wo 2012/158514 A1 [N 0000 00O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2012/158514 A1l

22 November 2012 (22.11.2012) WIPO|PCT

(51) International Patent Classification: (74) Agents: YAU, Philip et al.; Davis Wright Tremaine LLP,
GO6F 12/02 (2006.01) G11C 11/56 (2006.01) 505 Montgomery Street, Suite 800, San Francisco, Califor-
G1IC 7/10 (2006.01) G11C 16/10 (2006.01) nia 94111 (US).

(21) International Application Number: (81) Designated States (uniess otherwise indicated, for every

PCT/US2012/037511 kind of national protection available). AE, AG, AL, AM,

. . AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,

(22) International Filing Date: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
11 May 2012 (11.05.2012) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,

(25) Filing Language: English HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,

(26) Publication Language: English MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,

(30) Priority Data: OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
61/487,234 17 May 2011 (17.05.2011) Us SE, 8G, SK, SL, SM, ST, 8V, 8Y, TH, TJ, TM, TN, TR,
13/468,720 10 May 2012 (10.05.2012) US TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicant (for all designated States except US): (84) D.esignated. States (unle.ss othefﬂwise indicated, for every
SANDISK TECHNOLOGIES INC. [US/US], Two Leg- kind Of regzonal p}"Ol@C’llOl’l avazlable): ARIPO (BW, GH,
acy Town Center, 6900 North Dallags Parkway, Plano, GM, KE, LR, LS, MW’ MZ, NA, RW, SD, SL, SZ, TZ,
Texas 75024 (US). UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

(72) Inventors; and EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

(75) Inventors/Applicants (for US only): GOROBETS, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

Sergey Anatolievich [RU/GB]; 1F1, 92 Blackford Aven-
ue, Edinburgh Midlothian EH9 3ES (GB). WU, William
S. [US/US]; 877 E. Estates Drive, Cupertino, California

TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

95014 (US). SPROUSE, Stephen T. [US/US]; 5285 Published:

Hoyet Drive, San Jose, California 95129 (US).

with international search report (Art. 21(3))

[Continued on next page]

(54) Title: NON-VOLATILE MEMORY AND METHOD WITH SMALL LOGICAL GROUPS DISTRIBUTED AMONG ACT -
IVE SLC AND MLC MEMORY PARTITIONS

for accessing a predetermined number logical unit of data in parallei,
each logical unit having a logical address assigned by the host

Organizing the non-volatile memory into blocks of memory cells that are
erasable as a unit, each block for storing a plurality of pages, each page

Y

Defining a plurality of logical groups by partitioning a logical address
space of the host into non-overiapping sub-ranges of ordered logical
addresses, each logical group having a predetermined size within

fitting at least two logical groups in a block

delimited by a minimum size of at least one page and a maximum size of

Y

Buffering individual host writes

-
l

‘ Staging the individual host writes logical group by logical group

[

Storing any staged logical groups into the non-volatile memory

550
Done

FIG. 13B

‘Fjszo

530

]_/540

(57) Abstract: A non-volatile memory or-
ganized into flash erasable blocks receives

i data from host writes by first staging into lo-
gical groups before writing into the blocks.

Each logical group contains data from a pre-

defined set of order logical addresses and

510 has a fixed size smaller than a block. The to-

tality of logical groups are obtained by parti-
tioning a logical address space of the host
into non-overlapping sub-ranges of ordered
logical addresses, each logical group having
a predetermined size within a range delim-
ited by a minimum size of at least one page
and a maximum size of fitting at least two
logical groups in a block and up to an order
of magnitude higher than a typical size of a
host write. In this way, excessive garbage
collection due to operating a large logical
group is avoided while the address space is
reduced to minimize the size of a caching
RAM.



wO 2012/158514 A1 WK 00T 0 T 0 A

—  before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))




WO 2012/158514 PCT/US2012/037511

NON-VOLATILE MEMORY AND METHOD WITH SMALL LOGICAL
GROUPS DISTRIBUTED AMONG ACTIVE SLC AND MLC MEMORY
PARTITIONS

FIELD OF THE INVENTION

[0001] This application relates to the operation of re-programmable non-volatile
memory systems such as semiconductor flash memory, and, more specifically, to

efficient storing of data in hierarchical layers of memory partitions.

BACKGROUND OF THE INVENTION

[0002] Solid-state memory capable of nonvolatile storage of charge, particularly in
the form of EEPROM and flash EEPROM packaged as a small form factor card, has
become the storage of choice in a variety of mobile and handheld devices, notably
information appliances and consumer electronics products. Unlike RAM (random
access memory) that is also solid-state memory, flash memory is non-volatile, and
retaining its stored data even after power is turned off. Also, unlike ROM (read only
memory), flash memory is rewritable similar to a disk storage device. In spite of the
higher cost, flash memory is increasingly being used in mass storage applications.
More recently, flash memory in the form of solid-state disks (“SSD”) is beginning to
replace hard disks in portable computers as well as in fixed location installations.
Conventional mass storage, based on rotating magnetic medium such as hard drives
and floppy disks, is unsuitable for the mobile and handheld environment. This is
because disk drives tend to be bulky, are prone to mechanical failure and have high
latency and high power requirements. These undesirable attributes make disk-based
storage impractical in most mobile and portable applications. On the other hand, flash
memory, both embedded and in the form of a removable card or SSD are ideally
suited in the mobile and handheld environment because of its small size, low power

consumption, high speed and high reliability features.

[0003] Flash EEPROM is similar to EEPROM (electrically erasable and
programmable read-only memory) in that it is a non-volatile memory that can be
erased and have new data written or “programmed” into their memory cells. Both

utilize a floating (unconnected) conductive gate, in a field effect transistor structure,
-1-



WO 2012/158514 PCT/US2012/037511

positioned over a channel region in a semiconductor substrate, between source and
drain regions. A control gate is then provided over the floating gate. The threshold
voltage characteristic of the transistor is controlled by the amount of charge that is
retained on the floating gate. That is, for a given level of charge on the floating gate,
there is a corresponding voltage (threshold) that must be applied to the control gate
before the transistor is turned “on” to permit conduction between its source and drain
regions. In particular, flash memory such as Flash EEPROM allows entire blocks of

memory cells to be erased at the same time.

[0004] The floating gate can hold a range of charges and therefore can be
programmed to any threshold voltage level within a threshold voltage window. The
size of the threshold voltage window is delimited by the minimum and maximum
threshold levels of the device, which in turn correspond to the range of the charges
that can be programmed onto the floating gate. The threshold window generally
depends on the memory device’s characteristics, operating conditions and history.
Each distinct, resolvable threshold voltage level range within the window may, in

principle, be used to designate a definite memory state of the cell.

[0005] Current commercial products configure cach storage element of a flash
EEPROM array to store either a single bit of data or more than a single bit of data. A
single-level-cell (SLC) memory has each cell storing a single bit of data by operating
in a binary mode, where a single reference level differentiates between two ranges of

threshold levels of each storage element.

[0006] The threshold levels of transistors correspond to ranges of charge levels stored
on their storage elements. In addition to shrinking the size of the memory arrays, the
trend is to further increase the density of data storage of such memory arrays by
storing more than one bit of data in each storage element transistor. A multi-level-cell
(MLC) memory has each cell storing more a single bit of data by operating in a multi-
level mode, where two or more reference levels differentiates between more than two
ranges of threshold levels of each storage element. For example, commercial flash
memory products now operate in four states (2 bits of data per storage element) or
eight states (3 bits of data per storage element) or 16 states per storage element (4 bits
of data per storage element). Each storage element memory transistor has a certain
total range (window) of threshold voltages in which it may practically be operated,

-0



WO 2012/158514 PCT/US2012/037511

and that range is divided into the number of states defined for it plus margins between
the states to allow for them to be clearly differentiated from one another. Obviously,
the more bits a memory cell is configured to store, the smaller is the margin of error it

has to operate in.

[0007] The transistor serving as a memory cell is typically programmed to a
"programmed" state by one of two mechanisms. In "hot electron injection,” a high
voltage applied to the drain accelerates electrons across the substrate channel region.
At the same time a high voltage applied to the control gate pulls the hot electrons
through a thin gate dielectric onto the floating gate. In "tunneling injection,” a high
voltage is applied to the control gate relative to the substrate. In this way, electrons
are pulled from the substrate to the intervening floating gate. While the term
“program” has been used historically to describe writing to a memory by injecting
electrons to an initially erased charge storage unit of the memory cell so as to alter the
memory state, it has now been used interchangeable with more common terms such as

“write” or “record.”

[0008] The memory device may be erased by a number of mechanisms. For
EEPROM, a memory cell is electrically erasable, by applying a high voltage to the
substrate relative to the control gate so as to induce electrons in the floating gate to
tunnel through a thin oxide to the substrate channel region (i.e., Fowler-Nordheim
tunneling.) Typically, the EEPROM is erasable byte by byte. For flash EEPROM,
the memory is electrically erasable either all at once or one or more minimum
crasable blocks at a time, where a minimum erasable block may consist of one or

more sectors and each sector may store 512 bytes or more of data.

[0009] The memory device typically comprises one or more memory chips that may
be mounted on a card. Each memory chip comprises an array of memory cells
supported by peripheral circuits such as decoders and erase, write and read circuits.
The more sophisticated memory devices also come with a controller that performs
intelligent and higher level memory operations and interfacing. More recently, the
memory devices in the form of SSD are being offered commercially in the form factor

of a standard hard drive.

[0010] There are many commercially successful non-volatile solid-state memory

-3-



WO 2012/158514 PCT/US2012/037511

devices being used today. These memory devices may be flash EEPROM or may
employ other types of nonvolatile memory cells. Examples of flash memory and
systems and methods of manufacturing them are given in United States patents nos.
5,070,032, 5,095,344, 5,315,541, 5,343,063, and 5,661,053, 5,313,421 and 6,222,762.
In particular, flash memory devices with NAND string structures are described in

United States patent nos. 5,570,315, 5,903,495, 6,046,935.

[0011] Nonvolatile memory devices are also manufactured from memory cells with a
dielectric layer for storing charge. Instead of the conductive floating gate elements
described carlier, a dielectric layer is used. Such memory devices utilizing dielectric
storage eclement have been described by Eitan et al., “NROM: A Novel Localized
Trapping, 2-Bit Nonvolatile Memory Cell,” IEEE Electron Device Letters, vol. 21,
no. 11, November 2000, pp. 543-545. An ONO diclectric layer extends across the
channel between source and drain diffusions. The charge for one data bit is localized
in the dielectric layer adjacent to the drain, and the charge for the other data bit is
localized in the dielectric layer adjacent to the source. For example, United States
patents nos. 5,768,192 and 6,011,725 disclose a nonvolatile memory cell having a
trapping dielectric sandwiched between two silicon dioxide layers. Multi-state data
storage is implemented by separately reading the binary states of the spatially

separated charge storage regions within the dielectric.

Flash Memory Characteristics and Trends

[0012] Flash memory behaves quite differently from traditional disk storage or RAM.
First, existing data stored in the flash memory cannot be updated by simply being
overwritten. Each cell must first be erased before a new write can take place on it.
Consequently the update is always written to a new free location. To improve
performance, a group of cells are operated on in parallel to access data page by page.
When a page of data is updated by having the updated page written to a new location,
the superseded page is rendered invalid and obsolete and becomes garbage cluttering

the storage and will eventually be cleaned out to free up the space it is occupying.

