发明名称
一种面向最优输出信噪比的系统 SAR 增益确定方法

摘要
本发明公开了一种面向最优输出信噪比的系统 SAR 增益确定方法，包括：通过仿真获得输入信号功率和量化输出信号功率之间的关系曲线，以及系统输出信噪比与输入信噪比及输入信号功率的变化曲线；根据 SAR 系统设计参数计算系统噪声功率；对 SAR 下传的回波数据进行解码，并分块统计当前系统增益下的回波数据块功率；根据仿真关系曲线得到回波数据块对应的输入信号功率，计算量化输入信噪比，进一步根据仿真关系曲线得到回波数据块的输出信噪比；分别计算每个数据块的输出信噪比，并求输出信噪比均值；遍历系统增益，计算各增益下的输出信噪比均值；将输出信噪比均值最大值对应的系统增益设置为系统 SAR 增益。采用本方法使得系统增益设置更加合理，从而得到具有最优质量的量化输出数据。
1. 一种系统 SAR 增益确定方法，包括步骤：
 a. 获得系统输入信号功率 P_x' 和系统量化输出信号功率 P_y' 之间的关系曲线 $P_x' = f(P_y')$；
 b. 获得系统输出信噪比随输入信噪比及输入信号功率的变化曲线 $\text{SNR}_{\text{out}}' = g(P_y', \text{SNR}_{\text{in}}')$；
 c. 计算系统噪声功率 P_n；
 d. 对 SAR 下传的回波数据进行解码，并分块统计当前功率增益 G_a 下的回波数据块功率 P_y；
 e. 根据曲线 $P_x' = f(P_y')$，利用 P_y 得到回波数据块对应的输入信号功率 P_x；
 f. 计算量化输入信噪比 SNR_{in}；
 g. 根据步骤 b 中获得的变化曲线，对于上述步骤获得的 P_x 和 SNR_{in}，获得对应回波数据块的输出信噪比 SNR_{out}；
 h. 对每个回波数据块，按照步骤 c-g，分别计算输出信噪比，并求输出信噪比均值 SNR_{out}；
 i. 遍历系统增益 G_{a_i}，重复步骤 g 和 h，得到不同系统增益下的信号输出信噪比均值 SNR_{out}，其中 $i = 1, \ldots, N$，N 为系统增益可调节的阶数，各增益下的输入功率 $P_x = P_x + (G_{a_i} - G_a)$ (dB)，输入信噪比保持不变；
 j. 比较所求得的不同系统增益下的输出信噪比均值，将输出信噪比均值最大值对应的系统增益确定为系统 SAR 增益值。

2. 根据权利要求 1 所述的方法，其中步骤 a 具体为：所述关系曲线通过仿真获得，仿真实际与系统部分分别从高斯分布的信号 x'，并仿真量化压缩过程，该量化压缩过程与系统 SAR 所采用的量化压缩方法相对应，得到量化压缩后的输出信号 y'，从而得到输入信号功率 P_x' 和量化输出信号功率 P_y' 之间的关系曲线 $P_x' = f(P_y')$。

3. 根据权利要求 1 所述的方法，其中步骤 b 包括如下步骤：
 b1. 仿真功率为任意 P_x' 的，在实际与系统部分分别从高斯分布的信号 s'；
 b2. 调入信噪比 SNR_{in} 在区间 1 内变化，分别仿真相应的功率为 $P_n = P_x' - \text{SNR}_{\text{in}}'$ (dB) 的高斯分布白噪声 n'，得到输入信号 $x = s' + n'$；
 b3. 调入信号功率 P_x' 在区间 2 内变化，对于区间 2 内离散化的每个输入信号功率 P_x'，调整输入信号使其变为：$x = Ax'$，其中 $A = 10^{(P_x' - (P_x + P_y'))/10}$；
 b4. 仿真量化压缩过程，该量化压缩过程与系统 SAR 所采用的量化压缩方法相对应，得到的量化输出信号 \hat{x}'，计算最终的输出信噪比：$\text{SNR}_{\text{out}}' = g(P_y', \text{SNR}_{\text{in}}')$，从而得到输出信噪比与输入信号功率及输入信噪比的关系 $\text{SNR}_{\text{out}}' = g(P_y', \text{SNR}_{\text{in}}')$。

