Abstract: The present invention relates to a positive electrode active material for a secondary battery, wherein the positive electrode active material comprises one or more compounds which have a layered crystal structure and which are selected from the following chemical formula 1, wherein less than 20% of Li is contained in a transition metal layer with respect to the total amount of transition metal sites, and a cation mixing ratio of placing Ni in a lithium layer is 1% to 4.5% with respect to the total weight of lithium sites in the lithium layer to thus support the layered crystal structure in a stable manner. The positive electrode active material of the present invention has a long service life and provides superior storage characteristics at room temperature and at high temperature, even when the battery voltage mode of the positive electrode active material repeatedly charge/discharge current. (1-s-t)[Li(Li,Mn)_{1-\alpha}\{x+y\}Ni(CO)O]^{3+}\text{Li}[\text{LiOH}] (1) (0<\alpha<0.2, 0<x<0.9, 0<y<0.5, a-x+y<1, 0<s<0.03, 0<t<0.03)
명세서
양극 활물질 및 이를 이용한 리튬 이차전지

기술분야
본 발명은 이차전지용 양극 활물질로서, 특정한 조성의 화합물로 이루어져 있고, 전이금속중에 전이금속 사이트의 총량을 기준으로 20% 미만으로 Li를 포함하며, 중상 결정구조에서 리튬층에 Ni이 치인 양이온 혼합(cation mixing) 비율이 리튬층에서 리튬 사이트의 총량을 기준으로 1% 내지 4.5%로서 중상 결정구조를 안정적으로 지지함으로써, 레이트 특성이 우수하고 상온 및 고온에서 간 수명을 가지고 안정성이 우수한 것을 특징으로 하는 이차전지용 양극 활물질에 관한 것이다.

배경기술
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지지원으로서의 이차전지에 대해 수요가 급격히 증가하고 있고, 그러한 이차전지 중에서도 높은 에너지 밀도와 작동 전위를 나타내고, 사이를 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.

또한, 최근에는 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차(EV), 하이브리드 전기자동차(HEV) 등에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차(EV), 하이브리드 전기자동차(HEV) 등의 동력원으로는 주로 니켈 수소소금속(Ni-MH) 이차전지가 사용되고 있지만, 높은 에너지 밀도, 높은 방전 전압 및 출력 안정성의 리튬 이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화 단계에 있다.

특히, 전기자동차에 사용되는 리튬 이차전지는 높은 에너지 밀도와 단시간에 큰 출력을 발휘할 수 있는 특성과 더불어, 대전류에 의한 충전방식이 단시간에 반복되는 가혹한 조건 하에서 10년 이상 사용될 수 있어야 하므로, 기존의 소형 리튬 이차전지보다 움등히 우수한 안전성 및 장기 수명 특성이 필연적으로 요구된다.

중래의 소형전지에 사용되는 리튬 이온 이차전지의 양극 활물질로는 중상 구조(layered structure)의 리튬 함유 코발트 산화물(LiCoO₂)이 주로 사용되고 있고, 그 외에 중상 결정구조의 LiMnO₂, 스피넬 결정구조의 LiMn₂O₄ 등의 리튬 함유 망간 산화물과, 리튬 함유 니켈 산화물(LiNiO₂)의 사용도 고려되고 있다.

상기 양극 활물질 중에 LiCoO₂는 수명 특성 및 충전방식 효율이 우수하여 가장 많이 사용되고 있지만, 구조적 안정성이 떨어지고, 원료로서 사용되는 코발트의 자원적 한계로 인해 고가이므로 가격 경쟁력에 한계가 있다는 단점을 가지고 있다.

LiMnO₂, LiMn₂O₄ 등의 리튬 망간 산화물은 열적 안전성이 우수하고 가격이
저림하는 장점이 있지만, 용량이 작고, 고온 특성에 열악하다는 문제점이 있다.

또한, LiNiO₂계 양극 활물질은 높은 발전용량의 전지 특성을 나타내고 있으나, 간단한 고상반응으로는 합성이 매우 어렵고, 필수 도전자가 필요하며, 그에 따라 레이트(rate) 특성에 큰 문제점이 있다.

발명의 상세한 설명

기술적 과제

따라서, 본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.

본 발명의 발명자들은 섬도 있는 연구와 다양한 실험을 거친 끝에, 이후 설명하는 바와 같이, 특장한 조성과 양이온 혼합에 의해 안정적인 결정 구조를 가지면서 사이를 특성이 우수한 양극 활물질을 개발하기에 이르렀고, 이러한 활물질을 사용하여 이차전지를 만드는 경우, 전자의 안정성 향상에 기여하여 수명특성 등의 성능을 향상시킬 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.

