Title: OPTICAL COMPONENT FOR LIGHT COUPLING

Fig. 3b

Abstract: The invention provides an optical component for transferring light between an opto-electronic device and a light transmissive panel which defines two opposing boundary surfaces, the optical component having a shape formed from a geometric shape having a base surface, a lateral front surface and an axis, wherein the geometric shape is truncated by a plane intersecting the front surface, the base surface, and the axis, forming a back surface. The base surface is configured for mounting the optical component to the light transmissive panel and for coupling light into the light transmissive panel. The front surface being configured for coupling light from the front surface, through the base surface, and into the light transmissive panel for the light to propagate by total internal reflection within the light transmissive panel.
OPTICAL COMPONENT FOR LIGHT COUPLING

Field of the Invention

The present invention relates to an optical component for transferring light between an opto-electronic device and a light transmissive panel which defines two opposing boundary surfaces for a touch-sensing system. Multiple such optical components may be arranged as an array to couple light into the light transmissive panel.

Background of the Invention

Touch-sensing systems ("touch systems") are in widespread use in a variety of applications. Typically, the touch systems are actuated by a touching object such as a finger or stylus, either in direct contact, or through proximity (i.e. without contact), with a touch surface. Touch systems are for example used as touch pads of laptop computers, in control panels, and as overlays to displays on, e.g., hand held devices, such as mobile telephones, but also on larger devices and displays. A touch panel that is overlaid on or integrated in a display is also denoted a "touch screen".

Many other applications are known in the art.

There are numerous known techniques for providing touch sensitivity, e.g. by incorporating resistive wire grids, capacitive sensors, strain gauges, etc. into a touch panel. There are also various types of optical touch systems, which e.g. detect shadows cast by touching objects onto a touch surface, or detect light scattered off the point(s) of touching objects on a touch panel.

One specific type of optical touch system uses projection measurements of light that propagates on a plurality of propagation paths inside a light transmissive panel that defines a touch surface. The projection measurements thus quantify a property, e.g. power, of the light on the individual propagation paths, when the light has passed the panel. The light propagates inside the panel by total internal reflection (TIR) against the touch surface, such that objects on the touch surface causes the propagating light on one or more propagation paths to be attenuated, commonly denoted FTIR (Frustrated Total Internal Reflection). For touch determination, the projection measurements may be processed by simple triangulation, or by more advanced image reconstruction techniques that generate a two-dimensional distribution of disturbances on the touch surface, i.e. an "image" of everything on the touch surface that affects the measured property. Examples of such touch systems are found in US3673327, US4254333, US6972753, US7432893, US2006/01 14237, US2007/0075648, WO2009/048365, US2009/0153519, WO2010/006882, WO2010/064983, WO201 0/1 34865 and WO201 2/1 05893.

WO2013/036192 discloses a light coupling structure for optical touch panels, such as of the type in the above referenced documents. The coupling structure is used to in-couple light from a light source, such as an LED, to the panel at an angle suitable for TIR (total internal reflection) in a touch
panel. The light coupling structure is relatively large and takes up significant space underneath the panel. However, the available space for the touch-sensing system is scarce, particularly at the periphery of the touch panel where opto-electronic components are mounted in an electrical device. This is even more problematic for smaller devices having a touch-sensing system. The light coupling structure is also relatively costly to manufacture and mount on the panel. Finally, a reliability problem may occur as the temperature coefficient differences between components and the panel can result in reduced performance over time. Another problem is that, for optical components with a broad illumination directed onto the glass, a large fraction of the light will not be coupled into the panel.

Attempts have been made to use a film with dome shaped lenses arranged in an array on a transparent substrate for coupling light from the light source to a panel of a touch-sensing system. Such substrates with dome shaped lenses are e.g. disclosed in WO2006/034409A2 but used for a different purpose than coupling light into a light transmissive panel of a touch-sensing system. In the field, the 'region of interest' is defined as the angular range, both in the theta (Θ - i.e. the angle of the light from the normal of the plane of the panel) range and phi (ϕ - i.e. the angle of the light from the normal of the edge of the panel and in the plane of the panel) range of light travelling in the glass from which the system is configured to derive a touch signal. This range may be chosen for optimal touch resolution and to exclude contamination noise. In a touch-sensing system using TIR for the propagation of the light in the touch panel, the region of interest of light inside the panel is between 40--90- for Θ although preferably between 50- -75-, and a range of ±75- for ϕ. This means that for a dome shaped structure, only a small fraction of the dome shaped surface refracts the light at an angle to propagate within the panel via TIR within the region of interest and to provide effective and contamination resistant touch detection. Therefore, a dome shaped solution is not efficient for in-coupling of light to a touch panel. Hence, a shape of the primitive that directs light needs to be found to couple larger numbers of photons into the light transmissive panel at angles matching the ROI for touch-sensing systems based on light propagating by TIR.