4. 根据权利要求 3 所述的方法，其中区间 1 为 0 dB ～ 60 dB。

5. 根据权利要求 3 所述的方法，其中区间 2 为 -10 dB ～ 65 dB。

6. 根据权利要求 1 所述的方法，其中步骤 e 具体为：根据 SAR 系统设计参数计算系统噪声功率，计算公式为：$P_n = G_k T_0 f_n$，其中 G_k 为接收信号在量化之前的功率增益；K 为波尔兹曼常数，$K = 1.38 \times 10^{-23}$ J/K；T_0 为接收机温度 (K)；f_n 为接收机噪声系数；P_n 表示噪声功率 (W)。
7. 根据权利要求1所述的方法，其中步骤d中回波数据块功率P_i的计算公式为：
 \[P_i = \frac{1}{N_a N_r} \sum_{i=1}^{N_a} \sum_{j=1}^{N_r} |y_{i,j} - \bar{y}|^2 \]
 其中N_a表示回波数据块的方位向数据尺寸，N_r表示回波数据块的距离向数据尺寸；y_{i,j}表示该数据块中方位号和距离号分别为i和j的回波数据；\bar{y}为该数据块的回波均值，\bar{y} = \frac{1}{N_a N_r} \sum_{i=1}^{N_a} \sum_{j=1}^{N_r} y_{i,j}；P_i表示量化后的该回波数据块的信号功率。

8. 根据权利要求1所述的方法，其中步骤e采用插值或拟合法。

9. 根据权利要求1所述的方法，其中步骤f的计算公式为：
 \[SNR = \frac{P_i - P_n}{P_n} \]

10. 根据权利要求1所述的方法，其中步骤g采用插值或拟合法。
说明书

一种面向最优输出信噪比的系统 SAR 增益确定方法

技术领域
[0001] 本发明属于雷达信号处理领域，特别涉及一种面向最优输出信噪比的系统 SAR 增益确定方法。

背景技术
[0002] 在合成孔径雷达 (Synthetic Aperture Radar, SAR) 系统中，原始回波数据质量是 SAR 图像质量的先决条件。受系统数据率的限制，SAR（尤其是星载 SAR）的原始回波波形需进行量化压缩。量化压缩使数据的动态范围受限，因此，系统硬件实现中通常在量化压缩之前对信号进行增益控制，使信号动态范围与量化压缩的动态范围能够很好的匹配。增益控制的方式有两种，一种是手动增益控制（Manual Gain Control, MGC），即在一次数据获取之前，根据获取场景散射特性的先验知识结合 SAR 的具体参数，通过计算来预测接收数据的功率信息，从而手动设置合理的增益控制值；另一种是自动增益控制（Automatic Gain Control, AGC），在数据获取时，星上通过硬件实现当前获取信号的功率计算，从而及时反馈给系统进行增益调整。这两种方法理论上也实际中都涉及一个问题，即在已知量化输出功率时，如何确定合理的系统增益。

[0003] 针对这一问题，现有的技术方案是：首先假设 SAR 回波服从某种分布（通常假设服从瑞利分布），在此基础上通过仿真获得不同输入功率下的量化信噪比和量化功率损耗，选择量化信噪比大且量化功率损失小的某个输入功率作为参考最佳输入功率，将预测的回波数据平均功率与该参考最佳输入功率作比较，从而得到系统增益设置值。

[0004] 经分析，发现现有技术存在如下缺点：1）确定最佳输入功率时仅考虑了量化信噪比，也即输入无噪声情况下的量化输出信噪比。认为最佳输入功率与输入信噪比无关，而实际上在输入信噪比不同时，量化对输出信噪比的影响并不相同，因此最佳输入功率应随量化的输入信噪比而改变；2）由于数据信噪比与功率之间非线性关系，回波数据的平均功率即使达到了最佳输入功率，数据的平均信噪比也并非最优，而信噪比是雷达数据最为关键的指标，因此在现有技术下，SAR 数据质量并非最优。

