发明名称
一种杀虫剂注射液剂组合物

摘要
一种杀虫剂注射液剂组合物，所述组合物含有溶剂和活性成分，其特征在于，所述活性成分含有至少两种内吸性杀虫剂，其中一种内吸性杀虫剂为噻虫啉，所述噻虫啉占活性成分总量的40-70重量%。本发明提供的含噻虫啉的注射液剂组合物具有明显的增效作用，且作用速度快，药剂利用率高，节约成本，安全性高，并且可以杀灭更多的害虫。
1. 一种杀虫剂注射液组合物，所述组合物含有溶剂和活性成分，其特征在于，所述活性成分含有至少两种内吸性杀虫剂，其中一种内吸性杀虫剂为嘧菌酯，所述嘧菌酯占活性成分总量的40-70重量%。

2. 根据权利要求1所述的组合物，其中，以所述组合物的总量为基准，所述活性成分的含量为0.1-5重量%，所述溶剂的含量为95-99.9重量%。

3. 根据权利要求1或2所述的组合物，其中，所述嘧菌酯占活性成分总量的45-65重量%。

4. 根据权利要求3所述的组合物，其中，所述嘧菌酯占活性成分总量的50-60重量%。

5. 根据权利要求1所述的组合物，其中，至少另一种所述内吸性杀虫剂为丁硫克百威、吡虫啉、啶虫脒、噻虫嗪、烯啶虫胺、啶虫胺、氟虫胺、氟虫苯甲酰胺、抗蚜威、敌百虫、氯噻磷、甲基嘧啶磷、氧化果、乙酰甲胺磷中的一种或多种。

6. 根据权利要求5所述的组合物，其中，至少另一种所述内吸性杀虫剂为吡虫啉、啶虫脒、噻虫嗪和氯虫苯甲酰胺中的至少一种，且噻虫嗪与吡虫啉、啶虫脒、噻虫嗪和氯虫苯甲酰胺的总量的重量比为1:1-5:1。

7. 根据权利要求1或2所述的组合物，其中，该组合物还含有伤口愈合剂，且以组合物的总量为基准，所述活性成分的含量为0.1-5重量%，所述溶剂的含量为90-99重量%，所述伤口愈合剂的含量为0.01-5重量%。

8. 根据权利要求7所述的组合物，其特征在于，所述伤口愈合剂为腐植酸、蔗糖、乙酰壳聚糖、萘乙酸、多菌灵、甲基硫菌灵、苯菌灵、福美双、增产灵、吲哚丁酸、芸苔素内酯中的一种或多种。

9. 根据权利要求7所述的组合物，其中，该组合物还含有乳化剂、渗透剂和控释剂中的一种或多种，且以组合物的总量为基准，所述活性成分的含量为0.1-5重量%，所述伤口愈合剂的含量为0.01-5重量%，乳化剂的含量为0.1-20重量%，所述溶剂的含量为40-99重量%，渗透剂的含量为0.01-20重量%，控释剂的含量为0.01-10重量%。

10. 根据权利要求9所述的组合物，其中，所述乳化剂为十二烷基苯磺酸钙，失水山梨醇三油酸酯，失水山梨醇二硬脂酸酯，聚氧乙烯山梨醇醚六硬脂酸酯，聚乙二醇脂肪酸酯，聚氧乙烯山梨醇醚聚羟基化合物，聚乙二醇单硬脂酸酯，失水山梨醇倍半油酸酯，甘油单硬脂酸酯，失水山梨醇单油酸酯，失水山梨醇单硬脂酸酯，二乙二醇脂肪酸酯，二乙二醇单月桂酸酯，失水山梨醇单月桂酸酯，聚氧乙烯月桂醇醚，聚氧乙烯单棕榈酸酯，烷基酚聚氧乙烯醚，聚氧乙烯月桂醇醚，失水山梨醇聚氧乙烯醚，聚氧乙烯失水山梨醇醚单油酸酯，苯乙烯基酚聚氧乙烯醚，脂肪醇聚氧乙烯醚中的一种或多种，所述溶剂为甲醇，乙醇，异丙醇，异丙醇，丙二醇，丙三醇，正丁醇，异丁醇，叔丁醇，乙二醇，乙二醇单甲醚，乙二醇单乙醚，山梨醇，芳香烃溶剂油中的一种或多种，所述渗透剂为氯化钠，磷酸，脂肪醇聚氧乙烯醚，聚亚烷基基改性聚甲基硅氧烷，聚氧乙烯醚，聚氧乙烯氧化聚丙烯多聚醚。2-(3-羟丙基)七甲基三硅烷乙酸酯，磺化琥珀酸二异辛酯钠盐，蓖麻油磺酸钠中的一种或多种，所述控释剂为油酸甲酯，油酸乙酯，油酸丁酯，乙酸乙酯，邻苯二甲酸二甲酯，苯甲酸乙酯，邻苯二甲酸二丁酯，聚乙二醇，聚乙烯醇中的一种或多种。
一种杀虫剂注射液剂组合物