The present invention addresses a widely recognized need for efficient coupling of light into a light transmissive panel for a touch-sensing system, and thus provides for improved power efficiency and/or a more compact design.

Summary of the Invention

Accordingly, embodiments of the present invention preferably seek to mitigate, alleviate or eliminate one or more deficiencies, disadvantages or issues in the art, such as the above-identified, singly or in any combination by providing an optical component, an arrangement with a plurality of such optical components, and a method for producing the optical components.

The invention is defined by the appended claims.
A first object is to provide an optical component for transferring light between an opto-electronic device and a light transmissive panel which defines two opposing boundary surfaces, the optical component having a shape corresponding to a geometric shape having a base surface, a lateral front surface and an axis, wherein the geometric shape is truncated by a plane intersecting the front surface, the base surface, and the axis, forming a back surface. The base surface is configured for mounting the optical component to the light transmissive panel and for coupling light into the light transmissive panel. The front surface being configured for coupling light from the front surface, through the base surface, and into the light transmissive panel for the light to propagate by total internal reflection within the light transmissive panel.

A second object is to provide an arrangement, using the optical components of the first embodiment, for transferring light between an opto-electronic device and a light transmissive panel which defines two opposing boundary surfaces. The arrangement comprises a plurality of partially overlapping optical components according to any of the previous claims forming a continuous element arranged in at least one row with a predetermined peak to peak spacing between the peaks of neighboring optical components of a row, wherein a peak is the point on the optical component furthest from the base surface of the optical component.

Some embodiments of the invention provide for efficient in-coupling of light into a light transmissive panel.

Some embodiments of the invention also provide an optical component for transferring light between an opto-electronic device and a light transmissive panel with a compact design which is also efficient to couple large number of photons to the light transmissive panel.

Some embodiments of the invention also provide for an optical component for transferring light, which is shift invariant, between the opto-electronic device and the light transmissive panel.

Some embodiments of the invention provide for mounting optical components in close proximity to the glass panel and a space efficient arrangement may be obtained.

The term “comprises/comprising” when used in this specification is taken to specify the presence of stated features, integers, steps or components but does not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof.

Brief Description of the Drawings

These and other aspects, features and advantages of which embodiments of the invention are capable of, will be apparent and elucidated from the following description of embodiments of the present invention, reference being made to the accompanying drawings, in which

Fig. 1 is a perspective view of an example of the optical component;
Fig. 2 is a cross-sectional view illustrating geometrical principles of an example of the optical component;

Fig. 3a is a top view illustrating geometrical principles of an example of the array of optical components;

Fig. 3b is a perspective view illustrating geometrical principles of an example of the array of optical components;

Fig. 4 is a flow-chart of an example method for producing an array of optical components; and

Figs. 5a is a cross-sectional view and 5b is a block-diagram, illustrating an example touch-sensing system comprising the optical component.

Fig. 6 is a cross-sectional view illustrating possible paths taken by light from a light source to propagate within the panel.

Fig. 7 illustrates an embodiment of the invention in which the optical components of Fig 3b are inverted.

Description of embodiments

Specific embodiments of the invention will now be described with reference to the accompanying drawings. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. The terminology used in the detailed description of the embodiments illustrated in the accompanying drawings is not intended to be limiting of the invention. In the drawings, like numbers refer to like elements.

The present description of the current invention is given with reference to a touch-sensing system using Total Internal Reflection (TIR) and Frustrated Total Internal Reflection (FTIR) for the propagation of light and detection of light as an example only.

