
USOO8694920B2

(12) United States Patent (10) Patent No.: US 8,694,920 B2
Kirtane et al. (45) Date of Patent: Apr. 8, 2014

(54) DISPLAYINGAPPLICATION INFORMATION 7.793,226 B2 * 9/2010 Sorenson et al. 71.5/777
IN AN APPLICATION-SWITCHING USER 7.882,448 B2* 2/2011 Haug 715/779
INTERFACE 8, 140,993 B2 * 3/2012 Balasubramanian 71.5/779

2003. O132949 A1 7/2003 Fallon et al.
2006/0200773 A1* 9, 2006 Nocera et al. 715,764

(75) Inventors: Latika Kirtane, Seattle, WA (US); 2007/0067734 A1 3/2007 Cunningham et al.
Chaitanya D. Sareen, Seattle, WA (US); 2007/0143710 A1* 6/2007 Hayman 715,837
Bret P. Anderson, Kirkland, WA (US) 2007/0214429 A1* 9/2007 Lyudovyk et al. 71.5/772

s s 2008, 00468.32 A1 2/2008 Balasubramanian

(73) Assignee: Microsoft Corporation, Redmond, WA 2009,0007017 A1 1/2009 Anzures et al. 715.835
(US) OTHER PUBLICATIONS

(*) Notice: Subject to any disclaimer, the term of this IBM Technical Disclosure Bulletin, “Icon Overlays to Present Status
patent is extended or adjusted under 35 Information.” Jun. 1, 1994, IBM, TDE-ACC-No. NA9406461, vol.
U.S.C. 154(b) by 1062 days. 37, Issue 6A.*

DiLascia, "System Tray Balloon Tips and Freeing Resources
(21) Appl. No.: 12/237,414 Quickly in .NET.” Nov. 2002, Available http://msdn.microsoft.com/

en-us/magazine/cc188923.aspx.*
(22) Filed: Sep. 25, 2008 (Continued) O1

65 Prior Publication Dat (65) O DO Primary Examiner — Alvin Tan
US 201O/OO77347 A1 Mar. 25, 2010 (74) Attorney, Agent, or Firm — Carole Boelitz: Leonard

Smith; Micky Minhas
(51) Int. Cl. y

G06F 3/048. I (2013.01) (57) ABSTRACT

(52) U.S. Cl. An application status system is described herein that informs CPC G06F 3/04817 (2013.01) the user about application-specific status updates and notifi USPC 715/846; 715/779; 715/803
58) Field of Classification S h cations through a changing status icon associated with an
(58) C OSSO 3/04817: GO6F 3/0481 application-switching user interface displayed by an operat

USPC - s 71.5/779, 846 ing system when the application is running. When an appli

S licati - - - - - file? - - - - - - - - - - - - -i - - - - - - - - - - - - - -h hi s cation has focus, there is typically no way for another appli
ee application file for complete search history. cation to display status to the user without displaying a dialog

(56) References Cited box or a notification balloon that interrupts the user. The

U.S. PATENT DOCUMENTS

5,333,256 A 7, 1994 Green et al.
5,617,526 A * 4, 1997 Oran et al. 71.5/779
6,414,697 B1 7/2002 Amro et al.
6,944,647 B2 * 9/2005 Shah et al. TO9,206
7,581,192 B2 * 8/2009 Stabb et al. 715,781
7,614,010 B2 * 1 1/2009 Hosoki et al. 715.783
7,631.270 B2 * 12/2009 Cunningham et al. 71.5/772

application status system takes advantage of the existing
application-Switching user interface to display a lightweight
status icon overlay on the application-Switching user inter
face itself. Thus, the application status system allows appli
cations to provide application-specific status updates without
interrupting a user's activity in another application and with
out adding additional UI for a user to process.

16 Claims, 5 Drawing Sheets

210 1240

250
- -220

- - 230

260

--270

No Background

US 8,694,920 B2
Page 2

(56) References Cited “Notifu, a free open source pop-up balloon utility”. Retrieved at
<<http://www.paralint.com/projects/notifu/>>, May 5, 2005. pp. 3.
“TortoiseSVN the coolest Interface to (Sub)Version Control”.

