Title: NOVEL SALTS OF SITAGLIPTIN, PROCESS FOR THE PREPARATION AND PHARMACEUTICAL COMPOSITION THEREOF

Abstract: The present invention relates to pharmaceutically acceptable acid addition salts of sitagliptin, in particular anti-oxidant acid addition salts of sitagliptin and a process for its preparation. The present invention also provides a pharmaceutical composition using the pharmaceutically acceptable acid addition salts of sitagliptin.
Declarations under Rule 4.17:

— as to applicant’s entitlement to apply for and be granted a patent (Rule 4.17(b))

— as to the applicant’s entitlement to claim the priority of the earlier application (Rule 4.17(in))

Published:

— of inventorship (Rule 4.17(b))

— without international search report and to be republished upon receipt of that report (Rule 48.2(g))
"NOVEL SALTS OF SITAGLIPTIN, PROCESS FOR THE PREPARATION AND PHARMACEUTICAL COMPOSITION THEREOF"

PRIORITY

This application claims the benefit under Indian Provisional Application No. 3528/CHE/2011, filed October 14, 2011, the content of each of which is incorporated by reference herein.

FIELD OF THE INVENTION:

The present invention generally relates to pharmaceutically acceptable acid addition salts of sitagliptin, in particular anti-oxidant acid addition salts of sitagliptin, processes for its preparation and a pharmaceutical composition containing the same.

BACKGROUND OF THE INVENTION:

Sitagliptin, (3R)-3-amino-1-[9-(trifluoromethyl)-1,4,7,8-tetrazabicyclo[4.3.0]nona-6,8-dien-4-yl]-4-(2,4,5-trifluorophenyl)butan-T-one, has the following chemical structure:

Sitagliptin

Sitagliptin is an orally-active dipeptidyl peptidase-4 (DPP-IV) enzyme inhibitor that improves glycemic control in patients with Type 2 diabetes mellitus by slowing the inactivation of incretin hormones. Sitagliptin may be used as a monotherapy, as an adjunct to diet and exercise, or in combination with metformin or a PPARγ agonist (e.g., thiazolidinediones). Sitagliptin is currently marketed in its phosphate salt in the United States under the tradename JANUVIA™ in its monohydrate form JANUVIA™ is indicated to improve glycemic control in patients with type 2 diabetes mellitus.

U.S. Patent No. 6,699,871 ("the '871 patent") discloses a class of beta-amino-tetrahydrotriazolo [4,3-a]pyrazines such as Sitagliptin and its hydrochloride salt form, a potent inhibitor of DPP-IV enzyme. Other pharmaceutically acceptable salts of this compound are generically encompassed within the scope of the '871 patent. It also discloses a process for the preparation of sitagliptin and related compounds.

U.S. Patent No. 7,326,708 discloses dihydrogen phosphate salt of sitagliptin and crystalline hydrate-thereof, in particular a crystalline monohydrate and processes for the preparation...

Patent publication No. WO 2005/072530 discloses crystalline acid addition salts of sitagliptin and hydrates thereof, wherein the acid addition salt is selected from the group consisting of hydrochloric acid, tartaric acid, benzene sulfonic acid, p-toluene sulfonic acid and 10-caphor sulfonic acid.

Patent publication No. WO 2009/085990 discloses crystalline forms of salts of sitagliptin such as sulfuric acid, hydrobromic acid, methane sulfonic acid, acetic acid, benzoic acid, oxalic acid, succinic acid, mandelic acid, fumaric acid, di-p-tolyL-L-tartaric acid and lactic acid and process for the preparation thereof.

Patent publication No. WO 2010/00469 discloses crystalline forms of sitagliptin monobasic, dibasic and tribasic acid addition salts such as hydrochloric acid (Form I and Form II), sulfuric acid (Form I and Form II), methane sulfonic acid (Form I and Form II), fumaric acid (Form I and Form II), malonic acid, malic acid, succinic acid (Form I, Form II and Form III), lactic acid, glycolic acid, maleic acid (Form I and Form II), citric acid (crystalline and amorphous Form), aspartic acid and mandelic acid and process for the preparation thereof.

Patent publication No. WO 2010/012781 ("the '781 publication") discloses salts of sitagliptin such as ethanedisulfonic acid, galactaric acid, thiocyanic acid, and glutaric acid. The '781 publication further discloses Crystalline forms of sitagliptin acid addition salts such as galactaric acid (Form I), L-malic acid (Form I), D-gluconic acid (Form I), succinic acid (Form I), hydrobromic acid (Form I), thiocyanic acid (Form I), oxalic acid (Form I), L-aspartic acid (Form I), ethanedisulfonic acid (Form I), pyroglutamic acid (Form I), glutaric acid (Form I), and acetic acid (Form I).

Patent publication No. WO 2010/092090 discloses acid addition salts of sitagliptin, wherein the acid addition salt is selected from the group consisting of D-glucuronic acid, L-glucuronic acid, glutaric acid, sulfuric acid, L-Lactic acid, D-Lactic acid, ethane sulfonic acid, oxalic acid, acetic acid, L-mandelic acid, D-mandelic acid, capric acid, benzoic acid, hippuric cid, trans-cinnamic acid, malonic acid, citric acid, 1-hydroxy-2-naphtolic acid, crotonic acid and ascorbic acid and process for the preparation thereof.

Patent publication No. WO 2010/17738 discloses crystalline forms of sitagliptin acid addition salts such as sitagliptin sulfate (Form S1, Form S2, Form S3, Form S5, Form S6, Form S7 and Form S8), sitagliptin acetate (Form E1), sitagliptin dibenzoyle-D-tartrate (Form JD1 and DJ2) sitagliptin-fumarate (Form F-1-and-F-2-) sitagliptin-malate (Form M1 and Form M2), sitagliptin oxalate (Form 01 and Form 02), sitagliptin Quinate (Form Q1), sitagliptin
succinate (Form U1), sitagliptin mandelate (Form N1, Form N2, Form N3, Form N4 and amorphous form), sitagliptin lactate (Form L1, Form L2, Form L3 and Form L4), sitagliptin maleate (Form A1), sitagliptin S-mandelate (Form N3), sitagliptin L-malate (Form L1), sitagliptin R(−)-mandelate (Form N5 and Form N6), sitagliptin Orotate (amorphous form).