Fig. 1 illustrates an optical component 1 for transferring light between an opto-electronic device 2a, 2b (Fig. 5a) and a light transmissive panel 3 (Fig. 5a) which defines two opposing boundary surfaces. The optical component 1 comprises a base surface 6 for coupling light into the panel 3 by index matching. The base 6 may also be used for mounting the optical component 1 to the panel 3. A front surface 7 is arranged relative the base 6 for directing and redirecting light from the front surface 7 towards the base 6 to propagate by TIR within the panel 3 in a region of interest. The front surface 7 extends from the base to a ridge 8a opposite the base 6. Peak 8 is the highest point of the optical component 1 along ridge 8a as measured from the base 6 perpendicularly towards the intersection of the front surface 7 and the back surface 9. A back surface 9 extends from the base to
the ridge 8a. A light source, such as an emitter 2a (Fig. 5a) may be arranged to direct light at an angle substantially normal to a portion of front surface 7. Hence, light directed towards the optical component 1 will be coupled into the optical component 1, and refracted at suitable angles to propagate by TIR when coupled to the panel 3 via the base surface 6.

As can be seen in Fig. 2, the optical component 1 has a wedge shape in a vertical cross section through the base 6, the front surface 7, and the back surface 9. The vertical cross section is taken along an axis from the peak 8 perpendicular towards the base 6. Hence, wedge as used herein means that the optical component 1 in cross-section has one pointed end and one thicker end. The pointed end is formed at the intersection of the back surface 9 and the base 6, and the thicker end is formed by the front surface 7, especially at the peak 8. The front surface 7 is also referred to herein as a coupling surface, since it is used for coupling light into the optical component 1. The back surface 9 is referred to herein as a sloped surface, since it is sloped from the thicker end towards the thinner end of the optical component 1. Optical component 1 of figure 2 may also be described as a truncated cone having radius r, a base surface 6, a lateral front surface 7 and an axis, according to well-known definitions used for geometric cone shapes. The cone is truncated by a plane intersecting the front surface, the base surface, and the axis, forming back surface 9.

In some embodiments, the front surface 7 extends from the base 6 towards the peak 8 and is inclined with a constant angle relative the base 6. Although the edge between front surface 7 and base surface 6 may describe an arc or circle, the angle between the front surface 7 and base surface 6 is constant at every point along said arc or circle. The back surface 9 may form a sloped surface that extends from the base 6 towards the peak 8 with an angle relative the base 6 that is smaller than the at least one angle of the front surface 7 relative the base 6. Hence, the wedge shaped geometry is formed, which allows for coupling light from the emitter into the panel within the region of interest while excluding light outside the region of interest.

The front surface 7 may be inclined with at least one fixed angle relative the base 6. Hence, since the front surface 7 is inclined with a fixed angle, the entire front surface 7, in the axial direction of the optical component 1, may be used to couple photons into the panel 3 within the region of interest. Hence, efficient coupling of photons is provided for. This is different from a dome shaped surface, which has a continuously changing angle between the coupling surface and the base 6, wherein light useful for TIR is only coupled for a fraction of the coupling surface. Hence, the primitive according to the invention provides increased efficiency of in-coupling of light.

In the embodiment of Fig. 1, the front surface 7 forms a section of a conical surface. Using a section of a conical surface provides for divergence of the light in a direction parallel to the boundary surfaces 201, 202 (Fig. 5a). The size and shape of the conical surface impacts the convergence.

Embodiments of the size and shape are further defined below. For more details regarding the
divergence, reference is made to WO2013/036192, which is incorporated herein by reference for all purposes, particularly with regard to the propagation of light by TIR, divergence, as well as ranges of incident angles relevant for appropriate coupling of light into the panel 3.

In some embodiments, the front surface 7 forms a prismatic surface, such as a plurality of triangular surfaces or a plurality of conical sections having their base at the base 6 of the optical component 1 and their vertex at the peak 8. Hence, the front surface does not have to be completely smooth. The prismatic surface is inclined with at least one fixed angle relative the base 6 for each section of the prismatic surface. Hence, the prismatic surface may have a plurality of surfaces which are inclined with at least one fixed angle relative the base 6 at a single cross section of the optical component 1 taken along the axis extending perpendicular from the base 6 towards the peak 8.

Back surface 9 provides for reflecting or refracting light directed towards the optical component 1 that is outside the range suitable for propagating the light by TIR in the panel 3 within the region of interest. The angle β between the base 6 and back surface 9 may be selected such that the back surface 9 is hit by a minimal number of rays from an emitter passing into the panel within the region of interest. Similarly, β may be selected such that the back surface 9 is hit by a minimum number of rays light passing out of the panel to a detector. In a preferred embodiment, of the light being transmitted by an emitter and successfully received by a detector, the amount of light passing through back surface 9 is less than 5%, whereas the amount of light passing through front surface 7 is at least 95%. Of the aforementioned light passing through front surface 7, less than 5% will reflect on back surface 9 before coupling into the panel within the region of interest. An optimal range for β of between 20- and 60- has been determined to be most effective at coupling light into the panel within the region of interest, with a preferred embodiment having a value of β of 40°.

