Title: APPARATUS FOR DETECTING POLARIMETRIC INTERFERENCE SURFACE USING LIQUID CRYSTAL VARIABLE RETARDER

Abstract: Disclosed is an apparatus for detecting a polarimetric interference surface using a liquid crystal variable retarder. The apparatus for detecting a polarimetric interference surface, according to an embodiment of the present invention comprises: a light generator; a first polarizer for adjusting a polarization state of light emitted from the light generator; an optical waveguide for enabling a phase shift to be generated between two polarized lights that have passed through the first polarizer according to changes in the surface material; a liquid crystal variable retarder for controlling the phase shift of the polarized light outputted from the optical waveguide using an electric signal; a second polarizer for filtering light that has passed through the liquid crystal variable retarder; and a photo-detector for converting the intensity of light that has passed through the second polarizer into an electric signal.

요약서: [다음 목록 계속]
액정 위상지연기를 이용한 면광간섭 표면 검출장치가 개시된다. 본 발명의 일 실시예에 따른 면광간섭 표면 검출장치는 광 발생부; 광 발생부로부터 임시되는 광의 면광 상태를 조정하는 제1면광자; 제1면광자를 통과한 광을 표면 물질 변화에 의해 두 면광간의 위상 변화가 발생하도록 하는 광도파로; 광도파로로부터 출력된 면광의 위상 지연을 전기 신호로 제어하는 액정 위상지연기(Liquid Crystal Retarder); 액정 위상지연기를 통과한 광을 필터링하는 제2면광자; 및 제2면광자로 통과한 광의 세기를 전기적 신호로 변환하는 광 감지부를 포함한다.
명세서
발명의 명칭: 액정 위상지연기를 이용한 편광간섭 표면 검출장치
기술분야
[1] 본 발명은 편광간섭 표면 검출장치에 관한 것으로, 보다 상세하게는 액정 위상지연기(LC retarder)를 이용한 편광간섭 표면 검출장치에 관한 것이다.

배경기술

[6] 도 1을 참조하면, 총래 편광간섭 표면 검출장치(10)는 광 발생부(11), 제1 편광간(12), 제1 집광렌즈(13), 광도파로(14), 제2 집광렌즈(15), 1/4 위상지연기(16), 제2 편광간(17), 편광자 구동 모터(18), 광 검출부(19) 및 분석기(20)를 포함하여 구성될 수 있다.

[7] 간략하게 설명하면, 광 발생부(11)로부터 입사되는 광은 제1 편광간(12)을 거쳐 편광이 1차적으로 조정된다. 그리고 제1 집광렌즈(13)에서 집광되어 광도파로(14)로 입사한다. 광도파로(14)에서는 표면 물질의 변화에 의해 두 편광간의 위상변화가 발생한다. 그리고 광도파로(14)의 출력부에 위치하는 1/4 위상지연기(16)에서 출력된 광의 위상이 변경된 후에, 광은 편광자 구동 모터(18)를 통해 연속 회전하는 제2 편광간(17)에 의해 펼쳐진다. 이어 제2 편광간(17)을 통과한 광의 광세기가 광 검출부(19)에서 전기적 신호로 변환되고 다시 분석기(20)에서 상기 신호를 분석한다.

[8] 이와 같이 구성되는 편광간섭 표면 검출장치(10)는 바이오 센서 등으로 가능할 수 있다. 예전대 혈당 측정 센서로 이용될 수 있다. 상기 혈당 측정 센서에서는
혈당과 관련된 물질(예: 인테이글루코스)이 센서에 주입되면 편광 위상자가 변하여 그 양을 검출하고 신호를 분석할 수 있다.

그런데 총래 평창간섭 표면 검출장치(10)에서는 제2 편광자(17)를 편광자 구동 모터(18)를 통해 연속해서 회전을 가해준다. 회전수를 감지하여 전체 회전수 및 편광 신호를 검출할 수 있다. 구동 모터(18)의 구동으로 인해 장치 전체의 소음과 진동이 심함뿐더러 전원 소모량이 크다는 문제가 있었다. 따라서 센서를 휴대용을 위한 소형 크기로 제작하기 힘들고, 전원 소모상의 문제로 연속 측정이 어렵다는 문제가 있다.

