DISPENSER-APPLICATOR APPARATUS FOR MASKING TAPE

INVENTOR

JAMES L GOSNELL

ATTORNEY

By George R. Nimmer
United States Patent Office
Patented Oct. 27, 1970

3,536,569

DESPENSER-APPLICATOR APPARATUS FOR MASKING TAPE
James L. Gosnell, 2332 N. 61st St., Omaha, Nebr. 68104
Filed Nov. 13, 1967, Ser. No. 682,138
Int. Cl. B32b 31/20; B44c 7/02
U.S. Cl. 156—527

9 Claims

ABSTRACT OF THE DISCLOSURE

Apparatus for dispensing elongate lengths of pressure-sensitive adhesive tapes from a tape-roll wherein the pressure-sensitive tape is rolled in convoluted fashion about a central core support. In particular, this invention relates to an apparatus that both dispenses and applies elongate lengths of pressure-sensitive masking tapes immediately adjacent to, but not beyond, the linear border of a surface to be painted or analogously coated.

During the performance of painting, varnishing, and similar coating operations, pairs of contiguous surfaces are commonly encountered wherein the two contiguous surfaces intersect at a linear elongate border line. It is oftentimes necessary to apply paint upon just one of the two contiguous surfaces including immediately adjacent along the elongate border line between said surface-to-be-painted and the contiguous "involvate" surface, but not beyond said elongate border line onto the said "involvate" surface. Three types of intersecting contiguous surfaces, one being the "involvate surface," are commonly encountered by the painter. In the first type, or "recessed involvate" situation, the surface-to-be-painted is elevated above the "involvate" surface. For example, window structures commonly comprise a planar transparent panel surrounded by an integral lofty boundary-frame, and in such "recessed involvate" situations it is usually necessary to apply the topical coating onto the boundary-frame portion and immediately adjacent along its linear border line with the "involvate" pane, but not upon the pane itself. Two intersecting walls of a room also illustrate the "recessed involvate" situation, wherein one of the two walls is to be painted. In the second type, or "elevated involvate" situation, the surface-to-be-painted is recessed below the "involvate" surface. For example, in the painting of automobile exteriors comprising decorative elongate bright-metal lofty ribs, it is usually necessary to apply paint upon the exterior surface of the automobile body immediately adjacent along its elongate border lines with the decorative bright-metal lofty ribs, but not onto the decorative rib itself. Finally, in the third type, or "coplanar involvate" situation, wherein a single uniplanar panel is to be provided with two distinctly different chromatic areas, the surface-to-be-painted and the "involvate" surface are substantially coplanar. For example, it is oftentimes desired to paint the lower half only of a wall, and thus, the wall upper half might be termed a "coplanar involvate" surface.

In all three situations (the "recessed involvate," the "elevated involvate," and the "coplanar involvate"), so-called "masking tapes" comprising a sheet-like flexible backing with a pressure-sensitive adhesive on one side are customarily removably adherently applied upon the "involvate" surface immediately adjacent along the elongate border line between said "involvate" surface and the surface-to-be-painted. Following the painting operation, the protective removable adhesive "masking tape," together with any paint droppings thereon, is removed from the "involvate" surface protected thereby, thus resulting in a neat sharply-delineated application of paint on the one desired surface only.

Although the so-called "masking tapes" are admirably suited to shield "involvate" surfaces immediately contiguous to a surface-to-be-painted, they are exceedingly difficult to apply exactly along the linear border of juncture between the "involvate" surface area and the surface-to-be-painted. Several workers in the art have attempted to provide apparatus for dispensing and applying elongate lengths of masking tapes in appropriate fashion upon the "involvate" surface along the exact border line of the surface-to-be-painted; however, the prior art apparatuses have had several noteworthy deficiencies including cumbersome and expensive construction, awkward and unreliable operational features, and inept adaptability to more than one environmental situation. Accordingly, those in the painting trades have been forced to rely primarily upon the laborious and slow manual methods of dispensing and applying masking tapes.

It is accordingly the general object of the present invention to provide a tape dispenser-applicator for masking tapes that overcome the several disadvantages and shortcomings of the prior art.