OTHER PUBLICATIONS Retrieved at <http://tortoisesvn.net/node? 138>, Aug. 1, 2008. pp.
1-2.

“Notification Area'. Retrived at <<http://msdn.microsoft.com/en-us/
library/aa5 11448(printer).aspx>>, Aug. 4, 2008. pp. 1-10. * cited by examiner

US 8,694,920 B2 Sheet 1 of 5 Apr. 8, 2014 U.S. Patent

0/ |

I omm 81.1

U.S. Patent Apr. 8, 2014 Sheet 2 of 5

No Background

Figure 2

240

220

230

270

US 8,694,920 B2

US 8,694,920 B2 Sheet 3 of 5 Apr. 8, 2014 U.S. Patent

079

g 9.1m81-I

O?e

U.S. Patent Apr. 8, 2014 Sheet 4 of 5 US 8,694,920 B2

410

Receive AP Cal

420

Validate WindoW Handle

430

Provide Con to Taskbar
WindoW

U.S. Patent Apr. 8, 2014 Sheet 5 of 5

Display Taskbar

510

Receive RedraW Instruction

520

Enumerate Taskbar items

530

Get Item Con

Select con

Display loon

Figure 5

US 8,694,920 B2

US 8,694,920 B2
1.

DISPLAYINGAPPLICATION INFORMATION
IN AN APPLICATION-SWITCHING USER

INTERFACE

BACKGROUND

Users of computers today run many applications at the
same time. For example, a user may be actively working in a
word processing application, while also viewing related
information in a spreadsheet application, listening to music
through a media player application, staying in touch with
others through an email application and an instant messaging
application, and so forth. Many of these applications have a
changing status over time for which the applications alert the
user. For example, an instant message application may alert a
user each time one of the user's contacts signs on. As another
example, an email application may alert a user each time the
application receives a new email message.

Software applications have various ways of alerting a user
to events and status changes. For example, applications may
display a dialog box, make a beeping Sound, or use operating
system provided facilities such as a system tray area for
displaying icons, displaying a balloon notification, or flashing
the application window. Each of these ways of alerting a user
seeks to get the users attention and notify the user that some
thing has happened that may make the user want to transition
from whatever activity the user is currently working on to
address the event that caused the alert. Application developers
design these events to be disruptive and the events may actu
ally begin to annoy or distract the user and affect the user's
productivity.
One problem with notifying the user in this way is that

applications can overload the user with the quantity and vari
ety of notifications that the user receives. For example, a user
may have a large number of status icons in his/her system tray,
receive several dialog boxes per hour, and so forth. The quan
tity of application notifications may lead the user to ignore the
notifications, run fewer applications, or become less produc
tive as the user spends more time staying aware of various
applications status and less time performing productive
tasks. Another problem is that the user does not know where
to focus to get information about the application, because the
user may receive information in so many places. For example,
an application may have status information in the application
UI, in the system tray, on the desktop (such as through a
separate dialog box window), and on the taskbar.

SUMMARY

An application status system is described herein that
informs the user about application-specific status updates and
notifications through a changing status icon associated with
an application-Switching user interface displayed by an oper
ating system when the application is running. Most operating
systems provide an application-Switching user interface (UI),
such as a taskbar, which allows users to switch between
running applications. When an application has focus (e.g., is
actively being used by the user), there is typically no way for
another application to display status to the user without dis
playing a dialog box or a notification balloon that interrupts
the user. The application status system takes advantage of the
existing application-Switching user interface to display a
lightweight status icon overlay on the application-Switching
user interface itself. Thus, the application status system
allows applications to provide application-specific status
updates without interrupting a user's activity in another appli
cation and without adding additional UI for a user to process.

2
This Summary is provided to introduce a selection of con

cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub

5 ject matter, nor is it intended to be used to limit the scope of

10

15

25

30

35

40

45

50

55

60

65

the claimed Subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram that illustrates components of the
application status system, in one embodiment.