발명의 상세한 설명

기술적 과제

본 발명의 실시예에서의 편광자 구동 모터 및 1/4 위상지연기를 액정 위상지연기로 대체함으로써 전체 장치의 소형화가 가능하고, 소음 및 진동이 크게 저감되는 평창간섭 표면 검출장치를 제공하고자 한다.

과제 해결 수단

본 발명의 일측면에 따르면, 광 발생부: 광 발생부로부터 입사되는 광의 편광 상태를 조정하는 제1 편광자; 상기 제1 편광자를 통과한 광을 표면 물질 변화에 의해 두 평창간의 위상 변화가 발생하도록 하는 광도판; 상기 광도판으로부터 출력된 광의 위상 변화량을 전기 신호로 제어하는 액정 위상지연기(Liquid Crystal Retarder); 상기 액정 위상지연기를 통과한 광을 필터링하는 제2 편광자; 및 상기 제2 편광자를 통과한 광의 세기를 전기적 신호로 변환하는 광 검출부를 포함하는 평창간섭 표면 검출장치가 제공될 수 있다.

이때, 상기 제1 편광자 및 광도판 사이에 배치되어 광을 집광하는 제1 집광렌즈 및 상기 광도판 및 액상 위상지연기 사이에 배치되어 광을 집광하는 제2 집광렌즈를 더 포함할 수 있다.

한편, 상기 제1 편광자는 상기 광을 45°의 평균 각도로 입사시키고, 상기 제2 편광자는 상기 광을 -45°의 평균 각도로 입사시킬 수 있다.

또한, 상기 액정 위상지연기는 한 쌍의 유효기판과, 상기 유효기판의 내측면에 각각 코팅되는 투명 전극과, 상기 유효기판 사이에 전진되는 액정을 포함할 수 있다.

이때, 상기 액정 위상지연기는 상기 투명 전극에 구형과(square wave) 전압이 인가될 수 있다.

또한, 상기 구형과 전압은 0 내지 20V의 1KHz 제어 오프셋 신호이며 100msec마다 0.1V씩 구동전압이 상승할 수 있다.

발명의 효과

본 발명의 실시예들은 총래 평창간섭 표면 검출장치의 편광자 구동 모터 및 1/4 위상지연기를 액정 위상지연기로 대체함으로써, 편광자 구동 모터나 1/4 위상지연기 없이도 동일한 수준의 성능을 구현할 수 있는 평창간섭 표면
검출장치를 제공할 수 있다.

[18] 또한, 전광자 구동 모터를 사용하지 않음으로써 종래 편광간섭 표면
검출장치의 전력 소모량 및 소음을 크게 줄일 수 있을뿐더러, 연속 측정 및
소형화가 가능하여 장치의 휴대성을 크게 향상시킬 수 있다.

도면의 간단한 설명

[19] 도 1은 종래 편광간섭 표면 검출장치를 개략적으로 도시한 도면이다.
[20] 도 2는 도 1의 편광간섭 표면 검출장치의 주요 구성요소를 나열한 도면이다.
[21] 도 3은 본 발명의 일 실시예에 따른 편광간섭 표면 검출장치의 주요 구성요소를
나열한 도면이다.
[22] 도 4는 도 3의 액정 위상지연기에서의 전압-세기 그래프이다.
[23] (부호의 설명)
[26] 14: 광도파로 15: 제2 집광렌즈
[27] 16: 1/4 위상지연기 17: 제2 편광자
[28] 18: 편광자 구동 모터 19: 광 검출부
[29] 20: 분석기
[31] 120: 제1 편광자 130: 광도파로
[32] 140: 액정 위상지연기 150: 제2 편광자