기술적 해결방법

따라서, 본 발명에 따른 이차전지용 양극 활물질은, 하기 화학식 1로부터 선택되는 총합 결정구조를 가진 하나 또는 그 이상의 화합물로 구성되어 있고, 전이금속층에 전이금속 사이트의 총량을 기준으로 20% 미만으로 Li를 포함하며, 총합 결정구조에서 리튬층에Ni이 위치한 양이온 혼합(cation mixing) 비율이 리튬층에서 리튬 사이트의 총량을 기준으로 1% 내지 4.5%로서 총합 결정구조를 안정적으로 지지하는 특성을 가진다.

\[(1-s-t)[Li(Li,Mn,\ldots)\text{Ni}_x\text{Co}_y\text{O}_z]\times s[Li\text{CO}_3]\times t(LiOH)\] (1)

상기 식에서, 0<s<0.2; 0<x<0.5; 0<y<0.5; a+x+y<1; 0<s<0.03; 및 0<t<0.03 이다.

여기에서, a, x 및 y는 별 비율이고, s 및 t는 중량 비율이다.

상기에서 보는 바와 같이, 본 발명의 양극 활물질은 총합 구조를 가지며 특장한 왼소 및 화합물 조성으로 이루어진 물질로서, 혼합 전이금속 산화물 중('전이금속층') 사이로 리튬 이온이 흘러져 배출되며, 상기 리튬 이온의 흘러 배출층('리튬층')에는 전이금속 중으로부터 유래된 일부 Ni 이온이 삽입되어 전이금속 중들을 상호결합하고 있고, 상기 전이금속층에는 소정량의 리튬이 포함되어 있는 것을 특징으로 한다.

종래의 리튬 혼합 전이금속 산화물은, 혼합 상태에서 리튬층으로부터 리튬이 탈리되며 전이금속 중의 산소 원자들 간 반발력에 의해 결정 구조가 폐창하면서 불안정해지고, 이에 따라 충전방전 반복에 의해 결정구조가 변화함으로써, 용량 및 사이를 특성이 급격히 감소는 문제가 있었다.

반면에, 본 발명에 따른 양극 활물질은 리튬층에 일부 삽입된 니켈이 전이금속중들을 상호 연결하여 결정구조를 안정화시킴으로써, 리튬의 흡착 및
방출에 의해 결정구조가 봉괴되는 문제점을 방지할 수 있다. 이에 따라, 산소 탈리에 의한 추가적인 구조 붕괴가 일어나지 않고 더 이상의 Ni의 발생을 방지함으로써 수명특성과 안정성이 동시에 향상되는 바, 전지 용량 및 사이클 특성이 크게 향상될 수 있고, 소량하는 수준의 레이트 특성을 발휘할 수 있다.

즉, 충전 과정에서 리튬이 방출되는 경우에도 상기 리튬층에 삽입되어 있는 Ni 이온의 산화수 없이 유지되면서 결정 구조의 붕괴가 발생하지 않고, 잘 반달된 충전 구조를 유지할 수 있어서, 이러한 특성을 가진 양극 활물질을 사용하여 제조되는 전지는 고용량이고 높은 사이클 안정성을 발휘할 수 있다.

 더욱이, 본 발명에 따른 리튬 혼합 전이금속 산화물은 제조과정에서 상대적으로 높은 온도의 소결시에도 결정 구조가 안정적으로 유지되는 바, 열 안정성이 매우 우수하다.

또한, 본 발명에 따른 리튬 혼합 전이금속 산화물은 전이금속층에 소정량의 리튬이 포함되어 있는 특징을 갖는다. 이러한 특성은 높은 레이트 특성을 제공하는데 기여한다.

현재 개발이 본격화되고 있는 전기자동차, 하이브리드 전기자동차 등의 전지들에 설치적으로 사용되기 위해서는 사이클 특성은 물론 파워를 높이기 위한 레이트 특성이 매우 중요하다. 그러나, 전지에 사용되는 활물질의 경우, 기본적으로 전자 및 이온의 이동을 수반하는 반응을 기반으로 하고 있으며, 간단한 조합과 조성에 의해서 상기 요건들을 만족시키기 어렵다.

반면에, 본 발명의 리튬 혼합 전이금속 산화물은 전이금속층에 존재하는 Li과 리튬층에 존재하는 전이금속에 의해, 상기와 같은 요건들을 모두 충족시킨다.

또한, 본 발명에 따른 리튬 전이금속 산화물은 탄산처리 및 수산화처리를 소정량 포함하고 있다. 상기 탄산처리 및 수산화처리는 전지 내부에 존재할 수 있는 강산인 HF를 화학적 화합물 측으로 유효하여 HF의 부작용을 억제함으로써, 결과적으로 전지의 안정성 향상에 기여하면서 수명특성 등의 성능을 향상시킨다. 이는 종래 불순물로 인식하여 활물질에 잔존하지 않도록 하던 것과 상반되는 것으로서, 이러한 본 발명의 개념은 종래의 관념을 전면히 뒤엎는 획기적인 것이라 할 수 있다.

