WO 02/101579 A1l

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau 40 g,}j
(43) International Publication Date (10) International Publication Number
19 December 2002 (19.12.2002) PCT WO 02/101579 A1l
(51) International Patent Classification’: GO6F 17/21 (72) Inventors; and
(75) Inventors/Applicants (for US only): BEISIEGEL,
(21) International Application Number: PCT/US01/49577 Michael [DE/US]; 21 PartnersTrace, Poughkeepsie, NY
12603 (US). GREEN, John, H. [CA/CA]; 57 Glenburn
(22) International Filing Date: Avenue, Toronto, Ontario M4B 2X5 (CA). WARFIELD,
28 December 2001 (28.12.2001) Jay, W. [US/US]; 5859 Blossom Avenue, San Jose, CA
95123 (US).
(25) Filing Language: English

(74) Agents: SCHECTER, Manny, W. et al.; International
Business Machines Corporation, TJ Watson Research, P.O.

(26) Publication Language: English Box 218, Yorktown Heights, NY 10598 (US).
(30) Priority Data: (81) Designated States (national): AT, AU, BR, CH, CN, CZ,
2,349,905 7 June 2001 (07.06.2001) CA DE, ES, GB, HU, IL, IN, JP, KR, MX, PL, RU, SE, SG,
US, VN.

(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA- (84) Designated States (regional): European patent (AT, BE,
TION [US/US]; New Orchard Road, Armonk, NY 10504 CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
(US). NL, PT, SE, TR).

[Continued on next page]

(54) Title: SYSTEM & METHOD OF MAPPING BETWEEN SOFTWARE OBJECTS & STRUCTURED LANGUAGE ELE-
MENT-BASED DOCUMENTS

(57) Abstract: Method and system that provides
common framework for mapping between
INTEGRATION COMPONENT document (e.g. an XML document) and software
object (e.g. a Java object). Framework uses

104 /- 100 handler that masks how property is obtained for
106 mapping. Results in mapping code have a common
{ appearance for both directions of mapping.

102
{

XML- APPIN
L-OBUECT HAPPING HODULE Mapping between elements of XML document and
108 106-1 106-2 106-4 Rk £ b . ined i
/ / / properties of Java object is contained in mapper.
p— NUT BUFFERED PTG Mapper maps from XML document (108) to object
SOURCE |1 CONTENT t— (110) using parser (104) (such as DOM or SAX).
DOCLHENT OASS | |WwoLER cLass| | INTERPACE

Mapping in other direction (Java to XML) requires
1/10 that elements of XML document (118) be built in
particular order to ensure validity of resulting XML
106-3~4 Méfigrélﬁ OéﬁEéT document (118). Present invention builds XML
template document using JSP for example. Using
114 JSP based templates enables tags of document be

written in the with callbacks to get element an
(itten in the JSP with callbacks to get el d

XHL-0B.ECT MAPPING HODULE attribute values. Content can be directed to buffer,

1/18 11/4‘4 11;'2 11}'1 1315 or directly to response stream of servlet.
OUTPUT XML QUTPUT TARGET| | MAPPING HANDLER JAVA
DOCUMENT CLASS INTERFACE INTERFACE 0BJECT

. MAPPING
W Tiiss

125y pocuvent
TEWPLATE

w0 02/101579 A1 NI 000 0000 O

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— with international search report ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 02/101579 PCT/US01/49577
SYSTEM AND METHOD OF MAPPING BETWEEN SOFTWARE OBJECTS AND
STRUCTURED LANGUAGE ELEMENT BASED DOCUMENTS

Field of the Invention
The present invention relates to the field of converting or mapping between a software object
and a structured language element document, and in particular to mapping between various

software objects such as Java™ objects and Extensible Markup Language (XML) documents.

Background of the Invention

Extensible Markup Language (XML) is a pared down version of Standard Generalized Markup
- Language (SGML) that is designed especially for Web documents. It enables designers to

create their own customized tags to provide functionality not available with HTML. For

example, XML supports links that point to multiple documents, as opposed to HTML links,

which can reference just one destination each.

Because XML is a form of self-describing data (also termed structured language elements in
the present description), it is used to encode rich data models. Therefore, XML is useful as a
data exchange medium between dissimilar systems. Data can be exposed or published as
XML from many kinds of systems: legacy COBOL programs, databases, C++ programs and
the like. A business problem that is commonly encountered involves resolving how to map
information from an XML document to other data formats and vice versa. For example, once
information has been exchanged between entities in an XML document, it may be necessary to
map its information into a Java object that can be used when making a database or

transactional request.