발명의 실시를 위한 형태

[33] 이하, 접부된 도면을 참조하여 본 발명의 실시예들에 대하여 구체적으로
설명한다.
[34] 도 2는 도 1의 편광간섭 표면 검출장치(10)의 주요 구성요소를 나열한 도면이고, 도
3은 본 발명의 일 실시예에 따른 편광간섭 표면 검출장치(100)의 주요 구성요소를
나열한 도면이다.
[35] 도 2 및 도 3을 참조하면, 본 발명의 일 실시예에 따른 편광간섭 표면
검출장치(100)는 광 발생부(110)와, 광 발생부(110)로부터 입사되는 광의 편광
상태를 조정하는 제1 편광자(120)와, 제1 편광자(120)를 통과한 광의 표면 물질
변화에 의해 두 편광간의 위상변화가 발생하도록 하는 광도파로(130)와,
광도파로로부터 출력된 편광의 위상 변연을 전기 신호로 제어하는 액정
위상지연기(140, Liquid Crystal Retarder)와, 액정 위상지연기(140)를 통과한 광을
필터링하는 제2 편광자(150)와, 그리고 제2 편광자(150)를 통과한 광의 세기를
전기적 신호로 변환하는 광 검출부(160)를 포함할 수 있다.
[36] 도 2에 도시된 종래 편광간섭 표면 검출장치(10)와 비교하면, 본 발명의 일
실시예에 따른 편광간섭 표면 검출장치(100)는 첫째, 종래 편광간섭 표면
검출장치(10)에서 1/4 위상지연기(16)가 액정 위상지연기(140)로 대체되었다.
둘째, 종래 편광간섭 표면 검출장치(10)에서 제2 편광자(17)를 회전시키는 편광자 구동 모터(18)가 제거되었다. 따라서 종래보다 부품수가 줄고, 장치 전체의 크기 및 부피에 큰 영향을 미치는 편광자 구동 모터(18)가 불필요하다. 장치 전체를 소형화 시킬 수 있는 이유다.

[37] 이하, 각 구성에 대하여 구체적으로 설명한다.

[38] 광 발생부(110)는 광원을 생성하고, 에건데 레이저 다이오드(LD, Laser Diode)가 사용될 수 있다. 물론 이에 한정되지 않는다.

[39] 제1 편광자(120)는 광 발생부(110)로부터 입사되는 광의 편광 상태를 조정한다. 구체적으로 제1 편광자(120)는 광 발생부(110)로부터 입사되는 광의 입사각도를 광도파로(130)에 대해 45°편광 각도로 조정한다. 즉 상기 광의 수직편광과 수평편광의 크기를 동일하게 만든다.

[40] 광도파로(130)는 제1 편광자(120)를 통과한 광이 입사하고 출력하는 곳이다. 광도파로(130)는 표면 물질 변화에 의해 두 편광간의 위상 변화를 발생시킨다.

[41] 광도파로(130)에는 추정하고자 하는 검출물질이 유입되는 유입부(미도시)와 상기 검출물질이 유출되는 유출부(미도시)가 형성될 수 있다. 광도파로(130) 표면에 상기 검출물질이 유입되면 광도파로(130)의 표면 물질(TiO2, Ta2O5, Si3N4와 같은 고olkien 물질)이 변한다. 표면 물질의 변화에 따라 광도파로(130)로 입사된 광은 광도파로(130)를 거쳐 두 편광간에 위상변화(위상차)가 발생한다. 이로 인해 출력되는 광의 세기가 변할 수 있다. 광도파로(130)는 본 기술분야에서 공지의 구성에 해당되므로 구체적인 설명은 생략하도록 한다. 제1 편광자(120)와 광도파로(130) 사이에는 광을 집광하는 제1 집광렌즈(미도시)가 추가적으로 배치될 수 있다.

[42] 광도파로(130)에서 출력된 편광은 액정 위상지연기(140)에서 위상 지연이 일어난다. 액정 위상지연기(140)는 액정의 배향성을 이용하여 특정한 광을 두각 시키거나 차단할 수 있다는 점에서 적합하다. 즉 전기적인 신호를 가할 때에 액정의 상전이(phase transition)가 발생되고 분극이 발생되는 현상을 이용한다.

[43] 액정 위상지연기(140)는 한 쌍의 유리기판과, 상기 유리기판의 내측면에 각각 코팅되는 두명 전극과, 상기 유리기판 사이에 총칭되는 액정을 포함하여 구성될 수 있다.

[44] 상기 두명 전극을 통해 전압이 가해지지 않은 경우에는 액정은 유리기판을 따라 일렬로 배열되며 입사광의 위상 지연은 최대가 된다. 상기 두명 전극을 통해 가해지는 전압이 높아지면 따라 액정은 유리기판과 비스듬한 각을 이루면서 전기장 방향과 액정의 길이 방향이 이루는 각이 점점 작아지고, 이에 따라 입사광의 위상 지연 역시 작아진다.

