(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
5 December 2013 (05.12.2013)

WO 2013/181378 A1

The rubber may also have a crosslink density that is between 20 and 50% of the crosslink density of the reclaimed rubber prior to re-

Claiming.

Abstract:

Title: TIRE TREAD AND METHOD OF MAKING THE SAME

Published: with international search report (Art. 21(3))
TIRE TREAD AND METHOD OF MAKING THE SAME

FIELD OF THE INVENTION

[0001] One or more embodiments of the present invention relates to a tire tread including a reclaimed rubber component. In certain embodiments, the present invention relates to methods of making a tire tread including a reclaimed rubber component.

BACKGROUND OF THE INVENTION

[0002] Rubber waste, and particularly tire rubber waste, is an area of increasing concern for a number of reasons. Accordingly, substantial efforts are made to develop and implement methods of recycling waste rubber as a way to reduce the environmental impact and the amount of virgin rubber used. Various uses for ground rubber have been developed, such as, for example, as fuel and use in running tracks and other high impact and high traffic surfaces.

[0003] In other instances waste rubber may be mixed with virgin rubber to form new rubber products. The waste rubber may be mixed with the virgin rubber in particle form, or may be reclaimed, also sometimes referred to as devulcanized, to allow the recycled rubber to bond with the virgin rubber during vulcanization. Prior art rubber products and methods of making rubber products including recycled rubber have focused on providing a reclaimed rubber with a lower Mooney viscosity in order to provide better processability. A significant expense in producing reclaimed rubber can be grinding the rubber particles prior to the reclamation process. In addition, the levels of low Mooney viscosity reclaimed rubber that can be used in a new rubber product is limited due to a reduction in performance characteristics of the product if too much reclaimed rubber having a low Mooney viscosity is introduced.

[0004] It is known in the tire art to use reclaimed rubber in new products, including tire treads and tire tread compounds. Generally, reclaimed rubber refers to rubber that has been crosslinked and subsequently treated to break down the crosslinked network and thereby make the rubber processable. The treatment may break or sever the sulfur crosslinks and/or sever the polymer chains.
As known in the art, reclaimed rubber has been used in the manufacture of retreads, which are tire treads applied over a used tire carcass that has been prepped by removing any of the original tread. The cost of reclaimed rubber can, however, deter its use. One factor driving the cost of reclaimed rubber is the degree to which the rubber is treated. Conventional wisdom suggests treating the cured rubber to an extent that the reclaimed rubber has properties, such as the ability to be mixed, that are similar to virgin rubber.

Other challenges in using reclaimed rubber include the relative amount of reclaimed rubber that may be used in the tire tread compound. Currently, the amount employed is a relatively small percentage of the total rubber included because greater amounts of reclaimed rubber have resulted in unacceptable characteristics and performance of the tire tread.

The ability to use reclaimed rubber nonetheless remains desirable and therefore there is a need to address the problems that currently exist in the art...

SUMMARY OF THE INVENTION

One or more embodiments of the present invention provide a method of manufacturing a tire tread including mixing a tire tread compound including a virgin rubber component and a reclaimed rubber component, the reclaimed rubber component having a Mooney viscosity (ML (1+4) @ 100°C) of greater than 65; forming a green sheet from the tire tread compound; and curing the green sheet under pressure to form a cured tire tread.

One or more embodiments of the present invention also provides a method of manufacturing a cured tire tread including mixing a tire tread compound including a virgin rubber component and a reclaimed rubber component, the reclaimed rubber component having crosslink density between 5 and 70% of the crosslink density of the reclaimed rubber prior to devulcanization; extruding the tire tread compound to form a green extrusion that is in the form of a generally flat green sheet; and curing the green sheet under pressure to form a cured tire tread including a reclaimed rubber component.
DETAILED DESCRIPTION OF THE ILLUSTRATIVE EMBODIMENTS

[0010] Aspects of the invention are based, at least in part, on the discovery of a tire tread that is formed using partially reclaimed rubber. While the prior art contemplates the use of reclaimed rubber, it is believed that the desire to use highly reclaimed rubber (e.g. rubber that is highly devulcanized) gives rise to one or more problems currently experienced in the art. Thus, contrary to conventional wisdom, it is believed that by employing reclaimed rubber that is treated to a lesser extent than conventional reclaimed rubber, the amount of reclaimed rubber employed in a tire tread can be increased. And, by employing reclaimed rubber that is treated to a lesser extent than conventional reclaimed rubber, it is believed that the properties of the tread can be improved over those treads resulting from current practice.