Patent Publication No. CN101863891 ("the '891 publication") discloses inorganic salts of sitagliptin such as sodium bisulfate, potassium bisulfate, cesium bisulfate and ammonium bisulfate salt of sitagliptin; sodium dihydrogen phosphate, potassium dihydrogen phosphate, cesium dihydrogen phosphate and ammonium dihydrogen phosphate salt of sitagliptin. The '891 publication further discloses a complex salts of sitagliptin such as sitagliptin sulfate or phosphate salt complex with aminobutanetriol, aminopropanediol, amino ethanol, glucosamine, arginine, ornithine, citrulline or lysine.

Patent publication No. WO 201 1/018494 discloses fumarate salt of sitagliptin, wherein the ratio of sitagliptin to fumaric acid is 1:0.6 to 1:1.3 and process for the preparation thereof.

Different salt forms of the same pharmaceutically active moiety differ in their physical properties such as melting point, solubility, etc. These properties may appreciably influence pharmaceutical properties such as dissolution rate and bioavailability. In addition, polymorphism, the occurrence of different crystal forms, is a property of some molecules and molecular complexes. A single molecule may give rise to a variety of polymorphs having distinct crystal structures and physical properties like melting point, thermal behaviours (e.g. measured by thermogravimetric analysis ("TGA"), or differential scanning calorimetry ("DSC"), X-ray diffraction pattern (XRPD), infrared absorption fingerprint, and solid state NMR spectrum. One or more of these techniques may be used to distinguish different polymorphic forms of a compound.

Discovering new polymorphic forms and solvates of a pharmaceutical product can provide materials having desirable processing properties, such as ease of handling, ease of processing, storage stability, and ease of purification or as desirable intermediate crystal forms that facilitate conversion to other polymorphic forms. New polymorphic forms and solvates of a pharmaceutically useful compound or salts thereof can also provide an opportunity to improve the performance characteristics of a pharmaceutical product. It enlarges the repertoire of materials that a formulation scientist has available for formulation optimization, for example by providing a product with different properties, e.g., better processing or handling characteristics, improved dissolution profile, or improved shelf-life.

In view of the foregoing, it would be desirable to provide new salt forms of sitagliptin. Further, it would be desirable to have reliable processes for producing these salt forms of sitagliptin. Additionally, the various salt forms of sitagliptin could be used to prepare improved pharmaceutical compositions.

SUMMARY OF THE INVENTION:

It has now been found that new acid addition salt forms of sitagliptin: in particular antioxidant-acid-additives sitagliptin can be obtained which have improved properties as
compared to presently-known form of such compound. In an aspect, the improved property is selected from the group consisting of: increased solubility, increased dissolution, increased bioavailability, increased dose response, decreased hygroscopicity, decreased from diversity, more desired morphology, or other property described herein.

Accordingly, in one embodiment, the present invention provides pharmaceutically acceptable acid addition salts of sitagliptin, in particular anti-oxidant acid addition salts of sitagliptin, or hydrates or solvates thereof.

In accordance with a second embodiment, the present invention provides an acid addition salts of sitagliptin, wherein the acid is an anti-oxidant acid and is selected from the group consisting of cinnamic acid and its derivatives such as p-coumaric acid, Ferulic acid, Sinapic acid, Caffeic acid, Chlorogenic acid and the like; benzoic acid and its derivatives such as p-hydroxy benzoic acid, Vanillic acid, Syringic acid, Protocatechuic acid, 4-(4-phenoxybenzoyl) benzoic acid and the like; and Quinic acid.

In accordance with a third embodiment, the present invention further provides acid addition salts, particularly anti-oxidant acid addition salts of sitagliptin exist in the form of polymorphs of salts, co-crystals, or polymorphs of co-crystals.

In accordance with a fourth embodiment, the present invention provides a process for preparing acid addition salts of sitagliptin comprising a) providing a mixture comprising sitagliptin base and an anti-oxidant acid and b) isolating the acid addition salts of sitagliptin; wherein the anti-oxidant acid is selected from the group consisting of cinnamic acid and its derivatives such as p-coumaric acid, Ferulic acid, Sinapic acid, Caffeic acid, Chlorogenic acid and the like; benzoic acid and its derivatives such as p-hydroxy benzoic acid, Vanillic acid, Syringic acid, Protocatechuic acid, 4-(4-phenoxybenzoyl) benzoic acid and the like; and Quinic acid.

In accordance with a fifth embodiment, the present invention provides a pharmaceutical composition comprising acid addition salt forms of sitagliptin prepared by the processes of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS:

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments of the invention and together with the description, serve to explain the principles of the invention.

Figure 1 is the characteristic powder X-ray diffraction (XRD) pattern of Sitagliptin caffate Form I.

Figure 2 is the characteristic powder X-ray diffraction (XRD) pattern of Sitagliptin caffate Form II.

Figure 3 is the characteristic powder X-ray diffraction (XRD) pattern of Sitagliptin caffate Form III.
Figure 4 is the characteristic powder X-ray diffraction (XRD) pattern of Sitagiiptin caffate Form IV.

Figure 5 is the characteristic powder X-ray diffraction (XRD) pattern of Sitagiiptin caffate Form V.

Figure 6 is the characteristic powder X-ray diffraction (XRD) pattern of Sitagiiptin caffate Form VI.

Figure 7 is the characteristic powder X-ray diffraction (XRD) pattern of Sitagiiptin caffate amorphous Form.

Figure 8 is the characteristic powder X-ray diffraction (XRD) pattern of Sitagiiptin ferulate Form I.

Figure 9 is the characteristic powder X-ray diffraction (XRD) pattern of Sitagiiptin ferulate Form II.

Figure 10 is the characteristic powder X-ray diffraction (XRD) pattern of Sitagiiptin ferulate Form III.

Figure 11 is the characteristic powder X-ray diffraction (XRD) pattern of Sitagiiptin ferulate Form IV.

Figure 12 is the characteristic powder X-ray diffraction (XRD) pattern of Sitagiiptin ferulate Form V.

Figure 13 is the characteristic powder X-ray diffraction (XRD) pattern of Sitagiiptin ferulate amorphous Form.