U.S. Patent 6,125,391 issued September 26, 2000 to Meltzer et al. discloses an example of an
XML/Java conversion tool. For converting from XML to Java, Meltzer et al. parse the XML
document and raise events. In particular, a parser walks through an XML document and builds
a tree representation in memory that can be queried and another parser walks an XML
document and raises events with information about the document (e.g., start document event,
start element vent with the name of the element, content of the element, end element event, end

document event, etc.).

WO 02/101579 PCT/US01/49577

For converting from Java to XML, Meltzer et al. generates code that contains accessors for
each element. The accessor for an element contains a loop, looping for each character. The
loop contains a switch statement that performs an action based on what the character is. The
action is to build a StringBuffer containing the element fragment of the XML document. The
Meltzer et al. solution does not provide supporting infrastructure for working with the code
that transforms Java to XML. All the code in Meltzer et al. is generated and is not conducive

for a user to edit.

Consequently, there is a need for a mapping framework to support mapping between software
objects and structured language element based documents (e.g. XML) that can be efficiently

implemented using standard tools.

Summary of the Invention

The disadvantages of the prior art summarized above are overcome according to an exemplary
method and system of the present invention that provides a common framework for mapping
between a document (e.g. an XML document) and a software object (e.g. a Java object). The
framework uses a handler that masks how a property is obtained for mapping. This results in
mapping code that has a common appearance for both directions of mapping. A mapping
between elements of an XML document and the properties of a Java object is contained in a
mapper. A mapper maps from the XML document to a software object through the use of a
parser (such as Document Object Model (DOM) or Simple Application Programming Interface
(API) for XML (SAX)). '

Mabping in the other direction (Java to XML) requires that the elements of the XML document
be built in a particular order to ensure validity of the resulting XML document. To ensure this
validity, an exemplary embodiment of the present invention builds an XML template
document using JavaServer Pages™ (JSP), for example. Using JSP based templates enables
tags of the document to be written in the JSP, with callbacks to get element and attribute
values. JSP is well documented with editor support to permit efficient template creation.
Further, content can be directed to a buffer, or directly to a response stream of a servlet.

In accordance with one aspect of the present invention there is provided a
computer-implemented method for converting a data structure representing a software object

to structured language elements of a document, the method comprising: (a) generating a

WO 02/101579 . PCT/US01/49577
structured language element template document; (b) reading properties from the software
object, the properties being associated with the structured language elements of the document;
(c) using the properties, obtaining constructs defined by the structured language elements
based on the association between the properties and the structured language elements; and (d)

populating the structured language element template document with the constructs.

In accordance with another aspect of the present invention there is provided a computer-
implemented method for converting structured language elements of a document to a data
structure representing a software object, the method comprising: (a) reading each of the
structured language elements of the document; (b) determining a property, selected from a set
of available properties defined by the data structure of the software object, associated with
structured language elements of the document; and (c) populating the properties of the data
structure representing the software object with structured language element values from the

document.

In accordance with another aspect of the present invention there is provided a system for
converting a software object containing properties to a document defined by structured
Janguage elements, the system comprising: (a) a document template; (b) a handler interface for
providing a representation of the structured language elements of the document based on call
backs made by the document template; (c) a mapping module, in communication with the
handler interface, for converting properties of the software objects to structured language
elements recognized by the document; and (d) an output target class, in communication with
the mapping module, for writing the structured language elements generated in step (c) to the

document.

In accordance with another aspect of the presént invention there is provided a system for
converting a document containing structured language elements to a software object, the
system comprising: (a) a parser for obtaining events representative of features of the
document; (b) an input source class for reading the document; (c) a content handler class, in
communication with the input source class, for implementing a buffer for the events obtained
by the parser; and (d) a mapping module, in communication with the content handler class, for

converting the events obtained by the parser to properties for the software object.

WO 02/101579 PCT/US01/49577

In accordance with another aspect of the present invention there is provided a method of
converting a software object having properties to a document represented by structured
language elements, the method comprising: (a) supplying the software object to an instance of
an invoked mapping interface; (b) compiling and executing a template using an instance of an
invoked container; and (c) writing the document to a specified output stream using the

compiled template.

In accordance with another aspect of the present invention there is provided a method of
converting a document containing structured language elements to a software object, the
method comprising: (a) supplying the document to an instance of an invoked mapping
interface; (b) registering the mapping interface as a content handler; (c) parsing the document
using an instance of an invoked parser; and (d) populating the software object with properties
associated with structured language elements parsed from the document through call backs

made to the mapping interface.

