WO 02/35349 Al

(19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

(43) International Publication Date
2 May 2002 (02.05.2002)

(10) International Publication Number

WO 02/35349 Al

(51) International Patent Classification’:

GO6F 9/45

PCT/US01/31713

[/US]; 1822 Cambridge Drive, Carpentersville, IL
60110 (US).

(21) International Application Number:

(22) International Filing Date: 11 October 2001 (11.10.2001)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
09/697,061 26 October 2000 (26.10.2000) US
(71) Applicant (for all designated States except US): VIR-
TUAL MEDIA, INC. [US/US]; 18-3 East Dundee
Avenue, Suite 300, Barrington, IL. 60010 (US).
(72) Inventor; and
(75) Inventor/Applicant (for US only): UNER, Eric, R.

(74) Agent: MERONI, Charles, F., Jr.; P.O. Box 309, Barring-

ton, IL 60011 (US).

(81) Designated States (national): AL, AM, AT, AU, AZ, BA,

BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES,
FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG,
MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE,
SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN,
YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,

[Continued on next page]

(54) Title: TRANSLATING DATA STREAMS USING INSTRUCTIONS IN TEMPLATES

(57) Abstract: This invention is system for

I~ 62 translating data streams. The method comprises
nﬂﬁ%ﬁ%’égi N C%T",Ef,’_i,t FIRST COMPILED programming pre-arranged instructions into a
nmL\ | TEMPLATE ING{SC first template (61, fig. 6) in a Genesis Template
l;E]\ \ \ Markup Ijanguage (GTML), compiling the first
71 76 13 10 I template into Genesis Byte Code (GBC) (62),
creating a second template in the GTML (63),
63\ 6(1 compiling the second template into GBC (64),
SECONDTAMBLATE | coneos e oD copiLED interpreting the first and the second compiled
FINANCIAL MODEL B P TEMPLATE IN GBC templates to a processor by a Genesis Executor
(MCHL) p;gg::;ﬂ{ﬁ G (GE) (5), and generating output data (77). The
7,12 \50 “/ ANGUAGE |2 apparatus comprises a first compiler on a first
6 system for compiling a first template (61) in a
65 €6 lTGAP'—/ first high level language into GBC (62), a second
\\ conTam v 19 compiler on a second system for compiling a
FINANGIAL MOBEL C |-, TEMPATE B GBC - > ouTeuT second template (63) in a second high level
{ mronm«! N \ — \\ language into GBC (64), a GE (5) on a third
| £xEcy. 77 system for providing an interpretation of the first
73 55 " ™5 and second compiled templates, and a processor
6\7 6% (19) on a forth system for generating output data
roumH aarLaTe | 255 (77) based on the GE (5).
| FORTH COMPILED
i e
\ \ (
74 10 1l
69 78
GENESIS C+
FIFTH TEMPLATE COMPILER § EIFTH COMPILED

A SECOND GROUP OF
" INPUT DATA INC+

)

75 78

!

TEMPLATE IN GBC

|
(

w0 02/35349 A1 I HID N0 0RO AR

CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, For two-letter codes and other abbreviations, refer to the "Guid-
TG). ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

Published:

— with international search report

WO 02/35349 PCT/US01/31713

SPECIFICATION

TRANSLATING DATA STREAMS USING INSTRUCTIONS IN TEMPLATES

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to data processing methods, apparatus and computer
program products. More specifically, my invention is primarily intended for translating data
streams and performing programmatic tasks by using instructions and associated data stored
in templates.

Description of the Prior Art

Most digital devices, including computers, embedded systems, and like, require a
program to help them operate. A program is a specific set of ordered operations for a device
to perform. These devices would benefit greatly from separating the core functions of their
program from the more specific portions of their program. For example, a digital watch
benefits from having one part of its design handle the actual timekeeping, while another part
handles the display of the time. In this way, the maker of the watch can use the core time
keeping functionality in many different watches with many different displays.

This concept of separating functionally unique parts of a design is important in a
good engineering design, and is often called modularization. Software is usually

1

WO 02/35349 PCT/US01/31713

modularized by placing related instructions into separated files or groups of files. The files,
called source files, contain instructions written in a high level computing language, such as
C++, Java, Perl, or like. These files are then typically compiled into a binary code specific
to the machine they are to be executed on. Some systems allow for an additional step that
can translate data and text of different languages into a common language, where they can
be compiled together into a single executable program. Some languages allow the system to
bypass the compilations steps entirely, and execute the source files directly by interpreting
their instructions real-time. Examples of interpreted languages include UNIX Shell Scripts,
Perl, AppleScript, or like. Occasionally, interpreted languages allow a pre-compile step to
produce a simple version of the source file that is easier for the interpreter to execute. An
example of this would be Java. Java can compile into a form that is mostly platform
independent, and be executed by a “Virtual Machine” or interpreter specific to a device or
type of device.

In order to achieve the modularization, various inventions have been made. U.S.
Patent No. 5,546,583, which issued to Shriver, discloses a Method and System for
Providing a Client/Server Interface in a Programming Language. This invention provides
a method and system for providing a client/server interface to a programming language.
This invention further provides a method and system for providing client/server support
which permits a server to wait for client requests and to read and set client variables.
This invention also provides the user of a programming language a method and system
for providing client/server support that allows users to benefit from the programming
language's friendly "look and feel." In a data processing system, a programming language
processor capable of executing program code is provided. A client program and a server

2

WO 02/35349 PCT/US01/31713

program are also provided within the data processing system. The client program and the
server program are comprised of program code capable of execution within the data
processing system. Once the client and server programs are invoked, the client program
sends a request for a service to the server program. In response to program code within
the server program, a request is sent to the client program for a service that requires
access to a variable within the client program. The client program then processes the
request from the server program and sends the server program a response. Thereafter, the
server program continues processing the request from the client program in response to
gaining access to the variable in the client program. If the server program has not been
initialized when the client program requests a service, the client program automatically
initializes the server program.

United States Patent No. 5,956,709, which issued to Xue, discloses a Dynamic
Data Assembling on Internet Client Side. This invention eliminates the unnecessary
transmissions of useful data by implementing all edit operations, such as adding, deleting,
updating, entry check, calculation, and backup on client side in a data assembling
process. This invention also reduces the time needed to assemble a data set needed to
make a transaction on the Internet for Internet users. This invention further makes an
online transaction a pleasant experience for Internet users instead of a tedious and time-
consuming activity. The invented DDAICS method is an alternative diverse type of
dynamic information retrieval, storage, and exchange method. Unlike those conventional
Internet data retrieval and exchange methods on the Internet in which most application
logic and data access logic are located on the server side, the newly invented DDAICS
method is to arrange application logic and data access logic on both client side and server

3

WO 02/35349 PCT/US01/31713

side according to execution efficiency to achieve optimal implementations of
transactions. A web browser with a build-in engine that can execute client side
application program, such as Netscape Navigator 3.0 or above, is needed to implement
the method. Web pages used in the method are specifically designed in which client side
application program, such as one written with JavaScript, is embedded. Also a frame in a
window, which is preferred, or a new window is created on client side as a data
assembling monitor window. In addition, data needed for a transaction in a web page
must be designed in such a way that they can be retrieved dynamically and individually
and assembled with necessary user input in the monitor window by the client side
application program actuated by users. In an assembling process, all or some of editing
operations, such as adding, deleting, updating, entry check, calculation, and backup, are
executed on client side until final submission, save, or print. The philosophy behind the
DDAICS method is that where execution efficiencies lie, where application logic and
data access logic go.

United States Patent No. 5,961,586, which issued to Pederson, discloses a System
and Method for Remotely Executing an Interpretive Language Application. This
invention relates to a method for remotely executing interpretive languages in a client-
server environment. The server to which a client is connected downloads and executes an
application written in an interpretive language, such as a JAVA applet. The server
accepts input from, and provides screen data to, the client. This allows the client to
appear as if it is executing the application in a traditional manner without requiring the
client to expend compute and memory resources hosting and executing the application.
Additionally, the server may be able to download the application more quickly than the

4

WO 02/35349 PCT/US01/31713

client. The server also accepts input from the client node, allowing the client node to
control and provide input to the downloaded application. In one aspect, this invention
relates lo a method for remotely executing an application written in an interpretive
language which begins by downloading the application to a server node in response to a
request made by a client node. A connection is established between the client node and a
predetermined communications port located on the server; the server creates an endpoint
data structure and associates a client space hosted by the server with the endpoint data
structure. The server generates a protocol stack associated with the client space and the
associated endpoint data structure, notifies a connection manager of the connection, and
transfers the connection between the predetermined communications port and the client
node to the associated protocol stack. In another aspect, this invention relates to an
article of manufacture having computer-readable program means embodied thereon for
remotely executing an application written in an interpretive language. The article of
manufacture includes: computer-readable program means for downloading the
application to a server node in response to a request made by a client node; computer-
readable program means for establishing a connection between the client node and a
predetermined communications port located on the server; computer-readable program
means for creating an endpoint data structure; computer-readable program means for
associating a client space hosted by the server with the endpoint data structure; computer-
readable program means for generating a protocol stack associated with the client space
and the associated endpoint data structure; computer-readable program means for
notifying a connection manager of the connection; and computer-readable program
means for transferring the connection between the predetermined communications port

5

WO 02/35349 PCT/US01/31713

and the client node to the associated protocol stack. In still another aspect, this invention
relates to a system for remotely executing an application written in an interpretive
language. The system includes a server node having a predetermined communications
port and a client node having a communications device establishing a connection between
the client node and the predetermined communications port of the server node. A
protocol stack is located on the server node and the protocol stack includes an endpoint
data structure. A client space located in memory on the server node is associated with the
protocol stack and provides an execution environment for an application written in an
interpretive language. The system further includes a communication manager located on
the server node, and a notification device located on the server node. The notification
device notifying the connection manager of the connection between the client node and
the predetermined communications port and the communications manager transferring
the connection between the predetermined communications port and the client node to the
protocol stack.

United States Patent No. 5,987,480, which issued to Donohue, discloses a Method
and System for Delivering Documents Customized for a Particular User Over the Internet
Using Imbedded Dynamic Content. This invention provides the ability to embed
dynamic content into web pages. A system and method for delivering documents having
dynamic content embedded over the worldwide Internet or a local internet or intranet. A
data source 1s stored on a server computer connected to the Internet, the data source
containing content in a form representing or reducible to names and corresponding
values. Document templates are created by embedding dynamic tags and flow directives
in markup language documents, the dynamic tags and flow directives containing one or

6

WO 02/35349 PCT/US01/31713

more names of content stored in the data source. The document templates are stored on
the server computer. The server computer can receive requests from client computers
connected to the Internet, the requests identifying desired documents to be delivered. In
response to such a request, the server computer selects one of the document templates
corresponding to the desired document, populates the document template with content
stored in the data source based on respective values of content corresponding to names in
the dynamic tags and flow directives, and delivers the populated document to the client
computer. The invention has particular application to HTML documents transferred over
the World Wide Web.

United States Patent No. 6,073,163, which issued to Clark, discloses a Method
and Apparatus for Enabling Web-based Execution of an Application. This invention
provides a method and system for executing an application at a client. According to the
method, a first portion of code for the application is transmitted to the client over a
network. The first portion of code is executed at the client to cause the client to generate a
user interface that is displayed by the client, detect user interaction with the user
interface, and transmit from the client over the network a first message that indicates the
user interaction with the user interface. A second portion of code for the application is
executed at a node of the network other than the client. The second portion of code
causes the node on which it is executing to respond to the first message by (1) generating,
based on the user interaction, at least one record that indicates a change to the user
interface, and (2) transmitting the at least one record to the first portion of code in a
second message. The first portion of code responds to the second message by performing
the change to the user interface. According to one aspect of the invention, the step of

7

WO 02/35349 PCT/US01/31713

generating at least one record includes the step of generating a plurality of records which
specify a plurality of changes to the user interface. The plurality of changes are
accumulated by the second portion of code prior to transmitting the second message. The
plurality of records are then sent in the second message.

United States Patent No. 6,078,322, which issued to Simonoff, discloses a
Methods permitting rapid generation of platform independent software applications
executed on a universal client device. This invention provides a computer system for
interconnecting various military components efficiently. According to one aspect of this
invention, the computer system advantageously permits military components to use the
same computer program and share information beyond the visualization of a map, text or
photograph regardless of variations in hardware and software between the networked
computers. According to another aspect of the invention, a dedicated scripting language
enables each military component to quickly and easily personalize the user front end,
which presents the GUI objects, without modifying the same software program
application used by all networked military components. Thus, the Government
simultaneously achieves military component interoperability and cost savings regardless
of computer variation and architecture. This invention also provides a computer system
whereby research scientists designing systems employing simulation-based design
technology are permitted to run simulations and visualize the results regardless of
computer variation. According to one aspect of this invention, the computer system
according to the present invention beneficially permits geographically dispersed users to
access a central database, to run simulations, and to receive simulation results. According
to yet another aspect of the present invention, the received simulation results

8

WO 02/35349 PCT/US01/31713

advantageously are displayed as directed by the user. This invention further provides a
device which advantageously enables application programmers to quickly and easily
script application program behavior without requiring modification to the device. This
invention further provides an interface development method which advantageously
enables application programmers to quickly and easily script application program
behavior without requiring concurrent modification to the application program.
Although most of these mechanisms allow for modularization at the design level,
none of them allow that flexibility at the system level. No matter which application
development architecture is chosen, one or more challenges still exist. The first
challenge is that building all functions into one application requires rebuilding the entire
application for each change. Even a small change in any part of the application may
require a complete rebuild and reinstall of the entire application. For example, making a
button on a web page say “Please Submit” as opposed to simply “Submit” would require
such a monumental task, which is an inordinate amount of effort for such a small change.
The situation is complicated by both large enterprise environments and small embedded
environment. Embedded systems are sometimes built into a microchip, and so a small
change would require redesigning and manufacturing a new chip. Some embedded
systems, such as cell phones and pagers, are so large in the number of units that
distributing any kind of alteration or upgrade to them that requires physical possession of
the device is simply not practical. In enterprise environments, the mere act of building
the software may take hours or even days. In some systems, restarting the system even

after the build would require too much downtime of the system to justify the change.

WO 02/35349 PCT/US01/31713

The second challenge is that the software developers are required to have good
user interface skill in devices that feature a user interface. Typically, designers and artists
may have good computer sills, but little or no programming skills. The converse is true
for programmers, who often have little or no design experience. Cases where an
individual has acquired both skill sets are extremely rare, and it is even more rare for that
individual to perform the task with the same competency as a specialist in the field. This
rift in the talent base creates a need for programmers and designers to work hand in hand,
with one side’s work and schedule necessarily affecting the other’s. For example, a
programmer working on a web site would need to know the design of the web page in
any places where the software must generate dynamic content. A delay in the approval of
the design of the web page may delay the software development.

The third challenge is that interpreted languages are typically much slower than
compiled applications. An interpreted program usually cannot run nearly as fast as a
compiled program. This is due to the fact that in a compiled language, a language compiler
converts source statements into something close to the strings of 0’s and 1°s that a processor
ultimately is given to work on. Because this work must be done on an interpreted language
at the time the interpreted program is run, there is an extra step involved in the execution
that ultimately slows the program down.

The fourth challenge is that real time interpreters often have no communication with
the core application. In environments that mix compiled applications with interpreted
scripts, program instructions and data in each are separate, with no opportunity to share

without storing the data in a temporary location common to both sides.

10

WO 02/35349 PCT/US01/31713

The fifth challenge is that placing all code in interpreted source files makes all code
visible. Having no way to compile the code makes obfuscation difficult if not impossible.
For example, in an interpreted script that accesses a database with a password, that password
must be included in the script. Compiling that same script would hide the password and
along with any algorithms in that script.

Because of all these challenges, what is needed then is a method, apparatus and
computer program product for translating data streams and performing programmatic
tasks by using instructions and associated data stored in templates.

Accordingly, it is a principal object of my invention to provide a method, apparatus
and computer program product for translating data streams and performing programmatic
tasks by using instructions and associated data stored in templates.