技术领域
[0001] 本发明涉及一种杀虫剂注射液剂组合物。

背景技术
[0003] 内吸性杀虫剂是首先被植株吸收、传导到害虫危害部位，然后，通过害虫接触或取食来毒杀害虫的。传导到植株各部位的药量，足使危害该部位的害虫中毒死亡，而药剂又不妨碍作物的生长发育。
[0004] 由于内吸性杀虫剂在植株体内具有内吸传导作用，因此，这类杀虫剂具有与其他杀虫剂不同的特点，如用途更广泛，有较强的选择性，能有效杀灭隐蔽害虫，不受降水的影响，省工、省药等。用近几年推广应用了几种低毒杀虫剂品种，如吡虫啉、丁硫克百威等，在农业生产和生活中发挥了巨大作用。但这类杀虫剂的利用率较低，不能充分发挥这类药剂的特性。

发明内容
[0005] 本发明的目的是为了提供了一种新型的具有利用高率的高的杀虫剂注射液剂的组合物。
[0006] 本发明提供了一种杀虫剂注射液剂组合物，所述组合物含有溶剂和活性成分，其中，所述活性成分含有至少两种内吸性杀虫剂，其中一种内吸性杀虫剂为噻虫啉，所述噻虫啉活性成分总量的 40~70 重量%。
[0007] 本发明提供的含噻虫啉的杀虫剂注射液剂组合物具有下列优点：
[0008] （1）药剂利用率高，作用速度快，靶标性强，对天牛、介壳虫、盾蚧等生活在树干里面，对害虫防治效果好。例如，在苹果树上施用实施例 1 制得的杀虫剂注射液组合物 1 支，1 天后，该注射液对防止杀牛的防治效果达 98% 以上。
[0009] （2）具有增效作用，复配使用不仅提高了杀虫效果，而且扩大了杀虫谱。噻虫啉和内吸性杀虫剂复配使用，既提高了噻虫啉对大多数害虫的防治效果，又扩大了杀虫谱。
[0010] （3）降低了抗药性产生的几率；
[0011] （4）提高了安全性，由于二者复配后均降低了用量，尽管这些活性组分本身属低毒产品，但复配后对环境的影响更低，更安全，对人畜安全。
[0012] （5）配制和使用过程中可不用水稀释，因此配制和使用方便。

具体实施方式
[0013] 本发明的发明人意外地发现，通过使常规的内吸性杀虫剂如吡虫啉、丁硫克百威与噻虫啉以特定比例配合，得到的杀虫剂注射液剂组合物能够大大提高杀虫剂注射液剂组合物的利用率，使杀虫剂注射液剂组合物的利用率由常规内吸性杀虫剂 20~30%的利用率
提高到几乎 100%，并大大降低了使用剂量，提高了使用安全性。

【0014】根据本发明提供的杀虫剂注射液剂组合物，其中，所述噻虫啉 (thiacloprid) 是
烟酰胺类杀虫剂，作用于害虫烟酸乙酰胆碱受体。噻虫啉具有内吸性，兼有触杀和胃毒作
用，可有效的防治松褐天牛、盾蚧、蓟马、潜叶蝇、介壳虫、盲蝽蟓、粉虱、马铃薯甲虫、潜叶蛾
等多种害虫。噻虫啉的化学名称为：(Z)-3-(6-氯-3-甲基吡啶)-1,3-噻唑烷-2-亚氮胺，
结构式如下式所示：

![结构式]

【0015】

【0016】当所述噻虫啉占活性成分总量的 40 重量%以下时，杀虫剂注射液剂组合物的利
用率并不能得到提高，而当所述噻虫啉占活性成分总量的 70 重量%以上时，尽管杀虫剂注
射液剂组合物的利用率大幅提高，但对植物受体具有明显的伤害作用。因此，所述噻虫啉的
含量必须控制在占活性成分总量的 40-70 重量%范围内。

【0017】根据本发明提供的杀虫剂注射液剂组合物，尽管所述噻虫啉占活性成分总量的
40-70 重量%即可实现本发明的目的，但优选情况下，所述噻虫啉占活性成分总量的 45-65
重量%；进一步优选情况下，所述噻虫啉占活性成分总量的 50-60 重量%。通过使所述噻虫
啉的含量在上述优选范围内，可以使杀虫剂注射液剂组合物的防虫效果大幅提高。