화학식 1에서 a는 상기에 정의되어 있는 바와 같이 0 초과 내지 0.2 미만이며, 바꿈의 하계는 0.01 내지 0.19일 수 있다. 화학식 1에서 x는 상기에 정의되어 있는 바와 같이 0.3 초과 내지 0.9 미만이며, 바꿈의 하계는 0.3 이상 내지 0.8 미만일 수 있다. 또한, 화학식 1에서 y는 상기에 정의되어 있는 바와 같이 0 초과 내지 0.5 미만이며, 바꿈의 하계는 0 초과 내지 0.3 이하일 수 있다.

상기 탄산처리 및 수산화처리는 상기에 정의되어 있는 바와 같이, 전체 활물질 대비 중량 비로 0.03 미만으로 포함되어 있으며, 탄산처리 또는 수산화처리의 함량이 너무 많으면 전지의 용량 저하를 유발할 수 있으므로 바람직하지 않다. 또한, 상기 탄산처리 및 수산화처리가 너무 적은 경우, 상기와 같이 수명특성이 저하되므로 바람직하지 않다. 상기와 같은 이유로, 상기 탄산처리 및
수산화리튬은 각각 중량비로 0.001 내지 0.03의 범위일 수 있다. 이러한 탄산리튬과 수산화리튬은 그 비율 또한 매우 중요하며, 이는 합성 과정, 합성 후 조건 등을 통해 가능하다.

본 발명에서 양이온 혼합(cation mixing) 비율은, 앞서 정의한 바와 같이, 중상 결정구조의 리튬중에서 리튬 사이트의 중량을 기준으로 Ni이 차지하는 비율을 의미하며, 1% 내지 4.5%의 범위가 바람직하다.

양이온 혼합 비율이 상기 범위보다 많은 경우에는 심각한 용량 저하를 초래할 수 있고, 반대로 상기 범위보다 적은 경우에는 소량하는 구조적 안정성을 기할 수 없어서 사이클 특성의 향상을 기대하기 어려울 수 있다. 더욱 바람직한 양이온 혼합 비율은 1.5% 내지 4%일 수 있다.

하나의 바람직한 예로서, 상기 전이금속은 소정량의 원소에서 6배위 구조를 가질 수 있는 금속 또는 비금속 원소가 치환될 수 있다. 상기 6배위 구조를 가질 수 있는 금속 또는 비금속 원소의 치환량은 전이금속 전체을 기준으로 10 볼% 이하인 것이 바람직하다. 치환량이 너무 많은 경우에는 소량하는 수준의 용량을 확보하기 어려워진다는 문제점이 있으므로 바람직하지 않다. 상기 치환 가능한 금속 또는 비금속 원소의 예로는 Cr, Fe, V, Zr, Al, Mg, B 등을 들 수 있지만 이들만으로 한정되는 것은 아니다.

경우에 따라서는, 상기 화학식 1의 산소(O) 이온 역시 소정량의 범위에서 다른 음이온으로 치환될 수 있다. 상기 다른 음이온은 바람직하게는, F, Cl, Br, I 등의 할로겐 원소, 황, 캔그넷나이트 화합물, 및 금속로 이루어진 군에서 선택되는 하나 또는 둘 이상의 원소일 수 있지만, 이들만으로 한정되는 것은 아니다.

이러한 음이온의 치환에 의해 전이금속과의 결합력이 우수해지고 활용률의 구조 전이가 방지되다는 장점이 있으나, 상기 음이온의 치환량이 너무 많으면 오히려 화합물 안정적인 구조를 유지하지 못하여 수명특성이 저하될 수 있다. 따라서, 바람직한 음이온의 치환량은 0.2 볼 이하이고, 더욱 바람직하게는 0.01 내지 0.1 볼의 범위일 수 있다.

본 발명에 따른 양극 활공질에서 리튬중에 위치하는 Ni은 전이금속 총으로부터 유래된 Ni+2인 것이 바람직하다. Ni+2의 경우, Li+와 그 크기가 유사하여 리튬중의 리튬 사이트에 용이하게 삽입될 수 있다.

본 발명의 양극 활공질을 구성하는 형식 1의 화합물은 상기 조성식에 기반하여 제조할 수 있다. 예를 들어, 리튬 전구체와 전이금속 전구체의 혼합물을 산소가 포함된 분위기에서 소성하여 제조할 수 있다. 리튬 전구체로는 탄산 리튬, 수산화 리튬 등이 사용되며, 전이금속 전구체는 전이금속 산화물, 전이금속 수산화물 등이 사용될 수 있다. 전이금속 전구체는 각 전이금속 전구체들의 혼합물일 수도 있고, 각각의 전이금속들을 모두 포함하는 하나의 전구체일 수도 있다. 후자의 복합 전구체는 공절법 등에 의해 제조될 수 있다.