[0011] One or more embodiments of the invention relate to a tire tread and/or a tire tread compound including rubber, of which a portion is a virgin rubber component and a portion is a reclaimed rubber component. In certain embodiments, the tire tread and/or tire tread compound may include a reclaimed rubber component that has a Mooney viscosity that is reduced less than reclaimed rubber components used in conventional rubber products. In one or more embodiments, a method of manufacturing a tire tread may include the steps of mixing a tire tread compound including a reclaimed rubber component, the reclaimed rubber component having a Mooney viscosity (ML (1+4) at 100°C) of greater than 65. In certain embodiments, the method of manufacturing the tire tread may further include the steps of fabricating a green tire tread from the tire tread compound, and vulcanizing the green tire tread to form the tire tread.

TREAD FORMULATION

[0012] In one or more embodiments, the tire tread compound of the present invention may include a vulcanizable rubber component. In certain embodiments, the vulcanizable rubber component may include both a virgin rubber component and a reclaimed rubber component.

VIRGIN RUBBER

[0013] In one or more embodiments, the virgin rubber component may include any conventional vulcanizable rubber used in the tire industry, including both natural and synthetic rubbers. In certain embodiments, these vulcanizable rubbers, which may also
be referred to as elastomers, may include natural or synthetic poly(isoprene), and elastomeric diene polymers including polybutadiene and copolymers of conjugated diene monomers with at least one monoolefin monomer. In certain embodiments, the virgin rubber component may include styrene-butadiene rubber (SBR). In the same or other embodiments, the virgin rubber component may include high cis butadiene rubber.

[0014] In one or more embodiments, the virgin rubber component of the tire tread compound may include 100 percent by weight natural rubber. In other embodiments, the virgin rubber component of the tire tread compound may include 100 percent by weight synthetic rubber. In still other embodiments, the virgin rubber component of the tire tread compound may include a blend of natural and synthetic rubbers.

RECLAIMED RUBBER

[0015] In one or more embodiments, the reclaimed rubber component may be formed from recycled tire rubber. In certain embodiments, the reclaimed rubber component may be formed from recycled tire tread buffings generated during a retreading process. As will be understood by those skilled in the art, the reclaimed rubber component includes one or more elastomers and any fillers, reinforcements, processing aids and other additives used in the original tire tread or other rubber component.

[0016] As used herein, the term reclaimed rubber refers to an elastomer that has been made at least partially flowable, or is at least partially "devulcanized" in any known process allowing it to be incorporated into new rubber products. Reclaimed rubber may also be referred to as devulcanized rubber, and the term devulcanized, as used herein, refers to the process of breaking down chemical cross-links in the recycled rubber. Reclaiming rubber may involve main chain scission, crosslink scission, or a combination of main chain and crosslink scission. The term fully reclaimed may refer to rubber that has been made flowable by a significant reduction in Mooney viscosity. The term partially reclaimed may refer to rubber that has a reduced Mooney viscosity as compared to the rubber prior to reclaiming, but a higher Mooney viscosity than fully reclaimed rubbers. The partially reclaimed rubber may or may not be flowable.

[0017] For example, in certain embodiments, the reclaiming process may include first grinding the rubber to be recycled into suitably small particles and then subjecting the particles to heat and/or shear forces. U.S. Patent No. 7,189,762 discloses a process for
reclaiming rubber in more detail, and is incorporated herein by reference for that purpose. Other known reclaiming methods may utilize ultrasonic methods, chemical components, microwaves and/or microorganisms. However, it should be appreciated that any known process for devulcanizing or reclaiming the recycled rubber may be employed within the scope of the present invention.