【0018】由于本发明提供的杀虫剂注射液剂组合物的利用率高，因此可以以较低的浓度使
用。以所述组合物的总量为基准，所述活性成分的含量优选为 0.1-5 重量%，所述溶剂的含
量优选为 0.1-90 重量%。进一步优选情况下，以所述组合物的总量为基准，所述活性成分
的含量为 0.1-2 重量%，所述溶剂的含量为 0.1-90 重量%。所述活性成分的含量高于 5 重
量%时，对植物受体有一定的毒害作用；所述活性成分的含量低于 0.1 重量%时，对害虫的
防控效果有影响。

【0019】根据本发明提供的杀虫剂注射液剂组合物，至少另一种所述内吸性杀虫剂可以为
本领域常规使用的各种内吸性杀虫剂，但优选为丁硫克百威 (carbosulfan, 2,3-二氯-2,
2-二甲基苯并咔唑-7-基 (二丁基氨基硫) 甲基氨基甲酸酯)、吡虫啉 (imidacloprid,
1-(6-氯吡啶-6-吡啶 胺甲基)-N-硝基亚硝基芐烷-2-基胺)、啶虫脒 (acetaniprid,
N-(N-氰基-乙 亚胺基)-N-甲 基-2-氯 吡啶-5-甲胺)、噻虫嗪 (thiamethoxam,
3-(2-氯-1,3- 吡啶-5-基乙基)-5-甲基-1,3,5-恶二唑-4-基叉 (硝基) 胺)、烯
啶虫胺 (烯啶虫胺，(E)-N-[(6-氯-3-吡啶甲基)-N-乙基-N'-甲基-2-硝基亚乙基
二胺）、噻虫胺（clothianidin, (E)-1-(2-氯-1,3-噻唑-5-基甲基)-3-甲基-2-硝基苯）、呋虫胺（dinetofuran, 1-甲基-2-硝基-3-(四氯-3-呋喃甲基）醚）、噻虫啉（imidacloprid, 1-(5-氯-2-噻唑基甲基)-N-硝基甲烷基-2-基胺）、氯虫苯甲酰胺（chlorantraniliprole, 3-溴-N-[4-氯-2-甲基-6-[(甲基苯甲酰基)苯]-1-(3-氯吡啶-2-基)-1-氯-吡啶-5-甲酰胺）、抗蚜威（pirimicarb, 2-二甲胺基-5,6-二甲基啶酰-4-基二甲基氨基甲酸酯）、敌百虫（trichlorfon, 0,0-二甲基-(2,2,2-三-1-羟基乙基) 磷酸酯）、氯吡硫磷（isazofos, 0-5-氯-1-异丙基-1H-1,2,4-三唑-3-基-0,0-二乙基硫代磷酸酯）、甲基嘧啶磷（pirimiphos-methyl, 0,0-二甲基-0-(2-二乙胺基-6-甲基嘧啶-4-基) 硫代磷酸酯）、氯氧乐果（omethoate, 0,0-二甲基-S-甲基-N-(甲基苯甲酰基甲基) 硫代磷酸酯）、乙酰甲胺磷（acephate, 0,0-二乙基乙酰硫基硫代磷酰胺酯）中的一种或多种。

[0020] 本发明的发明人意外地发现，当至少另一种所述内吸性杀虫剂为噻虫啉与吡虫啉、啶虫脒、噻虫嗪和氯虫苯甲酰胺中的至少一种，且噻虫啉与吡虫啉、啶虫脒和氯虫苯甲酰胺的重量比为1:1.5：1时，所述杀虫剂注射液剂组合物的防治效果较使用其他内吸性杀虫剂时的效果大幅提高。因此，本发明特别优选至少另一种所述内吸性杀虫剂为噻虫啉与吡虫啉、啶虫脒、噻虫嗪和氯虫苯甲酰胺中的至少一种，且噻虫啉与吡虫啉、啶虫脒和氯虫苯甲酰胺的重量比为1:1.5：1。

[0021] 本发明的发明人还意外地发现，当所述杀虫剂注射液剂组合物中还含有乙酸乙酯、聚乙二醇、聚乙烯醇、丙糖酸、乙酰柠檬酸、苯甲酸、多菌灵、甲基硫菌灵、苯菌灵、福美双、增产菌、吲哚丁酸、芸苔素内酯中的一种或多种时，所述受体如植物的注射部位以及被虫体侵蚀的部位能够很好的愈合。因此，优选情况下，该组合物还含有丙糖酸、蔗糖、乙酰柠檬酸、苯甲酸、多菌灵、甲基硫菌灵、苯菌灵、福美双、增产菌、吲哚丁酸、芸苔素内酯中的一种或多种。为简便说明，本发明将上述含有促进伤口愈合的物质称为伤口愈合剂。以组合物的总量为基准，所述活性成分的含量为0.1-5重量%，所述溶剂的含量为0.1-90重量%，所述伤口愈合剂的含量为0.01-5重量%。进一步优选情况下，以组合物的总量为基准，所述活性成分的含量为0.1-2重量%，所述溶剂的含量为0.1-90重量%，所述伤口愈合剂的含量为0.1-1重量%。在上述优选含量范围内，既能够充分发挥伤口愈合剂的伤口愈合功能，还能充分保证活性成分的杀虫作用。