It is a further object of my invention to provide a method, apparatus and computer
program product that separates an operating program into two independent parts, one is a
model template, the other is an input data template.

It is a still further object of my invention to provide a method, apparatus and
computer program product that enables a model to be used by the other parties without
disclosure any of the content of the model.

It is a further object of my invention to provide a method, apparatus and computer
program product that enables a programmer to program a model without a need to know the
design of the user interface.

1t 1s a still further object of my invention to provide a method, apparatus and
computer program product that enables a user interface designer to design a user interface
without a need to know the content of the model.

11

WO 02/35349 PCT/US01/31713

It is a further object of my invention to provide a method, apparatus and computer
program product that uses Genesis Executor to integrate the model and the template to
generate an output.

It is a further object of my invention to provide a method, apparatus and computer
program product that enables the separation of the processing and translation of data from
the core device or application.

Other objects of my invention, as well as particular features, elements, and
advantages thereof, will be elucidated in, or apparent from, the following description and the

accompanying drawing figures.

12

WO 02/35349 PCT/US01/31713

SUMMARY OF THE INVENTION

According to my present invention I have provided a method for translating data
streams and performing programmatic tasks by using instructions and associated data
stored in templates. This method comprises programming a group of instructions into a
first template, the group of instructions can be either a group of instructions or a group of
instructions with associated data, compiling the first template into a first compiled
template in Genesis Byte Code through a first compiler, creating a second template with a
group of input data, the group of input data can either be a group of data or a group of
data with associated instructions, compiling the second template into a second compiled
template in Genesis Byte Code through a second compiler, interpreting the first compiled
template and the second compiled template to a processor by a Genesis Executor, and
generating a group of output data by the processor.

The first template is in a first high level programming language, the first high
level programming language includes Genesis Template Markup Language, C, C+, C++,
PASCAL, FORTRAN, COBOL, or like, the Genesis Template Markup Language
features a rich set of instructions and is a complete programming language with looping,
branching, object definition, and like, the Genesis Template Markup Language may be
linked to another high level programming language through a Genesis Application
Program Interface, the Genesis Application Program Interface is a feature rich set of
functions that allow the another high level programming language to pass data back and

forth to a current execution of both the first compiled template and the second compiled

13

WO 02/35349 PCT/US01/31713

template, the another high level programming language includes C, C+, C++ PASCAL,
FORTRAN, COBOL, or like.

The second template is in a second high level programming language, the second
high level programming language includes Genesis Template Markup Language, C, C+,
C++, PASCAL, FORTRAN, COBOL, or like, the Genesis Template Markup Language
features a rich set of instructions and is a complete programming language with looping,
branching, object definition, and like, the Genesis Template Markup Language may be
linked to another high level programming language through a Genesis Application
Program Interface, the Genesis Application Program Interface is a feature rich set of
functions that allow another high level programming language to pass data back and forth
to a current execution of both the first compiled template and the second compiled
template, the another high level programming language includes C, C+, C++, PASCAL,
FORTRAN, COBOL, or like.

Either one or both of the first template and the second template can include a
group of data in assembly language. Either one or both of the first template and the
second template can be a single template or a group of templates. Either one or both of
the first compiled template and the second compiled template can be a single compiled
template or a group of compiled templates. Either one or both of the first template and
the second template may contain either text, or data, or instructions, or any combination
of text, data, and instructions. The first template and the second template are created
independently from each other.

The first compiler is a utility that takes the first template in the first high level
programming language as input, and produces the first compiled template in the Genesis

14

WO 02/35349 PCT/US01/31713

Byte Code as output. The second compiler is a utility that takes the second template in
the second high level programming language as input, and produces the second compiled
template in the Genesis Byte Code as output.

The first compiled template includes tables and maps of data, or variables, or
instructions, or any combination of tables and maps of data, variables, and instructions
required to execute the first compiled template. The second compiled template includes
tables and maps of data, or variables, or instructions, or any combination of tables and
maps of data, variables, and instructions required to execute the second compiled
template. Both the first compiled template and the second compiled template contain the
Genesis Byte Code suitable to be interpreted by the Genesis Executor to the processor,
along with a set of maps to variables, constants, and code required by the Genesis Byte
Code.

The Genesis Byte Code consists of an ordered set of binary representations of
instructions. The Genesis Byte Code is the lowest level form of code used by the Genesis
Executor. The Genesis Byte Code is also a binary representation of the instruction
mnemonics created by either the first compiler or the second compiler.

According to my present invention I have also provided an apparatus for translating
data streams and performing programmatic tasks by using instructions and associated
data stored in templates. The apparatus comprises means for programming a group of
instructions into a first template, the group of instructions can be either a group of
instructions or a group of instructions with associated data, means for compiling the first
template into a first compiled template in Genesis Byte Code through a first compiler,
means for creating a second template with a group of input data, the group of input data

15

WO 02/35349 PCT/US01/31713

can either be a group of data or a group of data with associated instructions, means for
compiling the second template into a second compiled template in Genesis Byte Code
through a second compiler, means for interpreting the first compiled template and the
second compiled template to a processor by a Genesis Executor, and means for
generating a group of output data by the processor.

The first template is in a first high level programming language, the first high
level programming language includes Genesis Template Markup Language, C, C+, C++,
PASCAL, FORTRAN, COBOL, or like, the Genesis Template Markup Language
features a rich set of instructions and is a complete programming language with looping,
branching, object definition, and like, the Genesis Template Markup Language may be
linked to another high level programming language through a Genesis Application
Program Interface, the Genesis Application Program Interface is a feature rich set of
functions that allow the another high level programming language to pass data back and
forth to a current execution of both the first compiled template and the second compiled
template, the another high level programming language includes C, C+, C++, PASCAL,
FORTRAN, COBOL, or like. The first template and the second template are created
independently from each other.

The second template is in a second high level programming language, the second
high level programming language includes Genesis Template Markup Language, C, C+,
C++, PASCAL, FORTRAN, COBOL, or like, the Genesis Template Markup Language
features a rich set of instructions and is a complete programming language with looping,
branching, object definition, and like, the Genesis Template Markup Language may be
linked to another high level programming language through a Genesis Application

16

WO 02/35349 PCT/US01/31713

Program Interface, the Genesis Application Program Interface is a feature rich set of
functions that allow another high level programming language to pass data back and forth
to a current execution of both the first compiled template and the second compiled
template, the another high level programming language includes C, C+, C++, PASCAL,
FORTRAN, COBOL, or like.

Either one or both of the first template and the second template can include a
group of data in assembly language. Either one or both of the first template and the
second template can be a single template or a group of templates. Either one or both of
the first compiled template and the second compiled template can be a single compiled
template or a group of compiled templates. Either one or both of the first template and
the second template may contain either text, or data, or instructions, or any combination
of text, data, and instructions.

The first compiler is a utility that takes the first template in the first high level
programming language as input, and produces the first compiled template in the Genesis
Byte Code as output. The second compiler is a utility that takes the second template in
the second high level programming language as input, and produces the second compiled
template in the Genesis Byte Code as output. The first compiled template includes tables
and maps of data, or variables, or instructions, or any combination of tables and maps of
data, variables, and instructions required to execute the first compiled template. The
second compiled template includes tables and maps of data, or variables, or instructions,
or any combination of tables and maps of data, variables, and instructions required to
execute the second compiled template. The first compiled template and the second
compiled template contain the Genesis Byte Code suitable to be interpreted by the

17

WO 02/35349 PCT/US01/31713

Genesis Executor to the processor, along with a set of maps to variables, constants, and
code required by the Genesis Byte Code.

The Genesis Byte Code is the lowest level form of code used by the Genesis
Executor. The Genesis Byte Code consists of an ordered set of binary representations of
instructions. The Genesis Byte Code is a binary representation of the instruction
mnemonics created by either the first compiler or the second compiler.

According to my present invention I have further provided a computer program
product recorded on a computer readable medium for a method for translating data
streams and performing programmatic tasks by using instructions and associated data
stored in templates. The computer program product comprises computer readable means
for programming a group of instructions into a first template, the group of instructions
can be either a group of instructions or a group of instructions with associated data,
computer readable means for compiling the first template into a first compiled template
in Genesis Byte Code through a first compiler, computer readable means for creating a
second template with a group of input data, the group of input data can either be a group
of data or a group of data with associated instructions, computer readable means for
compiling the second template into a second compiled template in Genesis Byte Code
through a second compiler, computer readable means for interpreting the first compiled
template and the second compiled template to a processor by a Genesis Executor, and
computer readable means for generating a group of output data by the processor.

The first template 1s in a first high level programming language, the first high
level programming language includes Genesis Template Markup Language, C, C+, C++,
PASCAL, FORTRAN, COBOL, or like, the Genesis Template Markup Language

18

WO 02/35349 PCT/US01/31713

features a rich set of instructions and is a complete programming language with looping,
branching, object definition, and like, the Genesis Template Markup Language may be
linked to another high level programming language through a Genesis Application
Program Interface, the Genesis Application Program Interface is a feature rich set of
functions that allow the another high level programming language to pass data back and
forth to a current execution of both the first compiled template and the second compiled
template, the another high level programming language includes C, C+, C++, PASCAL,
FORTRAN, COBOL, or like. The first template and the second template are created
independently from each other.

The second template is in a second high level programming language, the second
high level programming language includes Genesis Template Markup Language, C, C+,
C++, PASCAL, FORTRAN, COBOL, or like, the Genesis Template Markup Language
features a rich set of instructions and is a complete programming language with looping,
branching, object definition, and like, the Genesis Template Markup Language may be
linked to another high level programming language through a Genesis Application
Program Interface, the Genesis Application Program Interface is a feature rich set of
functions that allow another high level programming language to pass data back and forth
to a current execution of both the first compiled template and the second compiled
template, the another high level programming language includes C, C+, C++, PASCAL,
FORTRAN, COBOL, or like.

Either one or both of the first template and the second template can include a
group of data in assembly language. Either one or both of the first template and the
second template can be a single template or a group of templates. Either one or both of

19

WO 02/35349 PCT/US01/31713
the first compiled template and the second compiled template can be a single compiled
template or a group of compiled templates. Either one or both of the first template and
the second template may contain either text, or data, or instructions, or any combination
of text, data, and instructions.

The first compiler is a utility that takes the first template in the first high level
programming language as input, and produces the first compiled template in the Genesis
Byte Code as output. The second compiler is a utility that takes the second template in
the second high level programming language as input, and produces the second compiled
template in the Genesis Byte Code as output. The first compiled template includes tables
and maps of data, or variables, or instructions, or any combination of tables and maps of
data, variables, and instructions required to execute the first compiled template. The
second compiled template includes tables and maps of data, or variables, or instructions,
or any combination of tables and maps of data, variables, and instructions required to
execute the second compiled template. Both the first compiled template and the second
compiled template contain the Genesis Byte Code suitable to be interpreted by the
Genesis Executor to the processor, along with a set of maps to variables, constants, and
code required by the Genesis Byte Code.

The Genesis Byte Code is the lowest level form of code used by the Genesis
Executor. The Genesis Byte Code consists of an ordered set of binary representations of
instructions. The Genesis Byte Code is a binary representation of the instruction

mnemonics created by either the first compiler or the second compiler.

20

WO 02/35349 PCT/US01/31713

DESCRIPTION OF THE DRAWINGS

Other features of my invention will become more evident from a consideration of the
following detailed description of my patent drawings, as follows:

Figure 1 is a first embodiment of this invention having a financial model in GTML
and input data in GTML,;

Figure 2 is a second embodiment of this invention having a financial model in
GTML with a group of data in ASM and input data in GTML;

Figure 3 is a third embodiment of this invention having a financial model in GTML
and input data in GTML with a group of data in ASM;

Figure 4 is a fourth embodiment of this invention having a financial model in GTML
with a group of data in ASM and input data in GTML with a group of data in ASM;

Figure 5 is a fifth embodiment of this invention having a financial model in C++ and
input data in FORTRAN;

Figure 6 is a sixth embodiment of this invention having three different financial
models and two input data templates;

Figure 7 is a seventh embodiment of this invention having three different groups of
instructions and two input data templates;

Figure 8 is an eighth embodiment of this invention having two groups of instructions
and five input data templates;

Figure 9 is a first system on which this invention can be practiced; and

Figure 10 is another system on which this invention can be practiced.

21

WO 02/35349 PCT/US01/31713

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Figure 1 describes a first embodiment of a method for translating data streams and
performing programmatic tasks by using instructions and associated data stored in
templates. The method comprises a step of programming a financial model 9 into a first
template 1 in a Genesis Template Markup Language (GTML) 10; a step of compiling the
first template 1 into a first compiled template 2 in a Genesis Byte Code (GBC) 11
through a Genesis Compiler 8; a step of creating a second template 3 in the Genesis
Template Markup Language (GTML) 10 with a group of input data 12; a step of
compiling the second template 3 into a second compiled template 4 in the Genesis Byte
Code (GBC) 11 through the Genesis Compiler §; a step of interpreting the first compiled
template 2 and the second compiled template 4 to a processor 19 by a Genesis Executor
5; and a step of generating a group of output data 7 by a processor 19. Either one or both
of the first template 1 or the second template 3 can be a single template or a group of
templates. Either one or both of the first template 1 and the second template 3 may
contain either text, or data, or instructions in the Genesis Template Markup Language
(GTML) 10, or any combination of text, data, and instructions in the Genesis Template
Markup Language (GTML) 10. Either one or both of the first compiled template 2 and
the second compiled template 4 can be a single compiled template or a group of compiled
templates. The Genesis Compiler 8 is a utility that takes both the first template 1 and the
second template 3 in the Genesis Template Markup Language (GTML) 10 as input, and
produces the first compiled template 2 and the second compiled template 4 in the Genesis
Byte Code (GBC) 11 as output, respectively. Both the first compiled template 2 and the

22

WO 02/35349 PCT/US01/31713

second compiled template 4 contain the Genesis Byte Code (GBC) 11 suitable to be
interpreted by the Genesis Executor 5 to the processor 19, along with a set of maps to
variables, constants, and code required by the Genesis Byte Code (GBC) 11.

Figure 2 describes a second embodiment of a method for translating data streams
and performing programmatic tasks by using instructions and associated data stored in
templates. The method comprises a step of programming a financial model 9 into a first
template 21 in a Genesis Template Markup Language (GTML) 10 with a group of data
15 in assembly language (ASM) 13; a step of compiling the first template 21 into a first
compiled template 22 in a Genesis Byte Code (GBC) 11 through a Genesis Compiler §; a
step of creating a second template 23 in the Genesis Template Markup Language
(GTML) 10 with a group of input data 12; a step of compiling the second template 23
into a second compiled template 24 in the Genesis Byte Code 11 through the Genesis
Compiler 8; a step of interpreting the first compiled template 22 and the second compiled
template 24 to a processor 19 by a Genesis Executor 5; and a step of generating a group
of output data 27 by the processor 19. Either one or both of the first template 21 or the
second template 23 can be a single template or a group of templates. Either one or both
of the first template 21 and the second template 23 may contain either text, or data, or
instructions in the Genesis Template Markup Language (GTML) 10, or any combination
of text, data, and instructions in the Genesis Template Markup Language (GTML) 10.
Either one or both of the first compiled template 12 and the second compiled template 14
can be a single compiled template or a group of compiled templates. The Genesis
Compiler 8 is a utility that takes both the first template 21 and the second template 23 in
the Genesis Template Markup Language (GTML) 10 as input, and produces the first

23

WO 02/35349 PCT/US01/31713

compiled template 22 and the second compiled template 24 in the Genesis Byte Code
(GBC) 11 as output, respectively. Both the first compiled template 22 and the second
compiled template 24 contain the Genesis Byte Code (GBC) 11 suitable to be interpreted
by the Genesis Executor 5 to the processor 19, along with a set of maps to variables,
constants, and code required by the Genesis Byte Code (GBC) 11.