FIG. 2 is a display diagram that illustrates a status icon
displayed by the application status system, in one embodi
ment.

FIG. 3 is a block diagram that illustrates an operating
environment of the application status system, in one embodi
ment.

FIG. 4 is a flow diagram that illustrates the processing of
the receive icon component of the application status system,
in one embodiment.

FIG. 5 is a flow diagram that illustrates the processing of
the display item component of the application status system,
in one embodiment.

DETAILED DESCRIPTION

An application status system is described herein that
informs the user about application-specific status updates and
notifications through a changing status icon associated with
an application-Switching user interface (e.g., a taskbar) dis
played by an operating system when the application is run
ning. The application status system provides the user with
status information without interrupting the user with dialog
boxes or otherwise being excessively intrusive. Most operat
ing systems provide an application-Switching user interface
(UI), such as a taskbar, which allows users to switch between
running applications. When an application has focus (e.g., is
actively being used by the user), there is typically no way for
another application to display status to the user without dis
playing a dialog box or a notification balloon that interrupts
the user. The application status system takes advantage of the
existing application-Switching user interface to display a
lightweight status icon overlay on the application-Switching
user interface itself (e.g., a 16x16 icon overlay on the taskbar
button for the application). For example, an email application
that receives a new email message can change the status icon
to notify the user that a new message has arrived. As another
example, if a user sets his/her messaging status to busy in an
instant messaging application, the application can display the
busy status using the status icon. Thus, the application status
system allows applications to provide application-specific
status updates without interrupting a user's activity in another
application and without adding additional UI for a user to
process.

In some embodiments, the application status system pro
vides an overlay application programming interface (API)
that applications can call to set a status icon (e.g., a 16x16
overlay) for the system to display (e.g., in the bottom right
hand corner of the application's taskbarbutton). For example,
Microsoft Windows provides an ITaskBarList3 interface to
which the system can add a new API to allow an application
to specify a status icon for a given window. When the taskbar
renders a taskbar button, if an icon is associated with the
taskbarbutton, then the taskbar draws the icon overlay on top
of the usual application icon on the taskbarbutton. Following
is an example API prototype for setting an applications over
lay icon:

US 8,694,920 B2
3

ITaskbarList3:SetoverlayIcon (HWND hwnd, HICON
hicon)

The application status system displays the status icon over
lay in a taskbar button when a caller invokes the SetOverlayI
con API with the taskbar button's window handle (e.g.,
HWND). An application may have multiple windows that
have associated taskbar buttons, and the window parameter
handle allows the caller to specify which of the multiple
windows on which to display the received status icon. The
caller also provides a handle to a loaded icon (e.g., HICON).
The icon can come from a resource file associated with the
application or another other storage location for icons. If the
window handle passed by the caller has a corresponding
taskbar button/group, then the system shows the overlay. If
the caller passes a NULL icon handle, then the system clears
the status icon associated with the calling application.

FIG. 1 is a block diagram that illustrates components of the
application status system, in one embodiment. The applica
tion status system 100 includes an application interface 110.
a user interface 130, an item manager 140, a display item
component 150, a configuration component 160, a group
manager 170, and a display group component 180. The appli
cation status system 100 interacts with one or more applica
tions 195 to display the applications status. Each of these
components is described further herein.
The application interface 110 includes a receive icon com

ponent 115 and a notify application component 120. The
application interface 110 handles interactions with the appli
cation 195 on behalf of the application status system 100. The
receive icon component 115 provides an API that the appli
cation 915 calls to set and clear status icons for the application
195. For example, the receive icon component 115 may pro
vide an API that the application 195 can call with an icon to set
the icon as the current status icon and can call without an icon
to clear the status icon currently associated with the applica
tion 195. The notify application component 120 notifies the
application 195 of relevant events to which the application
195 may want to respond. For example, the notify application
component 120 may notify the application 195 when the
operating system shell starts or restarts, so that the application
195 can provide a status icon for the shell to display in the user
interface 130.
The user interface 130 provides an interface for the user to

switch between applications and view information about
applications that are currently running. The user interface 130
may display a taskbar, start menu, system tray, and other
operating system shell elements with which users and appli
cations can interact. The user interface 130 may display a
taskbar button for each running application as well as the
status icons described herein in an overlay over the taskbar
button.