[0013] Managing the updates and discarding the invalid ones are complicated by the
block structure of flash memory. It is relatively time consuming to erase flash

memory and to improve erase performance, the memory is organized into erase

_4.-



WO 2012/158514 PCT/US2012/037511

blocks where a whole block of memory cells are erased together simultancously. A
block generally contains a number of pages. As data is stored in a block page by
page, eventually some of that data becomes obsolete. This means the block will
contain many garbage data taking up space. However, the block can only be erased as
a unit and so before the garbage data can be erased with the block, the valid data in
the block must first be salvaged and copied into another block. This operation is
commonly referred to as garbage collection and is an overhead of the block structure
of the flash memory. The larger the block, the more time is required for the garbage
collection. Similarly, the more frequently the data in the block is being updated, the
more frequently will the block need to be garbage collect. Garbage collection is
preferably performed in the foreground like during a write operation. This obviously

will degrade the write speed.

[0014] Early applications of flash memory have been mainly for storing media files
such as music and video files for portable hosts. These files tend to be a long run of
data of sequential logical addresses which fills up the memory block by block. These
data are archival in nature and not subject to much updating. Thus, the block
structure works well for these type of data and there is little performance hit during
writing since there is seldom need for garbage collection. The orderly sequential-
address nature of the data allows logical address range to be partitioned into logical
groups, with each logical group aligned with an erase block in the sense that the data
of a logical group will fit neatly in a block. In this way, the addressing granularity is
mainly at the block level as a page with a given logical address can be located by
which block is storing the logical group it belongs to. Since the logical group is
stored in the block in a self-indexed manner with its logical addresses in sequential

order, the page can be quickly located.

[0015] The block management system implementing logical groups typically deals
with updates and non-sequential writes by tracking them at the page level. It budgets
a predetermined amount of resource for the page level tracking which manifests has
limiting the number of logical groups having non-sequential or obsolete data.
Generally, when subject to updates, some of the orderly blocks will contain obsolete
data and keeping track of them will also consume part of the resource. When over the

budget, a selected block with non-sequential or obsolete data is restored back to an

-5-



WO 2012/158514 PCT/US2012/037511

orderly block in sequential order. This is accomplished by rewriting into a new block
in sequential order with the latest updates. However the relocation will exact a
performance hit.  Such a system will work well if a host writes data that are
conducive to maintaining mostly such orderly blocks being tracked at the block level,
with only some random writes being tracked at the page level. Thus, by
implementing logical groups aligned to block boundary, the address table is greatly

simplified and reduced.

[0016] However, the block management system implementing logical groups will
begin to be less optimized if the host writes mostly short and non-sequential data.
This type of write pattern is prevalent in applications from a personal computer or
smart mobile device. Solid-state disk (SSD) using flash memory is an attractive
replacement for disk storage due to its low power, speed and ruggedness. Instead of
long sequential writes, the flash memory must now deal mostly with short random
writes. Initially, the performance will not suffer since as long as free space can be
found, the data can be written there. However, with constant use and frequent
updates, the predetermined resource for page tracking will eventually be exhausted.
At that point, performance can take a big hit as the next write may have to be
accompanied by a relocation of a block. The larger is the block the longer it will take
to perform relocation of a block. Also a large block and short and non-sequential data
will cause the logical group in the block to contain invalid data more frequently and
consume page addressing resource faster and therefore cause relocation to take place

more frequently.

[0017] The problem with the large block size can not be easily solved by simply
reducing the block size as the block size tend to increase geometrically with each new
generation of memory technology. With higher integration of circuits more memory
cells are being fitted in the same die. The block size, measure in columns and rows
increases geometrically. This is especially the case for memory of the NAND type.
The memory is an array of NAND strings where ecach string is a daisy chain of
memory cells and a minimum erase block must be formed by a row of such NAND
string. If the NAND string has 32 cells, a block will contain 32 rows of cells. The
number of memory cells in a NAND string also increases with each generation, so the

block size increases column-wise and row-wise.

-6-



WO 2012/158514 PCT/US2012/037511

[0018] The block size, which is dictated by the physical memory structure, is in
present generation as large as 4MB. On the other hand, the operating system of
personal computers typically allocates logical sectors in size of 512kB and often
writes a page as a cluster of logical sectors in 4kB unit. Thus, there is a great
mismatch in the addressing granularity of a logical group corresponding to a block
and a page. In the scheme of logical group, the ideal situation for a block is either
nothing is written or the block is filled up sequentially with the entire logical group of
valid data. In either case there is no fragmentation and there is no need for garbage
collection or relocation. In the case of short random writes into a large block, the
block becomes non-ideal very quickly and eventually will need relocation. This
amounts to inefficient writes since the same page may have to be written and then re-

copied one or more times (also referred to as “write amplification™.)

[0019] An alternative, conventional addressing approach suitable for short random
writes is to not use logical groups, but to track every page independently as it is being
written to a block. Instead of maintaining the stored data as orderly logical group in a
block, each page is tracked as to which block it is stored in and at what offset in the
block. Thus, in this page addressing scheme, there is no burden of storing or
maintaining data in groups in order of sequential logical addresses. However, the
page addressing scheme will have an address table much larger than that for the
logical group address scheme. For example, if there are 1000 pages in a block, then
the address table for the page addressing scheme will be approximately 2 to 3 orders

of magnitude larger.

[0020] The page addressing scheme exact penalty in terms of a much larger address
table. In practice, it will require more system resources and a relative large RAM to
work with the memory controller. This is because the address table is usually
maintained in flash memory but is cached to the controller RAM during operation to
provide faster access. Current technology allows at most 2 to 4 MB of RAM to be
fabricated on the controller chip. This is insufficient for systems using a page
addressing scheme and additional external RAM chips will be required. The
additional pinouts and interface circuits to support external RAM chips would add

significantly to the cost.

[0021] Another problem with addressing granularity having very small units, such as

-7 -



WO 2012/158514 PCT/US2012/037511

4kB, is that it creates fragmented data, which is scattered between the blocks so much
that maximum parallelism during read and data copy (due to update) is not
achievable. Also, the amount of copy increases as small update can still trigger copy

of one or more entire block.

[0022] Thus, there is a need to provide a nonvolatile memory that can efficiently
handle data access characterized by short random writes into large blocks without

suffering from the disadvantages and problems mentioned above.
SUMMARY OF THE INVENTION

BLOCK MANAGEMENT USING SMALL LOGICAL GROUPS

[0023] According to one aspect of the invention, a nonvolatile memory is provided
with a block management system in which an ordered logical address range from a
host is partitioned into logical groups where a block stores multiple logical groups of
data. Each logical group is of a size having a range from at least the same order of
magnitude to an order of magnitude higher as the size of a host write but at least of a
size of a page or metapage which is a unit of read or write of maximum parallelism
supported by the memory. By having the size of the logical group decoupled from
that of the erase block, and being of a size more compatible with the size and nature
of host writes, the logical group provides the benefit of simplifying addressing and
conserving limited system resource while not triggering excessive rewrites which

impact performance.

[0024] Thus, instead of the logical group size aligned to that of the block, its size is
configured to match the granularity of a typical host write in order to minimize
garbage collection and rewrites. With increasing density of integrated circuit, each
block will hold not one but multiple logical blocks of data. In practice, the host writes
are buffered and staged logical-group by logical-group, which are then written into a

block.

[0025] In a preferred implementation, the memory is partitioned in SLC and MLC
portions and comprises, first, second and third operational and functional layers. The
first and second layers operate in the SLC portion. The third layer operates in the
MLC portion. The first layer is for initially storing write data from a host and staging

-8-



WO 2012/158514 PCT/US2012/037511

the data logical-group by logical-group before relocating each logical group into
either the second or third layer. The second layer provides active storage in a pool of
SLC blocks for storing host data at the logical-group level. When the pool is full,
more room is made by evicting the logical groups with the least potential rewrites to

the third layer which stores at a higher density.

[0026] Essentially, the second layer provides a fast SLC storage arca where
fragmented and medium size host writes land. Unlike prior systems, where there is no
second layer and the first layer essentially acts as a FIFO to transmit data to the third
layer in MLC storage before the data can be accessed, this second layer maintains a

working set of user data in the fast SLC storage area.

[0027] In this way an active set of user data is preferentially maintained in the faster
SLC memory and only when capacity runs out in the SLC memory will selected

logical groups more suited for storage in the MLC memory be evicted thereto.

[0028] The implementation of logical groups of smaller size has the benefit of not
triggering excessive rewrites while at the same time allowing a smaller address table
to be used. This has the benefit of the address table being of sufficiently compact size
to be cached in RAM integrated on a controller chip without the need for costly

external RAM.

[0029] Additional features and advantages of the present invention will be understood
from the following description of its preferred embodiments, which description

should be taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS

[0030] FIG. 1 illustrates a host in communication with a memory device in which the

features of the present invention are embodied.

[0031] FIG. 2 illustrates a page of memory cells, organized for example in the

NAND configuration, being sensed or programmed in parallel.

[0032] FIG. 3 illustrates schematically an example of a memory array organized in

erasable blocks.



WO 2012/158514 PCT/US2012/037511

[0033] FIG. 4 illustrates schematically a memory chip having multiple arrays and

operations for maximum parallelism.

[0034] FIG. 5 illustrates schematically, a memory structure having higher degree of

parallelism.

[0035] FIG. 6 illustrates a binary memory having a population of cells with each cell

being in one of two possible states.

[0036] FIG. 7 illustrates a multi-state memory having a population of cells with each

cell being in one of eight possible states.

[0037] FIG. 8 illustrates an example of a physical memory architecture suitable for

practicing the invention.

[0038] FIG. 9 illustrates schematically the data path between the SLC portion and the
MLC portion in a 2-layer data storage system.

[0039] FIG. 10 illustrates in more detail the SLC layer shown in FIG. 9.

[0040] FIG. 11 illustrates a page in the memory organization of the block

management system according to the present invention.
[0041] FIG. 12 illustrates a logical group in the block management system.

[0042] FIG. 13A illustrates an erase block accommodating data from multiple logical

groups.

[0043] FIG. 13B is a flow diagram illustrating the scheme of storing host writes to

the non-volatile memory in terms of small logical groups.

[0044] FIG. 14 illustrates a system architecture for managing the blocks and pages

across the different memory partitions according to the present invention.
[0045] FIG. 15 illustrates in more details the second layer shown in FIG. 14.
[0046] FIG. 16 illustrates the ‘temperature’ sorting of the logical groups for the ‘hot’

logical group case.

-10 -



WO 2012/158514 PCT/US2012/037511

[0047] FIG. 17 illustrates the ‘temperature’ sorting of the logical groups for the

‘cold’ logical group case.

[0048] FIG. 18 illustrates how different types of writes are sorted into block streams

according to their perceived temperature interactively.

[0049] FIG. 19 is a flow diagram illustrating the scheme of temperature sorting for

memory storage and operations.

[0050] FIG. 20 is a flow diagram illustrating the scheme of temperature sorting at the

logical group level.

[0051] FIG. 21 is a flow diagram illustrating the scheme of temperature sorting at the
block level.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

MEMORY SYSTEM

[0052] FIG. 1 illustrates a host in communication with a memory device in which the
features of the present invention are embodied. The host 80 typically sends data to be
stored at the memory device 90 or retrieves data by reading the memory device 90.
The memory device 90 includes one or more memory chip 100 managed by a memory
controller 102. The memory chip 100 includes a memory array 200 of memory cells
with each cell capable of being configured as a multi-level cell (“MLC”) for storing
multiple bits of data, as well as capable of being configured as a single-level cell
(“SLC”) for storing 1 bit of data. The memory chip also includes peripheral circuits
204 such as row and column decoders, sense modules, data latches and 1/O circuits.
An on-chip control circuitry 110 controls low-level memory operations of each chip.
The control circuitry 110 is an on-chip controller that cooperates with the peripheral
circuits to perform memory operations on the memory array 200. The control
circuitry 110 typically includes a state machine 112 to provide chip level control of

memory operations via a data bus 231 and control and address bus 111.