[0018] In one or more embodiments, the reclaimed rubber component may be characterized by a crosslink density that is between approximately 5 and 70% of the crosslink density of the rubber prior to devulcanization, in other embodiments between 10 and 60% of the crosslink density of the rubber prior to devulcanization, in still other embodiments between 20 and 50% of the crosslink density of the rubber prior to devulcanization, and in yet other embodiments, between 25 and 45% of the crosslink density of the rubber prior to devulcanization. The crosslink density may be determined according to ASTM-D6814 (Standard Test Method for Determination of Percent Devulcanization of Crumb Rubber based on Crosslink Density). In certain embodiments, it is contemplated that the reclaimed rubber may have a higher crosslink density than conventional reclaimed rubbers used in tire tread compounds.

[0019] In the same or other embodiments, the reclaimed rubber component may be characterized by a crosslink density that is greater than 5% of the crosslink density of the rubber prior to devulcanization, in other embodiments greater than 10% of the crosslink density of the rubber prior to devulcanization, in still other embodiments greater than 15% of the crosslink density of the rubber prior to devulcanization, in yet other embodiments greater than 20% of the crosslink density of the rubber prior to devulcanization, and in still other embodiments greater than 25% of the crosslink density of the rubber prior to devulcanization.

[0020] In one or more embodiments, the reclaimed rubber component may be characterized by a Mooney viscosity (ML (1+4) @ 100°C) of between approximately 65 and 120, in other embodiments between approximately 70 and 110, in still other embodiments between approximately 75 and 100, and in yet other embodiments between approximately 80 and 95. In the same or other embodiments, the reclaimed rubber component may be characterized by a Mooney viscosity (ML (1+4) @ 100°C) of greater than 65, in other embodiments greater than 70, in still other embodiments greater than 75, and in yet other embodiments greater than 80.
OTHER TREAD FORMULATION INGREDIENTS

[0021] In one or more embodiments, the tire tread compound may include known fillers and additives in conventional amounts. For example, the tire tread compound may include one or more of reinforcing fillers such as carbon black, processing oils, antidegradants, and cure packages.

INGREDIENT AMOUNTS

[0022] In general, the tire treads of this invention include at least 35 percent by weight, in other embodiments at least 35 percent by weight, in other embodiments at least 40 percent by weight, in other embodiments at least 45 percent by weight, and in other embodiments at least 50 percent by weight rubber, based on the entire weight of the tread (i.e. the rubber component accounts for, for example, at least 35 percent by weight of the tread). In these or other embodiments, the treads include at most 85 percent by weight, in other embodiments at most 80 percent by weight, in other embodiments at most 75 percent by weight, in other embodiments at most 70 percent by weight, and in other embodiments at most 65 percent by weight rubber, based on the entire weight of the tread.

[0023] In one or more embodiments, the vulcanizable rubber component of the tire tread compound may include from about 55 to 99 percent by weight SBR, in other embodiments from about 60 to 95 percent by weight SBR, in still other embodiments from about 65 to 90 percent by weight SBR, and in yet other embodiments from about 70 to 85 percent by weight SBR based on the total weight of the vulcanizable component.

[0024] In one or more embodiments, the rubber component of the tire tread compound may include from about 5 to 45 percent by weight high-cis butadiene rubber, in other embodiments from about 10 to 40 percent by weight high-cis butadiene rubber, in still other embodiments from about 15 to 35 percent by weight high-cis butadiene rubber, and in yet other embodiments from about 20 to 30 percent by weight high-cis butadiene rubber based on the total weight of the rubber component.