[45] 상기 두명 전극을 통해 특정 인체값 이상의 전압이 가해지면 전기장 방향과 액정의 길이 방향은 서로 평행을 이루고, 입사광의 위상 지연은 최소가 된다. 상술한 것과 같이 액정 위상지연기(140)는 전기 신호 또는 전압을 제어함으로써 광도파로(130)로부터 출력된 편광의 위상 지연을 측정한다.
[46] 액상 위상저항기(140)에 인가되는 전압은 구형파(square wave) 전압임 수 있다. 예를 들어 상기 구형파 전압은 0 내지 20V의 1KHz 세로 오프셋 신호일 수 있고, 100msec마다 0.1V폭 구형전압이 상승하도록 설정 가능하다. 이 경우, 액정 위상저항기(140)의 구동이 펄스(pulse) 구동하므로, 전원 소모량이 연속적인 구동보다 상대적으로 적다. 따라서 편광감상 표면 검출장치(100)의 사용 시간 및 기간을 크게 증가시킨다.

[47] 또한, 액정 위상저항기(140)는 인가전압에 의해 위상저반값을 조절할 수 있다. 따라서 편광도 구동 모터(18, 도 1 참조)를 이용하여 회전을 통해 편광을 조절하는 경우에 환상한 효과를 얻을 수 있다. 광도파로(130)와 액정 위상저항기(140) 사이에는 광을 집광하는 제2 집광번호(미도시)가 추가적으로 배치될 수 있다.

[48] 제2 편광도(150)는 액정 위상저항기(140)를 통과한 광을 필터링한다. 본 발명의 실시예에 따른 편광감상 표면 검출장치(100)에서는 제2 편광도(150)를 회전시키는 편광도 구동 모터(18, 도 2 참조)가 존재하지 않는다. 그래서 제2 편광도(150)는 회전하지 않는다. 제2 편광도(150)는 액정 위상저항기(140)를 통과한 광을 -45°의 편광 각도(45°의 측각도로) 입사시킨다. 제2 편광도(150)를 통과한 광의 편광 상태는 광 검출부(160)에서 광 조도로 검출된다.

[49] 광 검출부(160)는 통상의 포토다이오드(photodiode), CCD(Charge Coupled Device)일 수 있고, 검출된 광 조도를 전기적 신호로 변환하여 분석기(미도시)로 전달한다.

[50] 상속한 바와 같이 구성되는 편광감상 표면 검출장치(100)에서의 검출물질에 대한 측정은 다음과 같이 이루어질 수 있다.

[51] 우선 액정 위상저항기(140)는 일정 시간 단위(예컨대 100msec)로 인가 전압이 일정 수치만큼 상승되도록 설정한다(예컨대 100msec 당 0.1V). 이 때, 총 측정시간을 정하고, 정해진 측정시간 동안에만 측정이 이루어지는 경우에는, 역으로 특정 시간에 따른 액정 위상저항기(140)의 인가 전압을 알 수 있다. 관련하여 도 4는 도 3의 액정 위상저항기(140)에 의한 전압-세기 그래프이다. 도 4a에서는 1회 측정시의 전압-세기 그래프, 도 4b에서는 1000회 반복 측정시의 전압-세기 그래프, 도 4c에서는 60시간 연속 측정했을 때의 시간에 따른 세기 변화를 도시하였다.

[52] 광 검출부(160)에서는 시간에 따른 광 신호의 세기(intensity)를 측정한다. 따라서 상기 광 신호에서 최대값(Max)과 최소값(min)을 제거한 후 평균 값에 대하여 가장 최대로 나타나는 측정값이 때의 시간을 토대로 액정 위상저항기(140)의 인가 전압을 역추적할 수 있다.

[53] 액정 위상저항기(140)의 인가 전압을 알게 되면, 액상 위상저항기(140)의 신호값(인가 전압)과 광 검출부(160)에서의 신호값(광 신호 세기)을 연산 처리할 수 있다. 그리고 액정 위상저항기(140)의 액정의 상전이(phase transition) 정도를 산출 가능하다. 다음으로 기준값(reference)에서의 상전이 특성과 측정된 상전이
특성을 비교하여 측정하고자 하는 검출물질의 양을 산출할 수 있다.