发明内容
[0005] 为解决上述现有技术中的不足，本发明提出一种面向最优输出信噪比的系统 SAR 增益确定方法，包括下述步骤：
[0006] a. 获得系统输入信号功率 P_x 和系统量化输出信号功率 P_y 之间的关系曲线 $P_y = f(P_x)$；
[0007] b. 获得系统输出信噪比随输入信噪比及输入信号功率的变化曲线 $SNR_{out} = g(P_x, SNR_{in})$；
[0008] c. 计算系统噪声功率 P_n；
[0009] d. 对 SAR 下传的回波数据进行解码，并分块统计当前功率增益 G_n 下的回波数据块功率 P_y；
根据曲线 \(P_x = f(P_y) \)，利用 \(P_y \) 得到回波数据块对应的输入信号功率 \(P_x \)；

b. 计算量化输入信噪比 \(SNR_{in} \)；

g. 根据步骤 b 中获得的变化曲线，对于上述步骤获得的 \(P_x \) 和 \(SNR_{in} \)，获得对应回波数据块的输出信噪比 \(SNR_{out} \)；
h. 对每个回波数据块，按照步骤 c-g，分别计算输出信噪比，并求输出信噪比均值 \(SNR_{out} \)；
i. 通过系统增益 \(G_n \)，重复步骤 g 和 h，得到不同系统增益下的信号输出信噪比均值 \(SNR_{out} \)，其中 \(i = 1, \ldots, N \) 为系统增益可调节的阶数，各增益下的输入功率 \(P_{i,x} = P_x + (G_n - G_{k}) \) (dB)，输入信噪比保持不变；
j. 比较所求得的不同系统增益下的输出信噪比均值，将输出信噪比均值最大值对应的系统增益确定为系统 SAR 增益值。

根据本发明的方法，其中步骤 a 具体为：所述关系曲线通过仿真获得，仿真步骤和虚部分别服从高斯分布的信号 \(x' \)，并仿真量化过程，该量化过程与系统 SAR 所采用的量化压缩方法相对应，得到量化压缩后的信号 \(y' \)，从而得到输入信号功率 \(P_x \) 和量化输出信噪比 \(P_y \) 之间的关系曲线 \(P_y = f(P_x) \)。

根据本发明的方法，其中步骤 b 包括如下步骤：

b1. 仿真功率为任意 \(P_y \) 的实部和虚部分别服从高斯分布的信号 \(s' \)；

b2. 设输入信噪比 \(SNR_{in} \) 在区间 1 内变化，分别仿真相应的功率为 \(P_{in} = P_{in} - SNR_{in} \) (dB) 的高斯分布白噪声 \(n' \)，得到量化输入信号 \(x' = s' + n' \)；

b3. 设输入信号功率 \(P_x \) 在区间 2 内变化，对于区间 2 内离散化后的每个输入信号功率 \(P_{x,i} \)，调整输入信号使其变为 \(x'^* = A x' \)，其中 \(A = \frac{P_x}{P_x + P_{y}}(\text{10}^{10}) \)；

b4. 仿真量化过程压缩，该量化过程与系统 SAR 所采用的量化压缩方法相对应，得到的量化输出信号 \(y'^* \)，计算最终的输出信噪比 \(SNR_{out}' = \frac{E[y'^*^2]}{E[x'^*^2 - x'^*]} \)，从而得到输出信噪比与输入信噪比功率及输入信噪比的关系 \(SNR_{out}' = g(P_x, SNR_{in}') \)。

根据本发明的方法，其中区间 1 为 0dB ～ 60dB。

根据本发明的方法，其中区间 2 为 -10dB ～ 65dB。

根据本发明的方法，其中步骤 c 具体为：根据 SAR 系统设计参数计算系统噪声功率，计算公式为：\(P_y = K T_0 B F_0 \)（其中 \(K \) 为接收信号在量化之前的功率增益；\(F_0 \) 为接收机噪声系数，\(R_0 \) 为接收机噪声系数）；

根据本发明的方法，其中步骤 d 中回波数据块功率 \(P_y \) 的计算公式为：

\[
P_y = \frac{1}{N_x N_y} \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} |y_{ij} - \bar{y}|^2
\]

其中 \(N_x \) 表示回波数据块的方位向数据尺寸，\(N_y \) 表示回波数据块的距离向数据尺寸；\(y_{ij} \) 表示在该数据块中方位向和距离向分别为 i 和 j 的回波数据；\(\bar{y} \) 为该数据块的回波均值，\(\bar{y} = \frac{1}{N_x N_y} \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} y_{ij} \)；\(P_i \) 表示量化后的该回波数据块的信号功率。