[0025] In one or more embodiments, the rubber component of the tire tread compound may include between approximately 1 and 25 percent by weight reclaimed rubber, in other embodiments between approximately 5 and 20 percent by weight reclaimed rubber, and in still other embodiments between approximately 10 and 15 percent by weight.
weight reclaimed rubber based on the total weight of the rubber component. In these or other embodiments, the rubber component may include at least 1 percent by weight, in other embodiments at least 3 percent by weight, in other embodiments at least 5 percent by weight, in other embodiments at least 7 percent by weight, and in other embodiments at least 9 percent by weight rubber, based on the entire weight of the rubber component. In these or other embodiments, the rubber component may include at most 50 percent by weight, in other embodiments at most 40 percent by weight, in other embodiments at most 30 percent by weight, in other embodiments at most 20 percent by weight, and in other embodiments at most 15 percent by weight rubber, based on the entire weight of the rubber component.

[0026] In one or more embodiments, the tire tread compound may further include a ground vulcanized rubber that has not been devulcanized, such as rubber produced from grinding worn tire treads during retreading. In certain embodiments, the tread composition may include from about 0.1 and 10 parts by weight of a ground vulcanized rubber, in other embodiments between approximately 1 and 8 parts by weight ground vulcanized rubber, and in still other embodiments between approximately 2 and 6 parts by weight ground vulcanized rubber, per 100 parts by weight of the rubber component (which may be referred to as simply 100 parts by weight rubber or phr).

[0027] In one or more embodiments, the tire tread compound may further include from about 35 to about 75 parts by weight carbon black per hundred parts rubber (phr), in other embodiments from about 40 to about 70 parts by weight carbon black phr, in still other embodiments from about 45 to about 65 parts by weight carbon black phr, and in yet other embodiments from about 50 to about 60 parts by weight carbon black phr.

[0028] In one or more embodiments, the tire tread compound may include processing oils, such as, for example, aromatic processing oils. In certain embodiments, the tire tread compound may include from about 5 to about 15 parts by weight processing oil phr, in other embodiments from about 7 to about 13 parts by weight processing oil phr, and in still other embodiments from about 8 to about 12 parts by weight processing oil phr.

METHOD OF MAKING VULCANIZABLE COMPOSITION

[0029] In one or more embodiments, the method of making the tire tread compound may include mixing the virgin rubber component, the reclaimed rubber component, and
the fillers and additives to form a tire tread compound. In certain embodiments, the
virgin rubber component may be first mixed with one or more additives prior to mixing
with the reclaimed rubber component to form the tire tread compound. In other
embodiments, the virgin rubber may first be mixed with the reclaimed rubber to form
the vulcanizable rubber component prior to compounding of the additives, such as
fillers, processing oils, and the like to form the tire tread compound. In certain
embodiments, the virgin rubber component, the reclaimed rubber component, and any
additional additives and fillers may be mixed simultaneously. In one or more
embodiments, the virgin rubber component, reclaimed rubber component and other
additives and fillers, excluding a cure system, may be mixed first to form a master
batch. In these embodiments, the cure system may be added and mixed in a subsequent
mixing step performed at lower temperatures, as is well known to those skilled in the
art. Compounding and mixing may be performed using conventional mixing equipment
and techniques as are known to those skilled in the art.

TREAD FABRICATION

[0030] In one or more embodiments, the tire tread compound, following mixing, may be
formed into a green tire tread. In certain embodiments, the tire tread compound may
be extruded to form an elongate green extrusion. In one or more embodiments, the tire
tread compound or green extrusion may optionally be calendered to form a relatively
flat green sheet. In other embodiments, the green extrusion may be in the form of a
generally flat green sheet immediately following extrusion. In certain embodiments, the
green sheet may be cut to a desired size for use on a tire.

[0031] In one or more embodiments, the green tread is used in the construction of a
green tire, and the green tire is subsequently placed into a mold and cured using
conventional tire building technique's.

[0032] In other embodiments, the green tread is employed in a retreading operation.
For example, the green sheet may be placed in a mold and vulcanized to create a
vulcanized tire tread including reclaimed rubber pursuant to practice of one or more
embodiments of this invention. In certain embodiments, the vulcanizing of the tire
tread may occur at elevated temperatures and pressures. In particular embodiments,
the mold in which the green sheet is cured may form a tread pattern in the cured tire
tread. In certain embodiments, the vulcanized tire tread may then be used in retreading
applications. U.S. Patent No. 4,434,018 discloses suitable retread curing equipment and methods, and is incorporated herein by reference for that purpose.