Figure 3 describes a third embodiment of a method for translating data streams and
performing programmatic tasks by using instructions and associated data stored in
templates. The method comprises a step of programming a financial model 9 into a first
template 31 in a Genesis Template Markup Language (GTML) 10; a step of compiling
the first template 31 into a first compiled template 32 in a Genesis Byte Code (GBC) 11
through a Genesis Compiler 8; a step of creating a second template 33 with a group of
input data 12 in the Genesis Template Markup Language (GTML) 10 and a group of data
16 in assembly language (ASM) 13; a step of compiling the second template 33 into a
second compiled template 34 in the Genesis Byte Code 11 through the Genesis Compiler
8; a step of interpreting the first compiled template 32 and the second compiled template
34 to a processor 19 by a Genesis Executor 5; and a step of generating a group of output
data 37 by the processor 19. Either one or both of the first template 31 or the second
template 33 can be a single template or a group of templates. Either one or both of the
first template 31 and the second template 33 may contain either text, or data, or
instructions in the Genesis Template Markup Language (GTML) 10, or any combination
of text, data, and instructions in the Genesis Template Markup Language (GTML) 10.
Either one or both of the first compiled template 12 and the second compiled template 14
can be a single compiled template or a group of compiled templates. The Genesis

24

WO 02/35349 PCT/US01/31713

Compiler 8 is a utility that takes both the first template 31 and the second template 33 in
the Genesis Template Markup Language (GTML) 10 as input, and produces the first
compiled template 32 and the second compiled template 34 in the Genesis Byte Code
(GBC) 11 as output, respectively. Both the first compiled template 32 and the second
compiled template 34 contain the Genesis Byte Code (GBC) 11 suitable to be interpreted
by the Genesis Executor 5 to the processor 19, along with a set of maps to variables,
constants, and code required by the Genesis Byte Code (GBC) 11.

Figure 4 describes a fourth embodiment of a method for translating data streams and
performing programmatic tasks by using instructions and associated data stored in
templates. The method comprises a step of programming a financial model 9 into a first
template 41 in a Genesis Template Markup Language (GTML) 10 with a group of data
15 in assembly language (ASM) 13; a step of compiling the first template 41 into a first
compiled template 42 in a Genesis Byte Code (GBC) 11 through a Genesis Compiler &; a
step of creating a second template 43 in the Genesis Template Markup Language
(GTML) 10 with a group of input data 12 and a group of data 16 in assembly language
(ASM) 13; a step of compiling the second template 43 into a second compiled template
44 in the Genesis Byte Code 11 through the Genesis Compiler 8; a step of interpreting the
first compiled template 42 and the second compiled template 44 to a processor 19 by a
Genesis Executor 5; and a step of generating a group of output data 47 by the processor
19. Either one or both of the first template 41 or the second template 43 can be a single
template or a group of templates. Either one or both of the first template 41 and the
second template 43 may contain either text, or data, or instructions in the Genesis
Template Markup Language (GTML) 10, or any combination of text, data, and

25

WO 02/35349 PCT/US01/31713

instructions in the Genesis Template Markup Language (GTML) 10. Either one or both
of the first compiled template 42 and the second compiled template 44 can be a single
compiled template or a group of compiled templates. The Genesis Compiler 8 is a utility
that takes both the first template 41 and the second template 43 in the Genesis Template
Markup Language (GTML) 10 as input, and produces the first compiled template 42 and
the second compiled template 44 in the Genesis Byte Code (GBC) 11 as output,
respectively. Both the first compiled template 42 and the second compiled template 44
contain the Genesis Byte Code (GBC) 11 suitable to be interpreted by the Genesis
Executor 5 to the processor 19, along with a set of maps to variables, constants, and code
required by the Genesis Byte Code (GBC) 11.

Referring now to Figures 1 to 4, the Genesis Template Markup Language
(GTML) 10 1s linked to a high level programming language 15 through a Genesis
Application Program Interface 16, the high level programming language 15 includes C,
C+, C++, PASCAL, FORTRAN, COBOL, or like. The Genesis Template Markup
Language (GTML) 10 is a complete programming language with looping, branching,
object definition, and like. The Genesis Template Markup Language features a rich set of
instructions. The Genesis Byte Code (GBC) 11 is a binary representation of the
instruction mnemonics created by the Genesis Compiler 8. The Genesis Application
Program Interface 16 is a feature rich set of functions that allow a high level
programming language 15 to pass data back and forth to a current execution of both the
first compiled template 2, 22, 32, 42 and the second compiled template 4, 24, 34, 44.

Figure 5 describes a fifth embodiment of a method for translating data streams and
performing programmatic tasks by using instructions and associated data stored in

26

WO 02/35349 PCT/US01/31713

templates. The method comprises a step of programming a financial model 9 into a first
template 1 in C++ language 50; a step of compiling the first template 51 into a first
compiled template 52 in a Genesis Byte Code (GBC) 11 through a Genesis C++
Compiler 58; a step of creating a second template 53 in Fortran language 55 with a group
of input data 12; a step of compiling the second template 53 into a second compiled
template 54 in the Genesis Byte Code 11 through the Genesis Fortran Compiler 59; a step
of interpreting the first compiled template 52 and the second compiled template 54 to a
processor 19 by a Genesis Executor 5; and a step of generating a group of output data 57
by the processor 19. Either one or both of the first template 51 or the second template 53
can be a single template or a group of templates. The first template 51 may contain either
text, or data, or instructions in the C++ language 50, or any combination of text, data, and
instructions in the C++ language 50. The second template 53 may contain either text, or
data, or instructions in the Fortran language 55, or any combination of text, data, and
instructions in the Fortran language 55. Either one or both of the first compiled template
52 and the second compiled template 54 can be a single compiled template or a group of
compiled templates. The Genesis C++ Compiler 58 is a utility that takes the first
template 51 in the C++ language 50 as input, and produces the first compiled template 52
in the Genesis Byte Code (GBC) 11 as output. The Genesis Fortran Compiler 59 is a
utility that takes the second template 53 in the Fortran language 55 as input, and produces
the second compiled template 54 in the Genesis Byte Code (GBC) 11 as output. Both the
first compiled template 52 and the second compiled template 54 contain the Genesis Byte
Code (GBC) 11 suitable to be interpreted by the Genesis Executor 5 to the processor 19,
along with a set of maps to variables, constants, and code required by the Genesis Byte

27

WO 02/35349 PCT/US01/31713

Code (GBC) 11. The Genesis Byte Code (GBC) 11 is a binary representation of the
instruction mnemonics created by the Genesis C++ Compiler 58 and the Genesis Fortran
Compiler 59.

Referring now to Figures 1 to 5, the financial model 9 can be a single model or a
group of models. The first compiled template 2, 22, 32, 42, 52 and the second compiled
template 4, 24, 34, 44, 54 includes tables and maps of data, or variables, or instructions,
or any combination of tables and maps of data, variables, and instructions required to
execute the first compiled template 2, 22, 32, 42, 52 and the second compiled template 4,
24,34, 44, 54, respectively. The first template 1, 21, 31, 41, 51 and the second template
3,23, 33, 43, 53 are created independently from each other. The Genesis Byte Code
(GBC) 11 is the lowest level form of code used by the Genesis Executor 5. The Genesis
Byte Code (GBC) 11 consists of an ordered set of binary representations of instructions.

Figure 6 describes a sixth embodiment of a method for translating data streams and
performing programmatic tasks by using instructions and associated data stored in
templates. The method comprises a step of programming a financial model A 71 into a
first template 61 in Genesis Template Markup Language (GTML) 10 with a group of data
76 in assembly language (ASM) 13; a step of compiling the first template 61 into a first
compiled template 62 in a Genesis Byte Code (GBC) 11 through a Genesis Compiler 8; a
step of programming a financial model B 72 into a second template 63 in C++ language
50; a step of compiling the second template 63 into a second compiled template 64 in a
Genesis Byte Code (GBC) 11 through a Genesis C++ Compiler 58; a step of
programming a financial model C 73 into a third template 65 in Fortran language 55; a
step of compiling the third template 65 into a third compiled template 66 in the Genesis

28

WO 02/35349 PCT/US01/31713

Byte Code 11 through the Genesis Fortran Compiler 59; a step of creating a fourth
template 67 in the Genesis Template Markup Language (GTML) 10 with a first group of
input data 74; a step of compiling the fourth template 67 into a fourth compiled template
68 in the Genesis Byte Code 11 through the Genesis Compiler 8; a step of creating a fifth
template 69 in a C+ 1anguagé 78 with a second group of input data 74; a step of
compiling the fifth template 69 into a fifth compiled template 70 in the Genesis Byte
Code 11 through the Genesis C+ Compiler 79; a step of interpreting the first compiled
template 62, the second compiled template 64, the third compiled template 66, the fourth
compiled template 68, and the fifth compiled template 70 to a processor 19 by a Genesis
Executor 5; and a step of generating a group of output data 77 by the processor 19. The
Genesis Compiler 8 is a utility that takes both the first template 61 and the fourth
template 67 in the Genesis Template Markup Language (GTML) 10 as input, and
produces the first compiled template 62 and the fourth compiled template 68 in the
Genesis Byte Code (GBC) 11 as output, respectively. The Genesis C++ Compiler 58 is a
utility that takes the second template 63 in the C++ language 50 as input, and produces
the second compiled template 64 in the Genesis Byte Code (GBC) 11 as output. The
Genesis Fortran Compiler 59 is a utility that takes the third template 65 in the Fortran
language 55 as input, and produces the fourth compiled template 68 in the Genesis Byte
Code (GBC) 11 as output. The Genesis C+ Compiler 79 is a utility that takes the fifth
template 69 in the C+ language 78 as input, and produces the fifth compiled template 70
in the Genesis Byte Code (GBC) 11 as output. Each of the first compiled template 62,
the second compiled template 64, the third compiled template 66, the fourth compiled
template 68, and the fifth compiled template 70 contains the Genesis Byte Code (GBC)

29

WO 02/35349 PCT/US01/31713

11 suitable to be interpreted by the Genesis Executor 5 to the processor 19, along with a
set of maps to variables, constants, and code required by the Genesis Byte Code (GBC)
11. The Genesis Template Markup Language (GTML) 10 is linked to a high level
programming language 15 through a Genesis Application Program Interface 16, the high
level programming language 15 includes C, C+, C++, PASCAL, FORTRAN, COBOL, or
like. The Genesis Template Markup Language (GTML) 10 is a complete programming
language with looping, branching, object definition, and like. The Genesis Template
Markup Language features a rich set of instructions. The Genesis Byte Code (GBC) 11 is
a binary representation of the instruction mnemonics created by the Genesis Compiler 8.
The Genesis Application Program Interface 16 is a feature rich set of functions that allow
a high level programming language 15 to pass data back and forth to a current execution
of both the first compiled template 62 and the fourth compiled template 68.

Figure 7 describes a seventh embodiment of a method for translating data streams
and performing programmatic tasks by using instructions and associated data stored in
templates. The method comprises a step of programming a first group of instructions 91
into a first template 81 in Genesis Template Markup Language (GTML) 10 with a group
of data 96 in assembly language (ASM) 13; a step of compiling the first template 81 into
a first compiled template 82 in a Genesis Byte Code (GBC) 11 through a Genesis
Compiler 8; a step of programming a second group of instructions 92 into a second
template 83 in C++ language 50; a step of compiling the second template 83 into a
second compiled template 84 in a Genesis Byte Code (GBC) 11 through a Genesis C++
Compiler 58; a step of programming a third group of instructions 93 into a third template
85 in Fortran language 55; a step of compiling the third template 85 into a third compiled

30

WO 02/35349 PCT/US01/31713

template 86 in the Genesis Byte Code 11 through the Genesis Fortran Compiler 59; a step
of creating a fourth template 87 in the Genesis Template Markup Language (GTML) 10
with a first group of input data 94; a step of compiling the fourth template 87 into a fourth
compiled template 88 in the Genesis Byte Code 11 through the Genesis Compiler 8; a
step of creating a fifth template 89 in a C+ language 78 with a second group of input data
94; a step of compiling the fifth template 89 into a fifth compiled template 90 in the
Genesis Byte Code 11 through the Genesis C+ Compiler 79; a step of interpreting the
first compiled template 82, the second compiled template 84, the third compiled template
86, the fourth compiled template 88, and the fifth compiled template 90 to a processor 19
by a Genesis Executor 5; and a step of generating a group of output data 97 by the
processor 19. The Genesis Compiler 8 is a utility that takes both the first template 81 and
the fourth template 87 in the Genesis Template Markup Language (GTML) 10 as input,
and produces the first compiled template 82 and the fourth compiled template 88 in the
Genesis Byte Code (GBC) 11 as output, respectively. The Genesis C++ Compiler 58 is a
utility that takes the second template 83 in the C++ language 50 as input, and produces
the second compiled template 84 in the Genesis Byte Code (GBC) 11 as output. The
Genesis Fortran Compiler 59 is a utility that takes the third template 85 in the Fortran
language 55 as input, and produces the fourth compiled template 88 in the Genesis Byte
Code (GBC) 11 as output. The Genesis C+ Compiler 79 is a utility that takes the fifth
template 89 in the C+ language 78 as input, and produces the fifth compiled template 90
in the Genesis Byte Code (GBC) 11 as output. Each of the first compiled template 82,
the second compiled template 84, the third compiled template 86, the fourth compiled
template 88, and the fifth compiled template 90 contains the Genesis Byte Code (GBC)

31

WO 02/35349 PCT/US01/31713

11 suitable to be interpreted by the Genesis Executor 5 to the processor 19, along with a
set of maps to variables, constants, and code required by the Genesis Byte Code (GBC)
1. The Genesis Template Markup Language (GTML) 10 is linked to a high level
programming language 15 through a Genesis Application Program Interface 16. The
Genesis Template Markup Language (GTML) 10 is a complete programming language
with looping, branching, object definition, and like. The Genesis Template Markup
Language (GTML) 10 features a rich set of instructions. The Genesis Byte Code (GBC)
11 1s a binary representation of the instruction mnemonics created by the Genesis
Compiler 8. The Genesis Application Program Interface 16 is a feature rich set of
functions that allow the high level programming language 15 to pass data back and forth
to a current execution of both the first compiled template 82 and the fourth compiled
template 88. The high level programming language 15 includes C, C+, C++, PASCAL,
FORTRAN, COBOL, or like.

Figure 8 describes a eighth embodiment of a method for translating data streams and
performing programmatic tasks by using instructions and associated data stored in
templates. The method comprises a step of programming a first group of instructions 111
into a first template 101 in Genesis Template Markup Language (GTML) 10 with a group
of data 118 in assembly language (ASM) 13; a step of programming a second group of
instructions 112 into a second template 102 in Genesis Template Markup Language
(GTML) 10; a step of compiling the first template 101 and the second template 102 into a
first compiled template 103 in a Genesis Byte Code (GBC) 11 through a Genesis
Compiler 8; a step of creating a third template 104 in the Genesis Template Markup
Language (GTML) 10 with a {irst group of input data 113; a step of creating a fourth

32

WO 02/35349 PCT/US01/31713

template 105 in the Genesis Template Markup Language (GTML) 10 with a second
group of input data 114; a step of creating a fifth template 106 in the Genesis Template
Markup Language (GTML) 10 with a third group of input data 115 and a group of data
119 in assembly language (ASM) 13; a step of compiling the third template 104, the
fourth template 105 and the fifth template 106 into a second compiled template 107 in the
Genesis Byte Code 11 through the Genesis Compiler 8; a step of creating a sixth template
108 in a C+ language 78 with a fourth group of input data 108; a step of creating a
seventh template 109 in the Genesis Template Markup Language (GTML) 10 with a fifth
group of input data 117; a step of compiling the sixth template 108 and the seventh
template 109 into a third compiled template 110 in the Genesis Byte Code 11 through the
Genesis C+ Compiler 79; a step of interpreting the first compiled template 103, the
second compiled template 107 and the third compiled template 110 to a processor 19 by a
Genesis Executor 5; and a step of generating a group of output data 117 by the processor
19. The Genesis Compiler 8 is a utility that takes the first template 101, the second
template 102, the third template 104, the fourth template 105 and the fifth template 106 in
the Genesis Template Markup Language (GTML) 10 as input, and produces the first
compiled template 103 and the second compiled template 107 in the Genesis Byte Code
(GBC) 11 as output, respectively. The Genesis C+ Compiler 79 is a utility that takes the
sixth template 108 and the seventh template 109 in the C+ language 78 as input, and
produces the third compiled template 110 in the Genesis Byte Code (GBC) 11 as output.
Each of the first compiled template 103, the second compiled template 107 and the third
compiled template 110 contains the Genesis Byte Code (GBC) 11 suitable to be
interpreted by the Genesis Executor 5 to the processor 19, along with a set of maps to

33

WO 02/35349 PCT/US01/31713

variables, constants, and code required by the Genesis Byte Code (GBC) 11. The
Genesis Template Markup Language (GTML) 10 is linked to a high level programming
language 15 through a Genesis Application Program Interface 16, the high level
programming language 15 includes C, C+, C++ PASCAL, FORTRAN, COBOL, or like.
The Genesis Template Markup Language (GTML) 10 is a complete programming
language with looping, branching, object definition, and like. The Genesis Template
Markup Language (GTML) 10 features a rich set of instructions. The Genesis Byte Code
(GBCQC) 11 is a binary representation of the instruction mnemonics created by the Genesis
Compiler 8. The Genesis Application Program Interface 16 is a feature rich set of
functions that allow a high level programming language 15 to pass data back and forth to
a current execution of both the first compiled template 103 and the fourth compiled
template 107.