根据本发明的方法，其中步骤 e 采用插值或拟合方法。

根据本发明的方法，其中步骤 f 的计算公式为：

\[
SNR_{in} = \frac{P_x - P_y}{P_y}
\]
根据本发明的方法，其中步骤 g 采用插值或拟合法。
根据本发明的方法，其特征在于所述分块的大小可以与数据大小一致。
根据本发明的方法，其特征在于可以仅对整个场景的部分区域执行该方法。
本发明的方法在分析量化输出信噪比随输入信噪比和输入信号功率变化规律的基础上，计算得到能使回波数据平均量化输出信噪比达到最优的系统增益值。由此来使得系统增益设置更加合理，从而使得输出的量化输出数据具有最优的质量。
本发明关键点在于系统增益的确定考虑了输入信噪比的影响，在此基础上采用了平均输出信噪比最大准则，而非传统的量化信噪比最大准则。
本发明的特点还在于，首先通过仿真建立了量化输出信号功率与输入功率之间的关系，从而通过统计量化输出数据的功率可以求得输入信号功率。
本发明的特点还在于，采用雷达方程计算系统噪声。
本发明的特点还在于，通过仿真建立了量化输出信噪比与输入信噪比及输入信号功率的关系，从而通过求解得到的输入信号功率和输入信噪比，可以计算得到输出信号的信噪比。
本发明的特点还在于，对系统可调节的增益进行输出信号平均信噪比的计算，确定平均信噪比最大的系统增益为最佳增益。

附图说明
图 1 为本发明的方法流程图；
图 2 为 4bit 均量化数据当前增益设计下的信噪比统计；
图 3 为 4bit 均量化数据现有技术方案信噪比统计结果；
图 4 为 4bit 均量化数据接收机增益分析结果曲线；
图 5 为 4bit 均量化数据采用本发明方案后的信噪比统计结果；
图 6 为 8:3BAQ 数据当前增益设计下的信噪比统计；
图 7 为 8:3BAQ 数据现有技术方案信噪比统计结果；
图 8 为 8:3BAQ 数据接收机增益分析结果曲线；
图 9 为 8:3BAQ 数据采用本发明方案后的信噪比统计结果。

具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白，以下结合具体实施例，并参照附图，对本发明进一步详细说明。
本发明技术方案的流程图如图 1 所示，本发明提供了一种使数据输出信噪比最优的系统 SAR 增益确定方法，包括：
a. 仿真实部和虚部分别服从高斯分布的信号 \(x' \)，并仿真量化压缩过程，该量化压缩过程与系统 SAR 所用的量化压缩方法相适应，从而得到量化压缩后的输出信号 \(y' \)，得到系统输入信号功率 \(P_x \) 和量化输出信号功率 \(P_y' \) 之间的关系曲线 \(P_y' = f(P_x) \)。
b. 仿真获得系统输出信噪比随输入信噪比及输入信号功率的变化曲线；

b1. 仿真功率为任意 \(P_x \) 的，实部和虚部分别服从高斯分布的信号 \(s' \)；
b2. 设输入信噪比 \(SNR_{in}' \) 在一个区间内（如 0dB ~ 60dB）变化，分别仿真相应的
功率为 \(P_n' = P_s' - \text{SNR}_{in}' \)（dB）的高斯分布白噪声 \(n' \)，得到信号

\[
\tilde{x}' = s' + n';
\]

b.3. 设输入信号功率 \(P_s' \) 在某区间内变化（如 \(-10 \text{dB} \sim 65 \text{dB}\)），对于区间内离散化后的每个输入信号功率 \(P_s' \)，调整输入信号使其变为 \(\tilde{x}' = A \tilde{z}' \) 其中 \(A = 10^{(P_s' - (P_s' + P_n))(\text{dB})/20} \)；

b.4. 仿真上述的量化压缩过程，得到 \(\tilde{x}' \) 的量化输出信号 \(\tilde{y}' \)，计算最终的输出信号信噪比

\[
\text{SNR}_{out}' = \frac{E[|A\tilde{z}'|^2]}{E[|\tilde{y}' - A\tilde{z}'|^2]},
\]

从而得到了输出信噪比与输入信号功率及输入信噪比的关系，即

\[
\text{SNR}_{out}' = g(P_s', \text{SNR}_{in}').
\]

c. 根据 SAR 系统设计参数计算系统信噪功率，计算公式为 \(P_n = G_s KT_b B F_0 \)，其中 \(G_s \) 为接收信号在量化之前的功率增益，\(K \) 为波尔兹曼常数，\(K = 1.38 \times 10^{-23} \text{J/K} \)；\(T_b \) 为接收机温度（K）；\(B \) 为接收机等效噪声带宽（Hz）；\(F_0 \) 为接收机噪声系数；\(P_n \) 表示噪声功率（W）。

d. 对 SAR 下传的回波数据进行解码，并分别统计当前功率增益 \(G_s \) 下的回波数据块功率 \(P_s' \)。计算公式为

\[
P_s' = \frac{1}{N_y N_z} \sum_{m=1}^{N_z} \sum_{l=1}^{N_y} |Y_{l,j} - \tilde{y}'|^2,
\]