TREAD PROPERTIES

[0033] It is believed that the amount of reclaimed rubber in the tire tread compound may be increased as compared to conventional tire tread compounds utilizing reclaimed rubbers by virtue of the characteristic properties disclosed. In particular, the relative increase in crosslink density and Mooney viscosity, as compared to conventional reclaimed rubbers, is believed to provide better tire tread performance than tire treads formed using the conventional reclaimed rubbers. Additionally, the reclaimed rubber of the tire tread and methods of the present invention allows for a reduction in processing, thereby reducing costs.

[0034] In order to demonstrate the practice of the present invention, the following examples have been prepared and tested. The examples should not, however, be viewed as limiting the scope of the invention. The claims will serve to define the invention.

EXAMPLES

Compounds A1-A8 & Compounds B1-B6: Tire Tread Compounds

[0035] Samples A1 through A4 are rubber compositions of the type that are useful for preparing tire treads that can be used in the retreading of truck tires. Each sample included the same ingredients except for the type of reclaimed rubber employed, which was used in the amount of 12.5 volume percent reclaimed rubber, based on the total volume of the composition. While the method by which the rubber was reclaimed was not known with specificity, the reclaimed rubber used in Samples A1-A4 was obtained from the same source and was believed to be similarly processed except for the degree of processing, which results in the varying Mooney viscosities as detailed in Table 1. The reported Mooney Viscosity represents Mooney measurement immediately after processing (i.e. reclaimation) and therefore does not account for any aging of rubber, which is believed to lead to an increase in the Mooney.

[0036] Samples B1 through B3, which like Samples A1-A4 are rubber compositions of the type that are useful for preparing tire treads that can be used in the treading of truck tires, were prepared in manner similar to A1-A4 except that the source of the
reclaimed rubber, as well as the method by which the rubber was reclaimed, was different. The details of the reclaimed rubber are also set forth in Table 1.
Table 1: Physical Properties of Compounded Treads

<table>
<thead>
<tr>
<th>Sample</th>
<th>Reclaimed Rubber Mooney</th>
<th>BFG Heat Buildup (°C)</th>
<th>Nick Energy (J)</th>
<th>100% Mod (MPa)</th>
<th>300% Mod (MPa)</th>
<th>Elongation (%)</th>
<th>Tensile Strength (MPa)</th>
<th>Compound Mooney</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>42</td>
<td>33</td>
<td>9.78</td>
<td>1.91</td>
<td>8.36</td>
<td>543.04</td>
<td>17.92</td>
<td>71.7</td>
</tr>
<tr>
<td>A2</td>
<td>58.7</td>
<td>33</td>
<td>11.4</td>
<td>1.86</td>
<td>8.10</td>
<td>528.89</td>
<td>16.27</td>
<td>69.5</td>
</tr>
<tr>
<td>A3</td>
<td>67</td>
<td>33</td>
<td>10.6</td>
<td>1.97</td>
<td>8.60</td>
<td>534.67</td>
<td>17.85</td>
<td>72.8</td>
</tr>
<tr>
<td>A4</td>
<td>91</td>
<td>32</td>
<td>10.6</td>
<td>2.03</td>
<td>9.01</td>
<td>512.15</td>
<td>17.70</td>
<td>75.1</td>
</tr>
<tr>
<td>B1</td>
<td>63</td>
<td>32</td>
<td>10.3</td>
<td>1.81</td>
<td>8.26</td>
<td>465.03</td>
<td>14.75</td>
<td>77.9</td>
</tr>
<tr>
<td>B2</td>
<td>74</td>
<td>33</td>
<td>10.6</td>
<td>1.83</td>
<td>8.30</td>
<td>450.83</td>
<td>14.27</td>
<td>77.6</td>
</tr>
<tr>
<td>B3</td>
<td>140</td>
<td>30</td>
<td>9.17</td>
<td>1.89</td>
<td>8.61</td>
<td>432.55</td>
<td>13.99</td>
<td>81.75</td>
</tr>
</tbody>
</table>
Both the reclaimed rubber and the compound Mooney viscosity, $M_L (1+4)^{100\degree C}$, was tested according to ASTM D-1646. 100% Modulus, 300% Modulus, Elongation, and Tensile Strength were testing according to ASTM D-412. BFG Heat Buildup is a useful indicator in showing the benefit of less reclamation and results in improved tread wear. The BFG Heat Buildup was measured according to ASTM D-623 Method A.