Referring now to Figures 1-8, the processor can be either a processor of a
computer system or a processor of an embedded system.

Figure 9 provides a system on which this invention can be practiced. The system
provides a system A 124, a first user interface 121 on system A 124, a Genesis Compiler
8 on system A 124, a Genesis Executor 5 on system A 124, a system B 126, a second user
interface 122 on system B 126, and a Genesis C++ Compiler 58 on system B 126. A user
can program a model 123 into a first template 131 in Genesis Template Markup
Language (GTML) 10 through a first user interface 121 on system A 124. The Genesis
Compiler 8 on system A 124 compiles the first template 131 into a first compiled
template 127 in Genesis Byte Code (GBC) 11. Another user can create a second template
132 by using C++ language 50 with a group of data 125 through the second user interface

34

WO 02/35349 PCT/US01/31713

122 on system B 126. The Genesis C++ Compiler 58 on system B 126 compiles the
second template 132 into a second compiled template 128 in Genesis Byte Code (GBC)
1. The second compiled template 128 is then sent to system A 124. The Genesis
Executor 5 on system A 124 interprets both the first compiled template 127 and the
second compiled template 128 to a processor 133 of system A 124. The processor 133 of
system A 124 then generates a group of output data 129 on system A 124. The group of
output data 129 is then sent to system B 126. The Genesis Template Markup Language
(GTML) 10 is linked to a high level programming language 15 through a Genesis
Application Program Interface (GAPI) 16. The Genesis Application Program Interface
(GAPI) 16 is a feature rich set of functions that allow a high level programming language
15 to pass data back and forth to a current execution of both the first compiled template
127 and the second compiled template 128. The high level programming language 15
includes C, C+, C++, PASCAL, FORTRAN, COBOL, or like.

Figure 10 provides another system on which this invention can be practiced. The
system provides a system A 124, a first user interface 121 on system A 124, a Genesis
Compiler 8 on system A 124, a system B 126, a second user interface 122 on system B
126, a Genesis C++ Compiler 58 on system B 126, and a Genesis Executor 5 on system B
126. A user can program a model 123 into a first template 131 in Genesis Template
Markup Language (GTML) 10 through a first user interface 121 on system A 124. The
Genesis Compiler 8 on system A 124 compiles the first template 131 into a first compiled
template 127 in Genesis Byte Code (GBC) 11. The first compiled template 127 is then
sent to system B 126. Another user can create a second template 132 by using C++
language 50 with a group of data 125 through the second user interface 122 on system B

35

WO 02/35349 PCT/US01/31713

126. The Genesis C++ Compiler 58 on system B 126 compiles the second template 132
into a second compiled template 128 in Genesis Byte Code (GBC) 11. The Genesis
Executor 5 on system B 126 interprets both the first compiled template 127 and the
second compiled template 128 to a processor 134 of system B 126. The processor 134 of
system B 126 then generates a group of output data 129 on system B 126. The Genesis
Template Markup Language (GTML) 10 is linked to a high level programming language
15 through a Genesis Application Program Interface (GAPI) 16. The Genesis
Application Program Interface (GAPI) 16 is a feature rich set of functions that allow a
high level programming language 15 to pass data back and forth to a current execution of
both the first compiled template 127 and the second compiled template 128. The high
level programming language 15 includes C, C+, C++, PASCAL, FORTRAN, COBOL, or
like.

Referring now to Figures 9 and 10, system A 124 and system B 126 can be either
computer system or embedded system.

Hence, the present invention provides a method, apparatus and computer program
product for translating data streams and performing programmatic tasks by using
instructions and associated data stored in templates.

The present invention also provides a method, apparatus and computer program
product that separates an operating program into two independent parts, one is a model
template, the other is an input data template.

The present invention further provides a method, apparatus and computer program
product that enables a model to be used by the other parties without disclosure any of the
content of the model.

36

WO 02/35349 PCT/US01/31713

The present invention still further provides a method, apparatus and computer
program product that enables a programmer to program a model without a need to know the
design of the user interface.

The present invention further provides a method, apparatus and computer program
product that enables a user interface designer to design a user interface without a need to
know the content of the model.

The present invention still further provides a method, apparatus and computer
program product that uses Genesis Executor to integrate the model and the template to
generate an output.

The present invention further provides a method, apparatus and computer program
product that enables the separation of the processing and translation of data from the core
device or application.

As various possible embodiments may be made in the above invention for use for
different purposes and as various changes might be made in the embodiments and methods
above set forth, it is understood that all of the above matters here set forth or shown in the

accompanying drawings are to be interpreted as illustrative and not in a limiting sense.

37

10

15

WO 02/35349 PCT/US01/31713

I claim:

I A method for translating data streams and performing programmatic tasks by
using instructions and associated data stored in templates, said method comprising:

programming a financial model with instructions or a financial model with
instructions and associated data into a first template in a Genesis Template Markup
Language, said Genesis Template Markup Language is a complete programming
language with looping, branching, object definition, and like, said Genesis Template
Markup Language may be linked to a first high level programming language through a
Genesis Application Program Interface, said first high level programming language can
be C, C+, C++, PASCAL, FORTRAN, COBOL, or like, said first template in said
Genesis Template Markup Language contains either text, or data, or instructions, or any
combination of text, data, and instructions;

compiling said first template into a first compiled template in a Genesis Byte
Code through a Genesis Compiler, said Genesis Compiler is a utility that takes said first
template in said Genesis Template Markup Language as input, and produces said first
compiled template in said Genesis Byte Code as output, said first compiled template
includes tables and maps of data, or variables, or instructions required to execute said
first compiled template, or any combination of tables and maps of data, variables, and
instructions required to execute said first compiled template;

creating a second template in said Genesis Template Markup Language with a
group of input data or a group of input data with associated instructions, said Genesis

Template Markup Language is a complete programming language with looping,

38

10

15

WO 02/35349 PCT/US01/31713

branching, object definition, and like, said Genesis Template Markup Language may be
linked to a second high level programming language through said Genesis Application
Program Interface, said second high level programming language can be C, C+, C++,
PASCAL, FORTRAN, COBOL, and like, said second template in said Genesis Template
Markup Language contains either text, or data, or instructions, or any combination of
text, data, and instructions;

compiling said second template into a second compiled template in said Genesis
Byte Code through said Genesis Compiler, said Genesis Compiler is a utility that takes
said second template in said Genesis Template Markup Language as input, and produces
said second compiled template in said Genesis Byte Code as output, said second
compiled template may include tables and maps of data, or variables, or instructions
required to execute said second compiled template, or any combination of tables and
maps of data, variables, and instructions required to execute said second compiled
template;

interpreting said first compiled template and said second compiled template to a
processor by a Genesis Executor; and

generating a group of output data by said processor.

2, The method in claim 1, wherein either one or both of said first template and said

second template can include a group of data in assembly language.

3. The method in claim 1, wherein said financial model can be a single financial

model or a group of financial models.

39

10

15

WO 02/35349 PCT/US01/31713

4. The method in claim 1, wherein either one or both of said first template and said

second template can be a single template or a group of templates.

5. The method in claim 1, wherein either one or both of said first compiled template
and said second compiled template can be a single compiled template or a group of

compiled templates.

6. The method in claim 1, wherein said Genesis Template Markup Language

features a rich set of instructions.

7. The method of claim 1, wherein said Genesis Byte Code is the lowest level form

of code used by said Genesis Executor.

8. The method of claim 1, wherein said Genesis Byte Code consists of an ordered set

of binary representations of instructions.

9. The method of claim 1, wherein said Genesis Byte Code is a binary representation

of the instruction mnemonics created by said Genesis Compiler.

10. The method of claim 1, wherein said Genesis Application Program Interface is a

feature rich set of functions that allow a high level programming language to pass data

back and forth to a current execution of both said first compiled template and said second

40

10

15

WO 02/35349 PCT/US01/31713

compiled template, said high level programming language includes C, C+, C++,

PASCAL, FORTRAN, COBOL, or like.

I1. The method of claim 1, wherein said first template and said second template are

created independently from each other.

12. A method for translating data streams and performing programmatic tasks by
using instructions and associated data stored in templates, said method comprising:

programming a model with instructions into a first template in a Genesis
Template Markup Language;

compiling said first template into a first compiled template in a Genesis Byte
Code through a Genesis Compiler;

creating a second template in said Genesis Template Markup Language with a
group of input data;

compiling said second template into a second compiled template in said Genesis
Byte Code through said Genesis Compiler;

interpreting said first compiled template and said second compiled template to a
processor by a Genesis Executor; and

generating a group of output data by said processor.

13, The method in claim 12, wherein said instructions can be either a group of

instructions or a group of instructions with associated data.

41

10

15

WO 02/35349 PCT/US01/31713

14, The method in claim 12, wherein said group of input data can either be a group of

dala or a group of data with associated instructions.

15, The method in claim 12, wherein either one or both of said first template and said

second template can include a group of data in assembly language.

16. The method in claim 12, wherein said Genesis Template Markup Language is
linked to a high level programming language through a Genesis Application Program
Interface, said Genesis Application Program Interface is a feature rich set of functions
that allow said high level programming language to pass data back and forth to a current
execution of both said first compiled template and said second compiled template, said
high level programming language includes C, C+, C++, PASCAL, FORTRAN, COBOL,

or like..

17. The method in claim 12, wherein said model can be a single model or a group of

models.

18. The method in claim 12, wherein either one or both of said first template or said

second template can be a single template or a group of templates.

19. The method in claim 12, wherein either one or both of said first compiled

template and said second compiled template can be a single compiled template or a group

of compiled templates.

42

10

WO 02/35349 PCT/US01/31713

20. The method in claim 12, wherein said Genesis Template Markup Language is a

complete programming language with looping, branching, object definition, and like.

21. The method in claim 12, wherein said Genesis Template Markup Language

features a rich set of instructions.

22, The method in claim 12, wherein either one or both of said first template and said
second template may contain either text, or data, or instructions in said Genesis Template
Markup Language, or any combination of text, data, and instructions in said Genesis

Template Markup Language.

23, The method in claim 12, wherein said Genesis Compiler is a utility that takes said
first template in said Genesis Template Markup Language as input, and produces said

first compiled template in said Genesis Byte Code as output.

24, The method in claim 12, wherein said Genesis Compiler is a utility that takes said
second template in said Genesis Template Markup Language as input, and produces said

second compiled template in said Genesis Byte Code as output.

25. The method in claim 12, wherein said first compiled template includes tables and

maps of data, or variables, or instructions, or any combination of tables and maps of data,

variables, and instructions required to execute said first compiled template.

43

10

15

WO 02/35349 PCT/US01/31713

26. The method in claim 12, wherein said second compiled template includes tables
and maps of data, or variables, or instructions, or any combination of tables and maps of

data, variables, and instructions required to execute said second compiled template.

27. The method in claim 12, wherein both said first compiled template and said
second compiled template contain said Genesis Byte Code suitable to be interpreted by
said Genesis Executor to said processor, along with a set of maps to variables, constants,

and code required by said Genesis Byte Code.

28. The method of claim 12, wherein said Genesis Byte Code is the lowest level form

of code used by said Genesis Executor.

29. The method of claim 12, wherein said Genesis Byte Code consists of an ordered

set of binary representations of instructions.

30. The method of claim 12, wherein said Genesis Byte Code is a binary

representation of the instruction mnemonics created by said Genesis Compiler.

31. The method of claim 12, wherein said model can be a single model or a group of

models.

44

10

IN

WO 02/35349 PCT/US01/31713

32, The method of claim 12, wherein said first template and said second template are

created independently from each other.

33. A method for translating data streams and performing programmatic tasks by
using instructions and associated data stored in templates, said method comprising:

programming a group of pre-arranged instructions into a first template in a
Genesis Template Markup Language;

compiling said first template into a first compiled template in a Genesis Byte
Code through a Genesis Compiler;

creating a second template in said Genesis Template Markup Language with a
group of input data;

compiling said second template into a second compiled template in said Genesis
Byte Code through said Genesis Compiler;

interpreting said first compiled template and said second compiled template to a
processor by a Genesis Executor; and

generating a group of output data by said processor.
34, The method in claim 33, wherein said group of pre-arranged instructions can be
either a group of pre-arranged instructions or a group of pre-arranged instructions with

assoclated data.

35. The method in claim 33, wherein said group of input data can either be a group of

data or a group of data with associated instructions.

45

10

15

WO 02/35349 PCT/US01/31713

36. The method in claim 33, wherein either one or both of said first template and said

second template can include a group of data in assembly language.

37. The method in claim 33, wherein said Genesis Template Markup Language is
linked to a high level programming language through a Genesis Application Program
Interface, said high level programming language includes C, C+, C++, PASCAL,

FORTRAN, COBOL, or like.

38. The method in claim 33, wherein either one or both of said first template and said

second template can be a single template or a group of templates.

39. The method in claim 33, wherein either one or both of said first compiled

template and said second compiled template can be a single compiled template or a group

of compiled templates.

40. The method in claim 33, wherein said Genesis Template Markup Language is a

complete programming language with looping, branching, object definition, and like.

41. The method in claim 33, wherein said Genesis Template Markup Language

features a rich set of instructions.

46

10

15

WO 02/35349 PCT/US01/31713

42, The method in claim 33, wherein either one or both of said first template and said
second template may contain either text, or data, or instructions in said Genesis Template
Markup Language, or any combination of text, data, and instructions in said Genesis

Template Markup Language.

43. The method in claim 33, wherein said Genesis Compiler is a utility that takes said
first template in said Genesis Template Markup Language as input, and produces said

first compiled template in said Genesis Byte Code as output.

44, The method in claim 33, wherein said Genesis Compiler is a utility that takes said
second template in said Genesis Template Markup Language as input, and produces said

second compiled template in said Genesis Byte Code as output.

45. The method in claim 33, wherein said first compiled template includes tables and
maps of data, or variables, or instructions, or any combination of tables and maps of data,

variables, and instructions required to execute said first compiled template.
46. The method in claim 33, wherein said second compiled template includes tables
and maps of data, or variables, or instructions, or any combination of tables and maps of

data, variables, and instructions required to execute said second compiled template.

47. The method in claim 33, wherein both said first compiled template and said

second compiled template contain said Genesis Byte Code suitable to be interpreted by

47

10

15

WO 02/35349 PCT/US01/31713
said Genesis Executor to said processor, along with a set of maps to variables, constants,

and code required by said Genesis Byte Code.

48. The method of claim 33, wherein said Genesis Byte Code is the lowest level form

of code used by said Genesis Executor.

49. The method of claim 33, wherein said Genesis Byte Code consists of an ordered

set of binary representations of instructions.

50. The method of claim 33, wherein said Genesis Byte Code is a binary

representation of the instruction mnemonics created by said Genesis Compiler.

51. The method of claim 37, wherein said Genesis Application Program Interface is a
feature rich set of functions that allow a high level programming language to pass data
back and forth to a current execution of both said first compiled template and said second
compiled template, said high level programming language includes C, C+, C++,

PASCAL, FORTRAN, COBOL, or like.