[0022] 本发明的发明人发现，当所述组合物愈合剂为多菌灵、甲基硫菌灵、苯菌灵、福美双中的一种或多种与丙糖酸和/或芸苔素内酯的混合物时，所述注射部位的愈合效果特别好。伤口愈合剂的加入，可迅速激活植物免疫系统，促进吲哚丁酸的生长素代谢以及酚类分子的修复、消毒、杀菌和防腐，防止水分、养分流失，促进伤口愈合，使树木健壮生长。因此，本发明优选伤口愈合剂为多菌灵、甲基硫菌灵、苯菌灵、福美双中的一种或多种与丙糖酸和/或芸苔素内酯的混合物。且多菌灵、甲基硫菌灵、苯菌灵、福美双的总量与丙糖酸和/或芸苔素内酯的总量的重量比为1:5-1:5。

[0023] 优选情况下，该组合物还含有控释剂、乳化剂和渗透剂中的一种或多种，且以组合物的重量为基准，所述活性成分的含量为0.1-5重量%，所述伤口愈合剂的含量为0.1-1重量%，乳化剂的含量为0.1-20重量%，溶剂的含量为0.1-90重量%，渗透剂的含量为0.01-20重量%，控释剂的含量为0.01-10重量%。进一步优选情况下，以组合物的重量为
基准，所述活性组分的含量为 0.1~5 重量%，所述伤口愈合剂的含量为 0.1~0.5 重量%，乳化剂的含量为 0.1~20 重量%，溶剂的含量为 0.1~90 重量%，渗透剂的含量为 0.01~20 重量%，控释剂的含量为 0.01~10 重量%。

[0024] 所述乳化剂可以为阳离子表面活性剂、阴离子表面活性剂、非离子表面活性剂和两性离子表面活性剂中的一种或多种，通常用于液体制剂的乳化剂均可使用。优选情况下，所述乳化剂为十二烷基苯磺酸钙、失水山梨醇三油酸酯、失水山梨醇三硬脂酸酯、聚氧乙烯山梨醇醇六硬脂酸酯、聚乙二醇脂肪酸酯、聚氧乙烯山梨醇醚蜡醇衍生物、聚乙二醇单硬脂酸酯、失水山梨醇倍半油酸酯、甘油单硬脂酸酯、失水山梨醇单油酸酯、失水山梨醇单硬脂酸酯、二乙二醇单月桂酸酯、二乙二醇单月桂酸酯、聚氧乙烯月桂醇醚、聚乙二醇单棕榈酸酯、烷基酚聚氧乙烯醚、聚氧乙烯月桂醇醚、失水山梨醇聚氧乙烯醚、聚氧乙烯失水山梨醇醚单油酸酯、苯乙烯基苯聚氧乙烯醚、脂肪醇聚氧乙烯醚中的一种或多种。乳化剂的加入，提高注射液的稳定性和生物活性，产品货架寿命长。

[0025] 所述溶剂可以为甲醇、乙醇、异丙醇、丙二醇、丙三醇、正丁醇、异丁醇、叔丁醇、乙二醇、乙二醇单甲醚、乙二醇二甲醚、山梨醇、芳香烃溶剂油中的一种或多种。

[0026] 所述渗透剂可以为氯化钠、氯化钾、脂肪醇聚氧乙烯醚、聚乙二醇苯基衍生物甲基硅氧烷、三乙醇胺氧基烷基改性聚乙二醇硅氧烷共聚物多聚醇、2-（3-羟丙基）-七甲基三硅烷乙酸酯、磺化琥珀酸二异辛醇钠、苯甲酰丙酮的一种或多种。渗透剂的加入可极大的改善界面性能，提高药液的吸收和传导，进而提高速效性。

[0027] 所述控释剂可以为油酸甲酯、油酸乙酯、油酸丁酯、乙酸乙酯、邻苯二甲酸二甲酯、邻苯二甲酸乙二酯、邻苯二甲酸二丁酯、聚乙二醇、聚乙烯醇的一种或多种。控释剂的加入，使得药剂的持效期大大延长。

[0028] 本发明提供的杀虫剂注射液剂组合物的制备方法简单，只要将上述各种成分混合均匀即可。对各种成分的混合方式和混合顺序没有特别限定，现有的各种混合方式均能实现本发明的目的。

[0029] 本发明提供的杀虫剂注射液剂组合物的使用方法简单，可以将该杀虫剂注射液剂组合物直接使用，也可以稀释后使用，还可与其它杀虫剂或杀菌剂联合使用，用于防治森林、园林、果树等害虫。使用的剂量以活性成分计算为 3.0g (a.i) / 株 (g 为克，a.i 为有效成分)。