Figure 14 is the characteristic powder X-ray diffraction (XRD) pattern of Sitagiiptin coumarate Form I.

Figure 15 is the characteristic powder X-ray diffraction (XRD) pattern of Sitagiiptin coumarate Form II.

Figure 16 is the characteristic powder X-ray diffraction (XRD) pattern of Sitagiiptin coumarate Form III.

Figure 17 is the characteristic powder X-ray diffraction (XRD) pattern of Sitagiiptin coumarate Form IV.

Figure 18 is the characteristic powder X-ray diffraction (XRD) pattern of Sitagiiptin coumarate Form V.
Figure 19 is the characteristic powder X-ray diffraction (XRD) pattern of Sitagliptin coumarate Form VI.

Figure 20 is the characteristic powder X-ray diffraction (XRD) pattern of Sitagliptin coumarate amorphous Form.

DETAILED DESCRIPTION OF THE INVENTION:

The present invention addresses a need in the art by providing new acid addition salt forms of sitagliptin, or hydrates or solvates thereof; in particular anti-oxidant acid addition salts of sitagliptin or hydrates or solvates thereof and processes for their preparation.

The present inventors have identified new acid addition salt forms of sitagliptin, particularly anti-oxidant acid addition salts. These salt forms may be in the form of solvates, hydrates, polymorphs of salts, co-crystals, or polymorphs of co-crystals.

It has surprisingly been found that when sitagliptin and a selected anti-oxidant acid component are allowed to form a salt form, the resulting salt form may give rise to improved properties of the sitagliptin, as compared to the sitagliptin in a free form (including free base, hydrates, solvates etc.), particularly with respect to: solubility, dissolution, bioavailability, stability, Cmax, Tmax, processability, longer lasting therapeutic plasma concentration, hygroscopicity, decrease in form diversity (including polymorphism and crystal habit), change in morphology or crystal habit, etc. For example, a salt form of sitagliptin is particularly advantageous where the original sitagliptin is insoluble or sparingly soluble in water. The salt form properties conferred upon the sitagliptin are also useful because the bioavailability of the sitagliptin can be improved and the plasma concentration and/or serum concentration of the sitagliptin can be improved.

The anti-oxidant acids used in the present invention are not only intended for formation of pharmaceutically acceptable salt form of sitagliptin, itself can advantageously be useful for therapeutical use, for example, anti-oxidant acids can stabilize the body’s metabolism by defending against damage caused by free radicals. The anti-oxidant acid salts of sitagliptin are more effective with respect to therapeutic activity of the sitagliptin as compared to the sitagliptin salt form with non anti-oxidant acids described in the afore mentioned literature.

Accordingly, in one embodiment, the present invention provides pharmaceutically acceptable acid addition salts of sitagliptin or hydrates or solvates thereof, in particular anti-oxidant acid addition salts of sitagliptin or hydrates or solvates thereof.

The ratio of sitagliptin to anti-oxidant acid compound may be stoichiometric or non-stoichiometric according to the present invention. For example, 1:1, 1.5:1, 1:1.5, 2:1 and 1:2 ratios of sitagliptin: anti-oxidant acid are acceptable.

In another embodiment, the anti-oxidant acid compound selected from at least one of anti-oxidant-acid-compounds-known-in4he-art.-For-example,4he-anti-oxidant-acid— includes-but-are not limited to cinnamic acid and its derivatives such as p-coumaric acid, Ferulic acid,
Sinapic acid, Caffeic acid, Chlorogenic acid and the like; benzoic acid and its derivatives such as p-hydroxy benzoic acid, Vanillic acid, Syringic acid, Protocatechuic acid, 4-(4-phenoxylbenzoyl) benzoic acid and the like; and Quinic acid.

In one embodiment, the present invention provides sitagliptin caffate or hydrate or solvate thereof.

In another embodiment, the present invention provides sitagliptin caffate in crystalline form.

In another embodiment, the present invention provides crystalline sitagliptin caffate ethanolate.

In another embodiment, the present invention provides crystalline sitagliptin caffate ethanolate (Form I), characterized by an X-Ray diffraction (XRD) pattern substantially in accordance with Figure 1.

In another embodiment, the present invention provides crystalline sitagliptin caffate isopropyl ether solvate.

In another embodiment, the present invention provides crystalline sitagliptin caffate isopropyl ether solvate (Form II), characterized by an X-Ray diffraction (XRD) pattern substantially in accordance with Figure 2.

In another embodiment, the present invention provides crystalline sitagliptin caffate acetone solvate.

In another embodiment, the present invention provides crystalline sitagliptin caffate acetone solvate (Form III), characterized by an X-Ray diffraction (XRD) pattern substantially in accordance with Figure 3.

In another embodiment, the present invention provides crystalline sitagliptin caffate tetrahydrofuran (THF) solvate.

In another embodiment, the present invention provides crystalline sitagliptin caffate THF solvate (Form IV), characterized by an X-Ray diffraction (XRD) pattern substantially in accordance with Figure 4.

In another embodiment, the present invention provides crystalline sitagliptin caffate Acetonitrile solvate.

In another embodiment, the present invention provides crystalline sitagliptin caffate Acetonitrile solvate (Form V), characterized by an X-Ray diffraction (XRD) pattern substantially in accordance with Figure 5.

In another embodiment, the present invention provides crystalline sitagliptin caffate Ethyl acetate solvate.
In another embodiment, the present invention provides crystalline sitagliptin caffate Ethyl acetate solvate (Form VI), characterized by an X-Ray diffraction (XRD) pattern substantially in accordance with Figure 6.

In another embodiment, the present invention provides sitagliptin caffate in an amorphous form.

In yet another embodiment, the present invention provides sitagliptin caffate in an amorphous form, characterized by an X-Ray diffraction (XRD) pattern substantially in accordance with Figure 7.

In another embodiment, the present invention provides sitagliptin ferulate or hydrate or solvate thereof.

In another embodiment, the present invention provides sitagliptin ferulate in crystalline form.

In another embodiment, the present invention provides crystalline sitagliptin ferulate Acetonitrile solvate.