상술한 바와 같이 본 발명의 실시예들에서는 종래 편광간섭 표면 검출장치의 편광자 구동 모터 및 1/4 위상지연기를 액정 위상지연기로 대체함으로써, 편광자 구동 모터나 1/4 위상지연기 없이도 동일한 수준의 성능을 구현할 수 있는 편광간섭 표면 검출장치를 제공할 수 있다.

또한, 장치 두께 및 부피에 크게 영향을 미치는 편광자 구동 모터를 사용하지 않음으로써, 장치의 소형화가 가능하여 장치의 휴대성을 크게 향상시킬 수 있다(구체적으로 종래 편광간섭 표면 검출장치의 전력 소모량은 수백 mW인데, 본 발명의 일 실시예에 따른 편광간섭 표면 검출장치의 전력 소모량은 수mW 수준이며, 두께는 약 1/5수준에 해당함). 또한, 편광자 구동 모터를 사용할 때보다 전력 소모량 및 소음을 크게 줄일 수 있다는 장점이 있다.

상술한 것과 같은 편광간섭 표면 검출장치는 휴대용 혈당 측정 센서와 같은 바이오 센서 등에 적용 가능하다.

이상, 본 발명의 실시예들에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.
청구범위

[청구항 1] 광 발생부;
상기 광 발생부로부터 입사되는 광의 편광 상태를 조정하는 제1 편광자;
상기 제1 편광자를 통과한 광을 표면 물질 변화에 의해 두
편광각의 위상 변화가 발생하도록 하는 광량파로;
상기 광량파로로부터 출력된 편광의 위상 지연을 전기 신호로
제어하는 액정 위상지연기(Liquid Crystal Retarder);
상기 액정 위상지연기를 통과한 광을 필터링하는 제2 편광자; 및
상기 제2 편광자를 통과한 광의 세기를 전기적 신호로 변환하는 광
검출부를 포함하는 편광간섭 표면 검출장치.

[청구항 2] 청구항 1에 있어서,
상기 제1 편광자 및 광량파로 사이에 배치되어 광을 집광하는 제1
집광렌즈; 및
상기 광량파로 및 액정 위상지연기 사이에 배치되어 광을
집광하는 제2 집광렌즈를 더 포함하는 편광간섭 표면 검출장치.

[청구항 3] 청구항 1에 있어서,
상기 제1 편광자는 상기 광을 45°의 평균 각도로 입사시키고, 상기
제2 편광자는 상기 광을 -45°의 평균 각도로 입사시키는 편광간섭
표면 검출장치.

[청구항 4] 청구항 1 대지 청구항 3 중 어느 한 항에 있어서,
상기 액정 위상지연기는 한 쌍의 유리기판과, 상기 유리기판의
내측면에 각각 고정되는 두명 전극과, 상기 유리기판 사이에
충전되는 액정을 포함하는 편광간섭 표면 검출장치.

[청구항 5] 청구항 4에 있어서,
상기 액정 위상지연기는 상기 두명 전극에 구형과(square wave)
전압이 인가되는 편광간섭 표면 검출장치.

[청구항 6] 청구항 5에 있어서,
상기 구형과 전압은 0 내지 20V의 1KHz 주로 오프셋 신호이며
100msec마다 0.1V씩 두께전압이 상승하는 편광간섭 표면
검출장치.
[Fig. 4]

(a) Intensity vs. Vrms

(b) Intensity vs. Vrms

(c) Intensity vs. Time (hour)
A. CLASSIFICATION OF SUBJECT MATTER

G01B 9/02(2006.01)i, G01B 11/24(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G01B 9/02; H04B 10/08; G02F 1/133; G02B 27/28; G02B 6/10; G01B 11/24

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean Utility models and applications for Utility models: IPC as above
Japanese Utility models and applications for Utility models: IPC as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS (KIPO internal) & Keywords: liquid, phase, delay, polarization, lens