[0030] 本发明提供的含噻虫啉的注射液剂组合物，通过将噻虫啉与现有其他内吸性杀虫制剂配合作用，取得了很好的协同作用，并且由于噻虫啉具有低毒、无臭味和刺激性及可快速分解等特点，克服了现有其他内吸性杀虫剂制剂的缺点。

[0031] 本发明所述的含噻虫啉的注射液剂组合物可装在针状容器中。所述针状容器由塑料瓶体和与塑料瓶体口部螺纹配套连接的长锥形塑料管体组成，螺纹连接处密封性要好，长锥形塑料管体插入瓶体后能精密结合。针状容器瓶体的容积可以根据需要而确定，比如可以为 60mL。塑料瓶体的底部优选具有便于钻孔的薄壁部位，侧面有便于观察液位高度的透明部位。

[0032] 本发明的含噻虫啉的杀虫剂注射液剂组合物使用时，优选于树干上与树干主轴成 45 度角斜向下打孔。打孔位置可以在树干基部 30cm 以上，到分枝以下；根据植物体大小确定打孔数量。当所述孔位多个时，优选多个孔均匀分布树干四周，并上下错开，避免同一高
度有2个孔。打孔深度，根据植物体大小掌握在5-12cm即可，打孔少、孔深，有利于药液快速吸收，作用效果迅速。打孔完毕后，将本发明的本发明的噻虫啉的注射液剂组合物通过该孔注射到植物上。注射时间通常为大约2个小时，注射完毕后塞入软木塞填充该孔。

【0033】以下结合实施例进一步说明本发明。

【0034】实施例1

【0035】该实施例用于说明本发明提供的杀虫剂注射液剂组合物及其制备方法。

【0036】将噻虫啉、啶虫脒、枝水山梨醇聚氧乙烯醚（南京化化化工有限公司，工业级，以下相同）、噻酮、油酸丁酯、腐植酸、乙二醇单甲醚和乙醇按照下述比例混合均匀，得到组成为下的杀虫剂注射液剂组合物：噻虫啉0.75%、吡虫啉0.5%、枝水山梨醇聚氧乙烯醚8%、噻酮5%、油酸丁酯2%、腐植酸0.2%、乙二醇单甲醚25%、乙醇58.55%。

【0037】实施例2

【0038】该实施例用于说明本发明提供的杀虫剂注射液剂组合物及其制备方法。

【0039】将噻虫啉、啶虫脒、枝水山梨醇聚氧乙烯醚、苯酮、油酸丁酯、腐植酸、多菌灵、乙二醇单甲醚、乙醇和去离子水按照下述比例混合均匀，得到组成为下的杀虫剂注射液剂组合物：噻虫啉0.6%、啶虫脒0.5%、枝水山梨醇聚氧乙烯醚8%、苯酮5%、油酸丁酯2%、腐植酸0.2%、多菌灵0.2%、乙二醇单甲醚25%、乙醇53.5%、去离子水5%。

【0040】实施例3

【0041】该实施例用于说明本发明提供的杀虫剂注射液剂组合物及其制备方法。

【0042】将噻虫啉、啶虫脒、枝水山梨醇聚氧乙烯醚、苯酮、油酸丁酯、苯菌灵、芸苔素内酯、乙二醇单甲醚、乙醇和去离子水按照下述比例混合均匀，得到组成为下的杀虫剂注射液剂组合物：噻虫啉1.0%、啶虫脒0.5%、枝水山梨醇聚氧乙烯醚8%、苯酮5%、油酸丁酯2%、苯菌灵0.2%、芸苔素内酯0.3%、乙二醇单甲醚25%、乙醇52.5%、去离子水5%。

【0043】实施例4

【0044】该实施例用于说明本发明提供的杀虫剂注射液剂组合物及其制备方法。

【0045】将噻虫啉、啶虫脒、枝水山梨醇聚氧乙烯醚、苯酮、油酸丁酯、腐植酸、乙二醇单甲醚和乙醇按照下述比例混合均匀，得到组成为下的杀虫剂注射液剂组合物：噻虫啉0.5%、吡虫啉0.75%、枝水山梨醇聚氧乙烯醚8%、苯酮5%、油酸丁酯2%、腐植酸0.2%、乙二醇单甲醚25%、乙醇58.55%。

【0046】实施例5

【0047】该实施例用于说明本发明提供的杀虫剂注射液剂组合物及其制备方法。

【0048】将噻虫啉、啶虫脒、枝水山梨醇聚氧乙烯醚、苯酮、油酸丁酯、乙二醇单甲醚、乙醇和去离子水按照下述比例混合均匀，得到组成为下的杀虫剂注射液剂组合物：噻虫啉0.5%、啶虫脒0.5%、枝水山梨醇聚氧乙烯醚8%、苯酮5%、油酸丁酯2%、乙二醇单甲醚25%、乙醇59%。