본 발명에 따른 양극 활공질은 도전계 및 바인더를 첨가하여 양극용 협체로 제조될 수 있다.
상기 합성은 물, NMP 등 소정의 용매를 포함하여 슬러리를 만들 수 있으며, 이러한 슬러리를 양극 접착재 상에 도포한 후, 건조 및 압연하여 양극을 제조할 수 있다.

상기 양극은, 액을 들어, 양극 접착재 상에 본 발명에 따른 양극 활성질, 도전재 및 바이너리의 혼합물로 된 슬러리를 도포한 후 건조하여 제조되며, 필요에 따라서는, 상기 양극 활성질, 도전재, 바이너리 등의 혼합물(전극 합성)에 접속 조절제 및 쌍진제로 이루어진 군에서 선택되는 1종 이상의 물질이 더 포함될 수도 있다.

상기 양극 접착재는 일반적으로 3 내지 500 μm 두께로 만든다. 이러한 양극 접착재는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 액을 들어, 스테인리스 스틸, 알루미늄, 니켈, 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 탄소, 은 등의 표면처리된 것들이 사용될 수 있다. 접착제는 그것의 표면에 미세한 요을 형성하여 양극 활성질의 접착력을 높일 수도 있으며, 힐륨, 시트, 호일, 네트, 다중질제, 빨포제, 부착포제 등의 다양한 형태가 가능하다.

상기 도전제는 전극 활성질의 도전성을 더욱 향상시키기 위한 성분으로서, 전극 합성 전체 중량을 기준으로 0.1 ~ 30 중량%로 첨가할 수 있다. 이러한 도전제는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 액을 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케鬃 블랙, 케네스 블랙, 프레네스 블랙, 랜프 블랙, 서미 블랙 등의 카본블랙; 탄소 나노튜브나 퓨리린 등의 탄소 유도체, 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 틴탄산 칼륨 등의 도전성 위스키; 산화 틴 등의 도전성 금속 산화물; 퓨리란틴 유도체 등의 도전성 소재 등이 사용될 수 있다.

상기 바이너리는 활성질과 도전제 등의 결합과 접착제에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활성질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가한다. 이러한 바이너리의 예로는, 폴리클화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로오즈(CMC), 전분, 히드록시프로필셀룰로오즈, 재생 섬플로우즈, 폴리비닐피클리돈, 테트라프룰로오에틸렌, 폴리에틸렌, 폴리프로필렌, 프로필-프로필렌-디엔 테르폴리머(EPDM), 슈판화 EPDM, 스티렌 브리렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.

상기 절도 조절제는 전극 합성의 혼합 공정과 그것의 접착제 상의 도포 공정이 용이할 수 있도록 전극 합성의 절도를 조절하는 성분으로서, 전극 합성 전체 중량을 기준으로 30 중량%까지 첨가될 수 있다. 이러한 절도 조절제의 예로는, 카르복시메틸셀룰로오즈, 폴리비닐리덴 플로라이드 등이 있지만, 이들만으로 한정되는 것은 아니다. 경우에 따라서는, 앞서 설명한 용매가 절도 조절제로서의 역할을 병행할 수 있다.
상기 중전체는 전극의 평창을 억제하는 보조성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섭유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올레핀계 중합체, 유리섬유, 탄소섬유 등의 섭유상 물질이 사용된다.

이렇게 제조된 양극은 음극, 분리막 및 리튬염 핵유 비수계 전해질과 함께 리튬 이하전지를 제작하는데 사용될 수 있다.

상기 음극은 음극 점전체 상에 음극 재료를 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 도전체, 바닐이 등의 성분들이 더 포함될 수도 있다.

상기 음극 점전체는 일반적으로 3 내지 500 μm의 두께로 만들어진다. 이러한 음극 점전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티타늄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등을 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.

또한, 양극 점전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 무직포체 등 다양한 형태로 사용될 수 있다.

상기 음극 활물질로는, 예를 들어, 천연 흑연, 인조 흑연, 평창 흑연, 탄소섬유, 난흑연화성 탄소, 카본블랙, 카본나노튜브, 플러렌, 활성탄 등의 탄소 및 흑연재료; 리튬과 합금이 가능한 Al, Sn, Ag, Bi, Mg, Zn, In, Ge, Pb, Pt, Ti 등의 금속 및 이러한 원소를 포함하는 화합물; 금속 및 그 화합물과 탄소 및 흑연재료의 복합물; 리튬 합유 화합물 등을 들 수 있다. 그 중에서도 탄소계 활물질, 규소계 활물질, 주석계 활물질, 또는 규소·탄소계 활물질이 더욱 바람직하며, 이들은 단독으로 또는 두 이상의 조합으로 사용될 수도 있다.

상기 분리막은 양극과 음극 사이에 개폐되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 악막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 μm이고, 두께는 일반적으로 5 ~ 300 μm이다. 이러한 분리막으로는, 예를 들어, 내화학적 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 무직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 검할 수도 있다.