In another embodiment, optical component 1 may comprise a truncated cylinder shape having radius r, a base surface, a front surface and an axis. The cylinder is truncated by a plane intersecting the front surface, the base surface, and the axis, forming a back surface in the same plane as surface 9.

The unifying principle of the above geometric shapes is that of providing a front surface for receiving light and a substantially flat surface 9 for reflecting light travelling within the optical component into the panel.

The back surface 9 may be coated with a reflective coating, such as mirror coated, using e.g. aluminum sputtering. Hence, the reflective properties of the back surface 9 may be enhanced, providing an effective angular filter for filtering ambient light. In an embodiment of the invention, vacuum deposition of Al, Ag, Au, or Cu are used as material for the mirror coating.

The intersection of the front surface 7 and the back surface 9, i.e. from one side of the base 6, towards the peak 8 and back to the base 6 on the opposite side of the base 6, forms a curved ridge
8a, such as an arc shaped ridge, which is inclined relative the base 6. In some embodiments the
curved edge extends less than 360° around the base 6, as is illustrated in Fig. 1. The extent of the
curved ridge 8a, and thus the extension of the front surface 7 in a lateral direction of the optical
component 1, can be used to configure the distribution in phi of the light coupled into panel 3. In
some embodiments, the intersection may form a conic section.

As can be seen in Fig. 2, the optical component 1 is in some embodiments designed based on
a cone 10, which is illustrated in phantom lines. A top section of the cone is cut away at a plane that
is inclined to the axis of the triangle and cuts the generators of the cone. Hence, an elliptical or semi-
elliptical surface, depending on the position of the plane relative the vertex of the cone 10, is created,
which forms the back surface 9. The remaining surface of the conical surface of the cone 10 is a
section of a conical surface that forms the front surface 7. In a preferred embodiment, the cone is a
right circular cone, having an apex aligned directly above the center of the base surface 6 and
wherein base surface 6 has a circular shape.

Fig. 2 illustrates some geometrical aspects of embodiments of the optical component 1 in a
cross section taken along the vertical axis of the optical component 1 at the peak 8, i.e. at the highest
aspect of the optical component 1. The maximum base radius r of base 6 is limited by the
manufacturing methods and mechanical size constraints only. It is understood that radius r may
otherwise be scaled without limitation to its optical function. In a preferred embodiment of the
invention, a typical radius r for roll to roll UV resin replication is 30 microns. It should be noted that the
base radius is measured from the center of the cone 10 from which the optical component 1 is
designed.

Fig. 3a illustrates an arrangement 20 for transferring light between the opto-electronic device
and the panel 3. The arrangement comprises a plurality of optical components 21a, 21b, 21c, 21d
according to embodiments of the invention, which may form an array of optical components. The
optical components 1, 21a, 21b, 21c, 21d are primitives in the micro-meter to mm range. Hence, the
arrangement forms a very compact design for coupling light into the panel 3 in which the arrangement
comprises partially overlapping components forming a continuous element. In the embodiment of Fig.
3a, the peak to peak distance dy of a recurring pattern of rows of optical components is indicated.
The spacing between peaks of optical components of separate rows is referred to as inter-peak
spacing and may be dy/2. The inter-peak distance is measured perpendicularly from one row of
optical components to another row of optical components. The peaks of one row may be displaced
along one axis, such as the x-axis, relative optical components of a neighboring row, such as
illustrated in Fig. 3a. Preferably, the rows are displaced with respect to one another in a manner
which minimizes the shadowing of one row to the next i.e. that the amount of light arriving at a first
row from the light source is not significantly reduced by the shadow cast by a second row, closer to
the light source than the first row. In some embodiments, the inter-peak spacing may be in the region of 75 µm. In a preferred embodiment, the peaks of one row are displaced along the x-axis (i.e. the axis along which the row runs) relative to optical components of a neighboring row by half of the peak to peak distance dx between the peaks of neighboring optical components of the row.