【0049】实施例6

【0050】将噻虫啉、啶虫脒、乙二醇单甲醚、乙醇按照下述比例混合均匀，得到组成为下的
杀虫剂注射液剂组合物：噻虫啉 1.0 重量％，啶虫脒 0.5 重量％，乙二醇单甲醚 30 重量％，乙醇 68.5％。

【0051】实施例 7
【0052】该实施例用于说明本发明提供的杀虫剂注射液剂组合物及其制备方法。
【0053】将噻虫啉、啶虫脒、失水山梨醇聚氧乙烯醚、氯化、油酸丁酯、丙烯酸、乙二醇单甲醚、乙醇按照下述比例混合均匀，得到如下的杀虫剂注射液剂组合物：噻虫啉 0.5 重量％，啶虫脒 0.3 重量％，失水山梨醇聚氧乙烯醚 10 重量％，氯化 5 重量％，油酸甲酯 5 重量％，丙烯酸 0.4 重量％，乙二醇单甲醚 30 重量％，乙醇 46.2 重量％。
【0054】对比例 1
【0055】按照实施例 1 的方法制备注射液剂组合物，不同的是，注射液剂组合物中不含噻虫啉，且 0.75 重量％的噻虫啉由等重量的吡虫啉替代。
【0056】对比例 2
【0057】将噻虫啉、啶虫脒、失水山梨醇聚氧乙烯醚、氯化、油酸丁酯、丙烯酸、乙二醇单甲醚和乙醇按照下述比例混合均匀，得到如下的杀虫剂注射液剂组合物：噻虫啉 1.0 重量％，啶虫脒 0.3 重量％，失水山梨醇聚氧乙烯醚 10％，氯化 5 重量％，油酸丁酯 3 重量％，丙烯酸 0.2 重量％，乙二醇单甲醚 25 重量％，乙醇 55.5 重量％。
【0058】测试例
【0059】在下述各测试例中，死亡率和伤口愈合时间通过以下方法进行测定。
【0060】（1）死亡率：选取 50 头大小大致一致的目标害虫，分散地放置于事先选定的生长状态良好的无虫树木，然后通过打孔注液的方式对树木进行注射药液，然后分别在 24h、48h 和 72h 记录目标害虫死亡数量。每种药液进行 5 组上述测试，并进行一组空白对照测试（即只进行害虫培养，而不对树木给药）。按公式 (1) 计算各处理的校正死亡率，单位为百分率（％）。

\[
P_i = \frac{K}{N} \times 100 \quad (1)
\]
【0061】式中：\(P_i\) — 死亡率，\(K\) — 死亡虫数，\(N\) — 处理总虫数。
【0062】（2）伤口愈合时间（d）：在上述死亡率测试过程中，在树木上打孔起至观测到伤口最终愈合的时间记录伤口愈合时间。
【0063】测试例 1
【0064】选用胸径为≤21cm 的马尾松若干，分别使用实施例 1-7 和对比例 1-2 制备的注射液各 1 支（每支 60ml）。1 天后，所述注射液对马尾松毛虫、松梢螟的防治效果均达 98％以上，如表 1 所示。作用速度快。
【0065】表 1
<table>
<thead>
<tr>
<th>注射液来源</th>
<th>树种</th>
<th>试验对象</th>
<th>死亡率（%）</th>
<th>伤口愈合时间（d）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>24h</td>
<td>48h</td>
</tr>
<tr>
<td>实施例 1</td>
<td></td>
<td>松褐天牛</td>
<td>99.2</td>
<td>99.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>松梢螟</td>
<td>99.0</td>
<td>99.5</td>
</tr>
<tr>
<td>实施例 2</td>
<td></td>
<td>松褐天牛</td>
<td>99.5</td>
<td>99.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>松梢螟</td>
<td>99.1</td>
<td>99.6</td>
</tr>
<tr>
<td>实施例 3</td>
<td></td>
<td>松褐天牛</td>
<td>98.7</td>
<td>99.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>松梢螟</td>
<td>98.8</td>
<td>99.3</td>
</tr>
<tr>
<td>实施例 4</td>
<td></td>
<td>松褐天牛</td>
<td>95.0</td>
<td>95.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>松梢螟</td>
<td>95.1</td>
<td>95.6</td>
</tr>
<tr>
<td>实施例 5</td>
<td></td>
<td>松褐天牛</td>
<td>94.5</td>
<td>94.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>松梢螟</td>
<td>95.0</td>
<td>95.7</td>
</tr>
<tr>
<td>实施例 6</td>
<td></td>
<td>松褐天牛</td>
<td>94.4</td>
<td>94.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>松梢螟</td>
<td>94.5</td>
<td>95.0</td>
</tr>
<tr>
<td>实施例 7</td>
<td></td>
<td>松褐天牛</td>
<td>97.7</td>
<td>98.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>松梢螟</td>
<td>97.5</td>
<td>98.2</td>
</tr>
<tr>
<td>对比例 1</td>
<td></td>
<td>松褐天牛</td>
<td>62.8</td>
<td>63.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>松梢螟</td>
<td>61.6</td>
<td>61.9</td>
</tr>
<tr>
<td>对比例 2</td>
<td></td>
<td>松褐天牛</td>
<td>87.8</td>
<td>88.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>松梢螟</td>
<td>87.9</td>
<td>88.3</td>
</tr>
</tbody>
</table>