상기 리튬염 핵유 비수계 전해질은, 비수 전해질과 리튬염으로 이루어져 있다. 상기 비수 전해질로는 비수 전해액, 고체 전해질, 무기 고체 전해질 등이 사용된다.

상기 비수 전해액으로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 갈마-부틸로 락돈, 1,2-디메톡시 에탄, 테트라하이드록시 프랑(france), 2-메틸 테트라하이드록시 푸탄, 디메틸су 폴시드, 1,3-디옥소선, 포름아미드, 디메틸포름아미드, 디옥소선, 아세토니트릴,
니트로메탄, 포름산 베타, 소산 베타, 인산 트리에스테르, 트리메틸시 메탄,
디옥소산 유도체, 설포란, 베타 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌
카르보네이트 유도체, 테트라하이드로포란 유도체, 에테르, 펑프 온산 메틸,
프로포온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.

상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌
옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리
에티데이션 리신(agitation lysine), 폴리에스테르 스피라이드, 폴리비닐 알코올,
폴리 퓨럴 비닐리덴, 이온성 해리기기를 포함하는 종합체 등이 사용될 수 있다.

상기 무기 고체 전해질로는, 예를 들어, Li,N, LiL, Li,Ni,LiO2, Li,N-Li2O, LiSiO2,
LiSiO3-Li-OH, Li2SiS2, Li2SiO4, Li2SiO5-Li-OH, Li3PO4-Li3S-Si3, 등의 Li의
질화물, 할로겐화물, 황산염 등이 사용될 수 있다.

상기 림염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl,
LiBr, LiI, LiCIO4, LiBF4, LiB12Cl10, LiPF6, LiCF3SO3, LiCF2CO2, LiAsF6, LiSbF6,
LiAlCl4, CH3SO3Li, CF3SO3Li, (CF2SO3)2N Li, 클로로 브라 림, 저급 지방족
카르본산 림, 4 베타 루산 림, 아미드 등이 사용될 수 있다.

또한, 비수계 전해질에는 중량 전 성, 난연성 등의 개선을 목적으로, 예를
들어, 피리돈, 트리에틸포스파이드, 트리에탄올아민, 환상 에테르, 에틸렌
디아민, n-글라이민(glyme), 핵자 인산 트리 아미드, 니트로ペン젠 유도체, 유황, 퀴논
아민 염료, N-치환 육나플리디논, N,N-치환 아미다플리디논, 에틸렌 클리로 디알킬
에테르, 암모늄염, 피놀, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도
있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌
등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기
위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene
carbonate), PRS(Propene sultone), FEC(Fluoro-Ethylene carbonate) 등들을 더 포함시킬
수 있다.

본 발명에 따른 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에
사용될 수 있을 뿐만 아니라, 고온 안정성 및 긴 사소를 특성과 높은 레이트 특성
등이 요구되는 중태형 디바이스의 전원으로 사용되는 다수의 전지셀들을
포함하는 중태형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.

상기 중태형 디바이스의 바람직한 예로는 전지적 보느에 의해 동력을 받아
움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드
전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드
전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기
자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프
카트(electric golf cart) 등을 들 수 있으나, 이에 한정되는 것은 아니다.

발명의 실시를 위한 형태

이하 실시예들을 참조하여 본 발명의 내용을 더욱 상술하지만, 본 발명의
법주가 그것으로 한정되는 것은 아니다.

[55]

[56] <실시예 1>

[57] Ni, Mn, Co의 비율이 53 : 27 : 20의 물질이 되도록 전구체를 함성한 후, Li₂CO₃와 혼합한 뒤 반응토(furnace)의 온도를 940°C로 하고, cooling 분위기를 조절하여, 0.9978Li₂O₂(Ni₀₅₃Mn₀₃₇Co₀₂₀)₀₉₈O₂*0.0012LiOH*0.0010Li₂CO₃의 활물질을 제조하였다.

[58] 제조된 물질의 LiOH와 Li₂CO₃의 양은, 물 200 ml에 제조된 활물질 10 g을 넣고, 0.1 N 농도의 HCl로 적정하여 염기의 액을 측정함으로써 얻었다.

[59]

[60] <비교예 1>

[61] 실시예 1에서 cooling 분위기를 조절하여 카보네이트의 양을 극대화 한 것을 제외하고는 실시예 1과 동일한 방법으로 0.9971Li₂O₂(Ni₀₅₃Mn₀₃₇Co₀₂₀)₀₉₈O₂
*0.0029Li₂CO₃의 활물질을 제조하였다.

[62]

[63] <비교예 2>

[64] 실시예 1에서 전이금속층의 Li 양이 0이 되도록 한 것을 제외하고는 실시예 1과 동일한 방법으로 활물질을 제조하였다.