In another embodiment, the present invention provides crystalline sitagliptin ferulate Acetonitrile solvate (Form I), characterized by an X-Ray diffraction (XRD) pattern substantially in accordance with Figure 8.

In another embodiment, the present invention provides crystalline sitagliptin ferulate (Form II), characterized by an X-Ray diffraction (XRD) pattern substantially in accordance with Figure 9.

In another embodiment, the present invention provides crystalline sitagliptin ferulate (Form III), characterized by an X-Ray diffraction (XRD) pattern substantially in accordance with Figure 10.

In another embodiment, the present invention provides crystalline sitagliptin ferulate Isopropyl ether solvate.

In another embodiment, the present invention provides crystalline sitagliptin ferulate Isopropyl ether solvate (Form IV), characterized by an X-Ray diffraction (XRD) pattern substantially in accordance with Figure 11.

In another embodiment, the present invention provides crystalline sitagliptin ferulate (Form V), characterized by an X-Ray diffraction (XRD) pattern substantially in accordance with Figure 12.

In another embodiment, the present invention provides sitagliptin ferulate in an amorphous form.
In another embodiment, the present invention provides sitagliptin ferulate in an amorphous form, characterized by an X-Ray diffraction (XRD) pattern substantially in accordance with Figure 13.

In another embodiment, the present invention provides sitagliptin coumarate or hydrate or solvate thereof.

In another embodiment, the present invention provides sitagliptin coumarate in crystalline form.

In another embodiment, the present invention provides crystalline sitagliptin coumarate Acetonitrile solvate.

In another embodiment, the present invention provides crystalline sitagliptin coumarate Acetonitrile solvate (Form I), characterized by an X-Ray diffraction (XRD) pattern substantially in accordance with Figure 14.

In another embodiment, the present invention provides crystalline sitagliptin coumarate (Form II), characterized by an X-Ray diffraction (XRD) pattern substantially in accordance with Figure 15.

In another embodiment, the present invention provides crystalline sitagliptin coumarate THF solvate.

In another embodiment, the present invention provides crystalline sitagliptin coumarate THF solvate (Form III), characterized by an X-Ray diffraction (XRD) pattern substantially in accordance with Figure 16.

In another embodiment, the present invention provides crystalline sitagliptin coumarate Isopropanol solvate.

In another embodiment, the present invention provides crystalline sitagliptin coumarate Isopropanol solvate (Form IV), characterized by an X-Ray diffraction (XRD) pattern substantially in accordance with Figure 17.

In another embodiment, the present invention provides crystalline sitagliptin coumarate Ethanol solvate.

In another embodiment, the present invention provides crystalline sitagliptin coumarate Ethanol solvate (Form V), characterized by an X-Ray diffraction (XRD) pattern substantially in accordance with Figure 18.

In another embodiment, the present invention provides crystalline sitagliptin coumarate (Form VI), characterized by an X-Ray diffraction (XRD) pattern substantially in accordance with Figure 19.
In another embodiment, the present invention provides sitagliptin coumarate in an amorphous form.

In another embodiment, the present invention provides sitagliptin coumarate in an amorphous form, characterized by an X-Ray diffraction (XRD) pattern substantially in accordance with Figure 20.

In another embodiment, the present invention provides a process for preparing acid addition salts of sitagliptin comprising a) providing a mixture comprising sitagliptin base and an anti-oxidant acid and b) isolating the acid addition salts of sitagliptin.

In another embodiment, the present invention sitagliptin cinnamate, sitagliptin coumarate, sitagliptin ferulate, sitagliptin sinapate, sitagliptin caffeate, sitagliptin chlorogenate, sitagliptin benzoate, sitagliptin p-hydroxy benzoate, sitagliptin vanillate, sitagliptin syringate, sitagliptin protocatechuic, sitagliptin 4-(4-phenoxybenzoyl) benzoate or sitagliptin quinate is prepared by mixing cinnamic acid, p-coumaric acid, ferulic acid, sinapic acid, caffeic acid, chlorogenic acid, benzoic acid, p-hydroxy benzoic acid, vanillic acid, syringic acid, protocatechuic acid, 4-(4-phenoxybenzoyl) benzoic acid or quinic acid in solid state or in solution to the solution of sitagliptin free base in a solvent; and isolating the acid addition salts of sitagliptin.

The Sitagliptin free base, used in the present invention, can be prepared by any known method for example sitagliptin free base may be synthesized as disclosed in U.S. Patent No. 6,699,871.

The step of forming a solution of sitagliptin free base may include dissolving any form of sitagliptin free base (including hydrates, solvates etc), in a suitable solvent. Suitable solvents include, but are not limited to water, lower alcohols, ketones, esters, ethers, C₅₋₇ linear, branched or cyclic, saturated or unsaturated hydrocarbons, nitriles, halogenated hydrocarbons, or mixtures thereof.

Preferably, the suitable solvents includes but are not limited to methanol, ethanol, isopropanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl acetate, ethyl acetate, isopropyl acetate, tetrahydrofuran (THF), isopropyl ether (IPE), tert. butyl methyl ether, acetonitrile, propionitrile, methylene chloride, chloroform, toluene, cyclohexane, hexane, heptane and the like and mixtures thereof.

Any conditions which forming the acid addition salts of sitagliptin from solution may be used whereby acid addition salts of sitagliptin formed, for example concentrated by subjecting the solution to heating, cooling the solution to precipitation, crystallization, solvent precipitation, spray drying, freeze drying, agitated thin film evaporator (ATFE) and the like.

In an alternative embodiment, the sitagliptin free base mixed with the anti-oxidant acid compound in a solid phase. Any suitable means for mixing may be used in this step, including commercially-available solid mixers.
This may involve grinding or milling the two solids together or melting one or both components and allowing them to recrystallize. The use of a granulating liquid may improve or may impede solid formation. Non-limiting examples of tools useful for the formation of acid addition salts of sitagliptin may include, for example, an extruder or a mortar and pestle. Further, contacting the sitagliptin free base with the anti-oxidant acid compound may also involve either solubilizing the sitagliptin free base and adding the anti-oxidant acid compound, or solubilizing the anti-oxidant acid compound and adding the sitagliptin free base. Crystallization conditions are applied to the sitagliptin free base and anti-oxidant acid compound. This may entail altering a property of the solution, such as pH or temperature and may require concentration of the solute, usually by removal of the solvent, typically by drying the solution. Solvent removal results in the concentration of both sitagliptin free base and anti-oxidant acid compound increasing over time so as to facilitate crystallization. For example, evaporation, cooling, co-sublimation, or the addition of an antisolvent may be used to crystallize solid forms. In another embodiment, a slurry comprising a sitagliptin free base and an anti-oxidant acid compound is used to form solid forms.