It is a specific object of the present invention to provide an apparatus for dispensing and adherently applying masking tapes wherein a convolutely wound roll supply might be removably mounted upon the apparatus itself.

It is another object of the present invention to provide a dispenser-applicator device for masking tapes that may be employed with equal facility in the three types of situations wherein two contiguous surfaces intersect as a linear border, to wit: the "recessed involvate," the "elevated involvate," and the "coplanar involvate" situations.

It is yet another object of the present invention to provide a dispenser-applicator apparatus for masking tapes that is adaptable and adjustable for a wide range of tape widths and for a great variety of surface textures to be protected by the masking tape.

It is a further object to provide a dispenser-applicator apparatus for masking tapes that is of economic manufacture, light in weight, and that results in quick and easy application of masking tapes to "involvate" border areas of surfaces-to-be-painted.

With the above and other objects and advantages in view, which will become more apparent as the description proceeds, the invention comprises the novel configuration, combination, and arrangement of parts as hereinafter described, and especially as pointed out in the appended claims, reference being had to the accompanying drawings wherein like numbers refer to like parts in the several views, and in which:

FIG. 1 is a perspective elevational view of a representative form of the tape dispenser of the present invention as seen from the outward side thereof.

FIG. 2 is an elevational view of the tape dispenser embodiment of FIG. 1 as seen from the inward side thereof and particularly showing a spacer means and an elongate strip of pressure-sensitive adhesive tape being applied onto a planar panel with said tape dispenser.

FIG. 3 is a sectional plan view taken along line 3—3 of FIG. 2 and particularly showing said elongate strip of pressure-sensitive adhesive tape being applied onto a planar panel immediately adjacent to a vertically-extend ing elongate boundary-frame e.g. a "recessed involvate" situation.

FIG. 4 is a sectional elevational view taken along line 4—4 of FIG. 2.

FIG. 5 is a perspective view of an alternate form of the spacer means component that is particularly adapted for applying pressure-sensitive adhesive tape onto a vertically-
extending elongate decorative rib e.g. an "elevated violate" situation.

FIG. 6 is a sectional view similar to that of FIG. 3 wherein the alternate spacer means of FIG. 5 is employed and wherein an elastomer strip of pressure-sensitive adhesive is being applied onto a vertically-extending lofty decorative rib immediately adjacent to a recessed surface-to-be-painted.

The tape-dispenser-applicator apparatus T of the present invention comprises an upright frame member e.g. 10, having an upright inward side, an upright outward side, a forward end, a rearward end, an upper end, and a lower end; a tape-roll mounting means e.g. 20, positioned on the frame inward side and adapted to revolvably attach a convolutely wound tape roll about a transverse reference axis e.g. 18, said axis extending a finite distance inwardly of the upright frame; an elongate forwardly-disposed runner e.g. 30, attached to the frame and extending transversely inwardly from the frame member lower end, said forward runner having an elongate lower surface that includes a major uniplanar portion, said forward-runner having a transverse forward end e.g. 33, that is substantially parallel to the said transverse axis of the tape-roll mounting means and that is adapted to transversely sever a strip of tape; a tape guidance means e.g. 40, disposed between the transverse axis of the tape-roll mounting means and the uniplanar lower side of the forward-runner, said tape guidance means including a curvilinearly generated rearward portion that is substantially parallel to the transverse axis of the tape-roll mounting means; at least one handle extending transversely outwardly of the frame member outward side and transversely-adjustable inwardly-extending spacer means e.g. 60, 90, attached to the lower portion of the upright frame rearwardly of the forward-runner.

Upright frame member 10 is preferably of the generally semicircular configuration shown in FIGS. 1 and 2 and comprises an upright inward side 11, an upright outward side 12, a forward end 13, a rearward end 14, an upper end 15, a transverse reference axis 18 about which the tape-roll mounting means rotates, and a lower end 16 that is desirable of a horizontal linear configuration. Frame inward side 11 preferably includes a planar area extending for a finite height above frame lower end 16, and this vane, frame member 10 may be provided of a single piece of heavy-gauge rigid sheet metal having a pair of opposed planar surfaces, one surface of said structural sheet metal providing the frame inward side 11 and the second surface of said structural sheet metal providing the frame outward side 12. Ancillary to the preferred embodiment to the present invention, wherein axis 18 is vertically movable for a finite distance, frame 10 includes a vertically-extending transversely-slotted portion 17.