52. The method of claim 33, wherein said first template and said second template are

created independently from each other.

53. A method for translating data streams and performing programmatic tasks by

using instructions and associated data stored in templates, said method comprising:

48

10

15

WO 02/35349 PCT/US01/31713

programming a group of instructions into a first template, said group of
instructions can be either a group of instructions or a group of instructions with
assoclated data;

compiling said first template into a first compiled template in Genesis Byte Code
through a first compiler;

creating a second template with a group of input data, said group of input data can
either be a group of data or a group of data with associated instructions;

compiling said second template into a second compiled template in Genesis Byte
Code through a second compiler;

interpreting said first compiled template and said second compiled template to a
processor by a Genesis Executor; and

generating a group of output data by said processor.

54. The method in claim 53, wherein said first template is in a first high level
programming language, said first high level programming language includes Genesis
Template Markup Language, C, C+, C++, PASCAL, FORTRAN, COBOL, or like, said
Genesis Template Markup Language features a rich set of instructions and is a complete
programming language with looping, branching, object definition, and like, said Genesis
Template Markup Language may be linked to another high level programming language
through a Genesis Application Program Interface, said Genesis Application Program
Interface is a feature rich set of functions that allow said another high level programming

language to pass data back and forth to a current execution of both said first compiled

49

10

15

WO 02/35349 PCT/US01/31713

template and said second compiled template, said another high level programming

language includes C, C+, C++, PASCAL, FORTRAN, COBOL, or like.

55. The method in claim 53, wherein said second template is in a second high level
programming language, said second high level programming language includes Genesis
Template Markup Language, C, C+, C++, PASCAL, FORTRAN, COBOL, or like, said
Genesis Template Markup Language features a rich set of instructions and is a complete
programming language with looping, branching, object definition, and like, said Genesis
Template Markup Language may be linked to another high level programming language
through a Genesis Application Program Interface, said Genesis Application Program
Interface is a feature rich set of functions that allow another high level programming
language to pass data back and forth to a current execution of both said first compiled
template and said second compiled template, said another high level programming

language includes C, C+, C++, PASCAL, FORTRAN, COBOL, or like.

56. The method in claim 53, wherein either one or both of said first template and said

second template can include a group of data in assembly language.

57. The method in claim 53, wherein either one or both of said first template and said

second template can be a single template or a group of templates.

50

10

WO 02/35349 PCT/US01/31713

58. The method in claim 53, wherein either one or both of said first compiled
template and said second compiled template can be a single compiled template or a group

of compiled templates.

59. The method in claim 53, wherein either one or both of said first template and said
second template may contain either text, or data, or instructions, or any combination of

text, data, and instructions.

60. The method in claim 53, wherein said first compiler is a utility that takes said first
template in said first high level programming language as input, and produces said first

compiled template in said Genesis Byte Code as output.

61. The method in claim 53, wherein said second compiler is a utility that takes said
second template in said second high level programming language as input, and produces

said second compiled template in said Genesis Byte Code as output.

62. The method in claim 53, wherein said first compiled template includes tables and
maps of data, or variables, or instructions, or any combination of tables and maps of data,

variables, and instructions required to execute said first compiled template.

63. The method in claim 53, wherein said second compiled template includes tables

and maps of data, or variables, or instructions, or any combination of tables and maps of

data, variables, and instructions required to execute said second compiled template.

51

10

15

WO 02/35349 PCT/US01/31713

64. The method in claim 53, wherein both said first compiled template and said
second compiled template contain said Genesis Byte Code suitable to be interpreted by
said Genesis Executor to said processor, along with a set of maps to variables, constants,

and code required by said Genesis Byte Code.

65. The method of claim 53, wherein said Genesis Byte Code is the lowest level form

of code used by said Genesis Executor.

66. The method of claim 53, wherein said Genesis Byte Code consists of an ordered

set of binary representations of instructions.
67. The method of claim 53, wherein said Genesis Byte Code is a binary
representation of the instruction mnemonics created by either said first compiler or said

second compiler.

68. The method of claim 53, wherein said first template and said second template are

created independently from each other.

069. A method for translating data streams and performing programmatic tasks by

using instructions and associated data stored in templates, said method comprising:

52

10

15

WO 02/35349 PCT/US01/31713

programming a group of instructions into a first template, said group of
instructions can be either a group of instructions or a group of instructions with
associated data;

compiling said first template into a first compiled template in Genesis Byte Code
through a first compiler;

creating a second template with a group of input data, said group of input data can
either be a group of data or a group of data with associated instructions;

compiling said second template into a second compiled template in Genesis Byte
Code through a second compiler;

interpreting said first compiled template and said second compiled template to a
processor by a Genesis Executor; and

generating a group of output data by said processor.

70. The method in claim 69, wherein said first template is in a first high level
programming language, said first high level programming language includes Genesis
Template Markup Language, C, C+, C++, PASCAL, FORTRAN, COBOL, or like, said
Genesis Template Markup Language features a rich set of instructions and is a complete
programming language with looping, branching, object definition, and like, said Genesis
Template Markup Language may be linked to another high level programming language
through a Genesis Application Program Interface, said Genesis Application Program
Interface is a feature rich set of functions that allow said another high level programming

language to pass data back and forth to a current execution of both said first compiled

53

10

WO 02/35349 PCT/US01/31713

template and said second compiled template, said another high level programming

language includes C, C+, C++, PASCAL, FORTRAN, COBOL, or like.

71. The method in claim 70, wherein said first template can include a group of data in

assembly language.

72. The method in claim 71, wherein said first template can be a single template or a

group of templates.

73. The method in claim 72, wherein said first template may contain either text, or

data, or instructions, or any combination of text, data, and instructions.

74. The method of claim 73, wherein said first template is created independently from

said second template.

75. The method in claim 74, wherein said second template can include a group of data

in assembly language.

76. The method in claim 75, wherein said second template can be a single template or

a group of templates.

77. The method in claim 76, wherein said second template may contain either text, or

data, or instructions, or any combination of text, data, and instructions.

54

10

15

WO 02/35349 PCT/US01/31713

78. The method in claim 77, wherein said second template is in a second high level
programming language, said second high level programming language includes Genesis
Template Markup Language, C, C+, C++, PASCAL, FORTRAN, COBOL, or like, said
Genesis Template Markup Language features a rich set of instructions and is a complete
programming language with looping, branching, object definition, and like, said Genesis
Template Markup Language may be linked to another high level programming language
through a Genesis Application Program Interface, said Genesis Application Program
Interface is a feature rich set of functions that allow another high level programming
language to pass data back and forth to a current execution of both said first compiled
template and said second compiled template, said another high level programming

language includes C, C+, C++, PASCAL, FORTRAN, COBOL, or like.

79. The method in claim 78, wherein either one or both of said first compiled
template and said second compiled template can be a single compiled template or a group

of compiled templates.

80. The method in claim 79, wherein both said first compiled template and said
second compiled template contain said Genesis Byte Code suitable to be interpreted by
said Genesis Executor to said processor, along with a set of maps to variables, constants,

and code required by said Genesis Byte Code.

55

10

15

WO 02/35349 PCT/US01/31713

81. The method of claim 80, wherein said Genesis Byte Code is the lowest level form

of code used by said Genesis Executor.

82. The method of claim 81, wherein said Genesis Byte Code consists of an ordered

set of binary representations of instructions.

83. The method of claim 82, wherein said Genesis Byte Code is a binary
representation of the instruction mnemonics created by either said first compiler or said

second compiler.

84. The method in claim 83, wherein said first compiler is a utility that takes said first
template in said first high level programming language as input, and produces said first

compiled template in said Genesis Byte Code as output.

85. The method in claim 84, wherein said first compiled template includes tables and
maps of data, or variables, or instructions, or any combination of tables and maps of data,

variables, and instructions required to execute said first compiled template.

86. The method in claim 83, wherein said second compiler is a utility that takes said

second template in said second high level programming language as input, and produces

said first compiled template in said Genesis Byte Code as output.

56

10

15

WO 02/35349 PCT/US01/31713

87. The method in claim 86, wherein said second compiled template includes tables
and maps of data, or variables, or instructions, or any combination of tables and maps of

data, variables, and instructions required to execute said second compiled template.

88. An apparatus for translating data streams and performing programmatic tasks by
using instructions and associated data stored in templates, said apparatus comprising:

means for programming a financial model with instructions or a financial model
with instructions and associated data into a first template in a Genesis Template Markup
Language, said Genesis Template Markup Language is a complete programming
language with looping, branching, object definition, and like, said Genesis Template
Markup Language may be linked to a first high level programming language through a
Genesis Application Program Interface, said first high level programming language can
be C, C+, C++, PASCAL, FORTRAN, COBOL, or like, said first template in said
Genesis Template Markup Language contains either text, or data, or instructions, or any
combination of text, data, and instructions;

means for compiling said first template into a first compiled template in a Genesis
Byte Code through a Genesis Compiler, said Genesis Compiler is a utility that takes said
first template in said Genesis Template Markup Language as input, and produces said
first compiled template in said Genesis Byte Code as output, said first compiled template
includes tables and maps of data, or variables, or instructions required to execute said
first compiled template, or any combination of tables and maps of data, variables, and

instructions required to execute said first compiled template;

57

10

15

WO 02/35349 PCT/US01/31713

means for creating a second template in said Genesis Template Markup Language
with a group of input data or a group of input data with associated instructions, said
Genesis Template Markup Language is a complete programming language with looping,
branching, object definition, and like, said Genesis Template Markup Language may be
linked to a second high level programming language through said Genesis Application
Program Interface, said second high level programming language can be C, C+, C++,
PASCAL, FORTRAN, COBOL, and like, said second template in said Genesis Template
Markup Language contains either text, or data, or instructions, or any combination of
text, data, and instructions;

means for compiling said second template into a second compiled template in said
Genesis Byte Code through said Genesis Compiler, said Genesis Compiler is a utility that
takes said second template in said Genesis Template Markup Language as input, and
produces said second compiled template in said Genesis Byte Code as output, said second
compiled template may include tables and maps of data, or variables, or instructions
required to execute said second compiled template, or any combination of tables and
maps of data, variables, and instructions required to execute said second compiled
template;

means for interpreting said first compiled template and said second compiled
template to a processor by a Genesis Executor; and

means for generating a group of output data by said processor.

89. The apparatus in claim 88, wherein either one or both of said first template and

said second template can include a group of data in assembly language.

58

10

15

WO 02/35349 PCT/US01/31713

90. The apparatus in claim 88, wherein said financial model can be a single financial

model or a group of financial models.

91. The apparatus in claim 88, wherein either one or both of said first template and

said second template can be a single template or a group of templates.
92. The apparatus in claim 88, wherein either one or both of said first compiled
template and said second compiled template can be a single compiled template or a group

of compiled templates.

93. The apparatus in claim 88, wherein said Genesis Template Markup Language

features a rich set of instructions.

94. The apparatus of claim 88, wherein said Genesis Byte Code is the lowest level

form of code used by said Genesis Executor.

95. The apparatus of claim 88, wherein said Genesis Byte Code consists of an ordered

sel of binary representations of instructions.

96. The apparatus of claim 88, wherein said Genesis Byte Code is a binary

representation of the instruction mnemonics created by said Genesis Compiler.

59

WO 02/35349 PCT/US01/31713
97. The apparatus of claim 88, wherein said Genesis Application Program Interface is
a feature rich set of functions that allow high level programming language to pass data
back and forth to a current execution of both said first compiled template and said second
compiled template, said high level programming language includes C, C+, C++,

5 PASCAL, FORTRAN, COBOL, or like.

98. The apparatus of claim 88, wherein said first template and said second template

are created independently from each other.

10 99. Anapparatus for translating data streams and performing programmatic tasks by
using instructions and associated data stored in templates, said apparatus comprising:
means for programming a model with instructions into a first template in a
Genesis Template Markup Language;
means for compiling said first template into a first compiled template in a Genesis
15 Byte Code through a Genesis Compiler;
means for creating a second template in said Genesis Template Markup Language
with a group of input data;
means for compiling said second template into a second compiled template in said
Genesis Byte Code through said Genesis Compiler;
20 means for interpreting said first compiled template and said second compiled
template to a processor by a Genesis Executor; and

means for generating a group of output data by said processor.

60

15

WO 02/35349 PCT/US01/31713

100. The apparatus in claim 99, wherein said instructions can be either a group of

instructions or a group of instructions with associated data.

101. The apparatus in claim 99, wherein said group of input data can either be a group

of data or a group of data with associated instructions.

102, The apparatus in claim 99, wherein either one or both of said first template and

said second template can include a group of data in assembly language.

103. The apparatus in claim 99, wherein said Genesis Template Markup Language is
linked to a high level programming language through a Genesis Application Program
Interface, said Genesis Application Program Interface is a feature rich set of functions
that allow said high level programming language to pass data back and forth to a current
execution of both said first compiled template and said second compiled template, said
high level programming language includes C, C+, C++, PASCAL, F ORTRAN, COBOL,

or like.

104. The apparatus in claim 99, wherein said model can be a single model or a group

of models.

105. The apparatus in claim 99, wherein either one or both of said first template or said

second template can be a single template or a group of templates.

61

10

15

WO 02/35349 PCT/US01/31713
106. The apparatus in claim 99, wherein either one or both of said first compiled
template and said second compiled template can be a single compiled template or a group

of compiled templates.

107. The apparatus in claim 99, wherein said Genesis Template Markup Language is a

complete programming language with looping, branching, object definition, and like.

108. The apparatus in claim 99, wherein said Genesis Template Markup Language

features a rich set of instructions.

109. The apparatus in claim 99, wherein either one or both of said first template and
said second template may contain either text, or data, or instructions in said Genesis
Template Markup Language, or any combination of text, data, and instructions in said

Genesis Template Markup Language.

110. The apparatus in claim 99, wherein said Genesis Compiler is a utility that takes
said first template in said Genesis Template Markup Language as input, and produces

said first compiled template in said Genesis Byte Code as output.

111. The apparatus in claim 99, wherein said Genesis Compiler is a utility that takes

said second template in said Genesis Template Markup Language as input, and produces

said second compiled template in said Genesis Byte Code as output.

62

10

15

WO 02/35349 PCT/US01/31713
112, The apparatus in claim 99, wherein said first compiled template includes tables
and maps of data, or variables, or instructions, or any combination of tables and maps of

data, variables, and instructions required to execute said first compiled template.

113. The apparatus in claim 99, wherein said second compiled template includes tables
and maps of data, or variables, or instructions, or any combination of tables and maps of

data, variables, and instructions required to execute said second compiled template.

114, The apparatus in claim 99, wherein both said first compiled template and said
second compiled template contain said Genesis Byte Code suitable to be interpreted by
said Genesis Executor to said processor, along with a set of maps to variables, constants,

and code required by said Genesis Byte Code.

115. The apparatus of claim 99, wherein said Genesis Byte Code is the lowest level

form of code used by said Genesis Executor.

116. The apparatus of claim 99, wherein said Genesis Byte Code consists of an ordered

set of binary representations of instructions.

117. The apparatus of claim 99, wherein said Genesis Byte Code is a binary

representation of the instruction mnemonics created by said Genesis Compiler.

63

15

WO 02/35349 PCT/US01/31713
8. The apparatus of claim 99, wherein said model can be a single model or a group

of models.

119. The apparatus of claim 99, wherein said first template and said second template

are created independently from each other.

120. An apparatus for translating data streams and performing programmatic tasks by
using instructions and associated data stored in templates, said apparatus comprising:

means for programming a group of pre-arranged instructions into a first template
in a Genesis Template Markup Language;

means for compiling said first template into a first compiled template in a Genesis
Byte Code through a Genesis Compiler;

means for creating a second template in said Genesis Template Markup Language
with a group of input data;

means for compiling said second template into a second compiled template in said
Genesis Byte Code through said Genesis Compiler;

means for interpreting said first compiled template and said second compiled
template to a processor by a Genesis Executor; and

means for generating a group of output data by said processor.

121. The apparatus in claim 120, wherein said group of pre-arranged instructions can

be cither a group of pre-arranged instructions or a group of pre-arranged instructions with

associated data.