The item manager component 140 manages each indi
vidual item that can be present in the user interface 130. For
example, each application or application window may have a
corresponding item that is associated with a taskbarbutton or
other user interface element in the user interface 130. The
item manager component 140 tracks which applications are
associated with each element.
The display item component 150 manages data associated

with an item and performs the steps for displaying an item.
For example, the display item component 150 may store the
overlay icon currently set for an application, the time the
overlay icon was last set, and so on. The display item com
ponent 150 renders elements for display in the user interface
130. Such as by alpha blending an application main icon and
title with the status icon as an overlay on the main icon.

10

15

25

30

35

40

45

50

55

60

65

4
The configuration component 160 manages configuration

of the application status system 100. For example, the user
may be able to configure whether the user interface 130
groups application windows, and if so how many application
windows the user interface 130 displays before the grouping
occurs. The configuration component 160 may also allow
status icons to be turned on or off, animation to be allowed or
not, and other preferences to be set.

In some embodiments, the user interface component 130
groups user interface elements associated with the same
application. For example, web browsers often display each
web page that a user opens in a separate window where each
window has an associated user interface element in the user
interface 130. As another example, word processing pro
grams often display each document that a user opens in a
separate window. The application status system 100 includes
a group manager 170 and a displaygroup component 180 that
manage the display of status icons for application groups. The
group manager 170 keeps track of each application window
the system can potentially group. For example, the group
manager 170 may store a group class instance in memory that
contains a pointer to each application item within the group.
The display group component 180 manages displaying a sta
tus icon for the group. The display group component 180 may
determine which of several application status icons to display
for grouped application windows that have multiple status
icons. For example, the display group component 180 may
access the timestamp associated with each item and display
the most recently set overlay icon as the status icon for the
whole group. These and other behaviors of the application
status system 100 are described further herein.
The computing device on which the system is implemented

may include a central processing unit, memory, input devices
(e.g., keyboard and pointing devices), output devices (e.g.,
display devices), and storage devices (e.g., disk drives). The
memory and storage devices are computer-readable media
that may be encoded with computer-executable instructions
that implement the system, which means a computer-readable
medium that contains the instructions. In addition, the data
structures and message structures may be stored or transmit
ted via a data transmission medium, Such as a signal on a
communication link. Various communication links may be
used. Such as the Internet, a local area network, a wide area
network, a point-to-point dial-up connection, a cell phone
network, and so on.

Embodiments of the system may be implemented in vari
ous operating environments that include personal computers,
server computers, handheld or laptop devices, multiprocessor
systems, microprocessor-based systems, programmable con
Sumer electronics, digital cameras, network PCs, minicom
puters, mainframe computers, distributed computing envi
ronments that include any of the above systems or devices,
and so on. The computer systems may be cell phones, per
Sonal digital assistants, Smart phones, personal computers,
programmable consumer electronics, digital cameras, and so
O.

The system may be described in the general context of
computer-executable instructions, such as program modules,
executed by one or more computers or other devices. Gener
ally, program modules include routines, programs, objects,
components, data structures, and so on that perform particular
tasks or implement particular abstract data types. Typically,
the functionality of the program modules may be combined or
distributed as desired in various embodiments.

FIG. 2 is a display diagram that illustrates a status icon
displayed by the application status system, in one embodi
ment. The diagram contains two application icons, a first icon

US 8,694,920 B2
5

210 and a second icon 260. The first icon 210 contains a main
icon 220 and an overlay icon 230. The main icon 220 may
represent a static icon associated with the application that the
system displays in the taskbar or in association with the
application window. The overlay icon 230 represents the sta
tus icon described herein, and the application can change the
overlay icon 230 as the application's status changes. For
example, in the first icon 210, the overlay icon 230 displays a
user's 'away status for an instant messaging application, and
in the second icon 260 the overlay icon 270 displays the user's
“busy status. The icons have a transparent background 250
that allows the background 240 over which they are placed to
show through. Similarly, the overlay icon 230 has a transpar
ent background so that it does not obscure the main icon 220.