Tape dispenser T of the present invention is designed to inherently apply a lengthy strip of pressure-sensitive adhesive tapes that are generally available in the customary convolutely wound roll form as illustrated in FIGS. 2 and 4. As is well known in the art, convolutely wound rolls of tape 70 comprise an elongate length of pressure-sensitive adhesive tape 71 having a constant transverse width along the length thereof, said tape being convolutely wound about a tubular core 72 and the axial length of tubular core 72 being substantially equal to the transverse width of tape 71.

There are tape-roll mounting means positioned on the inward side 11 of frame member 10 whereby said tape-roll mounting means is adapted to removably engage the central core 72 of the tape roll 70, said mounting means revolvably attaching said tape roll 70 about a transverse reference axis 18 of frame member 10. Transverse reference axis 18 extends inwardly a finite distance from frame member inward side 11, and desirably, transverse axis 18 is at the elongate center of a transverse axle 21 that is substantially perpendicular to a planar inward side 11 of frame 10. Moreover, the inward extremity 22 of transverse axle 21 is preferably planar and substantially in finite distance parallelism with respect to a planar inward forward side 11. Tape-roll mounting means 20 may comprise a cylindrical hub 23 to removably engage a tape roll e.g. 70. Hub 23 is revolvably about transverse reference axis 18, and herein as shown in FIG. 4, hub 23 surrounds and is fixedly attached to transverse axle 21, axle 21 being revolvably attached to frame member 10. Of course, an equivalent means for revolvably attaching hub 23 about transverse reference axis 18 would be to utilize a non-rotatable axle 21 and to revolvably attach hub 23 to said fixed axle 21. The transverse external surface 24 of hub 23 is preferably of a linearly-generated configuration that is parallel to reference axis 18, and the maximum external diameter of hub 23 is substantially equivalent to the minimum internal diameter of tape-roll core 72 whereby a friction fit might be employed to removably attach tape-roll 70 to mounting means 20.

It has been found that smooth wrinkle-free transfer of adhesive tape 71 to the uniplanar planar underside 36 of forward runner 30 is facilitated when the outward convolute layer 76 of tape roll 70 is in abutment with the tape-guidance means e.g. 40. However, inasmuch as the outermost convolute layer 76 steadily recedes radially toward core 72 as tape is constantly withdrawn from tape roll 70, provision must be made constantly to maintain an equidistance between core 72 and the tape-guidance means if contact between outermost convolute layer 76 and the said tape-guidance means is to be maintained. In this vane, it has been found desirable to position transverse axle 21 within the vertically-extending transverse slot 17 of frame member 10, the vertical height of frame slot 17 exceeding the vertical cross-sectional dimension of that portion of transverse axle 21 disposed within slot 17 whereby axle 21 and reference axis 18 are adapted to reciprocate vertically within frame transverse slot 17. Ancillary to a vertically-reciprocable cylindrical transverse axle 21 is a longitudinal arm member 25 positioned alongside the frame member outward side 12; the forward portion of arm member 25 is pivotally attached to frame member 10 nearer to frame forward end 13 than to frame rearward end 14 as by means of transverse pivot pin 26. Transverse axle 21 is revolvably attached to the rearward portion of arm member 25 whereby said preferred mounting means embodiment (transverse axle 21 and revolvable cylindrical frame member inward side 11 and the outermost convolute layer 76 is automatically maintained in contact with the tape-guidance means as tape 71 is being withdrawn from roller 70.