[0053] In many implementations, the host 80 communicates and interacts with the

memory chip 100 via the memory controller 102. The controller 102 co-operates with
-11 -



WO 2012/158514 PCT/US2012/037511

the memory chip and controls and manages higher level memory operations. A
firmware 60 provides codes to implement the functions of the controller 102. An
error correction code (“ECC”) processor 62 processes ECC during operations of the

memory device.

[0054] For example, in a host write, the host 10 sends data to be written to the
memory array 100 in logical sectors allocated from a file system of the host’s
operating system. A memory block management system implemented in the
controller stages the sectors and maps and stores them to the physical structure of the
memory array. A preferred block management system is disclosed in United States
Patent Application Publication Number: US-2010-0172180-A1, the entire disclosure

of which is incorporated herein by reference.

Physical Memory Architecture

[0055] In order to improve read and program performance, multiple charge storage
elements or memory transistors in an array are read or programmed in parallel. Thus,
a “page” of memory elements are read or programmed together. In existing memory
architectures, a row typically contains several interleaved pages or it may constitute

one page. All memory elements of a page will be read or programmed together.

[0056] FIG. 2 illustrates a page of memory cells, organized for example in the
NAND configuration, being sensed or programmed in parallel. FIG. 2 essentially
shows a bank of NAND strings 50 in the memory array 200 of FIG. 1. A “page” such
as the page 60, is a group of memory cells enabled to be sensed or programmed in
parallel. This is accomplished in the peripheral circuits by a corresponding page of
sense amplifiers 210. The sensed results are latches in a corresponding set of data
latches 220. Each sense amplifier can be coupled to a NAND string, such as NAND
string 50 via a bit line 36. For example, the page 60 is along a row and is sensed by a
sensing voltage applied to the control gates of the cells of the page connected in
common to the word line WL3. Along each column, each cell such as cell 10 is
accessible by a sense amplifier via a bit line 36. Data in the data latches 220 are

toggled in from or out to the memory controller 102 via a data 1/O bus 231.

[0057] The page referred to above is a physical page memory cells or sense

amplifiers. Depending on context, in the case where each cell is storing multi-bit
-12-



WO 2012/158514 PCT/US2012/037511

data, each physical page has multiple data pages.

[0058] The NAND string 50 is a series of memory transistors 10 daisy-chained by
their sources and drains to form a source terminal and a drain terminal respective at its
two ends. A pair of select transistors S1, S2 controls the memory transistors chain’s
connection to the external via the NAND string’s source terminal and drain terminal
respectively. In a memory array, when the source select transistor S1 is turned on, the
source terminal is coupled to a source line 34. Similarly, when the drain select
transistor S2 is turned on, the drain terminal of the NAND string is coupled to a bit
line 36 of the memory array. Each memory transistor 10 in the chain acts as a
memory cell. It has a charge storage element 20 to store a given amount of charge so
as to represent an intended memory state. A control gate of each memory transistor
allows control over read and write operations. The control gates of corresponding
memory transistors of a row of NAND string are all connected to the same word line
(such as WLO, WLI1, ...) Similarly, a control gate of each of the select transistors S1,
S2 (accessed via select lines SGS and SGD respectively) provides control access to

the NAND string via its source terminal and drain terminal respectively.
Erase Blocks

[0059] One important difference between flash memory and other type of memory is
that a cell must be programmed from the erased state. That is the floating gate must
first be emptied of charge. Programming then adds a desired amount of charge back
to the floating gate. It does not support removing a portion of the charge from the
floating to go from a more programmed state to a lesser one. This means that update
data cannot overwrite existing one and must be written to a previous unwritten

location.

[0060] Furthermore erasing is to empty all the charges from the floating gate and
generally takes appreciably time. For that reason, it will be cumbersome and very
slow to erase cell by cell or even page by page. In practice, the array of memory cells
is divided into a large number of blocks of memory cells. As is common for flash
EEPROM systems, the block is the unit of erase. That is, each block contains the

minimum number of memory cells that are erased together.

[0061] FIG. 3 illustrates schematically an example of a memory array organized in
-13 -



WO 2012/158514 PCT/US2012/037511

erasable blocks. Programming of charge storage memory devices can only result in
adding more charge to its charge storage elements. Therefore, prior to a program
operation, existing charge in charge storage eclement of a memory cell must be
removed (or erased). A non-volatile memory such as EEPROM is referred to as a
“Flash” EEPROM when an entire array of cells 200, or significant groups of cells of
the array, is electrically erased together (i.e., in a flash). Once erased, the group of
cells can then be reprogrammed. The group of cells erasable together may consist of
one or more addressable erase unit 300. The erase unit or block 300 typically stores
one or more pages of data, the page being a minimum unit of programming and
reading, although more than one page may be programmed or read in a single
operation. Each page typically stores one or more sectors of data, the size of the
sector being defined by the host system. An example is a sector of 512 bytes of user
data, following a standard established with magnetic disk drives, plus some number of

bytes of overhead information about the user data and/or the block in with it is stored.

[0062] In the example shown in FIG. 3, individual memory cells in the memory array
200 are accessible by word lines 42 such as WL0O-WLy and bit lines 36 such as BLO —
BLx. The memory is organized into erase blocks, such as erase blocks 0, 1, ... m. If
the NAND string 50 (see FIG. 2) contains 16 memory cells, then the first bank of
NAND strings in the array will be accessible by select lines 44 and word lines 42 such
as WLO to WL15. The erase block 0 is organized to have all the memory cells of the
first bank of NAND strings erased together. In memory architecture, more than one

bank of NAND strings may be erased together.

Increased Parallelism with Metapage and Metablock Organization

[0063] FIG. 4 illustrates schematically a memory chip having multiple arrays and
operations for maximum parallelism. For example, the memory chip is fabricated
with two dies, DIE 1 and DIE 2. Each die contains two memory planes. For
example, DIE 1 contains memory plane 1 and memory plane 2, and DIE 2 contains
memory plane 3 and memory plane 4. Each memory plane contains multiple blocks
and each block contains multiple pages. For example, memory plane 1 includes

Block 1 which in turn includes a page P1.

[0064] The blocks such as Block 1 — Block 4 are each minimum erase units (MEUS)

-14 -



WO 2012/158514 PCT/US2012/037511

fixed by the physical architecture of the memory array in a memory plane, such as the
block 300 shown in FIG. 3. Similarly, the pages such as P1-P4 are each minimum

Read/Write units fixed by the number read/write circuits that operate in parallel.

[0065] In order to maximize programming speed and erase speed, parallelism is
exploited as much as possible by arranging for multiple pages of information, located
in multiple MEUS, to be programmed in parallel, and for multiple MEUs to be erased

in parallel.

[0066] FIG. 5 illustrates schematically, a memory structure having higher degree of
parallelism. For example, pages P1-P4 are linked together as a “metapage”, which at
the system level, is operated on as a minimum unit of read or write. Similarly,
Blockl — Block 4 are linked together as a “metablock”, which at the system level, is
operated on as a minimum erase unit. The physical address space of the flash
memory is treated as a set of metablocks, with a metablock being the minimum unit of
erasure. Within this specification, the terms “metablock”, e.g., 300-4 and “block” 300
are used synonymously to define the minimum unit of erasure at the system level for
media management, and the term “minimum erase unit” or MEU is used to denote the
minimum unit of erasure of flash memory. Similarly, the terms “metapage”, e.g., 60-
4 and “page” 60 are used synonymously with the understanding that a page can be

configured into a metapage at the system level with a higher degree of parallelism.

[0067] While FIG. 4 illustrates that higher degree of parallelism can be achieve by
aggregating memory structures from multiple planes in a memory chip, it should be
understood that in another embodiment, the planes may be distributed among more

than one memory chip.

[0068] The linking and re-linking of MEUs into metablocks is also disclosed in
United States Patent Publication No. US-2005-0144516-A1 and United States Patent
No. 7139864, the entire disclosure of these two publications are hereby incorporated

herein by reference.

Examples of Binary (SLC) and Multi-level (MLC) Memory Cells

[0069] As described earlier, an example of nonvolatile memory is formed from an

array of field-effect transistors, each having a charge storage layer between its

-15 -



WO 2012/158514 PCT/US2012/037511

channel region and its control gate. The charge storage layer or unit can store a range
of charges, giving rise to a range of threshold voltages for each field-effect transistor.
The range of possible threshold voltages spans a threshold window. When the
threshold window is partitioned into multiple sub-ranges or zones of threshold
voltages, each resolvable zone is used to represent a different memory states for a

memory cell. The multiple memory states can be coded by one or more binary bits.

[0070] FIG. 6 illustrates a binary memory having a population of cells with each cell
being in one of two possible states. Each memory cell has its threshold window
partitioned by a single demarcation level into two distinct zones. As shown in FIG.
6(0), during read, a read demarcation level rV;, between a lower zone and an upper
zone, 1S used to determine to which zone the threshold level of the cell lies. The cell
is in an “erased” state if its threshold is located in the lower zone and is in a
“programmed” state if its threshold is located in the upper zone. FIG. 6(1) illustrates
the memory initially has all its cells in the “erased” state. FIG. 6(2) illustrates some
of cells being programmed to the “programmed” state. A 1-bit or binary code is used
to code the memory states. For example, the bit value “1” represents the “erased”
state and “0” represents the “programmed” state. Typically programming is
performed by application of one or more programming voltage pulse. After each
pulse, the cell is sensed to verify if the threshold has moved beyond a verify
demarcation level vV,. A memory with such memory cell partitioning is referred to
as “binary” memory or Single-level Cell (“SLC”) memory. It will be seen that a
binary or SLC memory operates with a wide margin of error as the entire threshold

window is only occupied by two zones.

[0071] FIG. 7 illustrates a multi-state memory having a population of cells with each
cell being in one of eight possible states. Each memory cell has its threshold window
partitioned by at least seven demarcation levels into eight distinct zones. As shown in
FIG. 7(0), during read, read demarcation levels rV; to rV; are used to determine to
which zone the threshold level of the cell lies. The cell is in an “erased” state if its
threshold is located in the lowest zone and is in one of multiple “programmed” states
if its threshold is located in the upper zones. FIG. 7(1) illustrates the memory
initially has all its cells in the “erased” state. FIG. 7(2) illustrates some of cells being

programmed to the “programmed” state. A 3-bit code having lower, middle and

- 16 -



WO 2012/158514 PCT/US2012/037511

upper bits can be used to represent each of the eight memory states. For example, the
“07, <17, 427, “37, <47, “5” “6” and “7” states are respectively represented by “1117,
“0117, <0017, “101°, “100”, “000”, “010” and ‘110”. Typically programming is
performed by application of one or more programming voltage pulses. After each
pulse, the cell is sensed to verify if the threshold has moved beyond a reference which
is one of verify demarcation levels vV .to vV;7. A memory with such memory cell
partitioning is referred to as “multi-state” memory or Multi-level Cell (“MLC”)
memory. In a number programming method employs multiple programming passes
before the cells are programmed to their target states in order to alleviate floating-gate

to floating-gate perturbations.

[0072] Similarly, a memory storing 4-bit code will have lower, first middle, second
middle and upper bits, representing each of the sixteen states. The threshold window

will be demarcated by at least 15 demarcation levels into sixteen distinct zones.

[0073] As the memory’s finite threshold window is partitioned into more regions, the
resolution for programming and reading will necessarily become finer. Thus, a multi-
state or MLC memory necessarily operates with a narrower margin of error compared
to that of a memory with less partitioned zones. In other words, the error rate
increases with the number of bits stored in each cell. In general, error rate increases

with the number of partitioned zones in the threshold window.