Furthermore, Fig. 3a illustrates that the optical components 21a, 21b, 21c, 21d may be arranged in at least one row with a predetermined peak to peak distance dx between the peaks of neighboring optical components of a single row, which is referred to as intra-peak spacing. In the preferred embodiment, the intra-peak spacing may be in the region of 70 µm. The optical components 21a, 21b are arranged in a plurality of rows, which forms an array of optical components, with a predetermined peak to peak distance between the peaks of optical components of separate rows, such as optical components 21a, 21b in a first row and optical components 21c, 21d, of a second row. It should be noted that the intra-peak distance effects φ, limiting it to the critical angle of the light incident to the material of the optical component as the intra-peak distance tends to zero.

Hence, the intra-peak spacing may be the same for all optical components for at least one row of optical components. In some embodiments, the intra-peak spacing is the same for all optical components of the arrangement. In other embodiments, the intra-peak spacing varies between the optical components of that row. In other embodiments, the intra-peak spacing within a single row is fixed, whereas it varies between separate rows. The intra-peak spacing impacts the lateral width of the front surface 7 from one side of the base 6 to an opposite side of the base 6, whereby the desired φ of the light coupled into the panel may be obtained by optimizing the intra-peak spacing.

Hence, when the arrangement comprises a plurality of rows of optical components, the inter-peak spacing, measured perpendicularly from a line connecting the peaks of a first row to a line connecting the peaks of a neighboring second row, may be larger than the intra-peak spacing.

Optimizing the intra-peak spacing dx as well as the inter-peak spacing dy/2 provides for optimized arrays or patterns of optical components 21a, 21b adopted to the illumination angle of the light source. The arrangement 20 may thus be adapted to a specific light source with a specific location. Hence, embodiments of the arrangement 20 provides for a flexible design of optical components 21a, 21b for coupling light to a panel 3 for a touch-system.

In one embodiment of the invention, for example, shift variant designs are employed. Shift variant designs (i.e. designs which are not uniformly repeating and comprise customized arrangements of optical components) are much more tolerance sensitive, more expensive and difficult to produce, and less general to implement. However, they can be significantly more efficient at coupling light into and out of a panel if the required tolerances can be achieved. Shift invariant designs (i.e. designs which are uniformly repeating such that the optical properties of the components
are substantially the same across the arrangement) require much lower tolerances but are less efficient at coupling light into and out of a panel.

In one embodiment of the invention, the alignment of the intra-peak spacing \(dx\) and inter-peak spacing \(dy\) between components and rows respectively is randomly determined.

As is illustrated in Fig. 3b, the optical component or the arrangement of optical components \(20\) may be arranged on an angular filter \(610\) (shown in figure 6). The angular filter may be configured to reflect light that is below 50° relative a normal to the base 6 and the angular filter. Hence, the angular filter may filter ambient light incident through the panel 3 towards the base 6.

As is also illustrated in Fig. 3b, an edge \(r1\) formed at the intersection of the front surface 7 and the back surface 9 may be rounded. This rounded edge may have a radius of about 6-14 \(\mu\)m, such as 8-12 \(\mu\)m. In some embodiments a valley \(r2\) is formed at the intersection where the front surface 7 meets the back surface 9 of surrounding optical components. The valley may be curved, such as with a radius of about 1-6 \(\mu\)m, such as 2-4 \(\mu\)m.

Fig. 6 illustrates the arrangement of optical components \(20\) in cross section. In the embodiment shown, optical components \(20\) are mounted on a PET substrate \(620\), with an angular filter layer \(610\) between PET substrate \(620\) and glass \(600\). Optical paths \(650\), \(660\), and \(670\) from emitter \(640\) are shown. First, optical path \(650\) shows the light from emitter \(640\) emitted at an angle causing the light to reflect off back surface 9 towards front surface 7, wherein the light is refracted into the panel within the region of interest. Second, optical path \(660\) shows the light from emitter \(640\) emitted at an angle substantially normal to a portion of front surface 7 causing the light pass through front surface 7, wherein the light is refracted into the panel within the region of interest. Third, optical path \(670\) shows the light from emitter \(640\) emitted at an angle causing the light to pass through front surface 7, wherein the light is refracted onto back surface 9, wherein the light is reflected into the panel within the region of interest. Other more complex paths coupling the light into the panel into the region of interest are known but not described here. However, the vast majority of light not following one of these three paths will not be received by a detector.

Fig. 7 illustrates an embodiment of the invention in which the above concepts are retained but the shape of optical components \(20\) is inverted. As can be envisaged, the shape shown in figure 7 can be used as the manufacturing tool for stamping or embossing the shape of figure 3b. Likewise, the shape of figure 3b can be used as the manufacturing tool for stamping or embossing the shape of figure 7. The optical properties of shape of figure 7 provides for very similar functionality to that of figure 3b and may be selected as a suitable alternative for coupling light from a light source into the panel within the region of interest.