In accordance with another aspect of the present invention there is provided a computer
program product for converting a data structure representing a software object to structured
language elements of a document, the computer program product comprising computer
readable program code devices for: (a) generating a structured language element template
document; (b) reading properties from the software object, the properties being associated with
the structured language elements of the document; (c) using thc? properties, obtaining
constructs defined by the structured language elements based on the association between the
properties and the structured language elements; and (d) populating the structured language

element template document with the constructs.

In accordance with another aspect of the present invention there is provided a computer
program product for converting structured language elements of a document to a data structure
representing a software object, the computer program product comprising computer readable
program code devices for: (a) reading each of the structured language elements of the
document; (b) determining a property, selected from a set of available properties defined by the

data structure of the software object, associated with structured language elements of the

WO 02/101579 PCT/US01/49577
document; and (c) populating the properties of the data structure representing the software

object with structured language element values from the document.

Other aspects and features of the present invention will become apparent to those ordinarily
skilled in the art upon review of the following description of specific embodiments of the

invention in conjunction with the accompanying figures.

Brief Description of the Drawings
Further features and advantages of the present invention will be described in the detailed
description, taken in combination with the appended drawings, in which:

Fig. 1 is a block diagram of a computer system that may be used to implement a
method and apparatus for embodying the invention;

Fig. 2 is a block diagram illustration the framework for mapping between XML and
Java objects and vice versa;

Fig. 3 is a flow chart illustrating a method of mapping an XML décument to a software
object using the framework of Fig. 2; and

Fig. 4 is a flow chart illustrating a method of mapping a software object to an XML

document using the framework of Fig. 2.

Detailed Description of Embodiments of the Present Invention

Fig. 1 and the associated description represent an example of a suitable computing
environment in which the invention may be implemented. While the invention will be
described in the general context of computer-executable instructions of a computer program
that runs on a personal computer, the invention can also be implemented in combination with

other program modules.

Generally, program modules include routines, programs, components, data structures and the
like that perform particular tasks or implement particular abstract data types. Further, the
present invention can also be implemented using other computer system configurations,
including hand- held devices, multiprocessor systems, microprocessor-based or programmable
consumer electronics, minicomputers, mainframe computers and the like. The invention can
also be practiced in distributed computing environments where tasks are performed by remote

processing devices that are linked through a communications network. Ina distributed

WO 02/101579 PCT/US01/49577

computing environment, program modules may be located in both local and remote memory

storage devices.

With reference to Fig. 1, an exemplary system 10 includes a conventional personal computer
20, including a processing unit 22, a system memory 24, and a system bus 26 that couples
various system components including the system memory 24 to the processing unit 22. The
system bus 26 includes several types of bus structures including a memory bus or memory
controller, a peripheral bus, and a local bus using any of a variety of conventional bus

architectures (e.g., PCI, VESA, ISA, EISA etc.)

The system memory 24 includes read only memory (ROM) 28 and random access memory
(RAM) 30. A basic input/output system (BIOS) 32, containing the basic routines that help to
transfer information between elements within the computer 20, such as during start-up, is
stored in the ROM 28. The computer 20 also includes a hard disk drive 34, magnetic disk
drive 36 (to read from and write to a removable disk 38), and an optical disk drive 40 (for
reading a CD- ROM disk 42 or to read from or write to other optical media). The drives 34, 36
and 40 are connected to the system bus 26 by interfaces 44, 46 and 48, respectively.

The drives 34, 36 and 40 and their associated computer-readable media (38, 42) provide
nonvolatile storage of data, data structures, and computer-executable instructions for the
computer 20. The storage media of Fig. 1 are merely examples and it is known by those
skilled in the art to include other types of media that are readable by a computer (e.g., magnetic

cassettes, flash memory cards, digital video disks, etc.).

A number of program modules may'be stored in the drives 34, 36 and 40 and the RAM 30,
including an operating system 50, one or more application programs 52, other program
modules 54 and program data 56. A user may enter commands and information into the
computer 20 through a keyboard 58 and an input device 60 (e.g., mouse, microphone, joystick,
game pad, satellite dish, scanner etc.) These devices (58 and 60) are connected to the
processing unit 22 through a port interface 62 (e.g., serial port, parallel port, game port,
universal serial bus (USB) etc.) that is coupled to the bus 26. A monitor 64 or other type of

display device is also connected to the bus 26 through an interface 66 (e.g., video adapter).