FIG. 3 is a block diagram that illustrates an operating
environment of the application status system, in one embodi
ment. The environment includes an application 310 and an
operating system shell 340. For example, the Explorer.exe
process displays the operating system shell340 for Microsoft
Windows, and displays user interface elements such as the
user's desktop and a taskbar for Switching between applica
tions. The dashed line 330 between the application 310 and
the operating system shell 340 represents a process or other
boundary that separates the application 310 and the operating
system shell 340. Those of ordinary skill in the art will rec
ognize that applications may run in many configurations,
including as a library within the process of the operating
system shell 340, and the configuration shown is merely for
illustration and not intended to limit the possible configura
tions of the system. The application status system provides
the application 310 with an interface 320 for setting a status
icon for the application. For example, the application may
receive a pointer to the interface by instantiating a COM
object, linking to an operating system library that provides an
API for creating the interface, and so forth. Following is one
example of receiving the pointer and calling the API:

HRESULT AddIconoverlay (HWND hwnd, HICON hicon)

ITaskBarList3 *ptbl;
HRESULT hr = CoCreateInstance(CLSID TaskbarList, NULL,

CLSCTX INPROC SERVER, IID PPV ARGS(&ptbl);
if (SUCCEEDED(hr))

hr = ptbl->SetoverlayIcon (hwind, hicon);
ptbl->Release();

return hir:

The operating system shell 340 includes classes for man
aging the display of the application-Switching user interface.
In the example illustrated, the operating system shell 340
includes an instance of a CTaskBand class 350, one or more
instances of a CTaskGroup class 360, one or more instances
of a CTaskItem class 370, an instance of a CTaskListWind
class 380, and one or more instances of a CTaskBtnGroup
class 390. The CTaskBand class 350 manages the data and
display of the application-Switching user interface. For
example, the CTaskBand class 350 may store information
about a window associated with the application-Switching
user interface and pointers to each of the other class instances
described. The CTaskGroup class 360 manages data associ
ated with a particular application and each of its windows that
the user interface represents with an element (e.g., a button) in
the application-switching user interface. The CTaskItem
class 370 manages data associated with a particular applica

10

15

25

30

35

40

45

50

55

60

65

6
tion window. For example, the CTaskItem class 370 may store
the queue of icons for an application and the time when the
system received each one.
A single application may display many windows, and the

operating system shell340 may group them together or show
them individually. For example, Microsoft Internet Explorer
may display a window for each web page that a user has open,
and Microsoft Windows Explorer may display a taskbar but
ton for each window or group the windows into a single
taskbar button (e.g., when the count of windows exceeds a
certain number). The CTaskListWind class 380 manages a
window for displaying the application-Switching user inter
face. For example, in Microsoft Windows, the taskbar is a
window (e.g., displayed at the bottom of the screen and on top
of other applications), and applications are represented by
buttons displayed within the window. The CTaskBtnGroup
class 390 manages the rendering of the individual application
or group elements within the application-Switching user
interface. The CTaskBtnGroup class 390 gathers information
from the CTaskGroup class 360 and the CTaskItem class 370
to determine what to display. For example, for Microsoft
Windows the CTaskBtnGroup class 390 manages the portion
of the taskbar that contains application buttons (e.g., the area
excluding the start menu and system tray).

FIG. 4 is a flow diagram that illustrates the processing of
the receive icon component of the application status system,
in one embodiment. These steps are invoked when an appli
cation calls the API associated with the application status
system for updating the status icon (e.g., ITaskBarList3::
SetOverlay Icon). In block 410, the system receives a call
through the API that includes a window handle and icon
handle. For example, an application may change status and
call the API to update its associated status icon. In block 420,
the system verifies the window handle passed to the API to
verify that it belongs to the process of the caller. For example,
the system may block attempts to set a status icon for another
application.