[0074] Endurance is another problem with flash memory that limits its life of use.
With every program/erase cycling, some tunneling clectrons are trapped in the
dielectric between the floating gate and the channel region that results in the
narrowing of the threshold window. This will eventually result in program and read
errors. Since MLC memory has lower tolerance for error, it also has less endurance

compared to SLC memory.

Memory Partitioned into SLC and MLC portions

[0075] FIG. 8 illustrates an example of a physical memory architecture suitable for
practicing the invention. The array of memory cells 200 (see FIG. 1) is partitioned
into a first portion 410 and a second portion 420. The second portion 420 has the
memory cells configured as high density storage with each cell storing multiple bits of

data. The first portion 410 has the memory cells configured as lower density storage
-17 -



WO 2012/158514 PCT/US2012/037511

with each cell storing less number of bits than that of the second portion. For
example, memory cells in the first portion 410 are configured as SLC memory to store
1 bit of data each. Memory cells in the second portion 420 are configured as MLC
memory to store 2 bits of data each. The first portion storing 1 bit of data per cell will
also be referred as D1 and the second portion storing 2 bit of data per cell as D2. In
view of the discussion earlier, the first portion will operate with more speed, a much

wider margin of error and more endurance compared to that of the second portion.

[0076] A memory partitioned into two portions such as into D1 (1-bit) and D3 (3-bit)
portions is disclosed in United States Application US 12/642,584 filed on December

18, 2009, the entire disclosure of which is incorporated herein by reference.

[0077] FIG. 9 illustrates schematically the data path between the SLC portion and the
MLC portion in a 2-layer data storage system. The first layer is the main input buffer
for incoming data and operates on the SLC portion 410 of a NAND memory which is
faster/higher-endurance/higher-cost memory compared to the MLC portion 420. The
second layer is the main data archive storage and operates on the MLC portion which

is slower/lower-endurance/lower-cost memory.
[0078] The main operations in such system are labeled in FIG. 9 are as follows:
1. Host data or control data write to SLC portion

2. Data copy within SLC portion to reclaim partially obsolete SLC block, aka

‘compaction’

3. Host data direct write to MLC portion, usually used for long sequential

writes
4. Data move from SLC to MLC portion, aka ‘folding’

5. Data copy within MLC portion for MLC block reclaim, aka ‘MLC

compaction’

[0079] The above structure can be build with many other additional features, mainly
related to the use of different addressing schemes and addressable data unit

granularity.

- 18 -



WO 2012/158514 PCT/US2012/037511

[0080] FIG. 10 illustrates in more detail the SLC layer shown in FIG. 9. The typical
structure of SLC layer (see diagram above) uses multiple blocks, usually one
Write/Update block data and one Relocation/Compaction block for data copied during

block reclaim (or, they can be combined). The following main rules usually apply:

1. Blocks are linked in the chain according to the order in which they were

programmed.

2. The least recently programmed block is selected as the SLC move/folding
block, from which data may be moved/folded to the MLC write block.

3. The block with the lowest volume of valid data is selected as the SLC
reclaim block, from which valid data is relocated to the SLC relocation block

connecting to the head of the chain.

4. An SLC move block or SLC relocation block is added to the SLC empty

block list on completion of a data move/folding or block reclaim operation.

[0081] In addition to that, the two-layer structure can be in fact more than two layer,

if there are more types of memory, say RAM, or 3rd type of NVM.

[0082] Also, in the each ‘memory’ layer, there might be multiple sub-systems, with

different data handling, which also referred to as ‘layer’.

[0083] The prior art systems based on NAND memory usually have the following
storage hierarchy. The SLC partition has SLC blocks to implement a Binary Cache
and Binary Update blocks.

[0084] The Binary Cache is used for some or all data. Data is stored in the Binary
Cache with fine granularity of 1 or 8 (4KB) sectors. Typically, the Binary Cache is
used to cache small and random fragments of a page. It is then evicted to the Binary

Update block.

[0085] The Binary Update blocks map most of the data in units of Logical Group.
Each Logical Group has a size that corresponds to the SLC block. So, one Binary
block can store up to one Logical Group in which the pages are in sequential order of

logical address. This layer does not exist in cluster-based systems, as in those systems

-19 -



WO 2012/158514 PCT/US2012/037511

all Binary blocks are used as Binary Cache.

[0086] The MLC partition has MLC blocks for storing the data in higher density than
the SLC blocks. Typically, data is stored MLC-block by MLC-block. Thus in a
memory with D1 and D3 partitions, 3 SLC blocks is folded (relocated) to 1 MLC
block.

[0087] Eviction of data from the Binary Cache to the SLC update blocks and to the
MLC blocks is based on Least-Recently-Written basis. The problem in all systems
that most of the data (exception is data updated while in binary Cache) is going to
SLC blocks first so that it works pretty much as a FIFO buffer. Then all data go to
MLC blocks. In both SLC and MLC portions, the data can be copied many times due
to padding ( to make a full addressing unit), or to compact blocks and reclaim
obsolete space. The Stress Factor (aka Write Amplification) is high and applies to
both SLC and MLC block partitions. The data in SLC is also allocated in MLC
(double allocation), which increases required number of blocks in the system due to

double-budgeting.

[0088] Generally in prior art systems, the main approach is to use finer granularity
units, which assume high-end processing and large RAM requirements, adding extra

cost and power consumption.

[0089] Also, very small unit, such as 4KB, creates a problem of the data being
fragmented, scattered between the blocks so much that maximum parallelism during
read and data copy (due to update) is not achievable. Also, amount of copy increases

as small update can trigger copy of an entire block(s).

BLOCK MANAGEMENT SYSTEM USING SMALL LOGICAL GROUPS WITH
SELECTIVE DISTRIBUTION ACROSS MEMORY PARTITIONS BASED ON
ACTIVITY

SMALL LOGICAL GROUPS

[0090] The invention has an architecture which addresses the above problems, in
particular the undesirable FIFO buffer behavior of SLC blocks which increases write

amplification; the fragmentation of data, which reduces parallelism; the high intensity
=20 -



WO 2012/158514 PCT/US2012/037511

of processing, which requires large RAM and high power; the duplicate capacity
budget for data in SLC blocks, which is inefficient and wasteful.

[0091] According to one aspect of the invention, a nonvolatile memory is provided
with a block management system in which an ordered logical address range from a
host is partitioned into logical groups where a block stores multiple logical groups of
data. Each logical group is of a size having a range from at least the same order of
magnitude to an order of magnitude higher as the size of a host write but at least of a
size of a page or metapage which is a unit of read or write of maximum parallelism
supported by the memory. By having the size of the logical group decoupled from
that of the erase block, and being of a size more compatible with the size and nature
of host writes, the logical group provides the benefit of simplifying addressing and
conserving limited system resource while not triggering excessive rewrites which

impact performance.

[0092] The implementation of logical groups of smaller size has the benefit of not
triggering excessive rewrites while at the same time allowing a smaller address table
to be used. This has the benefit of the address table being of sufficiently compact size
to be cached in RAM integrated on a controller chip without the need for costly

external RAM.

[0093] FIG. 11 illustrates a page in the memory organization of the block
management system according to the present invention. Essentially, a host writes
units of data which are identified by their logical address, LBA (logical block
address). The memory operates on a logical page 62 of data in parallel. The page 62
can hold data for a number of LBAs. For example, each page holds data from M units
of LBAs and a page, Page(LPy), may be filled with data from LBA, to LBAM..
Depending on the memory architecture a page is at least a group of cells/data that can
be serviced by a corresponding group of read/write circuits in a memory plane. In
the preferred embodiment, the page is a metapage as described in connection with
FIG. 5 to achieve maximum parallelism. For example, the metapage is of size 32kB

to 64kB. With a host write cluster of 4kB, a metapage can hold 8 to 16 clusters.

[0094] FIG. 12 illustrates a logical group in the block management system. For

simplicity of addressing, instead of tracking each page 62 independent, a group of

221 -



WO 2012/158514 PCT/US2012/037511

pages is tracked as one unit. Essentially, the logical addressed space of the host
system is partitioned into logical groups 350, each group being a subset of the logical
address space defined by a range of LBAs or logical page numbers. For example,
logical group LGO is constituted from N logical pages with logical page nos. LP, to
LPy.; and the next logical group LGI1 is constituted from N logical pages with logical
page nos. LPx to LPan.y, etc.

[0095] A logical group 350 is stored in the memory with its logical page numbers in
sequential order so that the pages in it are self-indexed. In this way, addressing for
the pages 62 in the logical group is by simply keeping track at the logical group level
instead of the page level. However, with updates of pages in a logical group, garbage
collection needs to be performed to reclaim space occupied by invalid pages. In prior
art systems, the logical group has a size that aligns with the size of an erase block. In
this way, garbage collection on an erase block is simply to salvage the valid data of

the logical group and rewrite the entire logical group to a new block.

[0096] FIG. 13A illustrates an erase block accommodating data from multiple logical
groups. Unlike, prior art systems, the size of the logical group 3350 is decoupled from
that of the erase block and is not the same size as the erase block. The logical group
350 is down-sized to be more compatible with the size and nature of host writes. A
block 310 (which preferable is a metablock) in the SLC portion 410 is able to
accommodate data for P number of logical groups. For example, the SLC block
stores the following logical groups: LGO, LG1, LG2, LG1’,..., etc where LG1’ is an
updated version of LG1.

[0097] By using logical groups, addressing is less intense and places less demand on
system resources without requiring an expensive off-chip RAM to work with the

memory controller.

[0100] However, as erase block size is increasing with every generation of flash
memory, prior art approach of aligning a logical group with a block results in a
system that is not optimized for short and random host writes. This type of host write
patterns are prevalent in applications under desktop and laptop computers and smart
mobile devices. These data patterns, characterized by frequency updates and non-

sequential writes, tend to cause more frequent rewrites of the memory in order to

-0



WO 2012/158514 PCT/US2012/037511

maintain the logical group sequential order. In other words, the prior logical group
size causes a great deal of write amplification and degrade performance and wear out

the memory prematurely.

[0101] The memory is partitioned into a SLC portion 410 and a MLC portion 420.
The block management Thus, each logical group is down-sized to a range from at
least the same order of magnitude to an order of magnitude higher as the size of a unit
of host write but at least of a size of a metapage which is a unit of read or write of
maximum parallelism supported by the memory. This will be optimized for data
patterns that are frequently updated or non-sequential and not to trigger excessive
rewrites. For example, a logical group may have 4 metapages. If the metapage holds
8 to 16 host clusters, then a logical group may hold 32 to 64 clusters. At the same
time, the logical group size may be judicially increased as a tradeoff for the purposed
of relieving demand on addressing resource so that the controller chip need not

operate with external RAM.

[0102] FIG. 13B is a flow diagram illustrating the scheme of storing host writes to

the non-volatile memory in terms of small logical groups.

STEP 500: Organizing the non-volatile memory into blocks of memory cells that are
erasable as a unit, cach block for storing a plurality of pages, each page for accessing
a predetermined number logical unit of data in parallel, each logical unit having a

logical address assigned by the host.

STEP 510: Defining a plurality of logical groups by partitioning a logical address
space of the host into non-overlapping sub-ranges of ordered logical addresses, each
logical group having a predetermined size within delimited by a minimum size of at

least one page and a maximum size of fitting at least two logical groups in a block.
STEP 520: Buffering individual host writes.

STEP 530: Staging the individual host writes logical group by logical group.
STEP 540: Storing any staged logical groups into the non-volatile memory.