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2001-296515 A (JAPAN SCIENCE & TECHNOLOGY CORP) 26 October 2001 See paragraphs [0017], [0018] and figure 1.</td>
<td>2-6</td>
</tr>
<tr>
<td>A</td>
<td>US 6128080 A (JANIK, Gary R. et al.) 03 October 2000 See column 8, lines 31-58 and figure 1.</td>
<td>1-6</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-1066112 B1 (KOREA ELECTRONICS TECHNOLOGY INSTITUTE) 20 September 2011 See abstract and figure 1.</td>
<td>1-6</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search
16 JUNE 2014 (16.06.2014)

Date of mailing of the international search report
17 JUNE 2014 (17.06.2014)

Name and mailing address of the ISA/KR
Korean Intellectual Property Office
Government Complex-Daejeon, 159 Seumsan-ro, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140

Authorized officer
Telephone No.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JP 2002-504229 A</td>
<td>05/02/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 98-55847 A2</td>
<td>10/12/1998</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 2009)
A. 발명이 속하는 기술분류(국제특허분류(IPC))
G01B 9/02(2006.01)i, G01B 11/24(2006.01)i

B. 조사원 분야
조사원 최소문헌(국제특허분류를 기재)
G01B 9/02; H04B 10/08; G02F 1/133; G02B 27/28; G02B 6/10; G01B 11/24

조사원 기술분야에 속하는 최소문헌 이외의 문헌
한국등록신효성공보 및 한국공개신효성공보: 조사원 최소문헌 번에 기재된 IPC
일본등록신효성공보 및 일본공개신효성공보: 조사원 최소문헌 번에 기재된 IPC

국제조사에 이용된 전산 대서예체계의 명칭 및 검색어(해당하는 경우)
eKOMPASS(특허청 내부 검색시스템) & 커뮤드: 역정, 위상, 지연, 면폭, 렌즈

C. 관련 문헌

<table>
<thead>
<tr>
<th>카테고리</th>
<th>인용문헌명 및 관련 구절(해당하는 경우)의 기재</th>
<th>관련 청구항</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 6128680 A (JANIK, GARY R의 3명) 2000.10.03 결림 8, 라인 31-58 및 도면 1 참조.</td>
<td>6</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-1066112 B1 (전자부품연구원) 2011.09.20 요약 및 도면 1 참조.</td>
<td>6</td>
</tr>
</tbody>
</table>

추가 문헌이 C(계속)에 기재되어 있습니다. ❌ 다음특허에 관한 별지를 참조하십시오.

* 인용문헌의 특별 카테고리:
 “A” 특별히 관련이 없는 것으로 보이는 일반적인 기술수준을 정의한 문헌
 “B” 국제특허분류서 작성 관련 입력 또는 우선권을 가진 국제특허일 이외에 제공된 전산물 또는 특허 문헌
 “C” 무관한 주제에 의한 문헌 또는 다른 인용문헌의 공개일 또는 관련 특허일에 제시된 이유의 일부를 제시하기 위하여 인용된 문헌
 “D” 국제특허일 이후에 공개되었으나 국제특허일 이전에 공개된 문헌

국제조사의 설계 완료일
2014년 06월 16일 (16.06.2014)

국제조사보고서 발송일
2014년 06월 17일 (17.06.2014)

ISA/KR의 명칭 및 우편주소
대한민국 특허청
(302-701) 대전광역시 서구 정로로 189, 4동 (중서준, 정부대전청사)
전화번호 +82-42-72-7140

사립관
김기현
전화번호 +82-42-481-8143

식별 PCT/ISA/210(두 번째 음지)(2009년 7월)
<table>
<thead>
<tr>
<th>국가고시번호</th>
<th>공개일</th>
<th>대응특허문헌</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP 2001-296515 A</td>
<td>2001/10/26</td>
<td>JP 03529699 B2</td>
<td>2004/05/24</td>
</tr>
<tr>
<td>US 6128080 A</td>
<td>2000/10/03</td>
<td>CA 2293369 A1</td>
<td>1998/12/10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1017981 A2</td>
<td>2000/07/12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002-504229 A</td>
<td>2002/02/05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 98-55847 A2</td>
<td>1998/12/10</td>
</tr>
</tbody>
</table>

저작물 PCT/ISA/210 (대응특허 추가용지) (2009년 7월)