64

15

WO 02/35349 PCT/US01/31713

122, The apparatus in claim 120, wherein said group of input data can either be a group

ol data or a group of data with associated instructions.

123, The apparatus in claim 120, wherein either one or both of said first template and

said second template can include a group of data in assembly language.

124, The apparatus in claim 120, wherein said Genesis Template Markup Language is
linked to a high level programming language through a Genesis Application Program
Interface, said high level programming language includes C, C+, C++, PASCAL,

FORTRAN, COBOL, or like.

125. The apparatus in claim 120, wherein either one or both of said first template and

said second template can be a single template or a group of templates.
126. The apparatus in claim 120, wherein either one or both of said first compiled
template and said second compiled template can be a single compiled template or a group

of compiled templates.

127. The apparatus in claim 120, wherein said Genesis Template Markup Language is

a complete programming language with looping, branching, object definition, and like.

65

15

WO 02/35349 PCT/US01/31713
128, The apparatus in claim 120, wherein said Genesis Template Markup Language

features a rich set of instructions.

129. The apparatus in claim 120, wherein either one or both of said first template and
said second template may contain either text, or data, or instructions in said Genesis
Template Markup Language, or any combination of text, data, and instructions in said

Genesis Template Markup Language.

130. The apparatus in claim 120, wherein said Genesis Compiler is a utility that takes
said first template in said Genesis Template Markup Language as input, and produces

said first compiled template in said Genesis Byte Code as output.

131. The apparatus in claim 120, wherein said Genesis Compiler is a utility that takes
said second template in said Genesis Template Markup Language as input, and produces

said second compiled template in said Genesis Byte Code as output.
132. The apparatus in claim 120, wherein said first compiled template includes tables
and maps of data, or variables, or instructions, or any combination of tables and maps of

data, variables, and instructions required to execute said first compiled template.

133. The apparatus in claim 120, wherein said second compiled template includes

tables and maps of data, or variables, or instructions, or any combination of tables and

66

15

WO 02/35349 PCT/US01/31713
maps of data, variables, and instructions required to execute said second compiled

template.

134, The apparatus in claim 120, wherein both said first compiled template and said
second compiled template contain said Genesis Byte Code suitable to be interpreted by
said Genesis Executor to said processor, along with a set of maps to variables, constants,

and code required by said Genesis Byte Code.

135, The apparatus of claim 120, wherein said Genesis Byte Code is the lowest level

form of code used by said Genesis Executor.

136. The apparatus of claim 120, wherein said Genesis Byte Code consists of an

ordered set of binary representations of instructions.

137. The apparatus of claim 120, wherein said Genesis Byte Code is a binary

representation of the instruction mnemonics created by said Genesis Compiler.

138, The apparatus of claim 124, wherein said Genesis Application Program Interface
is a feature rich set of functions that allow a high level programming language to pass
data back and forth to a current execution of both said first compiled template and said
second compiled template, said high level programming language includes C, C+, C++,

PASCAL, FORTRAN, COBOL, or like.

67

10

15

WO 02/35349 PCT/US01/31713

139. The apparatus of claim 120, wherein said first template and said second template

are created independently from each other.

140. An apparatus for translating data streams and performing programmatic tasks by
using instructions and associated data stored in templates, said apparatus comprising:

means for programming a group of instructions into a first template, said group of
instructions can be either a group of instructions or a group of instructions with
associated data;

means for compiling said first template into a first compiled template in Genesis
Byte Code through a first compiler;

means for creating a second template with a group of input data, said group of
input data can either be a group of data or a group of data with associated instructions;

means for compiling said second template into a second compiled template in
Genesis Byte Code through a second compiler;

means for interpreting said first compiled template and said second compiled
template to a processor by a Genesis Executor; and

means for generating a group of output data by said processor.

141. The apparatus in claim 140, wherein said first template is in a first high level
programming language, said first high level programming language includes Genesis
Template Markup Language, C, C+, C++, PASCAL, FORTRAN, COBOL, or like, said
Genesis Template Markup Language features a rich set of instructions and is a complete

programming language with looping, branching, object definition, and like, said Genesis

68

15

WO 02/35349 PCT/US01/31713
Template Markup Language may be linked to another high level programming language
through a Genesis Application Program Interface, said Genesis Application Program
Interface is a feature rich set of functions that allow said another high level programming
language to pass data back and forth to a current execution of both said first compiled
template and said second compiled template, said another high level programming

language includes C, C+, C++, PASCAL, FORTRAN, COBOL, or like.

142, The apparatus in claim 140, wherein said second template is in a second high

level programming language, said second high level programming language includes
Genesis Template Markup Language, C, C+, C++, PASCAL, FORTRAN, COBOL, or
like, said Genesis Template Markup Language features a rich set of instructions and is a
complete programming language with looping, branching, object definition, and like, said
Genesis Template Markup Language may be linked to another high level programming
language through a Genesis Application Program Interface, said Genesis Application
Program Interface is a feature rich set of functions that allow another high level
programming language to pass data back and forth to a current execution of both said
first compiled template and said second compiled template, said another high level

programming language includes C, C+, C++, PASCAL, FORTRAN, COBOL, or like.

143. The apparatus in claim 140, wherein either one or both of said first template and

said second template can include a group of data in assembly language.

69

10

15

WO 02/35349 PCT/US01/31713
144, The apparatus in claim 140, wherein either one or both of said first template and

said second template can be a single template or a group of templates.

145, The apparatus in claim 140, wherein either one or both of said first compiled
template and said second compiled template can be a single compiled template or a group

of compiled templates.

146. The apparatus in claim 140, wherein either one or both of said first template and
said second template may contain either text, or data, or instructions, or any combination

of text, data, and instructions.

147. The apparatus in claim 140, wherein said first compiler is a utility that takes said
first template in said first high level programming language as input, and produces said

first compiled template in said Genesis Byte Code as output.

148. The apparatus in claim 140, wherein said second compiler is a utility that takes
said second template in said second high level programming language as input, and

produces said second compiled template in said Genesis Byte Code as output.

149. The apparatus in claim 140, wherein said first compiled template includes tables

and maps of data, or variables, or instructions, or any combination of tables and maps of

data, variables, and instructions required to execute said first compiled template.

70

10

15

WO 02/35349 PCT/US01/31713
150. The apparatus in claim 140, wherein said second compiled template includes
tables and maps of data, or variables, or instructions, or any combination of tables and
maps of data, variables, and instructions required to execute said second compiled

template.

151. The apparatus in claim 140, wherein both said first compiled template and said
second compiled template contain said Genesis Byte Code suitable to be interpreted by
said Genesis Executor to said processor, along with a set of maps to variables, constants,

and code required by said Genesis Byte Code.

152, The apparatus of claim 140, wherein said Genesis Byte Code is the lowest level

form of code used by said Genesis Executor.

153. The apparatus of claim 140, wherein said Genesis Byte Code consists of an

ordered set of binary representations of instructions.
154. The apparatus of claim 140, wherein said Genesis Byte Code is a binary
representation of the instruction mnemonics created by either said first compiler or said

second compiler.

155. The apparatus of claim 140, wherein said first template and said second template

are created independently from each other.

71

15

WO 02/35349 PCT/US01/31713
I56. An apparatus for translating data streams and performing programmatic tasks by
using instructions and associated data stored in templates, said apparatus comprising;

means for programming a group of instructions into a first template, said group of
instructions can be either a group of instructions or a group of instructions with
associated data;

means for compiling said first template into a first compiled template in Genesis
Byte Code through a first compiler;

means for creating a second template with a group of input data, said group of
input data can either be a group of data or a group of data with associated instructions;

means for compiling said second template into a second compiled template in
Genesis Byte Code through a second compiler;

means for interpreting said first compiled template and said second compiled
template to a processor by a Genesis Executor; and

means for generating a group of output data by said processor.

157, The apparatus in claim 156, wherein said first template is in a first high level
programming language, said first high level programming language includes Genesis
Template Markup Language, C, C+, C++, PASCAL, FORTRAN, COBOL, or like, said
Genesis Template Markup Language features a rich set of instructions and is a complete
programming language with looping, branching, object definition, and like, said Genesis
Template Markup Language may be linked to another hi gh level programming language
through a Genesis Application Program Interface, said Genesis Application Program

Interface is a feature rich set of functions that allow said another high level programming

72

10

15

WO 02/35349 PCT/US01/31713

language to pass data back and forth to a current execution of both said first compiled
template and said second compiled template, said another high level programming

language includes C, C+, C-++, PASCAL, FORTRAN, COBOL, or like.

158. The apparatus in claim 157, wherein said first template can include a group of

data in assembly language.

159. The apparatus in claim 158, wherein said first template can be a single template or

a group of templates.

160. The apparatus in claim 159, wherein said first template may contain either text, or

data, or instructions, or any combination of text, data, and instructions.

161. The apparatus of claim 160, wherein said first template is created independently

from said second template.

162. The apparatus in claim 161, wherein said second template can include a group of

data in assembly language.

163. The apparatus in claim 162, wherein said second template can be a single

template or a group of templates.

73

15

WO 02/35349 PCT/US01/31713
164. The apparatus in claim 163, wherein said second template may contain either text,

or data, or instructions, or any combination of text, data, and instructions.

165. The apparatus in claim 164, wherein said second template is in a second high
level programming language, said second high level programming language includes
Genesis Template Markup Language, C, C+, C-++, PASCAL, FORTRAN, COBOL, or
like, said Genesis Template Markup Language features a rich set of instructions and is a
complete programming language with looping, branching, object definition, and like, said
Genesis Template Markup Language may be linked to another high level programming
language through a Genesis Application Program Interface, said Genegis Application
Program Interface is a feature rich set of functions that allow another high level
programming language to pass data back and forth to a current execution of both said
first compiled template and said second compiled template, said another high level

programming language includes C, C+, C++ PASCAL, FORTRAN, COBOL, or like.

166. The apparatus in claim 165, wherein either one or both of said first compiled
template and said second compiled template can be a single compiled template or a group

of compiled templates.

167. The apparatus in claim 166, wherein both said first compiled template and said
second compiled template contain said Genesis Byte Code suitable to be interpreted by
said Genesis Executor to said processor, along with a set of maps to variables, constants,

and code required by said Genesis Byte Code.

74

10

15

WO 02/35349 PCT/US01/31713

168. The apparatus of claim 167, wherein said Genesis Byte Code is the lowest level

form of code used by said Genesis Executor.

169. The apparatus of claim 168, wherein said Genesis Byte Code consists of an

ordered set of binary representations of instructions.

170. The apparatus of claim 169, wherein said Genesis Byte Code is a binary
representation of the instruction mnemonics created by either said first compiler or said

second compiler.

171. The apparatus in claim 170, wherein said first compiler is a utility that takes said
first template in said first high level programming language as input, and produces said

first compiled template in said Genesis Byte Code as output.

172. The apparatus in claim 171, wherein said first compiled template includes tables
and maps of data, or variables, or instructions, or any combination of tables and maps of

data, variables, and instructions required to execute said first compiled template.

173. The apparatus in claim 170, wherein said second compiler is a utility that takes

said second template in said second high level programming language as input, and

produces said first compiled template in said Genesis Byte Code as output.

75

15

WO 02/35349 PCT/US01/31713

174, The apparatus in claim 173, wherein said second compiled template includes
tables and maps of data, or variables, or instructions, or any combination of tables and
maps of data, variables, and instructions required to execute said second compiled

template.

175, A computer program product recorded on a computer readable medium for a
method for translating data streams and performing programmatic tasks by using
instructions and associated data stored in templates, said computer program product
comprising:

computer readable means for programming a financial model with instructions or
a financial model with instructions and associated data into a first template in a Genesis
Template Markup Language, said Genesis Template Markup Language is a complete
programming language with looping, branching, object definition, and like, said Genesis
Template Markup Language may be linked to a first high level programming language
through a Genesis Application Program Interface, said first high level programming
language can be C, C+, C++, PASCAL, FORTRAN, COBOL, or like, said first template
in said Genesis Template Markup Language contains either text, or data, or instructions,
or any combination of text, data, and instructions;

computer readable means for compiling said first template into a first compiled
template in a Genesis Byte Code through a Genesis Compiler, said Genesis Compiler is a
utility that takes said first template in said Genesis Template Markup Language as input,
and produces said first compiled template in said Genesis Byte Code as output, said first

compiled template includes tables and maps of data, or variables, or instructions required

76

10

15

WO 02/35349 PCT/US01/31713

to execute said first compiled template, or any combination of tables and maps of data,
variables, and instructions required to execute said first compiled template;

computer readable means for creating a second template in said Genesis Template
Markup Language with a group of input data or a group of input data with associated
instructions, said Genesis Template Markup Language is a complete programming
language with looping, branching, object definition, and like, said Genesis Template
Markup Language may be linked to a second high level programming language through
said Genesis Application Program Interface, said second high level programming
language can be C, C+, C++, PASCAL, FORTRAN, COBOL, and like, said second
template in said Genesis Template Markup Language contains either text, or data, or
instructions, or any combination of text, data, and instructions;

computer readable means for compiling said second template into a second
compiled template in said Genesis Byte Code through said Genesis Compiler, said
Genesis Compiler is a utility that takes said second template in said Genesis Template
Markup Language as input, and produces said second compiled template in said Genesis
Byte Code as output, said second compiled template may include tables and maps of data,
or variables, or instructions required to execute said second compiled template, or any
combination of tables and maps of data, variables, and instructions required to execute
said second compiled template;

computer readable means for interpreting said first compiled template and said
second compiled template to a processor by a Genesis Executor; and

computer readable means for generating a group of output data by said processor.

77

15

WO 02/35349 PCT/US01/31713
176. The computer program product in claim 175, wherein either one or both of said

first template and said second template can include a group of data in assembly language.

177. The computer program product in claim 175, wherein said financial model can be

a single financial model or a group of financial models.

178. The computer program product in claim 175, wherein either one or both of said

first template and said second template can be a single template or a group of templates.
179. The computer program product in claim 175, wherein either one or both of said
first compiled template and said second compiled template can be a single compiled

template or a group of compiled templates.

180. The computer program product in claim 175, wherein said Genesis Template

Markup Language features a rich set of instructions.

181. The computer program product of claim 175, wherein said Genesis Byte Code is

the lowest level form of code used by said Genesis Executor.

182. The computer program product of claim 175, wherein said Genesis Byte Code

consists of an ordered set of binary representations of instructions.

78

WO 02/35349 PCT/US01/31713
183. The computer program product of claim 175, wherein said Genesis Byte Code is a

binary representation of the instruction mnemonics created by said Genesis Compiler.

184. The computer program product of claim 175, wherein said Genesis Application
5 Program Interface is a feature rich set of functions that allow a high level programming

language to pass data back and forth to a current execution of both said first compiled

template and said second compiled template, said higher level programming language

includes C, C+, C++, PASCAL, FORTRAN, COBOL, or like.

10 185. The computer program product of claim 175, wherein said first template and said

second template are created independently from each other.

186. A computer program product recorded on a computer readable medium for a
method for translating data streams and performing programmatic tasks by using
15 instructions and associated data stored in templates, said computer program product
comprising:
programming a model with instructions into a first template in a Genesis
Template Markup Language;
compiling said first template into a first compiled template in a Genesis Byte
20 Code through a Genesis Compiler;
creating a second template in said Genesis Template Markup Language with a

group of input data;

79

10

15

WO 02/35349 PCT/US01/31713

compiling said second template into a second compiled template in said Genesis
Byte Code through said Genesis Compiler;

interpreting said first compiled template and said second compiled template to a
processor by a Genesis Executor; and

generating a group of output data by said processor.

187. The computer program product in claim 186, wherein said instructions can be

either a group of instructions or a group of instructions with associated data.

188. The computer program product in claim 186, wherein said group of input data can

either be a group of data or a group of data with associated instructions.

189. The computer program product in claim 186, wherein either one or both of said

first template and said second template can include a group of data in assembly language.