In a preferred embodiment, the present invention provides a process for preparing acid addition salts of sitagliptin, wherein the acid addition salt is caffeic acid, comprising a) providing a solution comprising sitagliptin base and caffeic acid in a suitable solvent and b) isolating the sitagliptin caffeic acid salt.

The suitable solvent for forming sitagliptin caffeic acid salt is selected from any suitable solvent described just as above; preferably the suitable solvent is selected from the group consisting of methanol, ethanol, acetone, THF, acetonitrile, ethyl acetate, IPE and mixtures thereof.

The solution may be formed by heating the mixture at a temperature of about 30°C to about reflux temperature, preferably about 45°C to about 75°C. The sitagliptin caffeic acid salt can be isolated by any known techniques such as cooling the solution to precipitation, crystallization, solvent precipitation, spray drying, freeze drying, agitated thin film evaporator (ATFE) and the like.

In another preferred embodiment, the present invention provides a process for preparing acid addition salts of sitagliptin, wherein the acid addition salt is ferulic acid, comprising a) providing a solution comprising sitagliptin base and ferulic acid in a suitable solvent and b) isolating the sitagliptin ferulic acid salt.

The suitable solvent for forming sitagliptin ferulic acid salt is selected from any suitable solvent described just as above; preferably the suitable solvent is selected from the group consisting of acetonitrile, methanol, ethanol, ethyl acetate, IPE and mixtures thereof.

The solution may be formed by heating the mixture at a temperature of about 35°C to about reflux temperature, preferably about 45°C to about 75°C. The sitagliptin ferulic acid salt can be isolated by any known techniques such as cooling the solution to precipitation, crystallization, solvent precipitation, spray drying, freeze drying, agitated thin film evaporator (ATFE) and the like.
In another preferred embodiment, the present invention provides a process for preparing acid addition salts of sitagliptin, wherein the acid addition salt is coumaric acid, comprising a) providing a solution comprising sitagliptin base and coumaric acid in a suitable solvent and b) isolating the sitagliptin coumaric acid salt.

The suitable solvent for forming sitagliptin coumaric acid is selected from any suitable solvent described just as above; preferably the suitable solvent is selected from the group consisting of acetonitrile, methanol, ethanol, isopropanol, ethyl acetate, THF, IPE and mixtures thereof.

The solution may be formed by heating the mixture at a temperature of about 35°C to about reflux temperature, preferably about 45°C to about 75°C. The sitagliptin coumaric acid salt can be isolated by any known techniques such as cooling the solution to precipitation, crystallization, solvent precipitation, spray drying, freeze drying, agitated thin film evaporator (ATFE) and the like.

The present invention provides characterization of acid addition salt forms of sitagliptin of the present invention characterized by X-ray powder diffraction (XRD) pattern and/or melting point. The X-Ray powder diffraction can be measured by an X-ray powder diffractometer equipped with a Cu-anode (\(\lambda = 1.54\) Angstrom), X-ray source operated at 30kV, 15 mA and a Ni filter is used to strip K-beta radiation. Two-theta calibration is performed using an NIST SRM 640c Si standard. The sample was analyzed using the following instrument parameters: measuring range=3-45°28; step width=0.020°; and scan speed=57 minute.

In another embodiment, the present invention provides a pharmaceutical composition comprising a therapeutically effective amount of acid addition salt forms of sitagliptin; in particular anti-oxidant acid addition salts of sitagliptin with at least one pharmaceutically acceptable carrier or other excipients. The pharmaceutical composition can be useful for the treatment of type 2 diabetes mellitus. The present invention also provides acid addition salt forms of sitagliptin as described above for use as a medicament, preferably for the treatment of type 2 diabetes mellitus.

The present invention further provides, when a pharmaceutical composition comprising acid addition salt forms of sitagliptin prepared according to the present invention is formulated for oral administration or parenteral administration. Accordingly, D50 and D90 particle size of the unformulated acid addition salt forms of sitagliptin of the present invention used as starting material in preparing a pharmaceutical composition generally is less than 500 microns preferably less than about 300 microns, more preferably less than 200 microns.

Any milling, grinding, micronizing or other particle size reduction method known in the art can be used to bring the acid addition salt forms of sitagliptin of the present invention into any desired-particle-size-range-as set forth above.—
Acid addition salt forms of sitagliptin in accordance with present invention can be embodied for example in form of tablet, capsules, pellets, granules and suppositories or their combined form. Pharmaceutical composition in accordance with present invention can be suitable for immediate release or modified release of sitagliptin salts of the present invention. Solid pharmaceutical compositions can be for example coated with aim of increasing pelletibility or regulating the disintegration or absorption.

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art, to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are described.

Unless stated to the contrary, any use of the words such as "including," "containing," "comprising" and the like, means "including without limitation" and shall not be construed to limit any general statement that it follows to the specific or similar items or matters immediately following it. Embodiments of the invention are not mutually exclusive, but may be implemented in various combinations.

For purposes of the present invention, the following terms are defined below.

The term "composition" includes, but is not limited to, a powder, a suspension, an emulsion and/or mixtures thereof. The term composition is intended to encompass a product containing the specified ingredients in the specified amounts, as well as any product, which results, directly or indirectly, from combination of the specified ingredients in the specified amounts. A "composition" may contain a single compound or a mixture of compounds.

The term "co-crystal" as used herein means a crystalline material comprised of two or more unique solids at room temperature, each containing distinctive physical characteristics, such as structure, melting point and heats of fusion.

Having described the invention with reference to certain preferred embodiments, other embodiments will become apparent to one skilled in the art from consideration of the specification, the invention is further defined by reference to the following examples describing in detail the preparation of the composition and methods of use of the invention. It will be apparent to those skilled in the art that many modifications, both to materials and methods, may be practiced without departing from the scope of the invention.