[65]

[66] <비교예 3>

[67] 실시예 1에서 Li이 전이금속층에 존재하지 않고 Li와 전이금속의 비율이 0.99가 되도록 한 것을 제외하고는 실시예 1과 동일한 방법으로 활물질을 제조하였다.

[68]

[69] <비교예 4>

[70] 실시예 1에서 Li이 전이금속층에 존재하지 않고 Li과 전이금속의 비율이 0.97이 되도록 한 것을 제외하고는 실시예 1과 동일한 방법으로 활물질을 제조하였다.

[71]

[72] <실시예 2>

[73] 실시예 1에서 cooling 분위기를 조절하여 OH의 양을 늘린 것을 제외하고는 실시예 1과 동일한 방법으로 0.9972Li₂O₂(Ni₀₅₃Mn₀₃₇Co₀₂₀)₀₉₈O₂
*0.0018LiOH*0.0010Li₂CO₃의 활물질을 제조하였다.

[74]

[75] <실시예 3>

[76] 실시예 1에서 cooling 분위기를 다르게 한 것을 제외하고는 실시예 1과 동일한 방법으로 0.9972Li₂O₂(Ni₀₅₃Mn₀₃₇Co₀₂₀)₀₉₈O₂*0.0008LiOH*0.0020Li₂CO₃의 활물질을 제조하였다.
[77]
 <비교예 5>
[78]
 실시예 1에서 제조된 환물질의 염기를 제거하기 위하여, 중류수로
세척(washing)한 후 130°C의 오븐(oven)에서 24 시간 동안 간조하여, Li(Li_{0.02}(Ni_{0.53}
Mn_{0.27}Co_{0.20})_{0.98})O_2를 제조하였다.
[79]
[80]
 <실시예 4>
[81]
 Ni, Mn, Co의 비율이 78 : 12 : 10의 분비가 되도록 전구체를 합성한 후, Li_2CO_3와
혼합한 뒤, 반응로의 온도를 890°C로 하고, cooling 분위기를 조절하여,
0.9952Li(Li_{0.02}(Ni_{0.78}Mn_{0.12}Co_{0.10})_{0.98})O_2*0.0026LiOH*0.0022Li_2CO_3의 활물질을
제조하였다.
[82]
 제조된 물질의 LiOH와 Li_2CO_3의 양은, 물 200 ml에 제조된 활물질 10 g을 넣고,
0.1 N 농도의 HCl로 적정하여 염기의 양을 측정함으로써 얻었다.
[83]
[84]
 <비교예 6>
[85]
 실시예 4의 전구체들과 Li_2CO_3을 비교예 1의 방법과 동일한 방법으로 처리하여
0.9948Li(Li_{0.02}(Ni_{0.78}Mn_{0.12}Co_{0.10})_{0.98})O_2*0.0052Li_2CO_3의 활물질을 제조하였다.
[86]
[87]
 <비교예 7>
[88]
 실시예 4에서 전이금속층의 Li 양이 0이 되도록 한 것을 제외하고는 실시예 4와
동일한 방법으로 활물질을 제조하였다.
[89]
[90]
 <비교예 8>
[91]
 실시예 4에서 Li이 전이금속층에 존재하지 않고 Li와 전이금속의 비율이
0.99가 되도록 한 것을 제외하고는 실시예 4와 동일한 방법으로 활물질을
제조하였다.
[92]
[93]
 <비교예 9>
[94]
 실시예 4에서 Li이 전이금속층에 존재하지 않고 Li와 전이금속의 비율이
0.97이 되도록 한 것을 제외하고는 실시예 4와 동일한 방법으로 활물질을
제조하였다.
[95]
[96]
 <비교예 10>
[97]
 실시예 4에서 제조된 활물질을 비교예 5의 방법과 동일한 방법으로 처리하여
Li(Li_{0.02}(Ni_{0.78}Mn_{0.12}Co_{0.10})_{0.98})O_2의 활물질을 제조하였다.
[98]
[99]
 <실시예 5>
[100]
 Ni, Mn, Co의 비율이 50 : 40 : 10의 분비가 되도록 전구체를 합성한 후, Li_2CO_3와
혼합한 뒤 반응용의 온도를 950℃로 하고, cooling 분위기를 조절하여, 0.9967Li(Li_{0.1}(Ni_{0.5}Mn_{0.5}Co_{0.1}))_{0.99}O_{2}*0.0021LiOH*0.0012Li_{2}CO_{3}의 활물질을 제조하였다.

[102] 제조된 물질의 LiOH와 Li_{2}CO_{3}의 양은, 물 200 ml에 제조된 활물질 10 g을 넣고, 0.1 N 농도의 HCl로 적정하여 염기의 양을 측정함으로써 얻었다.