Fig. 4 illustrates a method for configuring a tool used for producing an array of optical components according to embodiments of the invention.
In a step 100, the array of optical components is produced. The follow embodiments describe techniques for doing so.

In one embodiment, a tool is configured with a first column of optical components arranged with an inter-peak spacing between the peaks of neighboring optical components of the nearby rows, such as in within the ranges defined above. A second column of optical components is arranged with an intra-peak distance between the peaks of the same rows. The inter-peak spacing may be set within the range as defined above. The intra-peak and/or the inter-peak spacing may be predefined. Furthermore, the optical components may be arranged in more than two rows of optical components with varying inter-peak spacing between neighboring rows. Similarly, the intra-peak spacing may vary between optical components of a single row. Hence, the optical components of at least one row may be arranged with varying intra-peak spacing. The tool is then used for production of an array of optical components, preferably by stamping or embossing.

The array of optical components may be produced by casting in a substrate. The substrate is substantially transparent, and may be made of a polymer, such as polyethylene terephthalate (PET), polycarbonate, PMMA, or other suitable materials.

In the preferred embodiment of the invention, optical components 20 are arranged on one side of the substrate. A slight overlap of one row over a previous row is provided, wherein the front surface 7 is arranged on top of at least one back surface 9 of an optical component of a previous row. Similarly, optical components within the same row are provided with a slight overlap, as seen in figure 3a and 3b. The optical components may be produced using the same type of material as for the substrate. The substrate may thus form the base 6 of the optical component 1. In another embodiment, the optical components are embossed onto extruded plastic strips attached to the panel. In yet another embodiment, the optical components are formed using UV embossing of resin on the panel.

In a step 110, an angular filter 610 (shown in figure 6) is provided with an adhesive layer 620. In a step 120, the substrate is fixed to the angular filter 610 (shown in figure 6) by means of the adhesive layer 620.

In an alternative embodiment, optical components 20 are formed by embossing angular filter 610 directly.

Figs. 5a and 5b illustrate embodiments of a touch-sensing system 200 including the arrangement 20 according to embodiments of the invention. In Figs. 5a-5b the arrangement is arranged at the periphery of the panel 3 on a rear surface 201 of the panel which also comprises a front surface 202. In a preferred embodiment, arrangement 20 is positioned such that, for each emitter, the angle where phi equals zero corresponds to the normal of the edge of the panel at the position of the emitter.
Only the left and right portions of the panel 3 are illustrated in Fig. 5a. The rear surface 201 and the front surface 202 are boundary surfaces that define a propagation path for an optical signal or light 203. An emitter 2a is arranged at the arrangement 20a of optical components on one side of the panel 3, and a detector 2b is arranged on another side of the panel 3 at another arrangement 20b of optical components. Arrangement 20a and arrangement 20b may be part of a continuous pattern along an entire side of the panel 3 or around the entire circumference of the panel 3. The emitter 2a and detector 2b are opto-electronic devices that may emit/detect light and be connected to various controllers and other electrical components. For example, the light 203 may propagate from the emitter 204 to the detector 205 and be coupled into and out of the panel 3 by the arrangement 20.

Separate arrangements or arrays of optical components may be provided at each emitter 2a and/or detector 2b. Each emitter 2a, or a plurality of emitters 204a, may also be arranged in pair with a detector 205a, 205b of a plurality of detectors, such as is illustrated in Fig. 5b.