WO 02/101579 PCT/US01/49577

The computer 20 may operate in a networked environment using 10gi;:a1 connections to one or
more remote computers, such as remote computer 68. The remote computer 68 may be a
server, a router, a peer device or other common network node, and typically includes many or
all of the elements described in relation to the computer 20, although for simplicity only a
memory storage device 70 is shown. The logical connections shown in Fig. 1 include a local
area network (LAN) 72 and a wide area network (WAN) 74. Such networking environments

are commonly used in offices, enterprise-wide computer networks, intranets and the Internet.

When used in a LAN networking environment, the computer 20 is connected to the LAN 72
through a network interface or adapter 76. When used in the WAN networking environment,
the computer 20 typically includes a modem 78 or other means for establishing
communications over the WAN 74, such as the Internet. The modem 54, which may be
internal or external, is connected to the bus 26 through the port interface 62. In a networked
environment, program modules depicted relative to the computer 20, or portions thereof, may

be stored in the remote memory storage device 70.

Discussion of the method of the present invention is based in terms of conversion/mapping
from XML to Java objects and from Java objects to XML. Other data formats are also
supported. For example, many legacy business applications are written in COBOL, C and
PL1. These applications are composed of programs that reside in Enterprise Information
Systems (EIS) such as CICS™ (general purpose online transaction processing software) or
IMS™ (Information Management System). A COBOL program uses COBOL structures for
their input and output. There is a need to map from XML to COBOL and from COBOL to
XML. The present invention can be used to perform these maps, where a XML-to-object X
mapping handler (discussed below) would populate a COBOL structure from the XML
document and an object-X-to-XML mapping handler (discussed below) would extract the data
from a COBOL structure and be used by a template to populate the XML document.

By way of background, the mapping methods of the present invention utilize the following
high level process: (a) a lexer groups characters into words or tokens that are recognized by a
particular system (termed tokenizing); (b) a parser analyses groups of tokens in order to
recognize legal language constructs; and (c) a code generator takes a set of legal language

constructs and generates executable code. The functions defined by (a)-(c) can be intermixed.

WO 02/101579 PCT/US01/49577

For example, for XML to Java object mapping, every character in a XML document is
analyzed in order to recognize legal XML tokens such as start tags, properties, end tags and
“CDATA” sections. Then, the tokens must be verified that they form legal XML constructs.
At a most basic level, it is verified that all of the tagging has matching opening and closing
tags and the properties are properly structured in the opening tag. If Document Type
Definitions (DTD) or XML schema are available, then it is possible to ensure that the XML
constructs found during parsing are legal in terms of the DTD or XML schema as well as being
well-formed XML. Finally, the data contained in the XML document is used to accomplish

something useful (i.e. map it into a Java object).

Some of the tasks identified above can be performed, at least in-part, by readily available XML
parsers. XML parsers handle the lexical analysis and parsing tasks. Two example parsing
standards are the SAX and DOM APIs (SAX - Simple Application Programming Interface
(API) for XML; DOM - Document Object Model).

SAX is event-based. XML parsers that implement SAX generate events that correspond to
different features found in the parsed XML document. The DOM API is an
object-model-based API. XML parsers that implement DOM create a generic object model in
memory that represents the contents of the XML document. Once the XML parser has
completed parsing, the memory contains a tree of DOM objects that offers information about

both the structure and contents of the XML document.

Fig. 2 illustrates a schematic representation of a framework 100 according to an embodiment
of the present invention. The framework 100 is shown instantiated in an integration
component 102 such as a Servlet that can be executed in the system 10 of Fig. 1. The
integration component 102 includes a parser 104 implemented using DOM or SAX, for
example, that interacts with an XML-OBJECT mapping module 106. For clarity, SAX will be
discussed as an example of the parser 104 in describing the implementation embodiments of

the present invention.

The XML-OBJECT mapping module 106 receives an input XML document 108 and generates
an output Java object 110. The integration component 102 further includes an XML document

WO 02/101579 PCT/US01/49577
template module 112 (e.g. based on JavaServer Pages™ - JSP technology) that communicates

with an OBJECT-XML mapping module 114. The OBJECT-XML mapping module 114

receives an input Java object 116 and generates an output XML document 118.

XML TO SOFTWARE OBJECT MAPPING
With reference to Fig. 2, the XML-OBJECT mapping module 106 includes the following
components:

(a) an input source class 106-1 (XML2xInputSource) for implementing the input XML
document 108;

(b) a buffered content handler class 106-2 (XML2xBufferedContentHandler) for
implementing a buffer for SAX events generated by the parser 104;

(c) a mapping interface 106-3 (XML2xMapping) for executing the mapping and for
setting input and, output target streams; and

(d) a mapping class 106-4 (XML2xMappingImpl) that provides methods for mapping
from the input XML document 108 to the output Java object 110.