There is an elongate runner 30 disposed nearer to frame forward end 13 than to frame rearward end 14. Forward runner 30 extends horizontally inwardly from frame bottom end 16 for a finite distance, and preferably, forward runner 30 has an elongate linear inward extremity 31 that is substantially perpendicular to transverse reference axis 18. The lower side 36 of forward runner 30 includes a substantially uniplanar and horizontal major portion comprising at transverse forward end 33 and extending longitudinally rearwardly therefrom whereby said forward runner uniplanar lower surface provides the lower extremity of tape dispenser T. An L-shaped transverse cross-sectional configuration for the rearward portion of forward-runner 30 including an upright flange 32 provides a convenient means for removably attaching forward-runner 30 to frame member 10; in this vane, upright flange 32 abuts the planar outward side 12 of frame member 10, and transverse screws 39 pass through transverse perforations of upright flange 32 and said screws 39 are threadedly engaged with frame member 10 above lower end 16. Removable attachment of forward-runner 30 to frame 10 is desirable when masking "innovate" surfaces because of the necessity for employing a forward-runner having a transverse forward end 33 that is substantially equal to the transverse width of the masking tape utilized. Thus, for example, the workman who engages...
extensively in masking surrounded window panes e.g. a "recessed inviolate" situation, would require several transverse runs of removably attachable forward runners. Transverse forward end 33 of forward-runner 30 is located nearer to frame forward end 12 than to frame rearward end 14, and preferably, said transverse forward end 33 is disposed forwardly of frame forward end 13. The transverse forward end 33 of forward-runner 30 is substantially parallel to transverse reference axis 18, and comprises a knife edge or suitable serrations appropriate to transversely sever a strip of adhesive tape. Finally, the rearward portion 34 of forward-runner 30 preferably curves upwardly toward the transverse reference axis 18; the underside of rearward portion 34 is desirably of a curvilinear configuration and parallel to reference axis 18 whereby the forwardly moving tape e.g. 71, is transferred smoothly and without wrinkles to the uniplanar lower surface 36.

There is a tape-guidance means component, the purpose of which is to facilitate smooth, wrinkle-free continuous transfer of tape 71 from roll 70 to the uniplanar underside 36 of forward-runner 30. The tape-guidance means is attached to the frame 10 and is disposed on the frame inward side 11 above the forward-runner rearward end 34 and below the frame member transverse reference axis 18. The tape-guidance means essentially comprises a curvilinear shaped rearward portion that is substantially parallel to the frame member transverse reference axis 18, to the forward-runner transverse forward end 33, and to the uniplanar lower side 36 of forward-runner 30. The features of the preceding two sentences for the tape-guidance means can be alternatively provided by an externally upswept and rearwardly extended rearward portion of forward runner 30 toward the tape- roll mounting means, or by means of a transversely inwardly extending cylindrical stud 40 attached to frame 10. A cylindrical stud tape-guidance means is preferred, particularly if said stud 40 is revolvedly attached to frame member 10, because such a revolvable stud offers very little frictional resistance against the tape-roll outermost convolution 76 when the preferred-type vertically-reciprocable tape-roll mounting means is employed.

Disposed along the frame member outward side 12 and an upstandable frame member are inwardly transversely extending handle member whereby the operator may manually grasp and control tape dispenser T. As illustrated in FIGS. 1 and 2, two handles 50 and 55 are preferred although but one handle is strictly necessary to the operation of tape dispenser T. Primary handle 50 has a transverse portion 51 immediately attached to frame outward side 12 and has a downwardly and rearwardly extending terminal portion 52 that is spaced a finite distance from and in substantial parallelism with frame outward side 12. The downwardly and rearwardly extending portion 52 of primary handle 50 allows the operator to exert the required degree of pressure against forward-runner lower side 36 as will be explained later in greater detail. Auxiliary handle 55 extends transversely outwardly from frame outward side 12 for a finite distance and might be manually employed to give further stability to tape dispenser T.

The lower extremity of tape dispenser T must be uniplanar along the length thereof, and the said uniplanar lower extremity must allow the dispenser T to be firmly and stably upright abutted against the normally planar working surface without attendant rotation of dispenser T about transverse reference axis 18 while dispenser T is being manually engaged by handle 55. Accordingly, the elongate length of the uniplanar bottom surface 36 of forward-runner 30 must bear a ratio of at least one-fourth the maximum dimension for frame 10, or alternatively to such minimum one-fourth ratio, a rearward-runner e.g. 80, would need to be employed to uprightly stabilize dispenser T upon the working surface. For example, the optional rearward-runner 80 extends horizontally inwardly from frame bottom end 16 for a finite distance. Lower side 86 of rearward runner 80 includes a suitably inwardly and horizontal major portion extending longitudinally along frame bottom end 16, said respective lower surfaces of runners 30 and 80 being preferably in coplanar relationship. The inward extremity 33A of the forward-runner transverse forward end e.g. at the corner juncture of 31 and 33, is preferably disposed inwardly of the inward extremity 81 of rearward runner 80. Transverse forward extremity 83 of rearward-runner 80 is disposed a finite distance rearwardly of the forward-runner extremity 34 whereby a finite spatial gap exists between runners 30 and 80 to accommodate forwardly withdrawn tape 71.