In block 430, the system provides the status icon to the
application-Switching user interface window. For example,
the system may call PostMessage() to send a TBC SE
TOVERLAYICON message to the taskbar passing the
HWND and HICON received from the caller. The taskbar
receives this call through the message pump of the window
associated with the CTaskListWind class instance described
herein. The CTaskListWind class instance locates the CTas
kItem corresponding to the window and calls CTaskItem:
SetOverlay Icon (). In decision block 440, if the received icon
handle is NULL, then the system continues at block 470, else
the system continues at block 450. In block 450, the applica
tion-Switching user interface stores a copy of the icon. For
example, CTaskItem:SetOverlay Icon () may make a copy of
the icon handle and store it in a local variable.

In block 460, the component stores a timestamp of the
current time when the application called the API as a basis for
selecting status icons later on. In block 470, the component
clears any currently stored status icon. In block 480, the
component redraws the item. For example, the component
may signal the user interface component to update the taskbar
window. After block 480, these steps conclude.

FIG. 5 is a flow diagram that illustrates the processing of
the display item component of the application status system,
in one embodiment. The component is invoked when the
system redraws all or a portion of the application-Switching
user interface. In block 510, the component receives an indi
cation to redraw all or part of the taskbar. For example, when
the user launches a new application oran application updates
its status icon, the system may call the CTaskBtnGroup class

US 8,694,920 B2
7

instance described herein to redraw that applications associ
ated taskbarbuttons. In block.520, the component enumerates
the application-Switching user interface items associated with
one or more applications. For example, when CTaskBtn
Group is rendering it may enumerate through each CTaskItem
class instance. In block 530, the component retrieves the
status icon for the current item. For example, CTaskBtnGroup
may call CTaskItem::GetOverlayIcon () to determine if the
item contains an associated overlay icon.

In decision block 540, if the component successfully
retrieved the icon, then the component continues at block 550,
else the component continues at block 580. In decision block
550, if the user has configured the application-switching user
interface to group items from the same application, then the
component continues at block 560, else the component con
tinues at block 570. In block 560, the component selects an
icon to display from each of the items associated with the
application. For example, the component may call CTas
kItem::Get Overlay Icon Timestamp() to get the timestamp for
each status icon and select the icon handle belonging to the
CTaskItem instance with the highest timestamp for the com
ponent to display. If there is only one CTaskItem instance in
the group with an overlay icon, then the system uses any icon
associated with that instance. In block 570, the component
displays the selected icon as an overlay on the associated
taskbar item. For example, the component may paint the
taskbar button and then paint the overlay icon on top of it, or
alpha blend the taskbar button and overlay icon. In decision
block 580, if there are more items, then the component loops
to block 520 to process the next item, else the component
completes. After block 580, these steps conclude.

In some embodiments, the application status system pre
vents applications not associated with a taskbar button from
modifying the status icon associated with the taskbar button.
For example, a malicious or erroneous application could try
to modify another application's status icon. The system
ignores calls to the overlay API that are not from a process
associated with the taskbar button.

In some embodiments, the application status system auto
matically unloads status icons associated with terminated
applications. For example, if an application terminates and
fails to clear its status icon, then the system may unload the
icon to save system resources.

In some embodiments, the application status system auto
matically selects a status icon when multiple windows or an
application are grouped together on the taskbar. For example,
Microsoft Windows can be set to group windows of the same
application into one taskbar button when an application is
displaying more than a set number of windows (e.g., four).
Each of the application windows may expect to have its own
taskbarbutton and may have set a status icon. The system may
select one of the icons to display in association with a single
group taskbar button displayed by the operating system. For
example, the application status system may select the most
recently set status icon, or the icon associated with the left
most (e.g., earliest created) application window. If the appli
cation clears the selected icon, then the application status
system may select another status icon displayed by another
application window to display in association with the group
button.