STEP 550: Done

-23 -



WO 2012/158514 PCT/US2012/037511

[0103] In a preferred implementation, the memory is partitioned in SLC and MLC
portions and comprises, first, second and third operational and functional layers. The
first and second layers operate in the SLC portion. The third layer operates in the
MLC portion. The first layer is for initially storing write data from a host and staging
the data logical-group by logical-group before relocating each logical group into
either the second or third layer. The second layer provides active storage in a pool of
SLC blocks for storing host data at the logical-group level. When the pool is full,
more room is made by evicting the logical groups with the least potential rewrites to

the third layer which stores at a higher density.

[0104] In this way an active set of user data is preferentially maintained in the faster
SLC memory and only when capacity runs out in the SLC memory will selected

logical groups more suited for storage in the MLC memory be evicted thereto.

[0105] FIG. 14 illustrates a system architecture for managing the blocks and pages
across the different memory partitions according to the present invention. The blocks
and pages in the memory arrays are managed by a block management system, which

resides as firmware 60 in the memory controller 102 (see FIG. 1).

[0106] The memory is partitioned into a SLC portion 410 and a MLC portion 420.
The block management system implements a first, fragment caching layer 412, a
second, logical group sorting layer 414 and a third, cold logical group archiving layer
422. These are operational and functional layers. The first two layers 412 and 414
operate in the SLC portion 410 and the third layer 421 operates in the MLC portion
420.

[0107] The first, fragment caching layer 412 operates on binary blocks 310 of the
SLC portion 410 and is for initially storing data from a host and staging the
metapages logical-group by logical-group before relocating each logical group into
the MLC portion 420. The staging is to gather the data into entire logical groups.
The gathering could be from fragments of a host write or by padding in combination
with existing data already stored in the non-volatile memory. The SLC portion 410
includes two structures: a resident binary zone 402 and a binary cache 404. The
Binary Cache 404 is storage for mainly short fragments with fine addressing unit

(sector), where the data can be moved/evicted to SLC blocks 310 or MLC blocks 320.

-4 -



WO 2012/158514 PCT/US2012/037511

The resident binary zone 402 is reserved for known frequently updated areas with

short updates, typically NTFS or other File System tables data only.

[0108] The second, logical group sorting layer 414 stores data logical-group by
logical-group in a pool of SLC update/storage blocks 310. The writes to this pool
come from host writes or from rewrites due to garbage collection. If the host data is
mainly of short fragment, it is first cached in the first layer 412 before being evicted
from the first layer to the second layer 414. If the host data is less fragmented
(medium size), where complete logical group can be had, it is written directly to the

second layer 414.

[0109] Essentially, the second layer 414 provides a fast SLC storage arca where
fragmented and medium size host writes land. Unlike prior systems, where there is no
second layer and the first layer 412 essentially acts as a FIFO to transit data to the
third layer 422 in the MLC portion 420 before the data can be accessed, this second

layer 414 maintains a working set of user data in the fast SLC portion 410.

[0110] Thus, a user will experience high performance writes as the pool of SLC
update/storage blocks are being filled. Only when the pool is full will the system

move some logical groups over to the third layer (MLC) to make room.

HOT/COLD LOGICAL GROUP SORTING

[0111] A non-volatile memory organized into flash erasable blocks sorts units of data
according to a temperature assigned to each unit of data, where a higher temperature
indicates a higher probability that the unit of data will suffer subsequent rewrites due
to garbage collection operations. The units of data either come from a host write or
from a relocation operation. The data are sorted either for storing into different
storage portions, such as SLC and MLC, or into different operating streams,
depending on their temperatures. In general, the temperature sorting technique is
operable in SLC as well as MLC portions. This allows data of similar temperature to
be dealt with in a manner appropriate for its temperature in order to minimize

rewrites. Examples of a unit of data include a logical group and a block.

[0112] In a preferred implementation, the memory is partitioned in SLC and MLC

portions and comprises, first, second and third operational and functional layers. The

_25.-



WO 2012/158514 PCT/US2012/037511

first and second layers operate in the SLC portion. The third layer operates in the
MLC portion. The first layer is for initially storing write data from a host and staging
the data logical-group by logical-group before relocating each logical group into
either the second or third layer. The second layer provides active storage in a pool of
SLC blocks for storing host data at the logical-group level. When the pool is full,
more room is made by evicting the logical groups with the least potential rewrites to

the third layer which stores at a higher density.

[0113] Each logical group in the second layer is ranked by its potential for future
rewrites due to garbage collection. A temperature from a finite range is assigned to
cach logical group with the coldest logical group first to be evicted to the third layer.
Ranking criteria include the rate of update the logical group is experiencing and the
length of time the logical group is between updates. Logical groups relocated from
the second memory layer to the third memory layer will be accessed at the third
memory layer. Logical group remaining at the second memory layer will be accessed

directly at the second memory layer.

[0114] FIG. 15 illustrates in more details the second layer shown in FIG. 14. A pool
of binary blocks 310 is provided for storing the logical groups. As ecach block 310 is
filled and some of the logical groups in it are updated, the block will need to be
garbage-collected. Valid logical groups in the block are relocated to a new block.

The logical groups in the pool are sorted according to its ‘temperature’.

[0115] The logical group to be moved to the third layer 422 is selected according to
its ‘temperature’. The second layer 414 also provides facilities for ranking and
sorting the logical groups by how likely they need rewrites. A logical group is
considered ‘hot’ when it contains data that is frequently updated and is from short and
random host writes because the logical group will need more rewrites due to more
garbage collections. Conversely, a logical group is considered ‘cold” when it contains
data that is seldom updated and is long sequential host writes because the logical
group will remain relatively static requiring little or no rewrites. One ‘temperature’

ranking criterion is the rate of update the logical group is experiencing.

-26 -



WO 2012/158514 PCT/US2012/037511

[0116] Thus, whenever the SLC block pool in the second layer 414 is full, the logical
groups with the coldest temperature are preferentially evicted to the MLC pool in the

third layer 422.

[0117] Logical groups relocated from the second layer 414 to the third layer 422 will
be accessed at the third layer 422. Logical groups remaining at the second layer 414

will continued to be accessed at the second layer 414.

[0118] The sorting and distinguishing of the actively updated and less actively
updated logical groups are significant when the first 412 and second 414 layers
operate in a SLC memory portion 410 and the third layer 422 operates in the MLC
portion 420. By keeping the active logical groups in the SLC memory as a working
set and only move the inactive ones to the MLC memory, rewrites of the logical group
whenever there are updates to it are minimized in the MLC memory. This in turn

minimizes the total number of rewrites a logical group will suffer.

[0119] The third layer 422 stores at a higher density (MLC) the coldest logical groups
evicted from the second layer. This process is also referred to as ‘folding” SLC data

to MLC data.

[0120] The sorting of hot and cold logical groups and retaining the hotter logical
groups in the second layer allows users to access these potentially performance-

impacted data in the faster and more enduring SLC memory.

[0121] While the sorting scheme has been described with respect to sorting at the
logical group level, it is to be understood that the invention is equally applicable to
sorting at the level of other data units, such as sorting at the fragment level or sorting

at the block level.

[0122] According to prior art systems, eviction of data from Binary Cache to SLC
update blocks and to MLC blocks are based on Least Recently Written basis, applied
on the block level. This means that it is actually based on Least Recently
Programmed block, regardless of the fact how long ago the data was programmed by
the host (the block can be programmed recently due to Compaction, but contain old

and cold data.)

_27 -



WO 2012/158514 PCT/US2012/037511

[0123] Also, eviction is often based (especially in Binary Cache) on operation
efficiency criteria, with focus on increasing effect of individual operation, say Logical

Group eviction yields most empty space.

[0124] The problem in all cases above is that they do not take into account the host
update pattern, such as frequency of updates, and even how long ago the data was

written. As a result, data which is likely to be accessed soon, may be archived.

[0125] US Patent 7633799 discloses usage of different data access pattern criteria
such as LRU, hit rate by write and read commands. But, the prior art does not teach
specific practical methods of making it work in a data storage system, such as making
the choice efficient and at the same time avoid excessive processing, RAM and

control update requirements.

[0126] The approach in the present invention is to aim for minimizing Write
Amplification. Write amplification is caused by a future write elsewhere in the
system. Write amplification is caused by co-location of active (hot) and inactive
(cold) data being mixed in a physical block. Whenever, there is a mixing of hot and
cold data in a block, the data in the block will eventually need to be relocated or
rewritten to another block. As blocks get larger, it becomes more challenging to keep

active and inactive regions co-located.

[0127] The invention provides a collection of practical methods to sort data in a way
to detect the best data to evict/archive to the next layer of storage. The methods
mainly use known principles, specifically they are based on analyzing access pattern

and history. The focus is on making the data sorting practical.
[0128] The main methods include:

1. Rank the relative activeness of addressable data units (Logical Groups) by
assigning a ‘temperature’ value to individual fragments. The Temperature value can
be stored with the data itself or in a separate table, or alongside with addressing

entries. The temperature values themselves can be based on:
a) Least Recently Written (by the host) criteria for the data fragments/units;

b) Recent Hit (access, ¢.g., read) rate;

-28 -



WO 2012/158514 PCT/US2012/037511

c¢) Data fragment length (the shorter the data is, the more likely it is to be hit

soon);

d) Number of block compactions copies for the data as an indicator of data

age;
¢) Combination of a) and b) and ¢), which produces the best results.

2. Provide a temperature value ‘reduction’. For example, when measured over
time, the hit rate may drop, which translates to a reduction in temperature. This
allows a finite range of useful temperature to be defined and makes the use of the

method practical. The temperature is reduced by the following methods:

a) Working within a limited dynamic range of temperature, (say 0=very cold,
7=very hot, in 3-bit temperature case) biasing the temperature to not go beyond the 0
values for extreme cold cases or saturating the temperature to not go beyond 7 at the
extreme hot cases. In other word, all extreme cases have the same values, 0 or 7, after

some point.

b) Leveling values of temperature values for fragments/units to avoid extreme
saturation of values and loss of accuracy. In other word, using the limited dynamic

range in a region of maximum effectiveness.

3. Using block-level temperature criteria, where the ‘temperature’ is tracked
on a block level rather than on a fragment or Logical Group level. Two main cases

include:
a) Tracking ‘temperature’ explicitly;

b) Implicit tracking by sorting blocks in the block list by data age or by degree

of hotness/coldness.

[0129] In one embodiment, the temperature sorting is at the logical group level. The
coldest logical group will be the first to be evicted from the second layer to the third

layer. The criteria for a logical group to be evicted include the following.

[0130] 1. Time stamps (TS). The temperature is determined as a time stamp value of

the logical group. A time stamp indicates when the logical group was last written.
-29.



WO 2012/158514 PCT/US2012/037511

The longer it was last written, the colder is the temperature. Practically using a
limited TS range, very old logical groups beyond a maximum TS value will all be
considered to have the same coldest temperature.  The advantage of TS is that it has
the fastest response to access pattern change. The disadvantage is that it provides no

previous history.

[0131] An example of using time stamp is to provide an 11-bit time stamp for each
logical group in the binary block pool of the second layer. When a logical group is
written to the pool, one option is to assign an initial time stamp value of 0 (bias=0).
This may be suitable when the data written is long sequential data. Another option is
to have a value of X (bias=X). This may be suitable for data of unknown type and X
can be set to middle of the time stamp range. Every time there is a write of a logical
group into the pool the time stamp of the logical group being written is set to the
initial value and the time stamps of the existing logical groups in the pool are
incremented by one. The time stamp for a logical group does not change during
compaction. In this way, the time stamp provides a relative measure of how recently

written is each of the logical groups in the pool.