The Nick energy, which may also be referred to as Nick Tear resistance, is an indicator of fracture mechanics and was tested according to conventional procedures. For a better understanding of the technique, refer to "Energy Dissipation and the Fracture of Rubber Vulcanizates" by Gary R. Hamed published on pages 493-500 of the proceedings of the meeting of the Rubber Division, American Chemical Society, Las Vegas, Nevada, May 29 to June 1, 1990.

The data shows that practice of the invention produces rubber compositions that are characterized by advantageous heat build-up (i.e. lower heat build-up) and advantageous Nick Tear resistance, while other properties of the compound were not deleteriously impacted.

Various modifications and alterations that do not depart from the scope and spirit of this invention will become apparent to those skilled in the art. This invention is not to be unduly limited to the illustrative embodiments set forth herein.
CLAIMS

1. A method of manufacturing a tire tread comprising:
 a. mixing a tire tread compound including a virgin rubber component and a reclaimed rubber component, the reclaimed rubber component having a Mooney viscosity (ML (1+4) @ 100°C) of greater than 65;
 b. forming a green sheet from the tire tread compound; and
 c. curing the green sheet under pressure to form a cured tire tread.

2. The method of claim 1, where said Mooney viscosity of the reclaimed rubber component is between approximately 65 and 120.

3. The method of any of claims 1-2, where said step of mixing further includes mixing one or more additives with the virgin rubber component and the reclaimed rubber component, the one or more additives selected from a filler, a processing oil, an antidegradant, and a curative.

4. The method of any of claims 1-3, where the step of forming a green sheet includes extruding the tire tread compound to form a green extrusion.

5. The method of any of claims 1-4, where the green extrusion is in the form of a generally flat green sheet.

6. The method of any of claims 1-5, further comprising the step of cutting the green sheet to a desired size prior to curing.

7. The method of any of claims 1-6, where the step of mixing a tire tread compound includes mixing a reclaimed rubber component having a crosslink density between 5 and 70% of the crosslink density of the reclaimed rubber prior to devulcanization.

8. The method of any of claims 1-7, where the step of mixing a tire tread compound includes mixing a reclaimed rubber component having a crosslink density
between 10 and 60% of the crosslink density of the reclaimed rubber prior to
devulcanization.

9. The method of any of claims 1-8, where the step of mixing a tire tread compound includes mixing a reclaimed rubber component having a crosslink density between 20 and 50% of the crosslink density of the reclaimed rubber prior to devulcanization.

10. The method of any of claims 1-9, where the virgin rubber component includes styrene-butadiene rubber.

11. The method of any of claims 1-10, where the virgin rubber component includes high cis butadiene rubber.

12. A method of manufacturing a cured tire tread comprising:
 a. mixing a tire tread compound including a virgin rubber component and a reclaimed rubber component, the reclaimed rubber component having crosslink density between 5 and 70% of the crosslink density of the reclaimed rubber prior to devulcanization;
 b. extruding the tire tread compound to form a green extrusion that is in the form of a generally flat green sheet; and
 c. curing the green sheet under pressure to form a cured tire tread including a reclaimed rubber component.

13. The method of claim 12, where the reclaimed rubber component has a Mooney viscosity of between approximately 70 and 90.

14. The method of any of claims 12-13, where said step of mixing further includes mixing one or more additives with the virgin rubber component and the reclaimed rubber component, the one or more additives selected from a filler, a processing oil, an antidegradant, and a curative.
15. The method of any of claims 12-14, further comprising the step of cutting the green sheet to a desired size prior to curing.