In some embodiments, the application status system
queues status icons received from an application. The appli
cation pushes status icons to the system one at a time and the
system stores each one in a queue. When the application has
multiple windows that the system groups into a single taskbar
button, the system displays the most recent status icon pushed
to the system by the application. Applications can clear status

10

15

25

30

35

40

45

50

55

60

65

8
icons at any time. When an application clears a status icon, the
system displays the next most recent status icon. This allows
applications to easily display a transient status and then revert
to a long-term status by clearing the transient status.

In some embodiments, the application status system pro
vides a message to applications to inform the applications that
the operating system created the application-Switching user
interface. This can occur at System startup, when a new user
logs on, when the operating system shell restarts, and so on.
Applications may respond to the message by setting an initial
status icon.

In some embodiments, the application status system dis
plays special types of icons. For example, the application
status system may receive an animated GIF icon from an
application and display the icon animated in the application
Switching user interface.

In some embodiments, the application status system
throttles painting of the application-Switching user interface
to avoid degrading system performance. For example, the
application status system may only refresh the application
Switching user interface 30 times per second, since this is the
highest amount that a typical user can perceive, even though
an application may supply a status icon update more fre
quently.

In some embodiments, the application status system pro
vides transitions between status icons as the application sets
new status icons or the system displays other icons in the
queue. For example, the system may provide a fade-out/fade
in effect when transitioning between icons, or animate the
icon in Some way (e.g., inflating the icon) to attract attention
to it. If the system is not currently displaying an overlay for an
application and receives a call to display an overlay, the
system may fade in the overlay with a medium speed (e.g.,
500-800 ms). If the system is currently displaying an overlay
and receives a call to clear the overlay, the system may fade
out the overlay with a medium speed (e.g., 500-800 ms).

In some embodiments, the application status system
receives configuration information from a user that modifies
the behavior of the system. For example, the system may
allow the user to turn off the display of the status icon, such as
if the user finds it annoying. As another example, the system
may allow the user to specify which applications can display
a status icon, how frequently the system updates the icon, and
other configuration settings.

In Some embodiments, the application status system makes
the status icon clickable, so that an application can display a
menu or other additional information about the application.
Icons in the system tray today are clickable, and to encourage
applications to use the taskbar overlay instead, the application
status system may provide similar functionality through the
status icon.
From the foregoing, it will be appreciated that specific

embodiments of the application status system have been
described herein for purposes of illustration, but that various
modifications may be made without deviating from the spirit
and scope of the invention. For example, the system can be
used with many operating systems and status display user
interface paradigms. As an example, the status icon could be
displayed in place of the main application icon in the taskbar,
on the application window, or in other locations. Accordingly,
the invention is not limited except as by the appended claims.
We claim:
1. A computer-implemented method for displaying a status

icon for an application having a group of two or more win
dows opened by the application, the method comprising:

providing a status overlay icon API that allows the appli
cation to provide the status icon that will be displayed by

US 8,694,920 B2
9

an operating system in an application-Switching user
interface window, wherein calling the API instructs the
operating system to manage multiple status icons
belonging to the group;

providing the application-Switching user interface win
dow, wherein the user interface window displays a user
interface element for the group;

receiving a call to the API from the application, wherein the
API call includes a window handle and a handle to the
status icon which indicates a status of the application;

storing a timestamp of the current time when the API call
was received and using the timestamp to determine that
the status icon is the most recent one of the multiple
status icons to display for the application;

providing the status icon to the application-Switching user
interface window;

storing a copy of the status icon in association with the
application-Switching user interface window; and

displaying the status icon when the application-Switching
user interface window draws the user interface element
associated with the application, wherein a display loca
tion of the status icon is selected to overlay an applica
tion taskbar interface already displayed for the applica
tion and without employing a separate area outside of the
applications already displayed interface to which to
direct the user for application status information.

2. The method of claim 1 further comprising verifying that
the window handle received in the API call belongs to a
process associated with the application.

3. The method of claim 1 further comprising, if the received
icon handle is NULL, clearing a currently stored status icon.