[0132] 2. Basic Write Counts. The temperature is determined as a write count of the
logical group. A write count indicates how many times the logical group was written
or the frequency of updates. For example, at a new update of the logical group, the
write count is incremented. The advantage of write count is that it keeps history

information. The disadvantage is that it may make old hot logical groups ‘sticky’.

[0133] 3. Temperature as a function of time stamp and write count. The initial
temperature value of X is between 0 and Max when the logical group is first written.
The value is incremented if the logical group is written again (as in write count), so
the method adds bias to logical groups that are written more times recently. The value
is decremented as the average value for all logical groups is going up by one (as

approximate MSB of time stamp).

[0134] An example of assigning a 3-bit temperature as a function of time stamp and

write count 1s as follows:

When the logical group is written, it has a temperature of X between 0 and

Max (7). If the logical group is written again the temperature is incremented by one
-30 -



WO 2012/158514 PCT/US2012/037511
(as in a write count). The temperature is decremented under the following situation:

1. When the average temperature for all logical groups is going up by 1 as this

can saturate on the top. This serves to level the population;
2. When there are no enough logical groups LGT=0 to evict;
3. When the average is going above a threshold (say MAX/2);
4. To level the ratio between 0s and MAXs

[0135] Every time a Logical Group is updated by the host and is written to either
Binary Cache or one of Update Blocks (upon completion of the previously written

Logical Group in the same Update Block) is it assigned the following value of LGT:

- Any Logical Group written to Sequential Stream gets assigned the lowest

LGT value of 0.

- If Logical Group is in the Active Binary set (addressed by Master Index),
except of sequential write back-to-back by short writes without address jump, LGT
value is incremented by 1 or set to Highest Cold LGT=3, whichever is the highest.
The LGT value cannot exceed the Highest Cold value of 7.

- If Logical Group is in not the Active Binary set (not addressed by Master
Index), initial LGT value of Highest Cold LGT=3 is assigned.

[0136] When a Logical Group is written to one of Relocation Blocks it is assigned the
default LGT value of Lowest Cold=0.

[0137] When a Logical Group is evicted from Binary Cache to one of Relocation
Blocks it is assigned the LGT value of Highest Cold=3.

[0138] Only Logical Group with LGT=0 can be evicted and folded to MLC block. If

there are no enough Logical Groups to be folded, all LGTs are to be decremented.

[0139] FIG. 16 illustrates the ‘temperature’ sorting of the logical groups for the ‘hot’
logical group case. LG temperature is a combined function of update frequency and

age. The Active Binary Working Set (ABWS) is the pool of SLC blocks in the

231 -



WO 2012/158514 PCT/US2012/037511

second layer. It represents the short list of Hot Logical Groups and blocks, where the
LGT (Logical Group Temperature) values are being tracked.

[0140] Sorting is done on the basis of LGT (Logical Group Temperature) values for
the Logical Groups. LGT values are stored for limited number of Logical Groups
currently addressed by master index, making Active Binary set. The master index is a
table that lists all the logical groups in the SLC pool of the second layer. Each LGT is
3 bit in size and has a range from 0 (coldest) to 7 (hottest).

[0141] All Logical Groups in ALL Streams are subject to Sorting, but only Logical
Groups written to Binary blocks (Update Blocks, Relocation blocks, or stored in
Closed Blocks) in the Active Binary Set (those currently addressed by Master Index)

are being sorted at the given time and LGT values are stored in Master index.

[0142] Logical Groups addressed via GAT (Binary Blocks in Inactive Binary Set and
MLC blocks) are considered equally ‘very cold’ and by default are considered having
lowest LGT value of 0. GAT is a lookup table that keeps track of the mapping

between logical groups and blocks.

[0143] Initially, a given logical group that resides in an MLC block is updated. The
temperature for this logical group therefore goes up from zero. As it is unclear how
active this logical group will become in the near future, it is assigned a middle value
temperature, with LGT=3. As it transpires, the logical group is soon updated another
5 times. With each update hit, the temperature LGT is incremented by one, which
brings it to a maximum value of LGT=7. Thereafter, there were no further updates on
the logical group and so LGT remains at LGT=7. At this point, it turns out that the
binary pool is full and a set of logical groups with LGT=0 is evicted (folded) to the
MLC layer. The departure of the set of logical groups raised the average temperature
of the pool and therefore the temperature of all remaining logical groups in the SLC
pool is decremented by one, so that the given logical group now has LGT=6. After
awhile with no updates to the given logical group, there is another folding, which will
decrement the given logical group’s LGT to 5. At this point, the given logical group

has a high temperature and will continue to ‘live’ in the SLC pool.

[0144] FIG. 17 illustrates the ‘temperature’ sorting of the logical groups for the

‘cold’ logical group case. In this case, a logical group residing in the third, MLC
-32-



WO 2012/158514 PCT/US2012/037511

layer is updated and returned to the binary pool in second, SLC layer. After sitting in
binary pool without further updates, the temperature cools down back to LGT=0.
When the pool is full and needs to evict some logical groups, the given logical group

is folded back to the third, MLC layer.

[0145] In another embodiment, the sorting can be performed at the block level. This
is an alternative approach if there are too many logical groups in the pool to
individually track their temperature. Instead, the temperature is tracked at the block
level where all logical groups in a block are treated as if they have the same

temperature. The sorting options is this case include the following:

[0146] 1. Same time stamp for logical groups in the same Binary block (explicit
Block level TS) — to model

— Each Binary block has TS same for all logical groups written for the block.
— Sort hot and cold data by blocks

— TS=Current block TS. Current Block TS increments after ecach new data

Update block closure.

— During compaction TS is approximated on the basis of TSs in the source

blocks

— For example, the time stamp TS is 8 bits (compacted TS=greatest TS of the

first compaction source) or could be 6 bits (track average TS for compaction blocks).

— Can bias cold data, (TS=Current TS - bias), but not at the bottom, options

are: bias =0 or bias = X.

[0147] 2. Hot-Cold data Binary block sorting (implicit implementation of the Block

level TS) — no need to model

— Each Binary block is listed in the UB info in time allocation order for new
data update blocks. Equivalent to TS being the same for all logical groups written for
the block.

— During compaction, the new block’s position in the list is chosen

-33 -



WO 2012/158514 PCT/US2012/037511

approximately according to the source block locations. In other words, the new block

has approximately the same temperature as the source block.

— During compaction TS is approximated on the basis of TSs in the source

blocks
— Logical groups from the block at the end of the list get evicted

— The advantages are that it has no extra records, no overflow, no increments
etc. Also it is very good for Binary Cache where there is no single table record, but
multiple BCIs (binary cache indices), which are impossible to update all together.

The disadvantage is that it requires data copies to re-sort block records

[0148] The principles described above apply to a system with two or more layers of
data storage, which can be non-volatile or mixed. The same rules can be applied to a
specific type of storage in one of the layers, say Binary Cache sub-system or Update

Blocks.

[0149] Advantage of this solution is that system performance impact is minimized

and there is no increase in controller RAM space.

Block Streams to Separate Hot/Cold data by LGT

[0150] In another embodiment, units of data are sorted according to their
temperatures into different block streams such that the blocks in each operating
stream only involves data of similar temperature. The goal is to separate hot data
from cold data as soon as possible and at every opportunity. The hot data and cold
data have different obsolescence and garbage collection/relocation schedules. For
example, hot data will become obsolete faster and require more frequent garbage
collection/rewrites. When the cold data are not mixed in with the hot data, it will not
incur unnecessary rewrites. Most likely, the hot data will obsolete itself without
triggering relocation of cold data from one block to another block, and the cold data in

cold blocks will stay there without compactions/relocations due to the hot data.

[0151] One example is the host writes entering the pool of binary blocks in the second
layer are sorted into different block streams as soon as possible. Another example is

the data unit coming from a relocation operation.

-34 -



WO 2012/158514 PCT/US2012/037511

[0152] FIG. 18 illustrates how different types of writes are sorted into block streams
according to their perceived temperature interactively. The sorting applies to the
source at the second layer with incoming data and also applies to data moved by

compaction to separate hot/cold blocks.

[0153] Generally, within a memory partition, there can be different type of data
streams generated by different sources as shown. The data writes in each of the
different types of data streams has its own update frequencies and randomness that

could be sorted by a temperature described earlier.

[0154] In the binary block pool, the blocks are designated as either a ‘hot’ block for
storing logical group with LGT >3 or a ‘cold’ block with LGT=<3. The temperature
is determined on the fly after observing the write pattern. For example, when a
logical group is written into the binary block pool for the first time, its temperature is
unknown and therefore assigned a neutral temperate of LGT=3 (between 0 and 7, as
the 3-bit example before). The logical group is written to a block designated to be
cool. If the next write is an update of the logical group, the stream is deemed to be
hot and the updated logical group is written to a different binary block for storing hot

logical groups.

[0155] On the other hand, if the successive writes are sequential, the stream is
deemed cold and the successive logical groups are all written to the cold binary block

containing the first write.

[0156] If the successive writes are sequential and the trend continues for a
predetermined period, the stream is deemed a series of long sequential writes and is
directed to be folded to the MLC portion either directly or via the binary block pool.
In the direct case, the stream is in a by-pass mode as soon as it is identified. The head
of the sequential stream marooned in a cold or even hot block will eventually be

relocated.

[0157] The different data streams described above can be created by a user and
therefore come from a user logical partition. Some of the write streams in the

partition may also be created from relocation operations.

Partitions

-35-



WO 2012/158514 PCT/US2012/037511

[0158] In general, different logical partitions such as user partition, OS (operating
system) partition and ‘sticky’ binary partition may be maintained, each with its own
mix of different type of data streams, some with predetermined temperature. For
example, in the OS partition, the system data are known to be fragmented and fast
changing, so there is not even the need to determine the temperature. It is simply
assigned a hot temperature and stored in the hot blocks. The same is true for the
‘sticky’ partition where the data there are meant to stay in the binary SLC portion.

Thus its data stream is always ‘hot’ and is stored in the hot blocks.

[0159] Separate by LBA data to partition - meaning that a block does not have data
coming from different partitions. The assumption is that data in different partitions is
written by different applications (say OS in one, and user in another) and those writes
often do not interleave. Say OS can write many commands, then user write many, but
there is not a lot of interleave. By separating the writes from the different partitions to
different blocks, compaction/relocation of , say, user data, triggered by OS writes, and

vice versa, will be reduced.

[0160] Blocks and logical groups are subject to sorting by LGT without partition
boundaries. That means that it is not necessary to budget a number of Closed blocks
per partition, and the blocks are distributed on demand. For example, if the OS
partition is active and the user partition is not, then up to all Closed update blocks can
be allocated to the OS partition as all user partition's logical groups will be sorted to

cold state and folded to the MLC portion.

Support for Multiple Update Blocks per Stream

[0161] Writes from a steam may be stored into multiple blocks. Every time a first
logical group is partially written in a first block and is followed by a write of a
different, second logical group, the second logical group is written to a second block
in the hope that subsequent writes will furnish the incomplete data to complete the
first logical group. This will reduce fragmentation. Up to a predetermined number of
update blocks can be opened contemporaneously for this purpose. Beyond that, the

incomplete logical group is made complete by padding the incomplete data.

[0162] FIG. 19 is a flow diagram illustrating the scheme of temperature sorting for

memory storage and operations.
-36 -



WO 2012/158514 PCT/US2012/037511

STEP 600: Organizing the non-volatile memory into blocks of memory cells that are

erasable together.

STEP 610: Ranking cach unit of data by assigning a temperature, where a higher
temperature indicates a higher probability that the unit of data will suffer subsequent

rewrites due to garbage collection operations.

STEP 620: Performing an operation on the unit of data in a manner dependent on the

temperature of the unit of data.
STEP 630: Done.

