透射自然光（可见光，波长 λ2）。透射了上述反射面 29a 的自然光由上述摄像元件 36 光接收，该摄像元件 36 取得包含测定对象物的背景图像。

在上述主体部 22 与上述轴承 24 之间设置有构成为环状的水平旋转电动机构 38，由该水平旋转电动机构 38 使上述转动部 23 旋转。此外，在上述主体部 22 与上述转动部 23 之间设置有作为水平检测器的水平编码器（encoder）39，利用该水平编码器 39 来检测上述转动部 23 相对于上述主体部 22 的相对旋转角。

在由上述轴承 24 支承的旋转框（rotating frame）41 经由轴承 43 旋转自由地支承与上述旋转轴心（即上述光轴）正交的水平的水平轴 42。在上述水平轴 42 固定有作为光
轴偏转构件的高低转动反射镜 44，该高低转动反射镜 44 与上述水平轴 42 一体地旋转。

[0064] 在上述旋转框 41 与上述水平轴 42 同心地设置有环状的高低转动电动机 45，该高低转动电动机 45 与上述水平轴 42 为齿轮使上述高低转动反射镜 44 在高低方向上旋转。此外，在上述旋转框 41 与上述水平轴 42 之间设置有高低编码器 46，对上述水平轴 42 即上述高低转动反射镜 44 的高低角进行检测。

[0065] 以下，对上述激光测量机 21 的测距进行说明。

[0066] 上述控制运算部 27 对上述激光发光装置 10 的发光进行控制。对上述水平旋转电动机 38，上述高低转动电动机 45 的驱动进行控制。此外，由上述水平编码器 39 检测上述转动部 23 的水平旋转，由上述低编码器 46 检测上述高低转动反射镜 44 的高低角。上述控制运算部 27 基于上述水平编码器 39，上述高低编码器 46 的检测结果来将上述高低转动反射镜 44 的姿势控制为期望状态。

[0067] 从上述激光发光装置 10 发出脉冲测距光。该脉冲测距光被上述反射镜 32 反射，并被上述聚光透镜 31 做成平行光束，由上述高低转动反射镜 44 在水平方向上进行偏转，照射到测定对象物。

[0068] 来自测定对象物的反射测距光由上述高低转动反射镜 44 在光轴上进行偏转，由上述反射面 29a 朝向上述光接收部 35 偏转，进而由上述聚光透镜 31 在上述光接收部 35 上成像。

[0069] 此外，来自测定对象物的背景光经过上述高低转动反射镜 44，上述聚光透镜 31 而透射上述分束器 29（上述反射面 29a），被上述摄像元件 36 光接收，由该摄像元件 36 取得包含测定对象物的背景图像。

[0070] 上述控制运算部 27 基于来自上述光接收部 35 的反射测距光的光接收信号来对测定对象物的距离进行运算，此外，取得接收到反射测距光时的上述水平编码器 39、上述高低编码器 46 的检测结果，对测定对象物的水平角、高低角进行运算，进行测定对象物的定位。进而，通过取得测定时的图像来进行带测定对象物的图像的三维测得。
图 6

图 7