Example 1: Preparation of sitagliptin caffate Form I.

Charged 4 gms of caffic acid and 40 ml of ethanol in a round bottom flask at temperature 25°C to 35°C. Stirred for 4 hours at same temperature and sitagliptin free base (4.86 gms) was added to the resultant clear solution. Stirred for 48 hours at same temperature and the precipitated solids were filtered off and dried at 70°C to 75°C for 12 hours to obtain the title compound. Yield: 3.86 gms.

The-XRPD is set-forth-in-Figure—

1H NMR (DMSO d6): δ 1.027 (3 H, t, J=7.02 Hz), 3.41 (2 H, q, J=7.01 Hz)
DSC: 130.63°C, 144.38°C, 178.56°C.

Example 2: Preparation of sitagliptin caffate Form II.

Sitagliptin free base (2.0 gms) and caffeic acid (0.88 gms) were dissolved in methanol (20 ml) at 60°C to 65°C and the solution was cooled to room temperature. Slowly isopropyl ether (120 ml) was added to the resultant clear solution and stirred for 14 hours at same temperature. Precipitated solids were filtered off and dried at 50°C to 55°C for 6 hours to obtain the title compound. Yield: 1.65 gms.

The XRPD is set forth in Figure 2.

1H NMR (DMSO d6): δ 51.01 (12 H, d, J = 6.06 Hz), 3.57 (2 H, m, J = 6.02 Hz)
1.53
DSC: 126.13°C, 141.12°C, 166.41°C.

Example 3: Preparation of sitagliptin caffate Form III.

Sitagliptin free base (2.0 gms) and caffeic acid (0.88 gms) were dissolved in acetone (80 ml) at 60°C to 65°C and the reaction mass left for slow solvent evaporation at room temperature for 24 hours. Precipitated solids were filtered off and dried at 70°C to 75°C for 12 hours to obtain the title compound. Yield: 1.53 gms

The XRPD is set forth in Figure 3.

1H NMR (DMSO d6): δ 2.09 (6 H, s)
1.45
DSC: 150.11°C, 181.59°C.

Example 4: Preparation of sitagliptin caffate Form IV.

Sitagliptin free base (2.0 gms) and caffeic acid (0.88 gms) were dissolved in Tetrahydrofuran (120 ml) at 60°C to 65°C and the reaction mass left for slow solvent evaporation at room temperature for 10 hours. Precipitated solids were filtered off and dried at 70°C to 75°C for 12 hours to obtain the title compound. Yield: 1.45 gms

The XRPD is set forth in Figure 4.

1H NMR (DMSO d6): δ 1.73 (4 H, m), 3.56 (4 H, m)
1.58
DSC: 110.37°C, 132.35°C, 143.74°C.

Example 5: Preparation of sitagliptin caffate Form V.

Sitagliptin free base (2.0 gms) and caffeic acid (0.88 gms) were dissolved in acetonitrile (160 ml) at 60°C to 65°C and the reaction mass left for slow solvent evaporation at room temperature for 24 hours. Precipitated solids were filtered off and dried at 70°C to 75°C for 12 hours to obtain the title compound. Yield: 1.58 gms

The XRPD is set forth in Figure 5.

1H NMR (DMSO d6): δ 2.05 (3 H, s)
1.65
DSC: 110.37°C, 132.35°C, 143.74°C.

Example 6: Preparation of sitagliptin caffate Form VI.

Sitagliptin free base (2.0 gms) and caffeic acid (0.88 gms) were dissolved in ethyl acetate (200 ml) at 60°C to 65°C and the reaction mass left for slow solvent evaporation at room temperature for 75°C to 75°C for 12 hours to obtain the title compound. Yield: 1.65 gms

The XRPD is set forth in Figure 6.

1H NMR (DMSO d6): δ 2.05 (3 H, s)
1.58
DSC: 110.37°C, 132.35°C, 143.74°C.
temperature for 24 hours. Precipitated solids were filtered off and dried at 70°C to 75°C for 12 hours to obtain the title compound.
Yield: 1.62 gms
The XRPD is set forth in Figure 6.

5
1H NMR (DMSO d6): δ 1.15 (3 H, t, J = 7.1 Hz), 1.96 (3 H, s), 4.04 (2 H, q)
DSC: 138.46°C, 154.95°C, 185.57°C.

Example 7: Preparation of sitagliptin caffate amorphous Form.

Sitagliptin free base (0.5 gms) and caffeic acid (0.22 gms) were dissolved in methanol (5.0 ml) at 60°C to 65°C and the solution was cooled to room temperature. Slowly isopropyl ether (30 ml) was added to the resultant clear solution and stirred for 2 hours. Precipitated solids were filtered off and dried at 50°C to 55°C for 12 hours to obtain the title compound. Yield: 0.42 gms.
The XRPD is set forth in Figure 7.

Example 8: Preparation of sitagliptin ferulate Form I.

Sitagliptin free base (2.0 gms) and ferulic acid (0.95 gms) were dissolved in acetonitrile (16 ml) at 60°C to 65°C and the reaction mass left for slow solvent evaporation at room temperature for 48 hours. Precipitated solids were filtered off and dried at 50°C to 55°C for 6 hours to obtain the title compound. Yield: 1.45 gms.
The XRPD is set forth in Figure 8.
1H NMR (DMSO d6): δ 2.05 (3 H, s)
DSC: 110.35°C, 151.29°C
Weight loss by TGA: 3.310 %

Example 9: Preparation of sitagliptin ferulate Form II.

Sitagliptin free base (4.0 gms) and ferulic acid (1.90 gms) were dissolved in ethyl acetate (32 ml) at 60°C to 65°C and the resultant clear solution left for slow solvent evaporation at room temperature for 48 hours. Precipitated solids were filtered off and dried at 50°C to 55°C for 6 hours to obtain the title compound. Yield: 3.48 gms.
The XRPD is set forth in Figure 9.
DSC: 99.39°C, 163.58°C
Weight loss by TGA: 0.964 %

Example 10: Preparation of sitagliptin ferulate Form III.