An L-shaped transverse cross-sectional configuration for rearward runner 80 including an upright flange 82 provides a convenient means for removably attaching rearward-runner 80 to frame member 10; in this vane, upright flange 82 abuts the outward side 12 off frame member 10 above its lower end 16, and transverse screws 89 pass through suitable transverse perforations of upright flange 82 and said screws 89 are threadedly engaged with frame member 10. The rearward portion 84 of rearward runner 80 preferably curves upwardly and rearwardly so as to prevent "diggin' in" of tape dispenser T into planar surrounded pane 100 or into lofty decorative rabbet 200, as said dispenser T moves operationally rearwardly.

An exceedingly important component of the present invention is a transversely adjustable spacer means e.g. 60, 90, disposed inwardly of frame member inward side 11. Longitudinally, the spacer means component is disposed rearwardly of the forward-runner curvature for frame member 10 33 and forward of frame rearward end 14, and preferably, the space means is disposed rearwardly of forward-runner extremity 34. In vertical relationship, the spacer means is disposed between the frame member transverse reference axis 18 nearly forward end 83 than to rearward end 84. Inward end 62 of transverse screw 60 nearer forward end 83, nearer to said lower extremity 36. There are two general types of transversely adjustable spacer means appropriate to the tape dispenser T of the present invention. The first type of transversely adjustable spacer means, as illustrated at 60 in FIGS. 2 and 3, is extendable inwardly of inward portion 80 of forward-runner forward end 33, such type spacer means being appropriate for masking surrounding panels e.g. a "recessed inviolate" situation. The second type of transversely adjustable spacer means, as illustrated at 90 in FIGS. 5 and 6, has a downwardly extending flange e.g. 91, at its Limit anterior to transverse rearward end 33 of forward-runner forward end 33, such type spacer means being appropriate for masking lofty decorative rabbets e.g. an "elevated inviolate" situation. In the "coplanar inviolate" situation either spacer means may be employed as a visual reference.

The first type of spacer means i.e. that which is extendable inwardly of the inward extremity of forward-runner forward end 33, might simply comprise a transversely inwardly extending threaded screw 61 that is transversely threadedly engaged with frame 10, the inward extremity 62 of the threaded-screw being preferably gently rounded to prevent injury to the lofty boundary-frame 101 which serves as an abuttable operational reference when masking the surronded "recessed inviolate" pane as indicated in FIG. 5. However, the preferred embodiment 60 of the first type of spacer means comprises a revolvable horizontal wheel 63 that serves to preclude frictional damage to lofty boundary-frame 101 during the application of masking type 71 to inviolate transparent pane 100. Horizontal wheel 63 is revolvably attached to an extending above the rearward portion of horizontal pivot plate 64, the forward portion of pivot plate 64 being disposed above and pivotably attached to rearward portion 80 of forward end 83 than to rearward end 84. Inward end 62 of transverse screw 61 bears against pivot plate 64 so...
as to provide a transverse adjustment for the transverse position of revolvable wheel 63.