190. The computer program product in claim 186, wherein said Genesis Template
Markup Language is linked to a high level programming language through a Genesis
Application Program Interface, said Genesis Application Program Interface is a feature
rich set of functions that allow said high level programming language to pass data back
and forth to a current execution of both said first compiled template and said second
compiled template, said high level programming language includes C, C+, C++,

PASCAL, FORTRAN, COBOL, or like.

80

10

15

WO 02/35349 PCT/US01/31713
191 The computer program product in claim 186, wherein said model can be a single

model or a group of models.

192, The computer program product in claim 186, wherein either one or both of said

first template or said second template can be a single template or a group of templates.

193. The computer program product in claim 186, wherein either one or both of said
first compiled template and said second compiled template can be a single compiled

template or a group of compiled templates.

194. The computer program product in claim 186, wherein said Genesis Template
Markup Language is a complete programming language with looping, branching, object

definition, and like.

195. The computer program product in claim 186, wherein said Genesis Template

Markup Language features a rich set of instructions.

196. The computer program product in claim 186, wherein either one or both of said
first template and said second template may contain either text, or data, or instructions in
said Genesis Template Markup Language, or any combination of text, data, and

instructions in said Genesis Template Markup Language.

81

15

WO 02/35349 PCT/US01/31713
197. The computer program product in claim 186, wherein said Genesis Compiler is a
utility that takes said first template in said Genesis Template Markup Language as input,

and produces said first compiled template in said Genesis Byte Code as output.

198. The computer program product in claim 186, wherein said Genesis Compiler is a
utility that takes said second template in said Genesis Template Markup Language as

input, and produces said second compiled template in said Genesis Byte Code as output.

199. The computer program product in claim 186, wherein said first compiled template
includes tables and maps of data, or variables, or instructions, or any combination of
tables and maps of data, variables, and instructions required to execute said first compiled

template.

200. The computer program product in claim 186, wherein said second compiled
template includes tables and maps of data, or variables, or instructions, or any
combination of tables and maps of data, variables, and instructions required to execute

said second compiled template.

201. The computer program product in claim 186, wherein both said first compiled
template and said second compiled template contain said Genesis Byte Code suitable to
be interpreted by said Genesis Executor to said processor, along with a set of maps to

variables, constants, and code required by said Genesis Byte Code.

82

10

15

WO 02/35349 PCT/US01/31713

202. The computer program product of claim 186, wherein said Genesis Byte Code is

the lowest level form of code used by said Genesis Executor.

203. The computer program product of claim 186, wherein said Genesis Byte Code

consists of an ordered set of binary representations of instructions.

204, The computer program product of claim 186, wherein said Genesis Byte Code is a

binary representation of the instruction mnemonics created by said Genesis Compiler.

205. The computer program product of claim 186, wherein said model can be a single

model or a group of models.

206. The computer program product of claim 186, wherein said first template and said

second template are created independently from each other.

207. A computer program product recorded on a computer readable medium for a
method for translating data streams and performing programmatic tasks by using
instructions and associated data stored in templates, said computer program product
comprising:

a computer readable means for programming a group of pre-arranged instructions
into a first template in a Genesis Template Markup Language;

a computer readable means for compiling said first template into a first compiled

template in a Genesis Byte Code through a Genesis Compiler;

83

15

WO 02/35349 PCT/US01/31713

a computer readable means for creating a second template in said Genesis
Template Markup Language with a group of input data;

a computer readable means for compiling said second template into a second
compiled template in said Genesis Byte Code through said Genesis Compiler;

a computer readable means for interpreting said first compiled template and said
second compiled template to a processor by a Genesis Executor; and

a computer readable means for generating a group of output data by said

processor.

208. The computer program product in claim 207, wherein said group of pre-arranged
instructions can be either a group of pre-arranged instructions or a group of pre-arranged

instructions with associated data.

209. The computer program product in claim 207, wherein said group of input data can

either be a group of data or a group of data with associated instructions.

210. The computer program product in claim 207, wherein either one or both of said

first template and said second template can include a group of data in assembly language.

211. The computer program product in claim 207, wherein said Genesis Template
Markup Language is linked to a high level programming language through a Genesis
Application Program Interface, said high level programming language includes C, C+,

C++, PASCAL, FORTRAN, COBOL, or like.

84

10

15

WO 02/35349 PCT/US01/31713

212, The computer program product in claim 207, wherein either one or both of said

first template and said second template can be a single template or a group of templates.

213. The computer program product in claim 207, wherein either one or both of said
first compiled template and said second compiled template can be a single compiled

template or a group of compiled templates.

214, The computer program product in claim 207, wherein said Genesis Template
Markup Language is a complete programming language with looping, branching, object

definition, and like.

215. The computer program product in claim 207, wherein said Genesis Template

Markup Language features a rich set of instructions.

216. The computer program product in claim 207, wherein either one or both of said
first template and said second template may contain either text, or data, or instructions in
said Genesis Template Markup Language, or any combination of text, data, and

instructions in said Genesis Template Markup Language.

217. The computer program product in claim 207, wherein said Genesis Compiler is a

utility that takes said first template in said Genesis Template Markup Language as input,

and produces said first compiled template in said Genesis Byte Code as output.

85

10

15

WO 02/35349 PCT/US01/31713

218. The computer program product in claim 207, wherein said Genesis Compiler is a
utility that takes said second template in said Genesis Template Markup Language as

input, and produces said second compiled template in said Genesis Byte Code as output.

219. The computer program product in claim 207, wherein said first compiled template
includes tables and maps of data, or variables, or instructions, or any combination of
tables and maps of data, variables, and instructions required to execute said first compiled

template.

220. The computer program product in claim 207, wherein said second compiled
template includes tables and maps of data, or variables, or instructions, or any
combination of tables and maps of data, variables, and instructions required to execute

said second compiled template.

221. The computer program product in claim 207, wherein both said first compiled
template and said second compiled template contain said Genesis Byte Code suitable to
be interpreted by said Genesis Executor to said processor, along with a set of maps to

variables, constants, and code required by said Genesis Byte Code.

222, The computer program product of claim 207, wherein said Genesis Byte Code is

the lowest level form of code used by said Genesis Executor.

86

10

15

WO 02/35349 PCT/US01/31713

223, The computer program product of claim 207, wherein said Genesis Byte Code

consists of an ordered set of binary representations of instructions.

224, The computer program product of claim 207, wherein said Genesis Byte Code is a

binary representation of the instruction mnemonics created by said Genesis Compiler.

225. The computer program product of claim 211, wherein said Genesis Application
Program Interface is a feature rich set of functions that allow a high level programming
language to pass data back and forth to a current execution of both said first compiled
template and said second compiled template, said high level programming language

includes C, C+, C++, PASCAL, FORTRAN, COBOL, or like.

226. The computer program product of claim 207, wherein said first template and said

second template are created independently from each other.

227. A computer program product recorded on a computer readable medium for a
method for translating data streams and performing programmatic tasks by using
instructions and associated data stored in templates, said computer program product
comprising:

computer readable means for programming a group of instructions into a first
template, said group of instructions can be either a group of instructions or a group of

instructions with associated data;

87

10

15

WO 02/35349 PCT/US01/31713

computer readable means for compiling said first template into a first compiled
template in Genesis Byte Code through a first compiler;

computer readable means for creating a second template with a group of input
data, said group of input data can either be a group of data or a group of data with
associated instructions;

computer readable means for compiling said second template into a second
compiled template in Genesis Byte Code through a second compiler;

computer readable means for interpreting said first compiled template and said
second compiled template to a processor by a Genesis Executor; and

computer readable means for generating a group of output data by said processor.

228. The computer program product in claim 227, wherein said first template is in a
first high level programming language, said first high level programming language
includes Genesis Template Markup Language, C, C+, C++, PASCAL, FORTRAN,
COBOL, or like, said Genesis Template Markup Language features a rich set of
instructions and is a complete programming language with looping, branching, object
definition, and like, said Genesis Template Markup Language may be linked to another
high level programming language through a Genesis Application Program Interface, said
Genesis Application Program Interface is a feature rich set of functions that allow said
another high level programming language to pass data back and forth to a current
execution of both said first compiled template and said second compiled template, said
another high level programming language includes C, C+, C++, PASCAL, FORTRAN,

COBOL, or like.

88

10

15

20

WO 02/35349 PCT/US01/31713

229. The computer program product in claim 227, wherein said second template is in a
second high level programming language, said second high level programming language
includes Genesis Template Markup Language, C, C+, C++, PASCAL, FORTRAN,
COBOL, or like, said Genesis Template Markup Language features a rich set of
instructions and is a complete programming language with looping, branching, object
definition, and like, said Genesis Template Markup Language may be linked to another
high level programming language through a Genesis Application Program Interface, said
Genesis Application Program Interface is a feature rich set of functions that allow another
high level programming language to pass data back and forth to a current execution of
both said first compiled template and said second compiled template, said another high
level programming language includes C, C+, C++, PASCAL, FORTRAN, COBOL, or

like.

230. The computer program product in claim 227, wherein either one or both of said

first template and said second template can include a group of data in assembly language.

231. The computer program product in claim 227, wherein either one or both of said

first template and said second template can be a single template or a group of templates.

232. The computer program product in claim 227, wherein either one or both of said

first compiled template and said second compiled template can be a single compiled

template or a group of compiled templates.

89

10

15

WO 02/35349 PCT/US01/31713

233, The computer program product in claim 227, wherein either one or both of said
first template and said second template may contain either text, or data, or instructions, or

any combination of text, data, and instructions.

234, The computer program product in claim 227, wherein said first compiler is a
utility that takes said first template in said first high level programming language as

input, and produces said first compiled template in said Genesis Byte Code as output.

235. The computer program product in claim 227, wherein said second compiler is a
utility that takes said second template in said second high level programming language as

input, and produces said second compiled template in said Genesis Byte Code as output.

236. The computer program product in claim 227, wherein said first compiled template
includes tables and maps of data, or variables, or instructions, or any combination of
tables and maps of data, variables, and instructions required to execute said first compiled

template.

237. The computer program product in claim 227, wherein said second compiled
template includes tables and maps of data, or variables, or instructions, or any
combination of tables and maps of data, variables, and instructions required to execute

said second compiled template.

90

10

15

WO 02/35349 PCT/US01/31713

238. The computer program product in claim 227, wherein both said first compiled
template and said second compiled template contain said Genesis Byte Code suitable to
be interpreted by said Genesis Executor to said processor, along with a set of maps to

variables, constants, and code required by said Genesis Byte Code.

239. The computer program product of claim 227, wherein said Genesis Byte Code is

the lowest level form of code used by said Genesis Executor.

240. The computer program product of claim 227, wherein said Genesis Byte Code

consists of an ordered set of binary representations of instructions.

241. The computer program product of claim 227, wherein said Genesis Byte Code is a
binary representation of the instruction mnemonics created by either said first compiler or

said second compiler.

242. The computer program product of claim 227, wherein said first template and said

second template are created independently from each other.

243. A computer program product recorded on a computer readable medium for a
method for translating data streams and performing programmatic tasks by using
instructions and associated data stored in templates, said computer program product

comprising:

91

10

WO 02/35349 PCT/US01/31713

computer readable means for programming a group of instructions into a first
template, said group of instructions can be either a group of instructions or a group of
insiructions with associated data;

computer readable means for compiling said first template into a first compiled
template in Genesis Byte Code through a first compiler;

computer readable means for creating a second template with a group of input
data, said group of input data can either be a group of data or a group of data with
associated Instructions;

computer readable means for compiling said second template into a second
compiled template in Genesis Byte Code through a second compiler;

computer readable means for interpreting said first compiled template and said
second compiled template to a processor by a Genesis Executor; and

computer readable means for generating a group of output data by said processor.

244. The computer program product in claim 243, wherein said first template is in a
first high level programming language, said first high level programming language
includes Genesis Template Markup Language, C, C+, C++, PASCAL, FORTRAN,
COBOL, or like, said Genesis Template Markup Language features a rich set of
instructions and is a complete programming language with looping, branching, object
definition, and like, said Genesis Template Markup Language may be linked to another
high level programming language through a Genesis Application Program Interface, said
Genesis Application Program Interface is a feature rich set of functions that allow said

another high level programming language to pass data back and forth to a current

10

WO 02/35349 PCT/US01/31713

execution of both said first compiled template and said second compiled template, said
another high level programming language includes C, C+, C++, PASCAL, FORTRAN,

COBOL, or like.

245. The computer program product in claim 244, wherein said first template can

include a group of data in assembly language.

246. The computer program product in claim 245, wherein said first template can be a

single template or a group of templates.
247. The computer program product in claim 246, wherein said first template may
contain either text, or data, or instructions, or any combination of text, data, and

instructions.

248. The computer program product of claim 247, wherein said first template is

created independently from said second template.

249. The computer program product in claim 248, wherein said second template can

include a group of data in assembly language.

250. The computer program product in claim 249, wherein said second template can be

a single template or a group of templates.

93

10

15

WO 02/35349 PCT/US01/31713
251, The computer program product in claim 250, wherein said second template may
contain either text, or data, or instructions, or any combination of text, data, and

nstructions.

252, The computer program product in claim 251, wherein said second template is in a
second high level programming language, said second high level programming language
includes Genesis Template Markup Language, C, C+, C++, PASCAL, FORTRAN,
COBOL, or like, said Genesis Template Markup Language features a rich set of
instructions and is a complete programming language with looping, branching, object
definition, and like, said Genesis Template Markup Language may be linked to another
high level programming language through a Genesis Application Program Interface, said
Genesis Application Program Interface is a feature rich set of functions that allow another
high level programming language to pass data back and forth to a current execution of
both said first compiled template and said second compiled template, said another high
level programming language includes C, C+, C++, PASCAL, FORTRAN, COBOL, or

like.
253. The computer program product in claim 252, wherein either one or both of said
first compiled template and said second compiled template can be a single compiled

template or a group of compiled templates.

254. The computer program product in claim 253, wherein both said first compiled

template and said second compiled template contain said Genesis Byte Code suitable to

94

10

15

20

WO 02/35349 PCT/US01/31713
be interpreted by said Genesis Executor to said processor, along with a set of maps to

variables, constants, and code required by said Genesis Byte Code.

255, The computer program product of claim 254, wherein said Genesis Byle Code is

the lowest level form of code used by said Genesis Executor.

256. The computer program product of claim 255, wherein said Genesis Byte Code

consists of an ordered set of binary representations of instructions.

257. The computer program product of claim 256, wherein said Genesis Byte Code is a
binary representation of the instruction mnemonics created by either said first compiler or

said second compiler.

258. The computer program product in claim 257, wherein said first compiler is a
utility that takes said first template in said first high level programming language as

input, and produces said first compiled template in said Genesis Byte Code as output.

259. The computer program product in claim 258, wherein said first compiled template
includes tables and maps of data, or variables, or instructions, or any combination of
tables and maps of data, variables, and instructions required to execute said first compiled

template.

95

15

WO 02/35349 PCT/US01/31713

260. The computer program product in claim 257, wherein said second compiler is a
utility that takes said second template in said second high level programming language as

input, and produces said first compiled template in said Genesis Byte Code as output.

261. The computer program product in claim 260, wherein said second compiled
template includes tables and maps of data, or variables, or instructions, or any
combination of tables and maps of data, variables, and instructions required to execute

said second compiled template.

262. An apparatus for translating data streams and performing programmatic tasks by
using instructions and associated data stored in templates, said apparatus comprising:

a first compiler on a first system capable of compiling a first template in a first
high level programming language into a first compiled template in a Genesis Byte Code;

a second compiler on a second system capable of compiling a second template in
a second high level programming language into a second compiled template in said
Genesis Byte Code;

a Genesis Executor on a third system capable of providing an interpretation of
said first compiled template and said second compiled template; and

a processor on a forth system capable of generating a group of output data based
on said interpretation of said first compiled template and said second compiled template

by said Genesis Executor.

96

15

WO 02/35349 PCT/US01/31713

263. The apparatus in claim 262, wherein said first system, said second system, said
third system and said fourth system are connected to each other either directly or through

a system network.

264. The apparatus in claim 262, wherein said first system, said second system, said

third system and said fourth system can be same system or different systems.

265. The apparatus in claim 262, wherein said first compiler and said second compiler

can be same compiler or two different compilers.