Ferulic acid (2.0 gms) was dissolved in ethanol (10 ml) and sitagliptin free base (1.9 gms) was added to the clear solution and stirred for 15 min. Additional ethanol (10 ml) was added to the semi precipitated reaction mass and stirring was continued for 48 hours at room temperature. Precipitated solids were filtered off and dried at 70°C to 75°C for 24 hours to obtain the title compound. Yield: 1.37 gms.
The XRPD is set forth in Figure 10.
DSC: 76.02°C, 159.33°C
Weight loss by TGA: 76.3-%—
Example 11: Preparation of sitagliptin ferulate Form IV.

Sitagliptin free base (2.0 gms) and ferulic acid (0.95 gms) were dissolved in methanol (12 ml) at 60°C to 65°C and the resultant solution was cooled to room temperature. Isopropyl ether (120 ml) was added to the clear solution and stirred for 12 hours. Filtered the precipitated solids and dried at 70°C to 75°C for 12 hours to obtain the title compound. Yield: 1.21 gms.

The XRPD is set forth in Figure 11.

1H NMR (DMSO d6): δ 1.01 (12 H, d, J = 6.03 Hz), 3.57 (2 H, m, J = 6.02 Hz)

DSC: 170.35°C

Example 12: Preparation of sitagliptin ferulate Form V.

Sitagliptin free base (0.25 gms) and ferulic acid (0.12 gms) were dissolved in ethyl acetate (2 ml) at 60°C and the resultant solution was left for slow solvent evaporation at room temperature for 30 hours. Precipitated solids were filtered off and suck dried to obtain the title compound. Yield: 0.31 gms.

DSC: 93.47°C, 188.42°C

Example 13: Preparation of sitagliptin ferulate amorphous Form.

Sitagliptin free base (0.5 gms) and ferulic acid (0.25 gms) were dissolved in methanol (3 ml) at 60°C to 65°C and the solution was cooled to room temperature. Isopropyl ether (25 ml) was added to the clear solution and stirred for 2 hours. Filtered the precipitated solids and allowed for suck dry for 30 minutes to obtain the title compound. Yield: 0.42 gms.

The XRPD is set forth in Figure 12.

Example 14: Preparation of sitagliptin coumarate Form I.

Sitagliptin free base (2.0 gms) and coumaric acid (0.80 gms) were dissolved in acetonitrile (15 ml) at 60°C to 65°C and cooled the solution to -10°C to -5°C over a period of 6 hours. Precipitated solids were filtered and dried at 50°C to 55°C for 6 hours to obtain the title compound. Yield: 1.62 gms.

The XRPD is set forth in Figure 13.

1H NMR (DMSO d6): δ 2.05 (3 H, s)

DSC: 104.05°C, 170.98°C

Weight loss by TGA: 2.427 %.

Example 15: Preparation of sitagliptin coumarate Form II.

Sitagliptin free base (2.0 gms) and coumaric acid (0.80 gms) were dissolved in methanol (12 ml) at 60°C to 65°C and the solution was cooled to room temperature. Isopropyl ether (240 ml) was added to the resultant clear solution and stirred for 14 hours. Precipitated solids were filtered and dried at 50°C to 55°C for 6 hours to obtain the title compound. Yield: 2.05 gms.

The XRPD is set forth in Figure 14.

1H NMR-(DMSO d6):-δ-I-01(-1-2-H-d-J= 6.03-Hz)- 3.57 (2-H, m^J=6.02-Hz)

DSC: 170.35 °C
Example 16: Preparation of sitagliptin coumarate Form III.
Sitagliptin free base (2.0 gms) and coumaric acid (0.80 gms) were dissolved in Tetrahydrofuran (100 ml) at 60°C to 65°C and the resultant solution left for slow solvent evaporation at room temperature for 18 hours. Precipitated solids were filtered and dried at 50°C to 55°C for 6 hours to obtain the title compound.
Yield: 2.12 gms
The XRPD is set forth in Figure 15.
1H NMR (DMSO d6): δ 1.73 (4 H, m), 3.56 (4 H, m)
DSC: 141.71°C, 180.16°C
Weight loss by TGA: 0.3096 %.

Example 17: Preparation of sitagliptin coumarate Form IV.
Sitagliptin free base (0.25 gms) and coumaric acid (0.10 gms) were dissolved in Isopropanol (4 ml) at 60°C to 65°C and the resultant solution left for slow solvent evaporation at room temperature for 48 hours. Precipitated solids were filtered and dried at 50°C to 55°C for 4 hours to obtain the title compound. Yield: 0.14 gms.
The XRPD is set forth in Figure 16.
1H NMR (DMSO d6): δ 1.01 (6 H, d, J = 6.09 Hz), 3.57 (1 H, m, J = 6.02 Hz)
DSC: 143.50°C, 158.76°C
Weight loss by TGA: 0.68 %.

Example 18: Preparation of sitagliptin coumarate Form V.
Sitagliptin free base (0.25 gms) and coumaric acid (0.10 gms) were dissolved in ethanol (2 ml) at 60°C to 65°C and the resultant solution left for slow solvent evaporation at room temperature for 48 hours. Precipitated solids were filtered and dried at 50°C to 55°C for 4 hours to obtain the title compound. Yield: 0.12 gms.
The XRPD is set forth in Figure 17.
1H NMR (DMSO d6): δ 1.03 (3 H, t, J=7.02 Hz), 3.41 (2 H, q, J=7.01 Hz)
DSC: 146.46°C, 176.51 °C, 204.57°C
Weight loss by TGA: 0.35 %.

Example 19: Preparation of sitagliptin coumarate Form VI.
Sitagliptin free base (2.0 gms) and coumaric acid (0.80 gms) were dissolved in ethyl acetate (32 ml) at 60°C to 65°C and the resultant reaction solution left for slow solvent evaporation at room temperature for 2 hours. Precipitated solids were filtered and dried at 50°C to 55°C for 6 hours to obtain the title compound.
Yield: 2.01 gms
The XRPD is set forth in Figure 18.
DSC: 170.78°C, 200.34°C
Weight loss by TGA: 0.68 %.

Example 20: Preparation of sitagliptin coumarate amorphous Form.
Sitagliptin free base (0.5 gms) and coumaric acid (0.20 gms) were dissolved in methanol (3 ml) at 60°C to 65°C and the resultant solution was cooled to room temperature. Isopropyl ether (60 ml) was added to the resultant clear solution and stirred for 2 hours. Precipitated solids were filtered and sucked dried for 20 minutes to obtain the title compound. Yield: 0.38 gms.