Further details of the various interfaces and classes are discussed below. The terms “class”
and “interface” have specific meanings in Java. A Java class (abstract, inner or final) is a
collection of data members and methods that define a particular object and a Java interface is
used to impose certain functionality on a class that implement them (i.e. interfaces specify
what classes must do). Interfaces are also used to provide constants that can be used by the
classes that implement the interface. Interfaces contain constant variables and method
declarations, but the implementation of the methods is left to the classes that implement the

interface. A class can implement any number of interfaces.

Table M106-1 summarizes the main functions (i.e., not exhaustive) of the input source class

106- 1 (XMLZxInputSoufce).

XML2xInputSource is used so that an XML document can be read from a byte stream, a

character stream or the XML2xBufferedContentHandler 106-2.

WO 02/101579 PCT/US01/49577
TABLE M106-1

FUNCTION DESCRIPTION

available() returns the number of bytes that can be read from an input

stream without blocking.

getBufferedHandler () Gets the SAX event buffered handler.
getByteStream () Returns a byte stream

getCharacterStream () Returns a character stream reader.

read () Reads the next byte of data from this input stream.
skip () Skips bytes of input from this input stream.

Table M106-2 summarizes the main functions (i.e., not exhaustive) of the buffered content
handler class 106-2 (XML2xBufferedContentHandler). The handler class 106-2 also includes
a content handler to buffer SAX events from the parser 104. This allows events to be replayed.
An example where this feature is useful is where different mapping handlers are used for
different portions of an XML document. An implementation exémple is the Simple Object

Access Protocol (SOAP).

TABLE M106-2

FUNCTION DESCRIPTION

characters (char[] ch, int start, int length); Method comment where ch are characters

from the XML document 108; start is the

start position in the array; length is the

number of characers to read from the array

parse () Executes SAX events in the buffer

10

WO 02/101579 PCT/US01/49577
SOAP is a lightweight protocol for exchange of information in a decentralized, distributed
environment. It is an XML based protocol that consists of three parts: (1) an envelope that
defines a framework for describing what is in a message and how to process it; (2) a set of
encoding rules for expressing instances of application-defined data types; and (3) a convention
for representing remote procedure calls and responses. A SOAP message is an XML
document that consists of a mandatory SOAP envelope, an optional SOAP header, and a
mandatory SOAP body. In this situation, it is possible to use a different mapping handler for
the envelope and the body.

Table M106-3 summarizes the main functions (i.e., not exhaustive) of the mapping interface

106- 3 (XML2xMapping). XML2xMapping executes the mapping and allows configuration of

the InputStream.
TABLE M106-3
FUNCTIONS DESCRIPTION
execute() Performs the mapping that will create the format from
the input XML document 108. A full example of
execute() is provided below.
setlnputStream() Sets the input stream - i.e., specifies the source of the

Input XML document 108 that is to be mapped.

Table M106-4 summarizes the main functions (i.e., not exhaustive) of the mapping class 106-4
(XML2xMappingImpl). As discussed above in relation to the definitions of class and
interface, the XML2xMappingImpl class is not used directly, but is sub-classed with content
added to appropriate methods depending on document type definitions for the input XML
document 108 to be mapped from the output Java object 110 it is mapping to.

11

WO 02/101579 PCT/US01/49577
TABLE M106-4

FUNCTION DESCRIPTION

EndElement() Receives notification of the end of an element. The
parser 104 will invoke this method at the end of every
element in the input XML document 108. There is a
corresponding startElement() event for every endElement
- event even when the element is empty.

execute() Performs the mapping that will create the format from
the input XML document 108

setDocumentl.ocator() Receives an object for locating the orgin of SAX
document events.

setInputStream() Sets the input stream. Specifies the source for the XML
document that is to be mapped.

startElement() Receives notification of the beginning of an element.

The parser 104 invokes this method at the beginning of
every element in the input XML document 108. There

is a corresponding endElement() event for every

startElement() event - even when the element is empty.

All of the element’s content is reported. in order, before

the corresponding endElement() event.