[0068] 测试例 2

选用胸径为≤21cm的苹果树若干，分别使用实施例 1-7 和对比例 1-2 制备的注射液各 1 支（每支 60ml）。

[0069] 1 天后，所述注射液对苹果蠹蛾、天幕毛虫的防治效果均达 98% 以上，如表 2 所示。作用速度快。

[0070] 表 2

[0071]
<table>
<thead>
<tr>
<th>注射液来源</th>
<th>树种</th>
<th>试验对象</th>
<th>死亡率 (%)</th>
<th>伤口愈合时间 (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>24h</td>
<td>48h</td>
</tr>
<tr>
<td>实施例 1</td>
<td></td>
<td>苹果蠹蛾</td>
<td>99.0</td>
<td>99.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>天幕毛虫</td>
<td>98.8</td>
<td>99.3</td>
</tr>
<tr>
<td>实施例 2</td>
<td></td>
<td>苹果蠹蛾</td>
<td>99.2</td>
<td>99.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>天幕毛虫</td>
<td>99.4</td>
<td>99.9</td>
</tr>
<tr>
<td>实施例 3</td>
<td></td>
<td>苹果蠹蛾</td>
<td>98.8</td>
<td>99.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>天幕毛虫</td>
<td>98.9</td>
<td>99.4</td>
</tr>
<tr>
<td>实施例 4</td>
<td></td>
<td>苹果蠹蛾</td>
<td>95.4</td>
<td>95.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>天幕毛虫</td>
<td>94.9</td>
<td>95.5</td>
</tr>
<tr>
<td>实施例 5</td>
<td>苹果树</td>
<td>苹果蠹蛾</td>
<td>94.6</td>
<td>95.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>天幕毛虫</td>
<td>95.0</td>
<td>95.6</td>
</tr>
<tr>
<td>实施例 6</td>
<td></td>
<td>苹果蠹蛾</td>
<td>95.4</td>
<td>94.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>天幕毛虫</td>
<td>94.7</td>
<td>95.2</td>
</tr>
<tr>
<td>实施例 7</td>
<td></td>
<td>苹果蠹蛾</td>
<td>97.8</td>
<td>98.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>天幕毛虫</td>
<td>97.4</td>
<td>98.0</td>
</tr>
<tr>
<td>对比例 1</td>
<td></td>
<td>苹果蠹蛾</td>
<td>62.5</td>
<td>62.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>天幕毛虫</td>
<td>61.8</td>
<td>62.3</td>
</tr>
<tr>
<td>对比例 2</td>
<td></td>
<td>苹果蠹蛾</td>
<td>87.6</td>
<td>88.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>天幕毛虫</td>
<td>87.5</td>
<td>88.2</td>
</tr>
<tr>
<td>空白例</td>
<td></td>
<td>苹果蠹蛾</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>天幕毛虫</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