16. The method of any of claims 12-15, where the step of mixing a tire tread compound includes mixing a reclaimed rubber component having a crosslink density between 10 and 60% of the crosslink density of the reclaimed rubber prior to devulcanization.

17. The method of any of claims 12-16, where the step of mixing a tire tread compound includes mixing a reclaimed rubber component having a crosslink density between 20 and 50% of the crosslink density of the reclaimed rubber prior to devulcanization.

18. The method of any of claims 12-17, where the virgin rubber component includes styrene-butadiene rubber.

19. The method of any of claims 12-18, where the virgin rubber component includes high cis butadiene rubber.
INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2013/043339

A. CLASSIFICATION OF SUBJECT MATTER
B29D 30/52(2006.01)i, B29D 30/08(2006.01)i, B29C 35/02(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
B29D 30/52, C08J 11/04, B29B 17/00, C08J 11/84, B02B 3/06, C08K 9/00, B29H 19/00, C08L 17/00, B60C 5/00; B29D 30/08; B29C 35/02

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: tire tread, reclaimed rubber, Mooney viscosity, crosslink density, extruding, curing

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>See column 7, lines 44-48, column 15, line 65-column 16, line 11, column 17,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lines 45-47, column 16, lines 40-42; claims 1,17.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See paragraph [0049]; claims 73,74; Table 3.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See column 14, lines 1-15; claim 1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See claims 1-10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See claim 1.</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

[X] See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
22 August 2013 (22.08.2013)

Date of mailing of the international search report
23 August 2013 (23.08.2013)

Name and mailing address of the ISA/KR
Korean Intellectual Property Office
189 Cheongna-ro, Seo-gu, Daejeon Metropolitan City,
302-701 Republic of Korea

Facsimile No. +82-42-472-7140

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Box No. II</th>
<th>Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:</td>
<td></td>
</tr>
<tr>
<td>1. ☐ Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:</td>
<td></td>
</tr>
<tr>
<td>2. ☐ Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:</td>
<td></td>
</tr>
<tr>
<td>3. ☒ Claims Nos.: 4-11,15-19 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Box No. III</th>
<th>Observations where unity of invention is lacking (Continuation of item 3 of first sheet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This International Searching Authority found multiple inventions in this international application, as follows:</td>
<td></td>
</tr>
<tr>
<td>1. ☑ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.</td>
<td></td>
</tr>
<tr>
<td>2. ☑ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.</td>
<td></td>
</tr>
<tr>
<td>3. ☑ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:</td>
<td></td>
</tr>
<tr>
<td>4. ☒ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:</td>
<td></td>
</tr>
</tbody>
</table>

Remark on Protest

- ☑ The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- ☒ The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- ☒ No protest accompanied the payment of additional search fees.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 6207723 Bl</td>
<td>27/03/2001</td>
<td>CA 2260350 Al</td>
<td>26/07/1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2260350 C</td>
<td>03/04/2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69928974 Dl</td>
<td>26/01/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69928974 T2</td>
<td>30/11/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0931809 A2</td>
<td>28/07/1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0931809 A3</td>
<td>05/07/2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0931809 Bl</td>
<td>21/12/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 03361048 B2</td>
<td>07/01/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 11-209480 A</td>
<td>03/08/1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 11-209512 A</td>
<td>03/08/1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 11-236464 A</td>
<td>31/08/1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6316508 Bl</td>
<td>13/11/2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2003-293869 Al</td>
<td>05/07/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0318649 A</td>
<td>28/11/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60327005 Dl</td>
<td>14/05/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1697150 A</td>
<td>06/09/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1697150 Bl</td>
<td>01/04/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 2005-058615 Al</td>
<td>30/06/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4243561 A</td>
<td>06/01/1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4272436 A</td>
<td>09/06/1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4341667 A</td>
<td>27/07/1982</td>
</tr>
<tr>
<td>US 6479558 Bl</td>
<td>12/11/2002</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>US 2012-0125505 Al</td>
<td>24/05/2012</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>