With reference to Fig. 3, a method 300 is illustrated showing the general steps that are

performed to map the XML document 108 to the software object 110 (e.g., a Java Bean):

(a) obtain an instance of the mapping interface 106-4 (e.g., XML2XMapping) for

implementing the mapping from XML to object X at step 302;

(b) invoke the mapping interface 106-4 at step 304 and supply the input XML document 108 at

step 306;

12

WO 02/101579 PCT/US01/49577

(c) the mapping interface 106-4 obtains an instance of an event parser (e.g., the parser 104) at
step 308 and registers the mapping interface 106-4 as a content handler (e.g., buffered content
handler class 106-2) at step 310;

(d) invoke the parser 104 on the XML document 108 (i.e., begin parsing the document) at step
312;

(e) as step (d) is performed, call backs occur to the mapping interface 106-4 invoking various
methods at step 314 (e.g., startDocument, startElement, characters, endElement, endDocument,
etc.);

(f) in the startDocument and/or startElement methods the mapping interface 106-4 creates the
software object 110 at step 316; and

(g) in the endElement method the mapping interface 106-4 sets the element into the software

object 110 at step 318.

The SAX API, discussed above, includes many specifications known in the art. The present
invention is concerned with creating a class that implements a “ContentHandler” interface,
which is a callback interface used by XML parsers to notify a program of SAX events as they
are found in the XML document. The interface is used with the
XML2xBufferedContentHandler class 106-2 and the XMIL2xInputSource class 106-1. The
SAX API also provides a “DefaultHandler” implementation class for the “ContentHandler”
interface. An example I “XML-JAVA CUSTOMER?”, detailed below, extends the

“DefaultHandler” to generate a customer Java Bean from a customer XML document.

EXAMPLE I
XML-JAVA CUSTOMER

The following components (detailed below) are part of example I:

(A) customer.xml: the input XML document 108 sample;
(B) XML2CustomerMapping.java: the handler class 106-2 that the parser 104 calls back to. It
contains the instructions to construct the customer object and establish its values;
(C) execute java: the program of the mapping class/interface 106-3, 106-4 used to execute
mapping from XML to Java and from Java to XML (for Example II below);

(D) customer.java: the output customer Java Bean 110; and

13

WO 02/101579 PCT/US01/49577
(E) CustomerSymbols.java: contains integer constants and a hashmap. The hashmap is used to

map the names of tags to integer constants for use in XML2CustomerMapping.java.

A. Input XML document (customer.xml) is provided below.

/ISTART customer.xml

<?xml version="1.0"7?>

<customer>
<FirstName>Jane</FirstName>
<LastName>Doe</LastName>
<CustId>xyz.123</CustId>

</customer>

//END customer.xml

B. A program (XML2CustomerMapping.java), with some reductions for conciseness, to
construct the customer object and to set values into it (i.e. a handler that the event parser calls

back to) is provided below.

//START XML2CustomerMapping.java
public class XML2CustomerMapping extends
com. xxx .xml2xmapping.XML2xMappingImpl {
private StringBuffer fieldCurrentQualifiedElementName =
new StringBuffer("");
private Customer fieldCustomer;
private Stack elementStack;
* XMLCustomerInfoZ2RecordCustomerInfoMapper constructor
comment.
public XML2CustomerMapping() {
super () ;
elementStack = new Stack():
}
* characters method comment.
public void characters(char[] ch, int start, int length) throws
org.xml.sax.SAXException {

switch (this.fieldCurrentElementSymbol) {

14

WO 02/101579 PCT/US01/49577
case CustomerSymbols.CUSTOMER FIRSTNAME:

case CustomerSymbols.CUSTOMER LASTNAME:
case CustomerSymbols.CUSTOMER ID:

((StringBuffer)elementStack.lastElement ()) .append(ch, start, leng
th);

break;

}

* endElement method comment.
public void endElement (String namespaceURI, String localName,
String rawName) throws org.xml.sax.SAXException {
String symbolName;
if (namespaceURI.equals("")) symbolName = rawName;
else symbolName = namespaceURI + " " + localName;
this.fieldCurrentElementSymbol =
CustomerSymbols.getSymbol (symbolName) ;
// Get the value
String value =
((StringBuffer)elementStack.pop()).toString();
switch (this.fieldCurrentElementSymbol) {
case CustomerSymbols.CUSTOMER FIRSTNAME: {
this.fieldCustomer.setFirstName (value);
break;
}
case CustomerSymbols.CUSTOMER LASTNAME: {
this.fieldCustomer.setLastName (value);
break;
}
case CustomerSymbols.CUSTOMER ID: {
this.fieldCustomer.setId(value);

break;

}
this.fieldCurrentElementSymbol = 0;