[0073] 测试例 3
[0074] 选用胸径为≤21cm 的毛白杨若干，分别使用实施例 1-7 和对比例 1-2 制备的注射液各 1 支（每支 60ml）。
[0075] 1 天后，所述注射液对松褐天牛、介壳虫的防治效果均达 98% 以上，如表 3 所示。作用速度快。
[0076] 表 3
[0077]
<table>
<thead>
<tr>
<th>注射液来源</th>
<th>树种</th>
<th>试验对象</th>
<th>死亡率 (%)</th>
<th>伤口愈合时间 (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 1</td>
<td>毛白杨</td>
<td>松褐天牛</td>
<td>99.0 99.4 99.5</td>
<td>5.5</td>
</tr>
<tr>
<td>介壳虫</td>
<td>99.1 99.5 99.7</td>
<td>5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>实施例 2</td>
<td>松褐天牛</td>
<td>98.8 99.2 99.3</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>介壳虫</td>
<td>99.3 99.6 99.8</td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>实施例 3</td>
<td>松褐天牛</td>
<td>98.5 99.9 100.0</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>介壳虫</td>
<td>98.3 99.7 99.8</td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>实施例 4</td>
<td>松褐天牛</td>
<td>95.1 95.5 95.7</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>介壳虫</td>
<td>94.6 95.0 95.2</td>
<td>5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>实施例 5</td>
<td>松褐天牛</td>
<td>95.5 95.8 96.0</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>介壳虫</td>
<td>95.2 95.7 95.8</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>实施例 6</td>
<td>松褐天牛</td>
<td>95.4 96.0 96.2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>介壳虫</td>
<td>94.8 95.5 95.6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>实施例 7</td>
<td>松褐天牛</td>
<td>98.0 98.4 98.6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>介壳虫</td>
<td>97.7 98.2 98.4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>对比例 1</td>
<td>松褐天牛</td>
<td>62.0 62.4 62.7</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>介壳虫</td>
<td>61.6 62.1 62.4</td>
<td>5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>对比例 2</td>
<td>松褐天牛</td>
<td>87.7 88.2 88.3</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>介壳虫</td>
<td>87.4 87.8 88.0</td>
<td>5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>空白例</td>
<td>松褐天牛</td>
<td>0 0 0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>介壳虫</td>
<td>0 0 0</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0078] 测试例 4
[0079] 选用胸径为≤21cm 的银杏树若干，分别使用实施例 1-7 和对比例 1-2 制备的注射液各 1 支（每支 60ml）。
[0080] 1 天后，所述注射液对盾蚧、木蛾的防治效果均达 98% 以上，如表 4 所示。作用速度快。
[0081] 表 4
[0082]
<table>
<thead>
<tr>
<th>注射液来源</th>
<th>树种</th>
<th>试验对象</th>
<th>死亡率 (%)</th>
<th>伤口愈合时间 (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>24h</td>
<td>48h</td>
</tr>
<tr>
<td>实施例 1</td>
<td></td>
<td>蚜虫</td>
<td>99.1</td>
<td>99.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>木蛾</td>
<td>99.4</td>
<td>99.8</td>
</tr>
<tr>
<td>实施例 2</td>
<td></td>
<td>蚜虫</td>
<td>98.5</td>
<td>99.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>木蛾</td>
<td>99.0</td>
<td>99.4</td>
</tr>
<tr>
<td>实施例 3</td>
<td>银杏树</td>
<td>蚜虫</td>
<td>98.7</td>
<td>99.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>木蛾</td>
<td>99.0</td>
<td>99.5</td>
</tr>
<tr>
<td>实施例 4</td>
<td></td>
<td>蚜虫</td>
<td>96.4</td>
<td>96.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>木蛾</td>
<td>96.0</td>
<td>96.5</td>
</tr>
<tr>
<td>实施例 5</td>
<td></td>
<td>蚜虫</td>
<td>94.8</td>
<td>95.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>木蛾</td>
<td>95.0</td>
<td>95.5</td>
</tr>
<tr>
<td>实施例 6</td>
<td></td>
<td>蚜虫</td>
<td>95.3</td>
<td>96.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>木蛾</td>
<td>95.7</td>
<td>96.4</td>
</tr>
<tr>
<td>实施例 7</td>
<td></td>
<td>蚜虫</td>
<td>97.8</td>
<td>98.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>木蛾</td>
<td>97.6</td>
<td>98.0</td>
</tr>
<tr>
<td>对比例 1</td>
<td></td>
<td>蚜虫</td>
<td>61.3</td>
<td>61.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>木蛾</td>
<td>61.5</td>
<td>61.9</td>
</tr>
<tr>
<td>对比例 2</td>
<td></td>
<td>蚜虫</td>
<td>87.6</td>
<td>88.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>木蛾</td>
<td>87.6</td>
<td>88.0</td>
</tr>
<tr>
<td>空白例</td>
<td></td>
<td>蚜虫</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>木蛾</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

[0083] 通过表 1-4 的结果可以看出，本发明的杀虫剂注射液剂组合物在使用时具有明显的增效作用，对害虫具有较高的靶标性，并且可以杀灭更多的害虫，作用速度快。另外，通过噻虫啉和其他内吸性杀虫剂配合使用，提高了药剂的利用率，并且用量少，节约成本，安全性高。

[0084] 从 1-4 的结果还可以看出，由于本发明的杀虫剂注射液剂组合物中添加了一定量的伤口愈合剂，能够显著提高树木注射部位和被虫害蛀蚀部位的伤口愈合速度。另外，通过在杀虫剂注射液剂组合物中添加一定量的缓释剂，能够延长杀虫剂注射液剂组合物的药效时间，实现了长时间杀虫的效果。通过在杀虫剂注射液剂组合物中添加一定量的渗透剂，加速了注射剂在树干中的吸收、渗透和传导，显著提高了杀虫剂注射液剂组合物的速效性。