Operation of the tape dispenser-applicator device T in the "elevated inviolate" pane situation will now be described, reference being had in particular to FIGS. 2 and 3 of the drawing. The surrounded-pane situation comprises a normally transparent planar pane 100 surrounded by a lofty boundary-frame 101, there being a linear boundary 102 between pane and further boundary-frame 101. Assuming it is desired to paint boundary-frame 101, and thus, temporarily shield border areas of "inviolate" transparent pane 100 with masking tape 71, the operator withdraws a length of tape 71 from tape-roll 70 in clockwise direction as seen in FIG. 2 and draws the tape 71 against the rearward side of tape-guidance stud 40 and finally against the unplanlar lower side 36 of forward-runner 30. The operator transversely adjusts the spacer means 60 so that revolvable wheel 63 is inward of the inward extremity 33A of forward-runner forward end 33. Then, with manual pressure the operator adheres the forward region 73 of tape 71 upon panel 100 along linear juncture 102 at its forward extremity e.g. at corner 103. Next, the operator grasps handle 50 and presses the unplanlar lower extremity 36 of tool T flatly against pane 100 whereby said tool is stably uprightly supported, and the operator abuts both the forward-runner inward extremity 33A and the spacer means inward extremity 63 against the lofty boundary-frame 101 whereby transverse reference axis 18, and herein also axie 21 is in oblique non-perpendicular relationship with respect to lofty boundary-frame 101. Finally, the operator draws apparatus T in the rearward direction, while maintaining elements 33A and 63 in abutment against lofty boundary-frame 101, whereupon an elongate strip of masking tape 71 is adherently applied upon pane 100 immediately adjacent along linear border juncture 102. It has been found that unless the spacer means is positioned inwardly of the inward extremity 33A of forward-runner transverse forward end 33, the masking tape 71 "creeps" progressively inwardly of linear border 102 deeply into the region of boundary-frame 101, thus encroaching upon the surface-to-be-painted 101. When the border line 103 has been fully traversed, the tape 71 is severed with forward runner forward end 33.

The alternate spacer-means 90 of FIGS. 5 and 6 is appropriate to the "elevated inviolate" masking situation. Spacer means 90 does require a rearward-runner e.g. 80, together with a downwardly-flanged transversely-adjustable spacer means 90. Spacer means 90 is of an L-shaped transverse cross-sectional configuration including a horizontal portion 92 and a downwardly-extending inward linear flange 91. Spacer means 90 is preferably transversely inwardly adjustable with respect to frame 10. In this vane, rearward-runner 80 is provided with a pair of transversely extending slots 93 and screws 94 pass through slots 93 downwardly into horizontal portion 92. In masking decorative ribs e.g. the "elevated inviolate" situation, the unplanlar lower side 96 is firmly emplanted upon the elongate upper side 202 of lofty "inviolate" decorative rib 200, and the outward side 91A downwardly-extending flange 91 is concurrently firmly abutted against the upright side 201 of decorative rib 200. The inward extremity 33A of forward-runner transverse forward end 33 is positioned inwardly of downwardly extending flange 91 whereby inward extremity 33A is positioned a finite distance inwardly of upward side 201 immediately above surface 205 to be painted. As tool T including spacer means 90 is actuated rearwardly along decorative rib 200, masking tape 71 is adherently applied to upper surface 202, the inward region 74 of tape 71 overhanging the juncture of surfaces 201 and 202. Ultimately, the operator manually presses the overhanging inward region 74 of tape 71 against upright surface 201. Accordingly, the transverse distance between the adjustable spacer means as flange 91 and forward-runner inward extremity 33A should substantially equal the height of decorative rib upper side 201 in order that the inward extremity 74 of tape 71 will coincide with lineal portion of surface 205 and decorative rib 200. When the border line 204 has been fully traversed, tape 71 is severed with the forward-runner forward end 33.

From the foregoing, the construction and operation of the dispense-applicator apparatus will be readily understood and further explanation is believed to be unnecessary. However, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction shown and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the appended claims.

I claim:

1. A dispenser apparatus for applying a lengthy strip of removably-adhering masking tape immediately adjacent along a linear border line of an elongate surface-to-be-painted, said dispenser-applicator apparatus comprising:

(A) An upright frame member including a frame forward end, a frame rearward end, a frame lower end, a frame outward side, and a frame inward side;

(B) A tape-roll mounting means positioned on the inward side of the frame member, said tape-roll mounting means being adapted to removably engage the central core support of an elongate length of pressure-sensitive adhesive tape wound in convoluted fashion about a central core, said tape-roll mounting means revolvably attaching said core support to said upright frame member along the frame member inward side and about a transverse axis of said frame member, said frame member transverse axis extending inwardly a finite distance from the frame member and being disposed between the frame upper and lower ends;