15

WO 02/101579 PCT/US01/49577
* @return com.xxx.connector.mapping.xml.test.Customer
public Customer getCustomer () {
return this.fieldCustomer;
}
* startElement method comment.
public void startElement (String namespaceURI, String localName,
String rawName, org.xml.sax.Attributes atts) throws
org.xml.sax.SAXException {
String symbolName;
if (namespaceURI.equals("")) symbolName = rawName;
else symbolName = namespaceURI + " " + localName;
this.fieldCurrentElementSymbol =
CustomerSymbols.getSymbol (symbolName) ;
elementStack.push(new StringBuffer());
switch (this.fieldCurrentElementSymbol) {
case CustomerSymbols.CUSTOMER: {
this.fieldCustomer = new Customer ();

break;

}
}
//END XML2CustomerMapping.java

C. A program (execute java), with reductions for conciseness, used to execute mapping

from XML to Java (and from Java to XML as detailed in Example IT below).

//ISTART execute.java
package com.xxx.xml2xmapping.sample.customer;
import java.io.*;
import org.xml.sax.*;
public class Execute {
* Execute constructor comment.
public Execute() {

super () ;

16

WO 02/101579 PCT/US01/49577
* Starts the application.
* @param args an array of command-line arguments
public static void main(java.lang.String[] args) {
int numIterations = 1;
XML2CustomerMapping inMapping = new XML2CustomerMapping();
Customer2XMLMapping outEventBasedMapping = new
Customer2XMLMapping () ;
// Create the XML2Customer handler and the Customer2XML handler
XML2CustomerMapping in Mapping = new XML2CustomerMapping () ;
CustomerzXMLMapping outEventBasedMapping=new
Customer2XMLMapping () ;
// read in the customer.xml file
ByteArrayInputStream inStream = null;
try {
FileInputStream fileInputStream = new
FileInputStream("customer.xml");
byte[] bytes = new byte[fileInputStream.available()];
fileInputStream.read(bytes, 0,
fileInputStream.available());
inStream = new ByteArrayInputStream(bytes);
} catch (Exception e) {
e.printStackTrace () ;
}
ByteArrayOutputStream outStream = new
ByteArrayOutputStream() ;
try {
long ts = System.currentTimeMillis{();
for (int 1i=0; i<numIterations; i++) {
// inbound mapping
// map from XML document to customer Java Bean
inStream.reset ();
inMapping.setInputStream(inStream) ;
inMapping.execute () ;
// some execution, here a connector would be called
// get the customer object and print its contents

Customer aCustomer = inMapping.getCustomer();

17

WO 02/101579 PCT/US01/49577
System.out.println("First name from XML document is
"t+aCustomer.getFirstName ()) ;
System.out.println("Last name from XML document is
"t+aCustomer.getLastName ()) ;
System.out.println("Customer id from XML document is
"t+aCustomer.getId());
// Change the values on the customer object
aCustomer.setFirstName ("James") ;
aCustomer.setlLastName ("Bond") ;
aCustomer.setId ("007™) ;
// outbound mapping
// map from Java to XML
outEventBasedMapping.setCustomer (aCustomer) ;
//outEventBasedMapping.setOutputStream(outStream) ;
outEventBasedMapping.setOutputStream (System. out) ;
outEventBasedMapping.execute () ;
}
long te = System.currentTimeMillis();
System.out.println ("Average time "+ (te-
ts)/numlterations+"ms.");
} catch (Exception e) {

e.printStackTrace () ;

}

}
//END execute.java

D. A customer Java Bean (customer.java) is detailed below. A Java Bean is a reusable
component that adheres to a standard design architecture known in the art. A Bean is a class
object that may or may not be visible at run time. JavaBeans provide a component

architecture, a standard framework for developing components.

//START customer.java
package com.xxx.xmlZ2xmapping.sample.customer;
public class Customer {

private java.lang.String fieldFirstName = new String();

18

WO 02/101579 . PCT/US01/49577
private java.lang.String fieldLastName = new String();
private java.lang.String fieldId = new String();

* Customer constructor comment.

public Customer() {
super () ;

}

* Gets the firstName property (java.lang.String) value.

* @return The firstName property value.
* @see #setFirstName

public java.lang.String getFirstName () {
return fieldFirstName;

}

* Gets the id property (java.lang.String) value.

* @return The id property value.
* @see #setId

public java.lang.String getId() {
return fieldId;

}

* Gets the lastName property (java.lang.String) value.

* @return The lastName property value.
* @see #setLastName

public java.lang.String getLastName () {
return fieldLastName;

}

* Sets the firstName property (java.lang.String) value.