[0163] FIG. 20 is a flow diagram illustrating the scheme of temperature sorting at the

logical group level.

STEP 700: Organizing the non-volatile memory into blocks of memory cells that are

erasable together.

STEP 710: Partitioning the non-volatile memory into a SLC portion and an MLC
portion, where memory cells in the SLC portion each stores one bit of data and

memory cells in the MLC portion each stores more than one bit of data.

STEP 720: Providing a plurality of logical groups by partitioning a logical address
space of the host into non-overlapping sub-ranges of ordered logical addresses, the

logical groups having a size that multiple logical groups fit in a block.

STEP 730: Storing data logical group by logical group in each block of the SLC

portion.

STEP 740: Ranking ecach logical group stored in the SLC portion by a temperature,
where a higher temperature indicates a higher probability the logical group will suffer

subsequent rewrites due to garbage collection operations.

STEP 750: In response to a demand to free up room in the SLC portion, preferentially
relocating a logical group with the coldest temperature from the SLC portion to the

MLC portion.

STEP 760: Done.

-37-



WO 2012/158514 PCT/US2012/037511

[0164] FIG. 21 is a flow diagram illustrating the scheme of temperature sorting at the
block level.

STEP 800: Organizing the non-volatile memory into blocks of memory cells that are

erasable together.

STEP 810: Partitioning the non-volatile memory into a SLC portion and an MLC
portion, where memory cells in the SLC portion each stores one bit of data and

memory cells in the MLC portion each stores more than one bit of data.

STEP 820: Ranking cach block in the SLC portion by a temperature, where a higher
temperature indicates a higher probability the block will suffer subsequent rewrites

due to garbage collection operations.

STEP 830: In response to a demand to free up room in the SLC portion, preferentially
relocating data in a block with the coldest temperature from the SLC portion to the
MLC portion.

STEP 840: Done.

[0165] Although the various aspects of the present invention have been described
with respect to certain embodiments, it is understood that the invention is entitled to

protection within the full scope of the appended claims.

-38 -



WO 2012/158514 PCT/US2012/037511

IT IS CLAIMED:

1. A method of storing data from a host in a non-volatile memory, comprising:

organizing the non-volatile memory into blocks of memory cells that are
crasable together, each block for storing a plurality of pages, each page for accessing
a predetermined number logical unit of data in parallel, each logical unit having a
logical address assigned by the host;

defining a plurality of logical groups by partitioning a logical address space of
the host into non-overlapping sub-ranges of ordered logical addresses, each logical
group having a predetermined size within delimited by a minimum size of at least one
page and a maximum size of fitting at least two logical groups in a block;

buffering individual host writes;

staging the individual host writes logical group by logical group; and

storing any staged logical groups into the non-volatile memory.

2. The method as in claiml1, wherein the maximum size is up to an order of

magnitude higher than a size of a host write.

3. The method as in claim 1, wherein a page has a size between 32 to 64

kilobytes.

4. The method as in claim 1, wherein the logical group has a size selected

from a range being 1 to 4 pages.

5. The method as in claim 1, further comprising:

partitioning the non-volatile memory into a SLC portion and an MLC portion,
where memory cells in the SLC portion each stores one bit of data and memory cells
in the MLC portion each stores more than one bit of data; and

wherein said buffering and staging steps are performed in the SLC portion.

6. The method as in claim 5, further comprising:

copying data stored in the SL.C portion to the MLC portion.

7. The method as in claim 6, further comprising:
-39.



WO 2012/158514 PCT/US2012/037511

providing active storage in a pool of blocks in the SLC portion; and
wherein said copying data stored in the SLC portion to the MLC portion is in

response to said pool getting full.

8. The method as in claim 5, further comprising:
providing said SLC portion with a first layer and a second layer; and
said buffering and staging steps are performed in the first layer of the SLC

portion.

9. The method as in claim 8, wherein:
said buffering and staging step involves short fragments of data of the host

write addressable by logical address.

10. The method as in claim 8, wherein:

said storing step is performed in the second layer of the SLC portion.

11. A non-volatile memory, comprising:

a memory array organized into blocks of memory cells that are erasable
together, each block for storing a plurality of pages, each page for accessing a
predetermined number logical unit of data in parallel, each logical unit having a
logical address assigned by the host;

a memory structure defining a plurality of logical groups by partitioning a
logical address space of the host into non-overlapping sub-ranges of ordered logical
addresses, each logical group having a predetermined size within a range delimited by
a minimum size of at least one page and a maximum size of fitting at least two logical
groups in a block;

a buffer for buffering individual host writes;

a state machine controlling operations that include:

staging the individual host writes logical group by logical group; and

storing any staged logical groups into the non-volatile memory.

12. The non-volatile memory as in claim 11, wherein the maximum size is up

to an order of magnitude higher than a size of a host write.

- 40 -



WO 2012/158514 PCT/US2012/037511

13. The non-volatile memory as in claim 11, wherein a page has a size

between 32 to 64 kilobytes.

14. The non-volatile memory as in claim 11, wherein the logical group has a

size selected from a range being 1 to 4 pages.

15. The non-volatile memory as in claim 11, further comprising:

the non-volatile memory having a SLC portion and an MLC portion, where
memory cells in the SLC portion each stores one bit of data and memory cells in the
MLC portion ecach stores more than one bit of data; and

wherein said state machine controls said buffering and staging operations in

the SL.C portion.

16. The non-volatile memory as in claim 15, further comprising;:
said state machine controlling copying of data stored in the SLC portion to the

MLC portion.

17. The non-volatile memory as in claim 16, further comprising;:
active storage in a pool of blocks in the SLC portion; and
wherein said state machine controlling copying of data stored in the SLC

portion to the MLC portion is in response to said pool getting full.

18. The non-volatile memory as in claim 15, further comprising:
a first layer and a second layer in the SLC portion; and
said state machine controlling said buffering and staging operations in the first

layer of the SLC portion.

19. The non-volatile memory as in claim 18, wherein:
said buffering and staging step involves short fragments of data of the host

write addressable by logical address.

20. The non-volatile memory as in claim 18, wherein:

said storing step is performed in the second layer of the SLC portion.

-4] -



WO 2012/158514 PCT/US2012/037511

1720

HOST 80

FLASH MEMORY DEVICE g0
Memory Chip 100
Memory
Controlier On-Chip
102 Control
Circuit
110 Memory Array
> 200
N 112
State |
Mach-
ine
A . ‘ ‘
111, 231 Peripheral Circuits
204
( ¥
FIRM-
WARE 4 60
£CC 152 .
Processor u
A SRRt »

FIG. 1

SUBSTITUTE SHEET (RULE 26)



WO 2012/158514

2120

PCT/US2012/037511

220~ Physical Page of Data Latches 1—(—>
200 210 ~— Physical Page of Sense Amps
N
BLO BL1 BL2 BL3 BL4 BLS5 BLm-1 BLm
4436)52JJJJJ r‘J
r
SGD \i — , e | |
by ! ; :::I ;:] FE ;::l i ;
WLn ] E : ; : H I ; :
H L : : : ! : :
/11 1 'ElE
| é | H H H H
E
{
A
WL3
WL2
WL1
WLO
s¢s ——H—v7H—+H-—1t+—r1mr—""
44 L]
Source Line\ 34

FIG. 2

SUBSTITUTE SHEET (RULE 26)




WO 2012/158514

3/20

PCT/US2012/037511

200

WLy — 300
ERASE BLOCK m ./
WL3!
ERASE BLOCK 1
WL1E e
300

42 ERASE BLOCK 0

BLO BL1

FIG. 3

SUBSTITUTE SHEET (RULE 26)

Blx



PCT/US2012/037511

WO 2012/158514

4120

v OIld

SHNAID MY S}NOHD WY SHNOHD M/ SUN2ND MY
v-09 | Y d ~td 7 d =Td
<5 50 {00
5-00€ ¥ 30019 € oolg Z20id L 3o01g
¥ eue|d ¢ aue|d Z aue|d 1 aue|d
Klowapy Aiowap Alowayy Aoway
Z did
dIHD AHOWAN

SUBSTITUTE SHEET (RULE 26)



WO 2012/158514 PCT/US2012/037511

5720
METABLOCK
300-4
BLOCK 1 BLOCK 2 BLOCK 3 BLOCK4 | | ~
R P4_____ | DA
T T N o
o metapage
- Threshold Window ————»
l Erased v i
(0) ( ISOH ‘ :(1 "
| i
I \ nth I
' Memory State :
l |
!
(1) “Erased” [
, !
| ;
!
| |
I |
VV1 é
2
@) l 1 0
l I
. . / b Vy
Binary Bit e

Programming into two states represented by a 1-bit code

FIG. 6

SUBSTITUTE SHEET (RULE 26)



PCT/US2012/037511

WO 2012/158514

6/20

L "Oid

apo9 Hg-¢ e Aq pajuasaidal sejeys g ojul Buiwweiboud

| | | | | 1
| ! | | | I
| i | | | |
| { _ _ _ _ 1g aIPPIA
_ | M : | | g Jemo H ug Jeddn
A _ B B B | _ i | _/ \
L 0lL g Jol0f | o000 oob } Ltor} Ltoo) LLio | 9y
_ A A I A ..
AN .m>>_ SANA I “
|

e e - — — e e e —— e —

b e e e e e e e — — e ——

|
{
I
|
|
|
|
|
t
H
|
|
|
|
|
_

|
!
|
|
I
|
|
|
t
H
I
|
|
|
|
|
L

N w‘m_ m>‘m

i

MOPUIA Ploysaiy L

Cf/‘_CM\/‘_CN\C

2 v :
| }

M _ osely

(@

(0)

SUBSTITUTE SHEET (RULE 26)



WO 2012/158514 PCT/US2012/037511

7120

MEMORY ARRAY 200

Second Portion 420
MLC Memory
(less robust but higher density storage)

N

Folding

First Portion 410
SLC Memory
(more robust but lower density storage)

Host writes

via Controller
.—-—.—-—-»

FIG. 8

SUBSTITUTE SHEET (RULE 26)



WO 2012/158514 _ PCT/US2012/037511

81720

420

MLC
Portion

Portion

_@

—o— —o—

FIG. 9

SUBSTITUTE SHEET (RULE 26)



PCT/US2012/037511

WO 2012/158514

9/20

0L Oid

Wwrepay

1S

“syoolg
eleq
218

<

gkvgm Lomasorsly G

$%00|g
SHIAA

1S

SUBSTITUTE SHEET (RULE 26)



PCT/US2012/037511

WO 2012/158514
10720
LBA, LBA, LBA; LBA; | -eeeeeeeeees LBAM.
FIG. 11 =~ &
LGO r 390 LG1
Page(LPn.1) Page(LPa.1)
A A
Page(LP,) Page(LPn.2)
Page(LP+) Page(LPn+)
Page(LPg) Page(LPy) —
SLC Block 310
P-1
! )
LGT 3
LG2 2
350
— LG1T 1
LGO 0

SUBSTITUTE SHEET (RULE 26)

Page(LPy)
----- -
----- »-

62



WO 2012/158514 PCT/US2012/037511

111720

Organizing the non-volatile memory into blocks of memory cells that are
erasable as a unit, each block for storing a plurality of pages, each page
for accessing a predetermined number logical unit of data in parallel,
each logical unit having a logical address assigned by the host

500

Y

Defining a plurality of logical groups by partitioning a logical address
space of the host into non-overlapping sub-ranges of ordered logical
addresses, each logical group having a predetermined size within
delimited by a minimum size of at least one page and a maximum size of
fitting at least two logical groups in a block

510

l

Buffering individual host writes

520

l

530

Staging the individual host writes logical group by logical group

l

Storing any staged logical groups into the non-volatile memory

540

550

Done —

FIG. 13B

SUBSTITUTE SHEET (RULE 26)



PCT/US2012/037511

12120

WO 2012/158514

0c¥ uoiod Aloway TN v 9OId 01% uolod Alowsiy 018
0c< $32019 01N _ _ 0I€ syoolq Lq/Aeuid/OTs

vI¥ Jahe Butos 972 | 412
_ | JoAe Buiyoen wswbel '}

uonaIng 9O Ln_*)

uondIAg O .|_|_)
‘“ ‘ uoioedwod

ﬂ

_
_
_
|
_
|
|
M
_
_
_
_
|

| _

|

_ _

| _

|

_ | ]

|

ﬂ (T an | |

| _ M

| | an | . .