其中 \(N_x \) 表示回波数据块的方位方向长度尺寸，\(N_y \) 表示回波数据块的距离方向尺寸，\(Y_{l,j} \) 表示在数据块中任意单个位置的回波数据，\(\tilde{y}' \) 为该数据块的回波数据均值，即

\[
\tilde{y}' = \frac{1}{N_y N_z} \sum_{m=1}^{N_z} \sum_{l=1}^{N_y} Y_{l,j} \quad \text{P_s' 表示量化后的该回波数据块的信号功率。}
\]

e. 根据曲线 \(P_s' = f(P_n') \) 通过插值或拟合方法，利用 \(P_s' \) 得到该回波数据块对应的输入信号功率 \(P_n' \)。

f. 计算量化输入信噪比

\[
\text{SNR}_{in}' = \frac{P_s - P_n}{P_n}.
\]

g. 根据仿真得到的曲线

\[
\text{SNR}_{out}' = g(P_s', \text{SNR}_{in}'),
\]

对于上述步骤计算得到的该回波数据块的 \(P_s' \) 和 \(\text{SNR}_{in}' \)，通过插值或拟合方法得到该回波数据块的输出信噪比

\[
\text{SNR}_{out}.
\]

h. 对每个回波数据块，按照步骤 c-g，分别计算每个数据块的输出信噪比，并求输出信噪比均值 \(\text{SNR}_{out} \)。

i. 通过系统增益 \(G_{s,i}, i = 1, \ldots, N \) 中 \(N \) 为系统增益可调节的阶数，计算各增益下的输入功率 \(P_{s,i} = P_s + (G_s - G_{s,i}) \)（dB），由于量化前系统增益调节时，系统噪声也相应的得到调节，因此信噪比保持不变，故重复步骤 g-h，得到不同系统增益下的信号输出信噪比均值

\[
\text{SNR}_{out}.
\]

j. 比较所求得的不同系统增益下的输出信噪比均值，获得一最大值，该最大值对应的系统增益即为系统 SAR 增益设置最为合适的值。

k. 下面以星载 SAR 常用的 4bit 均匀量化和 8:3 分块自适应量化（BlockAdaptive Quantization, BAQ）为例，给出基于实际数据的分析结果。

l. 图 2-5 为对某段存在饱和的 4bit 均匀量化的星载 SAR 数据分析结果。
14. 3127dB。如图4所示，采用本发明的方法，得到的结论是系统增益应该下降9.8dB。如图5所示，调整增益后，计算得到的平均输出信噪比为14.4692dB。

图6-8为对某段存在饱和的8:3BAQ星载SAR数据分析结果。如图6所示，在目前MGC的接收机增益下，输出信噪比均值仅为9.8944dB。如图7所示，采用现有技术方案，得到的结论是系统增益应该下降6.578dB，此时计算得到平均输出信噪比为14.35dB。如图8所示，采用本发明的方法，得到的结论是系统增益应该下降9.2dB。如图9所示，调整增益后，计算得到的平均输出信噪比为14.617dB。

可见，与现有技术相比，本发明能够使SAR数据的量化输出信噪比达到最大，从而有利于SAR图像质量达到最佳。

对于上述技术方案，如数据尺寸较小，或者数据功率变化不大，也可不用进行分块统计，换言之，分块大小可与数据大小一致。此外，如果关心的场景只占整个场景的某个区域，也可只对该区域进行本技术方案的操作。

以上所述的具体实施例，对本发明的目的、技术方案和有益效果进行了进一步详细说明，所应理解的是，以上所述仅为本发明的具体实施例而已，并不用于限制本发明，凡在本发明的精神和原则之内，所做的任何修改、等同替换、改进等，均应包含在本发明的保护范围之内。
图 1

图 2

图 3
接收机增益增加5.678dB,平均信噪比为14.35dB

图 7

接收机增益应该增加9.2dB

图 8
图 9