Embodiments having arrangement 20 in strips or a variety of shapes are envisaged. In an embodiment of the present invention, arrangement 20 is used to couple the light from the emitter into the panel in the region of interest, as well as couple light in the region of interest out of the panel and to the detector. As described throughout this application, optical pathways for the coupling of light out of the panel is equivalent to the reverse of the coupling of light into the panel. For in-coupling, the present invention provides the advantage of maximizing the amount of light coupled-in to the panel within the region of interest. For out-coupling, the present invention provides the advantage of only coupling light which was in the region of interest out of the panel to the detector, therefore filtering ambient light which may have been propagating in the glass outside of the region of interest. As is illustrated in Fig. 5b, the touch-sensing system 200 may include an activation controller 210 which is connected to selectively control or modulate the activation of the light emitters 204a, 204b and, possibly, a touch controller 211 to selectively detect or provide readout of data from the detectors 205a, 205b. The activation controller 210 and touch controller 211 may also be implemented as a single controller 212 for controlling the touch-sensing system. Depending on implementation, the emitters 204a, 204b and/or detectors 205a, 205b may be activated in sequence or concurrently, e.g. as disclosed in WO201 0/064983. One or both of the touch controller 210 and the activation controller 211 may be at least partially implemented by software stored in a memory unit 213 and executed by a processing unit. A main controller 214 may be connected to a display controller 215 which is configured to generate a user interface on a display device 216 based on control signals from the main controller 214. The main controller 214 is thereby operable to coordinate the user interface on the display device 216 with the data from the touch detection system, e.g. touch data from the touch controller 211.
As used herein, a "light emitter" or "emitter" may be any type of opto-electronic device capable of emitting radiation in a desired wavelength range, for example a diode laser, a VCSEL (vertical-cavity surface-emitting laser), an LED (light-emitting diode), electro or opto-luminisent OLED, display pixel, quantum dot, etc. A light emitter may also be formed by the end of an optical fiber.

Analogously, a "light detector" or "detector" may be any type of opto-electronic device capable of converting light into an electrical signal, such as a photo-detector, a CCD device, a CMOS device, OLED, quantum dot device, etc. The light detector/sensor may be responsive to the light generated by the light emitter. Alternatively, the light detector/sensor may be responsive to a different wavelength range, e.g. if the light from the light emitter is subject to a wavelength conversion before reaching the light detector.

When used in the following claims, the terms "comprise", "include", "have" and their conjugates mean, "including but not limited to".

The present invention has been described above with reference to specific embodiments. However, other embodiments than the above described are equally possible within the scope of the invention. Different method steps than those described above may be provided within the scope of the invention. The different features and steps of the invention may be combined in other combinations than those described. The scope of the invention is only limited by the appended patent claims.
Claims

1. An optical component for transferring light between an opto-electronic device and a light transmissive panel which defines two opposing boundary surfaces,
 the optical component having a shape corresponding to a geometric shape having a base surface, a lateral front surface and an axis, wherein the geometric shape is truncated by a plane intersecting the front surface, the base surface, and the axis, forming a back surface:
 the base surface being configured for mounting the optical component to the light transmissive panel and for coupling light into the light transmissive panel;
 the front surface being configured for coupling light from the front surface, through the base surface, and into the light transmissive panel for the light to propagate by total internal reflection within the light transmissive panel.

2. The optical component according to claim 1 wherein the geometric shape is a right circular cone.

3. The optical component according to claim 1 wherein the geometric shape is a cylinder.

4. The optical component according to any of the previous claims wherein the base surface comprises an angular filter configured to filter ambient light incident towards the base surface.

5. The optical component according to claim 4 wherein the angular filter is configured to reflect light incident at an angle 50° relative to the normal of the base surface.

6. The optical component according to any of the previous claims wherein an angle β between the base surface and the back surface is between 20° and 60°.

7. The optical component according to any of the previous claims wherein the back surface comprises a reflective coating.

8. The optical component according to claim 7 wherein the reflective coating on the back surface comprises a vacuum deposited layer of aluminum, silver, gold, or copper.
9. An arrangement for transferring light between an opto-electronic device and a light transmissive panel which defines two opposing boundary surfaces, the arrangement comprising:

- a plurality of partially overlapping optical components according to any of the previous claims, forming a continuous element arranged in at least one row with a predetermined peak to peak spacing between the peaks of neighboring optical components of a row, wherein a peak is the point on the optical component furthest from the base surface of the optical component.

10. The arrangement according to claim 9, wherein the peak to peak spacing is the same for all optical components of at least one row of optical components.

11. The arrangement according to claim 9, wherein the peak to peak spacing varies for optical components of at least one row of optical components.

12. The arrangement according to any of claims 9-11, comprising a plurality of rows of optical components, wherein the peak to peak spacing between the peaks of optical components of separate rows is larger than the peak to peak spacing of neighboring optical components of the same row.

13. The arrangement according to any of claims 12, wherein the each row is displaced relative to neighboring rows by half of the peak to peak spacing of optical components in the row.