L = J 404 coy

| £doo wiepoal | UO1ED0[) g A\

_ j « : | | _ uonoedwo?

| Y _ Bjep 104 | ] L

_ | _ _ _ auo7

| 5 o019 | J | | auoeD Areuig

| IPHPHO Yol ajepdn | | uonesojes | | | | Aeuig Jusp

| .Aj elep pjon —— 49N _ _ 189y

I LS L R B Vi wa
SN mm;cmrsvmw BuoT SOLIM _mmcoq S9LIM ﬁocm elep QE

SOJLIM B)ep 1SOH

SUBSTITUTE SHEET (RULE 26)



PCT/US2012/037511

WO 2012/158514

Gl "Oid

0Z¥ uolpod Aowey 0N OIF uoniod Aowsy O11S
| 0Z€ s%201q DTN | | 0L sxwooiq L a/Aleulg/ons |
| Z2F +ohe BulAlyouy ©7 pioD ¢ I“ [ ¥I¥ 1ahe1 Buinog 91z 1 _mwwm._m\mml_ Butyoes juswbesi Flﬂ
“ _ _ _ _ _
—i uoBoAg 97
" ﬁ “ _ UOIIOIAT © .T_II/ “
| Adoo wiepal _ | _ o | _
_ _ | |
| | | w | |
_ | _ uonesoja.l uoIE0|al _
mm 42019 U0 Bjep pjoo ejep 10H | |
= joedwon L || |
| jeuibi ] | _ _ | A\ A\ ]
_ el Y _ PIo2 o ﬂ N “
| Bupjoy | | o:omqéom |
| e I _ | L]
_ ayepdn PIOD auo7
_ W _ _ ” ayoen Aeulg “
181ng Aeuig wap
" | bag PIoo ou | | | 150y |
| ] | |
A . S g Jll |||| ) Jﬂ | ]
jenuanbag Buon 9Z1S WNIPSN ﬁomm 21ep S41N
N

SOLIM B1ED 1SOH

SUBSTITUTE SHEET (RULE 26)



PCT/US2012/037511

WO 2012/158514

14120

91 "9OId

ek Iy 97 ou
/ g osealoop pasabbiy pio)
\\| ¢ Iy o7 ou
Bujjo03 | mojs /, 9 uy o7 0u
/ g asealoop palabbuy pjos
/A‘ . By ojou
e L ¥y o7o0U
Buiwurem| 1sey \V & L G# 1Y 91
. 9 P UY O
\\
— g €4 W O
=]
anjeA jeniul 7 14 SH Y O
 — £ L HY D7
0 — O - S1)S [l
0 0 £ ¥ G |9 . anjeA
PIOD 10H aineladwa ]
HINUILIA bt jSoUBIH | Jsemo] HINHEN o1
SO PIOD SOTI0H SO
1vo (dIIN) obed xepu| 1a)se Buiddey o1
S1o0id SH00[q 198 BupOpN Adeurg anijoy sadA) yooig

(X)) D1

SUBSTITUTE SHEET (RULE 26)



PCT/US2012/037511

WO 2012/158514

15720

LL "Dld

° DTN 01 plo}
e 0 ny 570U
PHIos 0 Wy 970U
‘ Y 97 ou
? b asea.sap pasabbuy pjo}
\\ |+ Wy 97 ou
Ruijooo / Z W 57 ou
mors \\| |z Wy 97 0u
V/ ¢ asealoap palobbiy pjoj
\ € )y o ou
€ 34 97 ou
gnieaenut || ¢ oo
0 T 9N - S1EIS (eIl
0 0 b | e € 14 s lo ) anjen
WINWIUI LUNLUIUIA meﬁom“_uz ﬂwmﬁ”,_ e m_am%&m 1
SO1PID SOl IoH SO
LYD (dIN) @Bed xapuj Jeisep mc_%mz
SIo0ld sadAy
(2X) DN $400|q 195 Bunpiopy Aleuig aanoy 00Ig

SUBSTITUTE SHEET (RULE 26)



PCT/US2012/037511

WO 2012/158514

16 /20

8L Old

¥ yoneod; S00|g]
S , 10BJU| pUB
1oBjU] [ N\
350
Y W \ (LX) pasoiD
) N\ 4 weang
onedolay O1N
, N | Wweansg
Y/ uoRedoay PICH uoned
£ weons 1esn
¥O0[g UONEIO[D Y UORE0I9Y 10H
+—— uleang ssed
SopiM |Enuanbas BuoT -Ag fenusnbag
t 1 weals
ool sepan § 1SCH PICD
T weang
SyYoolg 21epdn R 1SOH 10H
sonjea uied uonied
amessdws |l sepdn pwesig | (eoibo
91
SO
IERYES
b
1v9 Butiop (dN) 195 BuBLIOA BAIOY Haden
BAloRU| T
001 syac|g Areul sedhy
(€X) O oold AMedld 0019

SUBSTITUTE SHEET (RULE 26)



PCT/US2012/037511

WO 2012/158514

17120

(panupuo))

81 "Old

SM20|gG PSsO|D

$300|9
10BIU| pue
(1X) paso|D

%00|g Uoljea0|ay

Wweal)s
UOIE20|3Y 10H

weang
1SOH JCH

uoned
Aong,

SM20|g pesoiD

$400ig
J0E1U] pUB

(LX) pesoID

wealng
uonesolay O

weais
UOoNE20|3Y JOH

weaing
1SOH J0H

uonied
SO

SUBSTITUTE SHEET (RULE 26)



WO 2012/158514 PCT/US2012/037511

18 /20

600
Organizing the non-volatile memory into blocks of memory cells that are | —

erasable together

l

Ranking each unit of data by assigning a temperature, where a higher 610
temperature indicates a higher probability that the unit of data will suffer
subsequent rewrites due to garbage collection operations

620

Performing an operation on the unit of data in a manner dependenton [
the temperature of the unit of data

660

Done —

FIG. 19

SUBSTITUTE SHEET (RULE 26)



WO 2012/158514 PCT/US2012/037511

19720

Organizing the non-volatile memory into blocks of memory cells that are
erasable together

700

l

Partitioning the non-volatile memory into a SLC portion and an MLC
portion, where memaory cells in the SLC portion each stores one bit of
data and memory cells in the MLC portion each stores more than one bit
of data

710

l

Providing a plurality of logical groups by partitioning a logical address
space of the host into non-overlapping sub-ranges of ordered logical
addresses, the logical groups having a size that multiple logical groups fit
in a block

720

l

730

Storing data logical group by logical group in each block of the SLC
portion

e

l

Ranking each logical group stored in the SLC portion by a temperature,
where a higher temperature indicates a higher probability the logical
group will suffer subsequent rewrites due to garbage collection
operations

740

l

In response to a demand to free up room in the SLC portion,
preferentially relocating a logical group with the coldest temperature from
the SLC portion to the MLC portion

750

L

760

Done —

FIG. 20

SUBSTITUTE SHEET (RULE 26)



WO 2012/158514 PCT/US2012/037511

20720

Organizing the non-volatile memory into blocks of memory cells that are
erasable together

800

l

Partitioning the non-volatile memory into a SLC portion and an MLC
portion, where memory cells in the SLC portion each stores one bit of
data and memory cells in the MLC portion each stores more than one bit
of data

810

l

Ranking each block in the SLC portion by a temperature, where a higher
temperature indicates a higher probability the block wili suffer
subsequent rewrites due to garbage collection operations

820

l

In response to a demand to free up room in the SLC portion,
preferentially relocating data in a block with the coldest temperature from
the SLC portion to the MLC portion

830

Lo

l 840

Done L

FIG. 21

SUBSTITUTE SHEET (RULE 26)



INTERNATIONAL SEARCH REPORT

International application No

PCT/US2012/037511

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F12/02 G11C7/10
ADD.

G11C11/56

G11C16/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F G11C

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

US 2010/169540 Al (SINCLAIR ALAN W [GB])
1 July 2010 (2010-07-01)

paragraphs [0002] - [0008], [0018] -

1-20

[0028], [0032],
[0046] ,

figures 3,4

[0035] - [oo042],
[0049]; claim 1; figures 1,3,4,8

column 1, line 12 - column 1, line 24
column 2, line 5 - column 2, line 51
column 3, line 5 - column 3, line 45;
figure 1

column 5, line 21 - column 5, line 60;
figure 2

column 5, line 66 - column 6, line 1
column 6, line 4 - column 7, line 41

_/__

Y US 5 671 388 A (HASBUN ROBERT N [US]) 1-20
23 September 1997 (1997-09-23)
abstract; claims 1-5, 10-14, 19-20;

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

10 October 2012

Date of mailing of the international search report

17/10/2012

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Jardon, Stéphan

Form PCT/ISA/210 (second sheet) (April 2005)




INTERNATIONAL SEARCH REPORT

International application No

PCT/US2012/037511

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

US 2008/244164 Al (CHANG YAO-XUN [TW] ET
AL) 2 October 2008 (2008-10-02)

abstract

paragraphs [0001], [0009] - [0012],
[0020] - [0025]; figures 1,2

US 2008/209112 Al (YU I-KANG [US] ET AL)
28 August 2008 (2008-08-28)

paragraphs [0014], [0046] - [0049],
[0060], [0081], [0131]; claims 10-17;
figures la-1f,3b,5a,5e,5g, 5h

WO 2007/029259 A2 (MSYSTEMS LTD [IL];
LASSER MENACHEM [IL]; MURIN MARK [IL];
EYAL ARIK [I) 15 March 2007 (2007-03-15)
paragraphs [0032] - [0050], [0055] -
[0059]; claims 1,2,5-8

US 2010/205352 Al (CHU CHIEN-HUA [TW] ET
AL) 12 August 2010 (2010-08-12)
paragraphs [0006] - [0008], [0014],
[0015], [0027] - [0040]; claims 1,2;
figures 2,6

1-20

1-20

1-20

1-20

Form PCT/ISA/210 (continuation of second sheet) (April 2005)




INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2012/037511
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2010169540 Al 01-07-2010 US 2010169540 Al 01-07-2010
WO 2010077920 Al 08-07-2010
US 5671388 A 23-09-1997  NONE
US 2008244164 Al 02-10-2008  TW 200841343 A 16-10-2008
US 2008244164 Al 02-10-2008
US 2008209112 Al 28-08-2008  NONE
WO 2007029259 A2 15-03-2007 CN 101356507 A 28-01-2009
EP 1922623 A2 21-05-2008
JP 4759057 B2 31-08-2011
JP 2009510549 A 12-03-2009
KR 20080038441 A 06-05-2008
US 2007061502 Al 15-03-2007
US 2010274955 Al 28-10-2010
WO 2007029259 A2 15-03-2007
US 2010205352 Al 12-08-2010  TW 201030521 A 16-08-2010
US 2010205352 Al 12-08-2010

Form PCT/ISA/210 (patent family annex) (April 2005)




	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - wo-search-report
	Page 65 - wo-search-report
	Page 66 - wo-search-report