4. The method of claim 1 further comprising determining
that the application is no longer running and clearing the
stored copy of the status icon.

5. The method of claim 1 wherein storing a copy comprises
adding the status icon to a queue of status icons associated
with the application.

6. The method of claim 1 wherein displaying the status icon
comprises throttling a number of updates to the status icon to
manage system performance.

7. The method of claim 1 wherein displaying the status icon
comprises determining whether the application had a previ
ously associated Status icon, and if the application did not
have a previously associated Status icon fading in the received
status icon.

8. The method of claim 1 further comprising receiving a
notification that a user clicked on the status icon and display
ing additional information about the application in response
to the click.

9. A computer system for displaying application status in
an application-Switching user interface window, the system
comprising:

a processor and memory configured to execute Software
instructions embodied within the following compo
nents:

a receive icon component configured to provide an API that
applications call to set and clear status icons associated
with the applications, wherein the API allows each of the
applications to provide a status icon that will be dis
played by an operating system in the application-Switch
ing user interface window, and wherein calling the API
instructs the operating system to manage the status icons
on behalf of the applications:

a user interface component configured to provide the appli
cation-Switching user interface window for a user to
Switch between said applications and view information
about said applications that are currently running,

10

15

25

30

35

40

45

50

55

60

65

10
wherein the user interface window displays an item for
each of said applications to which the user can Switch;

an item manager component configured to manage each of
said items displayed by the user interface and configured
to store timestamps of current times when each of the
API calls were received to set the status icon for each of
the applications;

a group manager configured to keep track of groups of two
or more application windows opened for each of said
applications;

a display item component configured to manage data asso
ciated with each of said items and display each of said
items, wherein the display item component overlays the
status icon for each of said applications on said items
over a static icon displayed for each of said applications,
and wherein a display location of the status icon is
Selected to overlay an application taskbar interface
already displayed for the application and without
employing a separate area outside of the applications
already displayed interface to which to direct the user for
application status information; and

a display group component configured to access, for said
groups that comprise multiple status icons, said times
tamps associated with each status icon and display the
most recently set status icon as the status icon for the
corresponding application having the group.

10. The system of claim 9 further comprising a configura
tion component configured to manage configuration of the
system.

11. The system of claim 9 further comprising a notify
application component configured to notify the applications
of relevant events to which the applications may want to
respond.

12. The system of claim 11 wherein the notify application
component notifies applications when the user interface is
created.

13. The system of claim 9 wherein the display item com
ponent displays a 16x16 icon over a corner of a main icon
associated with at least one of the applications.

14. A computer-readable storage device encoded with
instructions for controlling a computer system to display a
taskbar that includes application status information, by a
method comprising:

receiving an indication to redraw at least a portion of the
taskbar;

enumerating one or more taskbar items associated with one
or more corresponding running applications;

for each enumerated taskbar item,
retrieving a status icon associated with the taskbar item,

wherein the status icon is provided through an API
that allows the corresponding application to provide
the status icon that will be displayed by an operating
system in an application-Switching user interface
window, and wherein calling the API instructs the
operating system to manage status icons on behalf of
the corresponding application;

determining whether the taskbar has been configured to
group status icons belonging to a group of two or more
windows opened by the corresponding application;
and, if the taskbar has been configured to group status
icons from the application, using timestamps of cur
rent times when API calls for providing status icons
were received to select the most recent one of the
status icons as the retrieved status icon to display from
the item associated with the application; and

displaying the retrieved status icon as an overlay on the
taskbar item, wherein a display location of the status

US 8,694,920 B2
11

icon is selected to overlay an application taskbar inter
face already displayed for an application associated with
the taskbar item and without employing a separate area
outside of the applications already displayed interface
to which to direct the user for application status infor
mation.

15. The device of claim 14 wherein the indication to redraw
is received in response to an application updating its associ
ated Status icon.

16. The device of claim 14 wherein the taskbar includes a
button for each of the applications and displaying the
retrieved status icon comprises displaying the retrieved status
icon over at least a portion of the button.

k k k k k

10

12