[103]

[104] <비교하여 11>

[105] 실시에 5의 전구체들과 Li_{2}CO_{3}을 비교에 1의 방법과 동일한 방법으로 처리하여 0.9966Li(Li_{0.1}(Ni_{0.3}Mn_{0.3}Co_{0.1}))_{0.99}O_{2}*0.0034Li_{2}CO_{3}의 활물질을 제조하였다.

[106]

[107] <비교하여 12>

[108] 실시에 5에서 제조된 활물질을 비교에 5의 방법과 동일한 방법으로 처리하여 Li(Li_{0.1}(Ni_{0.3}Mn_{0.3}Co_{0.1}))_{2}의 활물질을 제조하였다.

[109]

[110] <실험에 1>

[111] 실시에 1 내지 5와 비교에 1 내지 12에서 함성된 활물질들을 각각 활물질 : 도전체 : 바인더의 비율을 95 : 2.5 : 2.5의 비율이 되도록 슬러리로 만든 후 Al foil 위에 코팅하였다. 얇은 전극을 공극률이 23%가 되도록 프레스(press) 한 후 원형 모양으로 펴서하여 코인형 전지를 제작하였다. 이 때, 음극으로는 Li 금속을 사용하였고, 전해액으로는 EC : DMC : DEC가 1 : 1 : 1 부분비로 섞여진 용매(solvent)에 LiPF_{6}가 1 M로 녹아 있는 것을 사용하였다. 이렇게 제작된 전지를 대상으로, 하기 표 1에서 기재되어 있는 조건으로 다양한 실험을 수행하였다.

[112] 또한, 실시에 1 내지 5와 비교에 1 내지 12에서 함성된 활물질들을 X-ray diffraction analysis 방법을 통해 데이터를 얻은 후, 구조 refinement를 통해 구조 내에 들어있는 전이금속의 양을 측정하였다.

[113] 이러한 결과들을 하기 표 1에 나타내었다.

[114]

[115] [표 1] 전기화학 테스트 결과
<table>
<thead>
<tr>
<th></th>
<th>Discharge capacity (mAh/g)</th>
<th>1st cycle efficiency (%)</th>
<th>Rate capability 2.0C/0.1C (%)</th>
<th>Cycle capability 30th cycle/1st cycle (%)</th>
<th>Ni Occ. In Li site (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>실제 1</td>
<td>163</td>
<td>88</td>
<td>85</td>
<td>95</td>
<td>2.4</td>
</tr>
<tr>
<td>비교 1</td>
<td>158</td>
<td>85</td>
<td>78</td>
<td>89</td>
<td>3.0</td>
</tr>
<tr>
<td>비교 2</td>
<td>154</td>
<td>82</td>
<td>74</td>
<td>90</td>
<td>5.2</td>
</tr>
<tr>
<td>비교 3</td>
<td>152</td>
<td>80</td>
<td>75</td>
<td>88</td>
<td>6.0</td>
</tr>
<tr>
<td>비교 4</td>
<td>145</td>
<td>80</td>
<td>71</td>
<td>85</td>
<td>6.7</td>
</tr>
<tr>
<td>실제 2</td>
<td>164</td>
<td>89</td>
<td>86</td>
<td>94</td>
<td>2.6</td>
</tr>
<tr>
<td>실제 3</td>
<td>161</td>
<td>87</td>
<td>84</td>
<td>92</td>
<td>2.8</td>
</tr>
<tr>
<td>비교 5</td>
<td>165</td>
<td>89</td>
<td>85</td>
<td>82</td>
<td>2.5</td>
</tr>
<tr>
<td>실제 4</td>
<td>195</td>
<td>89</td>
<td>84</td>
<td>92</td>
<td>1.9</td>
</tr>
<tr>
<td>비교 6</td>
<td>189</td>
<td>86</td>
<td>79</td>
<td>87</td>
<td>2.2</td>
</tr>
<tr>
<td>비교 7</td>
<td>186</td>
<td>85</td>
<td>73</td>
<td>90</td>
<td>4.7</td>
</tr>
<tr>
<td>비교 8</td>
<td>178</td>
<td>82</td>
<td>68</td>
<td>89</td>
<td>7.3</td>
</tr>
<tr>
<td>비교 9</td>
<td>170</td>
<td>82</td>
<td>66</td>
<td>88</td>
<td>9.2</td>
</tr>
<tr>
<td>비교 10</td>
<td>196</td>
<td>90</td>
<td>85</td>
<td>80</td>
<td>2.1</td>
</tr>
<tr>
<td>실제 5</td>
<td>159</td>
<td>91</td>
<td>87</td>
<td>97</td>
<td>2.4</td>
</tr>
<tr>
<td>비교 11</td>
<td>149</td>
<td>87</td>
<td>78</td>
<td>89</td>
<td>2.6</td>
</tr>
<tr>
<td>비교 12</td>
<td>160</td>
<td>91</td>
<td>86</td>
<td>85</td>
<td>3.0</td>
</tr>
</tbody>
</table>