(C) An elongate forwardly disposed runner attached to the frame member and extending inwardly from the frame lower end, and said forward-runner lower surface including a substantially unplanlar and horizontal elongate major portion whereby the forward-runner lower surface provides the lower extremity of said tape dispenser, the forward-runner having a transverse forward end that is substantially parallel to the said frame member transverse axis, said forward-runner transverse forward end being located nearer to the frame forward end than to the frame rearward end, said forward-runner transverse forward end being adapted to transversely sever a strip of pressure-sensitive adhesive tape;

(D) A tape guidance means attached to the frame member and disposed on the frame inward side above the rearward extremity of the forward-runner unplanlar elongate lower portion, said tape guidance means being also disposed below the said frame member transverse axis, said tape guidance means including a linearly generated rearward portion that is substantially parallel to the frame member transverse axis, to the forward-runner transverse forward end, and to the unplanlar lower extremity of the forward-runner;

(E) At least one handle attached to the frame member and extending transversely outwardly of the frame member outward side; and

(F) Spacer means attached to the frame member and extending transversely inwardly of the frame member inward side, said spacer means being transversely adjustable with respect to the frame member inward side, said transversely adjustable spacer means being disposed wholly rearwardly of and extendable parallel to the transverse axis and being disposed between
the frame member transverse axis and the uniplanar lower extremity of the forward-runner.

2. The dispenser-applicator apparatus of claim 1 wherein the tape-roll mounting means engages and surrounds a transversely disposed axle that is coextensive along the frame member transverse axis, said transverse axle being disposed within a vertically-extending transversely-slotted portion of the frame member; wherein the vertical height of the frame member slotted portion exceeds the vertical cross-sectional dimension of that portion of the horizontal axle disposed within the frame member slotted portion and whereby said horizontal axle is adapted to reciprocate vertically within said frame member slotted portion; wherein a longitudinal arm member is positioned alongside the outward side of the frame member, the forward portion of said longitudinal arm being pivotally attached to the frame member forwardly of the transversely-slotted portion with a pivot pin, and thereby a portion of the gap exists between the frame member inward side and the curvilinear transverse external surface of said horizontal cylindrical revolvable stud having a transversely external surface that is substantially parallel to the said transverse axle.

3. The dispenser-applicator apparatus of claim 2 wherein the frame member inward side includes a planar area extending for a finite height above the frame member lower end; wherein the said frame member transversely slotted portion is disposed within the planar area of the frame member inward side; wherein the tape-roll mounting means comprises a cylindrical hub having a transversely external surface that is substantially parallel to the transverse external surface of said revolvable stud said cylindrical hub being revolvable about the frame member transverse axis; and wherein the rearward portion of the forward-runner commencing at the rearward extremity thereof curves upwardly toward said revolvable stud.

4. The dispenser-applicator apparatus of claim 1 wherein the spacer means comprises an elongate forward-runner attached to the frame member and extending inwardly from the frame member lower end, the forward extremity of the forward-runner being disposed a finite distance rearwardly of the forward-runner rearward extremity wherein said forward-runner rearward extremity whereby a finite gap exists between the forward-runner and the rearward-runner, said rearward-runner including a downwardly-extending flanged portion having a substantially planar outward side that is substantially perpendicular to the frame member transverse axis and to the transverse forward end of the forward-runner, said rearward-runner downwardly-extending flanged portion terminating below the forward-runner lower surface, said rearward-runner downwardly-extending flanged portion being transversely adjustable with respect to the frame member inward side.

5. The dispenser-applicator apparatus of claim 4 wherein the rearward-runner is removably attached to the frame member, said rearward-runner having a lower surface that is predominately substantially uniplanar and horizontally parallel to the rearward runner slotted portion; and wherein the tape guidance means comprises a horizontal cylindrical stud revolvable attached to the frame member above the rearward extremity of the forward-runner and below the transverse axis of the frame member, the curvilinear transverse external surface of said horizontal cylindrical revolvable stud being substantially parallel to the frame member transverse axis and to the transverse forward end of the forward-runner.