The XRPD is set forth in Figure 19.

1H NMR (DMSO d6): δ 1.01 (12 H, d, J = 6.03 Hz), 3.57 (2 H, m, J = 6.02 Hz)

Weight loss by TGA: 6.67%.

It will be understood that various modifications may be made to the embodiments disclosed herein. Therefore the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments. For example, the functions described above and implemented as the best mode for operating the present invention are for illustration purposes only. Other arrangements and methods may be implemented by those skilled in the art without departing from the scope and spirit of this invention. Moreover, those skilled in the art will envision other modifications within the scope and spirit of the specification appended hereto.
We Claim:

Claim 1: Sitagliptin anti-oxidant acid salts, or its solvates or hydrates thereof; wherein the anti-oxidant acids being selected from the group comprising caffeic acid, ferulic acid and p-coumaric acid.

Claim 2: Sitagliptin salt according to claim 1, wherein the salt is in a crystalline Form or amorphous Form.

Claim 3: A process for preparing sitagliptin anti-oxidant acid salts, or its solvates or hydrates thereof, comprising:
 a) providing a mixture comprising sitagliptin and an anti-oxidant acid and
 b) isolating the Sitagliptin anti-oxidant acid salts.

Claim 4: The process according to claim 3, further comprising:
 a) dissolving any form of sitagliptin in a suitable solvent at a suitable temperature,
 b) combining an anti-oxidant acid,
 c) optionally cooling to precipitation or concentrating the solution,
 d) isolating the Sitagliptin anti-oxidant acid salts.

Claim 5: The process according to claim 3, wherein the anti-oxidant acid is caffeic acid, ferulic acid or p-coumaric acid.

Claim 6: The process according to claim 4, wherein the suitable solvent is selected from the group comprising water, lower alcohols, ketones, esters, ethers, C₅₋₇ linear, branched or cyclic, saturated or unsaturated hydrocarbons, nitriles, halogenated hydrocarbons, or mixtures thereof.

Claim 7: The process according to claim 4, wherein the suitable solvent is selected from the group comprising methanol, ethanol, isopropanol, acetone, ethyl acetate, tetrahydrofuran (THF), isopropyl ether (IPE), acetonitrile and the like and mixtures thereof.

Claim 8: The process according to claim 4, wherein the suitable temperature is about 30°C to reflux temperature.

Claim 9: The process according to claim 4, wherein the isolation is carried out by filtration.

Claim 10: Sitagliptin caffeate or its solvates or hydrates thereof.

Claim 11: Sitagliptin caffeate, designated Form I, characterized by an X-ray diffraction (XRD) pattern substantially in accordance with Figure. 1.

Claim 12: Sitagliptin caffeate, designated Form II, characterized by an X-ray diffraction (XRD) pattern substantially in accordance with Figure. 2.
Claim 13: Sitagliptin caffate, designated Form III, characterized by an X-ray diffraction (XRD) pattern substantially in accordance with Figure. 3.

Claim 14: Sitagliptin caffate, designated Form IV, characterized by an X-ray diffraction (XRD) pattern substantially in accordance with Figure. 4.

Claim 15: Sitagliptin caffate, designated Form V, characterized by an X-ray diffraction (XRD) pattern substantially in accordance with Figure. 5.

Claim 16: Sitagliptin caffate, designated Form VI, characterized by an X-ray diffraction (XRD) pattern substantially in accordance with Figure. 6.

Claim 17: Amorphous Sitagliptin caffate, characterized by an X-ray diffraction (XRD) pattern substantially in accordance with Figure. 7.

Claim 18: Sitagliptin ferulate or its solvates or hydrates thereof.

Claim 19: Sitagliptin ferulate, designated Form I, characterized by an X-ray diffraction (XRD) pattern substantially in accordance with Figure. 8.

Claim 20: Sitagliptin ferulate, designated Form II, characterized by an X-ray diffraction (XRD) pattern substantially in accordance with Figure. 9.

Claim 21: Sitagliptin ferulate, designated Form III, characterized by an X-ray diffraction (XRD) pattern substantially in accordance with Figure. 10.

Claim 22: Sitagliptin ferulate, designated Form IV, characterized by an X-ray diffraction (XRD) pattern substantially in accordance with Figure. 11.

Claim 23: Sitagliptin ferulate, designated Form V, characterized by an X-ray diffraction (XRD) pattern substantially in accordance with Figure. 12.

Claim 24: Amorphous Sitagliptin ferulate, characterized by an X-ray diffraction (XRD) pattern substantially in accordance with Figure. 13.

Claim 25: Sitagliptin coumarate or its solvates or hydrates thereof.

Claim 26: Sitagliptin coumarate, designated Form I, characterized by an X-ray diffraction (XRD) pattern substantially in accordance with Figure. 14.

Claim 27: Sitagliptin coumarate, designated Form II, characterized by an X-ray diffraction (XRD) pattern substantially in accordance with Figure. 15.

Claim 28: Sitagliptin coumarate, designated Form III, characterized by an X-ray diffraction (XRD) pattern substantially in accordance with Figure. 16.
Claim 29: Sitagliptin coumarate, designated Form IV, characterized by an X-ray diffraction (XRD) pattern substantially in accordance with Figure. 17.

Claim 30: Sitagliptin coumarate, designated Form V, characterized by an X-ray diffraction (XRD) pattern substantially in accordance with Figure. 18.

Claim 31: Sitagliptin coumarate, designated Form VI, characterized by an X-ray diffraction (XRD) pattern substantially in accordance with Figure. 19.

Claim 32: Amorphous Sitagliptin coumarate, characterized by an X-ray diffraction (XRD) pattern substantially in accordance with Figure. 20.

Claim 33: A pharmaceutical composition comprising a therapeutically effective amount of one or more of the sitagliptin salts according to claim 1 - 32.

Claim 34: A method of treating Type 2 diabetes mellitus comprising pharmaceutical composition containing a therapeutically effective amount of one or more of the sitagliptin salts according to claim 1 - 32.