14. The arrangement according to any of claims 12, wherein random noise is used to determine spacing of optical components between components and/or rows.
INTERNATIONAL SEARCH REPORT

International application No.
PCT/SE2016/050155

A. CLASSIFICATION OF SUBJECT MATTER

IPC: see extra sheet

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: G02B, G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE, DK, FI, NO classes as above

Electronic database consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, PAJ, WPI data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2013036192 A1 (FLATFROG LAB AB ET AL), 14 March 2013 (2013-03-14); abstract</td>
<td>1-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>WO 2012105893 A1 (FLATFROG LAB AB ET AL), 9 August 2012 (2012-08-09); abstract; figure 9A</td>
<td>1-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 201 10049388 A1 (DELANEY MARIE J ET AL), 3 March 2011 (2011-03-03); paragraph [0051]; figures 3,4</td>
<td>1-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>WO 2014055809 A1 (CORNING INC ET AL), 10 April 2014 (2014-04-10); paragraph [0087]; figures 4b,4c</td>
<td>1-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
 - “A” document defining the general state of the art which is not considered to be of particular relevance
 - “E” earlier application or patent but published on or after the international filing date
 - “L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - “O” document referring to an oral disclosure, use, exhibition or other means
 - “P” document published prior to the international filing date but later than the priority date claimed

- “T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- “X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- “Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- “&” document member of the same patent family

Date of the actual completion of the international search: 14-07-2016
Date of mailing of the international search report: 15-07-2016

Name and mailing address of the ISA/SE
Patent och registreringsverket
Box 5055
S-102 42 STOCKHOLM
Facsimile No. +46 8 666 02 86

Authorized officer
Erik Westin
Telephone No. +46 8 782 28 00

Form PCT/ISA/210 (second sheet) (January 2015)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 2466429 A1 (FLATFROG LAB AB), 20 June 2012 (2012-06-20); abstract; paragraph [0048]; figures 1B,5B</td>
<td>1-14</td>
</tr>
<tr>
<td>A</td>
<td>US 20060061 861 A1 (MUNRO JAMES F ET AL), 23 March 2006 (2006-03-23); abstract</td>
<td>1-14</td>
</tr>
</tbody>
</table>
Continuation of: second sheet

International Patent Classification (IPC)

G02B 6/00 (2006.01)
G02B 6/42 (2006.01)
G06F 3/042 (2006.01)
<table>
<thead>
<tr>
<th>Country</th>
<th>Application Number</th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO</td>
<td>2013036192 A1</td>
<td>14/03/2013</td>
<td>EP 2764426 A4</td>
</tr>
<tr>
<td>Wo</td>
<td>2012105893 A1</td>
<td>09/08/2012</td>
<td>AU 2012212715 A1</td>
</tr>
<tr>
<td>CA</td>
<td>2825287 A1</td>
<td>09/08/2012</td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>103492989 A</td>
<td>01/01/2014</td>
<td></td>
</tr>
<tr>
<td>EP</td>
<td>2671141 B1</td>
<td>25/05/2016</td>
<td></td>
</tr>
<tr>
<td>JP</td>
<td>2014509000 A</td>
<td>10/04/2014</td>
<td></td>
</tr>
<tr>
<td>KR</td>
<td>20140023896 A</td>
<td>27/02/2014</td>
<td></td>
</tr>
<tr>
<td>RU</td>
<td>2013135886 A</td>
<td>10/03/2015</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>20130300716 A1</td>
<td>14/11/2013</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>20110049388 A1</td>
<td>03/03/2011</td>
<td>US 20130121634 A1</td>
</tr>
<tr>
<td>US</td>
<td></td>
<td></td>
<td>US 8606066 B2</td>
</tr>
<tr>
<td>US</td>
<td></td>
<td></td>
<td>US 8331751 B2</td>
</tr>
<tr>
<td>WO</td>
<td>2014055809 A1</td>
<td>10/04/2014</td>
<td>CN 105009046 A</td>
</tr>
<tr>
<td>JP</td>
<td>2015530688 A</td>
<td>15/10/2015</td>
<td></td>
</tr>
<tr>
<td>KR</td>
<td>20150063546 A</td>
<td>09/06/2015</td>
<td></td>
</tr>
<tr>
<td>TW</td>
<td>201435689 A</td>
<td>16/09/2014</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>20140210770 A1</td>
<td>31/07/2014</td>
<td></td>
</tr>
<tr>
<td>EP</td>
<td>2466429 A1</td>
<td>20/06/2012</td>
<td>US 20120153134 A1</td>
</tr>
<tr>
<td>US</td>
<td>8872098 B2</td>
<td>28/10/2014</td>
<td></td>
</tr>
<tr>
<td>WO</td>
<td>2006034409 A3</td>
<td>29/06/2006</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (January 2015)