6. The dispenser-applicator apparatus of claim 3 wherein in the spacer means comprises a horizontal wheel revolvably attached to a horizontal plate, said horizontal plate being disposed above and pivotally attached to the rearward-runner whereby said horizontal wheel is also disposed above the rearward-runner, and a transverse screw threadedly engaged with the frame member and extending inwardly of the frame member whereby the inward end of said transverse screw is adapted to bear against said horizontal pivot plate remote of its pivotal connection to the rearward-runner.

7. A dispenser apparatus for applying a lengthy strip of removably-attached masking tape immediately adjacent along the linear border line of a surface-to-be-painted, said dispenser-applicator apparatus comprising:

(A) An upright frame member including a frame forward end, a frame rearward end, a frame upper end, a frame outward side, and a frame inward side, said frame member having a vertically-extending transversely-slotted portion, said frame member transversely-slit portion being disposed within the frame member transverse axis and attached to the frame member inward side and between the frame member upper and lower ends;

(B) A tape-roll mounting means positioned on the inward side of the frame member, said tape-roll mounting means being adapted to removably engage the central core support of an elongate length of pressure-sensitive removably-attached masking tape wound in convolute fashion about a central core, said tape-roll mounting means revolvably attaching said core support to said frame member and along the frame member inward side about the transverse axis of said frame member, a transverse axle that is coextensive along the frame member transverse axis and attached to the frame member, said transverse axis being disposed within the transversely-slotted portion of the frame member, said tape-roll mounting means being attached to the said transverse axle and extending inwardly of the frame inward side, the vertical height of the frame member transversely-slotted portion exceeding the vertical cross-sectional dimension of that portion of the transverse axle disposed within the frame member transversely-slit portion whereby said transverse horizontal axle and attached tape-roll mounting means are adapted to reciprocate vertically toward a tape guidance means;

(C) An elongate forwardly disposed runner attached to the frame member and extending inwardly from the frame lower end, the said forward-runner lower surface including a substantially uniplanar and horizontal elongate major portion whereby the forward-runner lower surface provides the lower extremity of said tape dispenser, the forward-runner having a transverse forward end that is substantially parallel to the said frame member transverse axis, said forward-runner transverse forward end being located nearer to the frame forward end than to the frame rearward end, said forward-runner transverse forward end being adapted to transversely sever a strip of pressure-sensitive tape;

(D) A tape guidance means comprising a horizontal cylindrical stud revolvably attached to the frame member above the rearward extremity of the forwardly disposed runner uniplanar elongate lower portion and below the said transverse horizontal axle, the curvilinear transverse external surface of said horizontal cylindrical stud revolvably attached to the frame member horizontally parallel to the substantially parallel to the frame member transverse axis and to the transverse forward end of the forwardly disposed runner; and

(E) At least one handle attached to the frame mem-
3,536,569

8. The dispenser-applicator apparatus of claim 7 wherein the frame member inward side includes a planar area extending for a finite height above the frame member lower end; wherein the said frame member transversely slotted portion is disposed within the planar area of the frame member inward side; wherein there is an elongate rearward-runner attached to the frame member and extending inwardly from the frame member lower end, the rearward-runner lower surface including a substantially uniplanar and horizontal elongate major portion, the inward extremity of the forward-runner transverse forward end being disposed inwardly of the inward extremity of the rearward-runner, the forward extremity of the rearward-runner being disposed a finite distance rearwardly of the forward-runner rearward extremity whereby a finite spatial gap exists between the forward-runner and the rearward-runner; wherein the rearward portion of the forward-runner commencing at the rearward extremity thereof curves upwardly toward the revolving stud guidance means; and wherein there are at least two handles attached to the frame member and extending transversely outwardly of the frame member outward side, one of said handles being a primary handle having a transverse portion immediately adjacent to the frame member outward side and having a downwardly-rearwardly extending terminal portion that is spaced a finite distance from and in substantial parallelism with the frame member outward side, the second of said two handles being as a transverse outwardly extending auxiliary handle that is disposed forwardly of the primary handle.

9. A dispenser apparatus for applying a lengthy strip of removably-adherent tape immediately adjacent along the linear border line of a surface-to-be-painted, said dispenser-applicator apparatus including a revolvable tape- roll mounting means that is adapted to removably engage the central core support of a convolutely wound tape roll and comprising:

(A) A longitudinally extending frame member includ-