[117] 상기 표 1에서 보면 바와 같이, 환절질에서 LiOH와 Li₂CO₃가 매우 중요한 역할을 하는 것을 확인할 수 있다. 비교에 5, 10 및 12과 같이 각각의 환절질들에서 LiOH와 Li₂CO₃가 존재하지 않으면, 레이트 특성, 사이클 특성이 급격하게 감소하는 것을 볼 수 있다. 이러한 특성 변화는 상기 환절질들을 실제 전지 사이클인 300 사이클 또는 500 사이클까지 수행할 경우, 상기에서 나타나는 차이의 10 내지 15 배 이상의 차이를 보이게 되며, 특히 전기동작차용 전지에 적용될 경우, 그 이상의 차이를 보일 수 있다. 또한, 비교에 1, 6 및 11의 결과에서 보면 바와 같이, Li₂CO₃가 단독으로 존재할 경우에는도 성능이 감소하는 결과를 보인다.

[118] 더욱이, 실제에 1과 비교에 2 내지 4의 결과 및 실제에 4와 비교에 7 내지 9의 결과를 상호 비교하여 살펴보면, 전이전속층에서의 Li의 존재 여부에 따라, 발병에 따른 실제에의 레이트 특성이 비교에의 레이트 특성이 비해 완충히 높음을 알 수 있다.

[119] 따라서, 본 발병의 양극 환절질들은 수명 특성과 레이트 특성이 모두 우수함을 확인할 수 있다.
산업상 이용가능성

[120] 상기에서 설명한 바와 같이, 본 발명에 따른 특정한 조성과 결합구조의 양극 활물질은 이차전지의 안정성을 확보할 수 있고 대전류 단시간 충방전 조건과 고온 조건에서 수명을 향상시킬 수 있다.

[121] 본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
청구범위

[1] 하기 화학식 1로부터 선택되는 크어 결정구조를 가진 하나 또는 그 이상의 화합물로 이루어져 있고, 전이금속층 내 전이금속 사이트의 총량을 기준으로 20% 미만으로 Li을 포함하며, 리튬층에 Ni이 위치한 양이온 혼합(cation mixing) 비율이 리튬층에서 리튬 사이트의 총량을 기준으로 1% 내지 4.5%로서 크어 결정구조를 안정적으로 지지하는 것을 특징으로 하는 이차전지용 양극 활물질:
\[(1-s-t)[\text{Li}_{(1-s-t)}\text{Mn}_{s}\text{Ni}_{t}\text{Co}_{1-s-t}\text{O}_{2}]\ast[\text{Li}_{2}\text{CO}_{3}]\ast[t\text{LiOH}]\] (1)
상기 식에서, 0\(<s<0.2, 0<x<0.9, 0<y<0.5, 0<s+x+y<1, 0<s<0.03, 0<t<0.03\)이다.

[2] 제 1 항에 있어서, 상기 a의 함량은 0.01 내지 0.2이지만 것을 특징으로 하는 이차전지용 양극 활물질.

[3] 제 1 항에 있어서, 상기 x의 함량은 0.3 이상 내지 0.8 미만인 것을 특징으로 하는 이차전지용 양극 활물질.

[4] 제 1 항에 있어서, 상기 y의 함량은 0 초과 내지 0.3 이하인 것을 특징으로 하는 이차전지용 양극 활물질.

[5] 제 1 항에 있어서, 상기 s와 t의 함량은 각각 0.001 내지 0.03의 범위인 것을 특징으로 하는 이차전지용 양극 활물질.

[6] 제 1 항에 있어서, 상기 양이온 혼합(cation mixing) 비율이 리튬층에서 리튬 사이트의 총량을 기준으로 1.5% 내지 4.0%인 것을 특징으로 하는 이차전지용 양극 활물질.

[7] 제 1 항에 있어서, 상기 전이금속은 소정량의 범위에서 6배의 구조를 가질 수 있는 금속 또는 비금속 원소가 치환되어 있는 것을 특징으로 하는 이차전지용 양극 활물질.

[8] 제 1 항에 있어서, 상기 6배의 구조를 가질 수 있는 금속 또는 비금속 원소의 치환량은 전이금속 전체량을 기준으로 10 볼% 이하인 것을 특징으로 하는 이차전지용 양극 활물질.

[9] 제 1 항에 있어서, 상기 화학식 1의 산소(O) 이온은 소정량의 범위에서 다른 음이온으로 치환이되도록 하는 것을 특징으로 하는 이차전지용 양극 활물질.

[10] 제 1 항에 있어서, 상기 음이온은 0.01 내지 0.2 볼의 범위로 치환되어 있는 것을 특징으로 하는 이차전지용 양극 활물질.

[12] 제 1 항 내지 제 11 항 중 어느 하나에 따른 양극 활물질을 포함하는 것으로 구성된 양극 합계.

이차전지.