266. The apparatus in claim 262, wherein said first template includes a group of pre-
arranged instructions, said group of pre-arranged instructions can be either a group of

pre-arranged instructions or a group of pre-arranged instructions with associated data.
267. The apparatus in claim 262, wherein said second template includes a group of
input data, said group of input data can either be a group of data or a group of data with

associlated instructions.

268. The apparatus in claim 262, wherein either one or both of said first template and

said second template can include a group of data in assembly language.

269. The apparatus in claim 262, wherein said first high level programming language

can be Genesis Template Markup Language, C, C+, C++, PASCAL, FORTRAN,

97

10

WO 02/35349 PCT/US01/31713

COBOL, or like, said Genesis Template Markup Language is a complete programming
language with looping, branching, object definition, and like, said Genesis Template
Markup Language features a rich set of instructions, said Genesis Template Markup
Language may be linked to another high level programming language through a Genesis
Application Program Interface, said Genesis Application Program Interface is a feature
rich set of functions that allow said another high level programming language to pass data
back and forth to a current execution of both said first compiled template and said second
compiled template, said another high level programming language includes C, C+, C++,

PASCAL, FORTRAN, COBOL, or like.

270. The apparatus in claim 262, wherein said second high level programming
language can be Genesis Template Markup Language, C, C+, C++, PASCAL,
FORTRAN, COBOL, or like, said Genesis Template Markup Language is a complete
programming language with looping, branching, object definition, and like, said Genesis
Template Markup Language features a rich set of instructions, said Genesis Template
Markup Language may be linked to another high level programming language through a
Genesis Application Program Interface, said Genesis Application Program Interface is a
feature rich set of functions that allow said another high level programming language to
pass data back and forth to a current execution of both said first compiled template and
said second compiled template, said another high level programming language can be C,

C+, C++, PASCAL, FORTRAN, COBOL, or like, .

98

10

15

WO 02/35349 PCT/US01/31713

271. The apparatus in claim 262, wherein either one or both of said first template and

said second template can be a single template or a group of templates.

272, The apparatus in claim 262, wherein either one or both of said first compiled
template and said second compiled template can be a single compiled template or a group

of compiled templates.

273. The apparatus in claim 262, wherein either one or both of said first template and
said second template may contain either text, or data, or instructions in said Genesis
Template Markup Language, or any combination of text, data, and instructions in said

Genesis Template Markup Language.

274. The apparatus in claim 262, wherein said first compiled template includes tables
and maps of data, or variables, or instructions, or any combination of tables and maps of

data, variables, and instructions required to execute said first compiled template.

275. The apparatus in claim 262, wherein said second compiled template includes
tables and maps of data, or variables, or instructions, or any combination of tables and
maps of data, variables, and instructions required to execute said second compiled

template.

276. The apparatus in claim 262, wherein both said first compiled template and said

second compiled template contain said Genesis Byte Code suitable to be interpreted by

99

10

15

WO 02/35349 PCT/US01/31713

said Genesis Executor to said processor, along with a set of maps to variables, constants,

and code required by said Genesis Byte Code.

277. The apparatus of claim 262, wherein said Genesis Byte Code is the lowest level

form of code used by said Genesis Executor.

278. The apparatus of claim 262, wherein said Genesis Byte Code consists of an

ordered set of binary representations of instructions.

279. The apparatus of claim 262, wherein said Genesis Byte Code is a binary

representation of the instruction mnemonics created by said Genesis Compiler.

280. The apparatus of claim 262, wherein said first template and said second template

are created independently from each other.

100

WO 02/35349 PCT/US01/31713

1/7

HIGH LEVEL |
PROGRAMMING L—I5
LLANGUAGE

| 8 2
! FIRST COMPLIED GAarl — |6

S FIRST TEMPLATE | COMPILER
L FINANCIAL MODEL ————p TEMPLATE IN

N
IN GTML GBC / 1S
/ \
10 8 [L »! OUTPUT —+—7
3 4
™ G\ENESIS N ENESIS
& COMPILER) ExXECL
TEM:EE’?I?IDNPUT » SECOND COMPILED / TOR
DATA N GTML TEMPLATE IN GBC ~5
\
I2/ N 10 N\ [FIG. 1
HIGH LEVEL
21 8 22 PROGRAMMING ~—— 15
\\ \ \ LANGUAGE
HRSTTEQPLATE GENESIS
FINANCIAL COMPILER FIRST COMPILED 16
|————® TEMPLATEIN GAPI
JgODEancTML GBC 27
29— [1sed, 1 //////IB /
7 §y l
5 p OUTPUT
'3/ 23 8 o
/ / GENESIS
SECOND Cgﬁfigk SECOND = . .
TEMPLATE INPUT COMPILED ”“
DATA IN GTML ™ TEMPLATE IN
P o
Ll FIG. 2

2 10

WO 02/35349 PCT/US01/31713
2/7
HIGH LEVEL '
3| PROGRAMMING +——15
\ 8 32 LANGUAGE
FIRST TE\MPLATE GENESIS |
FINANCIAL | compiLer | FIRST COMPILED i 6
- MODEL IN GTML > TEMPLATEIN o
GBC
(\ Ve 19
PROCESSOR
S \\IO ~ I [roceren] > OUTPUT _|
33 8 34\ 37
) GENESIS N
SECOND SECOND
TEMPLATE INPUT | COMPILER | cOMPILED
- DATA IN GTML~| "} TEMPLATEIN
o
\
12 I6\I3 10 \n FIG. 3
HIGH LEVEL
PROGRAMMING ———15
4l 8 42 LANGUAGE
N \
FIRST TEMPLATE | OFNESIS
FINANCIAL compiLer | FIRST COMPILED 6
"MODEL IN GTML »| TEMPLATEIN o
GBC
o 4
[asud \~ 10 \ /l
AN N
9 15 13 i > OUTPUT _
4{ 8 44\ ~47
A \
SECOND GENESIS SECOND
TEMPLATE INPUT | COMPILER COMPILED E
- DATA IN GTML TEMPLATE IN
GII3C
L (FIG. 4

2 16 13

WO 02/35349 PCT/US01/31713
3/7

5!\ 58 52
GENESIS G+
FIRST TEMPLATE | comper | FIRST COMPILED 19
- FINANCIAL ——® TEMPLATE IN oo
MODEL IN C+ GBC \ \
\
9 53 \50 59 54\ M > OUTFUT
[/ GENESIS N \
SECOND FORTRAN SECOND 5 57
TEMPLATE INPUT COMP”'ER. COMPILED
(DATA IN TEMPLATE IN
FORTRAN GBC
{ AN
X\ \ FIG. 5
12 55 [

WO 02/35349

\
FIRST TEMPLATE
FINANCIAL MODEL A IN

/G
A
7176 13 10

63
N\

SECOND TEMPLATE
FINANCIAL MODEL B

(IN C++

l

} 50

72

65
\

THIRD TEMPLATE
FINANCIAL MODEL C
/ IN FORTRAN

\
(\
73 55

67
\

FOURTH TEMPLATE
|, FIRST GROUP OF
(INPUT DATA IN GTML|

\
)

74 10

69
\

FIFTH TEMPLATE
A SECOND GROUP OF
" INPUT DATA IN C+

\

)

75 78

4/7

/62

PCT/US01/31713

HIGH LEVEL
PROGRAMMING ~____ 15
LANGUAGE

i TGAPI—/le

GENESIS 7

COMPILER + FIRST COMPILED
TEMPLATE IN GBC

I
64
\

GENESIS CH+

COMPILER | gECcOND COMPILED
TEMPLATE IN GBC

H
66
GENESIS \
FORTRAN \

COMPILER | THIRD COMPILED

TEMPLATE IN GBC
I
i

GENESIS

COMPILER | FORTH COMPILED
TEMPLATE IN GBC

I
KN
GENESIS C+
COMPILER

FIFTH COMPILED
TEMPLATE IN GBC

\

(

I9
b QUTPUT
\
S
~ 5 7

FIG. 6

WO 02/35349 PCT/US01/31713
5/7
81 ~ 8 82
‘ GENESIS
FIRST TEMPLATE . .
A mrsTGROUPOF | COMPILER | pR ST COMPILED
INSTRUCTIONS IN GTML. TEMPLATE IN GBC
)
91 96 I3 I
83 58 84
VAR N
SECOND TEMPLATE | GENESIS CH+ ‘
A SECOND GROUP OF | COMPILER | sECOND COMPILED
¥ INSTRUCTIONS IN "1 TEMPLATE IN GBC
CH+ j HIGH LEVEL
l\ Y, PROGRAMMING L——15
92 50 i LANGUAGE
59 ‘ 6
85\ 86\ l TG/\P[/
GENESIS 19
) o
THIRD TEMPLATE | FORTRAN (/
. A THIRD GROUP OF | COMPILER | TH{RD COMPILED | > OUTPUT
INSTRUCTIONS IN TEMPLATE IN GBC
FORTRAN | | %
93 \\55 11 J | ~—5 97
GENESIS \
FOURTH TEMPLATE COMPILER . : -
L FIRST GROUP OF > ‘TS&?[} ACT?:'\’II]Z%EE
INPUT DATA IN GTML - ’\
94 10 I
89 } 79 0 FIG. 7
GENESIS C+ \
FIFTH TEMPLATE COMPILER

A SECOND GROUP OF
INPUT DATA IN C+

FIFTH COMPILED
TEMPLATE IN GBC

\

(

35 78

[

WO 02/35349 PCT/US01/31713

/“IOI
~

FIRST TEMPLATE 103
L— A FIRST GROUP OF
INSTRUCTIONS IN GTML.
GENESIS /
{) COMPILER FIRST COMPILED
o8 13102 P! TEMPLATE IN GBC i
/

6/7

i
SECOND TEMPLATE
LA SECOND GROUP OF
INSTRUCTIONS IN
GTML
%
12 10 104
/ HIGH LEVEL
PROGRAMMING
LANGUAGE

+15

THIRD TEMPLATE
L A FIRST GROUP OF
INPUT DATA IN GTML T oarl ——16
107
4
3 10 105 /

19
/]| omess ([

FOURTH TEMPLATE | | COMPILER
| SECOND COMPILED
A SECOND GROUP OF ~-{ SECOND COMPILE!]

INPUT DATA IN GTML L

114 10”7 (~s5 7
106 il

OUTPUT

jppem—
FIFTH TEMPLATE

i A THIRD GROUP OF
INPUT DATA IN GTML

=N 10

(
s 19 13

—— (08
SIXTH TEMPLATE
- A FORTH GROUP
(INPUT DATA IN C+

o FIG. 8

GENESIS C+
COMPILER

THIRD COMPILED
TEMPLATE IN GBC

N

16 78/

T
SEVENTH TEMPLATE
|, A FIFTH GROUP OF
INPUT DATA IN C+

S
17 t78

PCT/US01/31713

717

WO 02/35349

921 ®N_// \mN_ xwm_
acl 972l A8 A, X '
J € WALSAS NO 8 WALSAS \ 8 WALSAS
// \ Mw,wmﬁmkmd%m% Anzm:ES_oU NO++D NI V1vd NO FOVAITLNI
q Em_,ww\/m / E ‘ 2 aNOD3S o gisanan | ALYIdNAL Q\ZOUmm MMmD_DZOUmm
NO LAdLNO <t & WALSAS NO J § 4)
JLVYINED ¥OLNDIXA SISANAD b /mm_ (el gs Ve _/ cel AMN_ el \¢N_
} \
- S %/ v WALSAS NO V WALSAS NO v WALSAS
o % % 28D NI meEEE <Eiies— WALO NI TIa0w NO ADVAIALNI
I\ aaTdWOD 1SUId sisanap | LY IWEL LS¥Id WIS LS¥Id
15Y4 9l / /
ADVNONVT 8 1
ONINNVIDOY XA . I€l ¢l
Sl—— 1aAz1HOM 01 "OIA
WN/_/
g WALSAS 92l o2l Gel o<l
A t2l el I T _\ / \ _ﬂ
b2l g \ \ 8 WALSAS NO WALSAS | € WALSAS
// mu_mwmz_\“ %MM%MM TETINGS do D NI VIVd NO ADVAIFLNI
T ﬂ = anEs ; tosisaNgo |BLYINEL ANODS ¥ASN INODTS
f 7
Ad LNdLINO < ¥ WALSAS NO \ | A 2l
EQMZMO MOLNOFXH SISINID _u_ 8¢l \\,V 86 ve J gl M_N_ e .\ ¢
- / f vV WALSAS NO I WILSAS NO \ V WALSAS
ot s v | PIIE| Jrio e [g v
62l ol _ ’ SISINAD \ UISN LSUL
IOVNONV'] / w // /
DNININYYDOU L2l 8 I€l 12l
G|— T4ATT1HOH

INTERNATIONAL SEARCH REPORT International application No.
PCT/US01/31713

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) :GOG6F 9/45
USCL :717/139; 717/140
According to International Patent Classification (IPC) or to both national ctassification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classilication system followed by classification symbols)

Us, : 717/189; 717/ 140; 712/208; 712/209; 712/210; 712/211; 712/212; 712/213

Documentation searched other than minimum documentation to the extent that such documents are included in the fields

SeRf e NTERNET

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WEST (USPAT, PG PUBS, DERWENT, IBM TDB, EPO, JPO)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y CHEN, J., GENESIS PRESENTATION, P. 1-14. 1-280

Y US 6,108,696 A (MENDHEKAR ET AL.) 22 AUGUST 2000,| 1-280
FIGS. 1-3, COLS. 1-6 AND 9-11.

Y,P US 2001/0032254 A1 (HAWKINS, J.) 18 OCTOBER 2001, FIGS | 1-280
1,2,6,14, AND PAGE 5 2ND COL.

AP US 6,253,326 B1 (LINCKE ET AL.) 26 JUNE 2001, FIGS 1,2,4 | 1-280

Y ZAROWIN ET AL, FINALLY, BUSINESS TALKS THE SAME| 1-280
LANGUAGE, AUGUST 2000, P. 1-8

A US 6,058,373 A (BLINN ET AL.) 02 MAY 2000, FIGS 1-4 1-280

Further documents are listed in the continuation of Box C. D See patent family annex.

* Special tategories of tited documents: e later document pubhshed after the international fifing date or prionty
e . . date and not in conthiet with the application but eited to understand
A" tocutment d:hnmg- tht:_ general state of’ the art which v het the prineiple br theory underdying the nventon
tansidered to be of particular relevance
X" loe t of particular relevance, the taimed invention tannot be
[) . : \ or alte - . X documen) elevanee, the tained inven an
34 eather toenment published on or atter the international filing date wonsidered nove) or cannot be vonsider ed to mvolve an in entive step
e doetinent whivh may thiow doubts on prisety tamfs) or which s when the dociment v taken alone
vted w establish the publitation date of another witaton or other X .
special teason {ay speaified) "y document ol particular relevante, the taimed invention tannot be
tonsidered to invalve an nventive step when the document s
oM dociment reterring to an oral disclosure, use, exhibition or other combined with vne or more other sich dociiments, sugh combination
Means being obviohs to a person skilled i the art
ot deument publihed prive to the mternational iling date but later — ngr tdocument member of the same patent family
than the pronty date tlaimed ‘
Date of the actual completion of the international search Dute of maihng of the internaonal search report

19 DECEMBER 2001 09 January 2002 (09.01.02)

Name and mailing address of the ISA/US Authorized officer
Commissioner of Patents und Trademarks

Box PCT CEVIN TESK ﬁ ﬂi .
Washington, D C. 20281 REVIN TE }\A%W . E%Lw
3} BO5-3000

Faesimile No. {703) 805-58230 Telephone Nu, {7

Form PCT/ISA/210 {second sheet) (July 1998}

INTERNATIONAL SEARCH REPORT International application No.

PCT/US01/31718
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 5,930,341 A (CARDILLO, IV ET AL) 27 JULY 1999, FIGS 1-280
1-2, COLS 2-3, AND 6-7
A

US 6,006,242 A (POOLE ET AL.) 21 DECEMBER 1999, FIGS 1-280
7-10 AND COLS 3-6.

Form PCT/ISA/210 {continuation o second sheet) (luly 1998)*

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