* @param firstName The new value for the property.

* @see #getFirstName

public void setFirstName (java.lang.String firstName) {
fieldFirstName = firstName;

}

* Sets the id property (java.lang.String) value.

* @param id The new value for the property.
* @see #getld

public void setId(java.lang.String id) {

fieldId = id;

/**

19

WO 02/101579 PCT/US01/49577
* Sets the lastName property (java.lang.String) wvalue.

* @param lastName The new value for the property.

* @see #getLastName

public void setlLastName (java.lang.String lastName) {

fieldLastName = lastName;

}
}

//END customer.java

As shown in Example I, mapping from XML to Java is efficient because the parser 104

processes events for all start, element and end tags, which improves tracking of the events.

As a further example, consider expanding the single customer XML document to an array of
customers. To generate an array of customer java beans follow this procedure:

(i) use the startElement for Customers to create a vector;

(ii) in the startElement for each Customer create a Customer object; and

(iii) use the startElement, getElement, endElement events for FirstName, LastName, and
CustID to populate the Customer object, endElement for Customer to insert the Customer
object into the vector, and endElement for Customers to create an array of Customers from the

vector and set it into the Java object being working with.

A stack is maintained by the parser 104 for recursive XML structures (i.e., XML elements that
represent lists of lists). For each startElement an object is created. The stack can be used to

keep state as required. Once a child element is created it can be set into its parent object.

SOFTWARE OBJECT TO XML MAPPING
With reference to Fig. 2, the OBJECT-XML mapping module 114 includes the following
components:

(a) a handler interface 114-1 (X2XMLHandler) for managing parsing events;

(b) a mapping interface 114-2 (X2XMLMapping) for executing the mapping and
setting an output target stream;

(c) a mapping class 114-3 (X2XMLMappingImpl) that provides methods for mapping
from the input Java object 116 to the output XML document 118; and

20

WO 02/101579 PCT/US01/49577
(d) an output target class 114-4 (X2XMLOutputTarget) to implement the output XML

document 118.

Table M114-1 summarizes the main functions (i.e., not exhaustive) of the handler interface
114-1 (X2XMLHandler). The mapping module 114 implements the interface 114-1 and
registers an instance with a JSP container. The document template 112 makes call backs to the
mapping module 114 for basic document related events like the start and end of elements and

to get an element value,

TABLE M114-1
FUNCTION DESCRIPTION

getElementValue() Returns the value of an element. This is used when

working with simple types that are not scoped by
start and end element tags.

endFlement() Receives notification of the end of an element. This is

used for maintaining state when working with a
complex type.

getElementAttribute() Returns the specified attribute’s value. This is used

when working with a complex type that is scoped by

start and end element tags.

getElementR epetitions() For a repeating element, his returns the number of
repetitions.
1sOptional AttributePresent() Returns true if the optional attribute is present,

otherwise returns false. This is used in the XML
document template (JSP) 112 for controlling whether
name and value are generated for an optional attribute
in the XML document 118. This is used when working
with a complex type that is scoped by start and end
element tabs. ,
startElement() Receives notification of the beginning of an element.
This is used for maintaining state when working with

complex types.

21

WO 02/101579 PCT/US01/49577

In general, a container is an entity that provides life cycle management, security, deployment
and runtime services to components. There are many specific types of containers (Web, JSP,
servlet, applet etc.) that provide component-specific services. A servlet container is a
container that provides network services over which requests and responses are sent, decodes
requests, and formats responses. A JSP container is a container that provides the same
services as a servlet container and an engine that interprets and processes JSP pages into a

servlet.

X2XMLHandler 114-1 provides a mirror (although not identical) image of parsing events to
that produced by the parser 104. In effect, the structure provided by the parser 104 is mirrored
in the path from X2XML.

When the parser 104 is implemented using SAX the events are received by the handler 106-2
(i.e., effectively a callback mechanism) that processes them. In this example, the handler

106-2 is used to populate a Java class.

When the template 112 is invoked, it calls back to the X2XMILHandler interface 114-1. The
handler 114-1 processes the callback by obtaining the requested data and maintaining the state

of parsing.

While the handler interface 114-1 is similar in terms of the various functions performed by the
XML-OBJECT mapping module 106 there are certain differences. An element name is
generated or hand coded, and is not taken from a schema with “namespace” support. The
element name can be made unique for each element. Therefore, only a name parameter is

required on the startElement and endElement methods.

When mapping is performed by the XML-OBJECT mapping module 106, the input source
class 106-1 (i.e., an XMLReader) returns the name of the element as a string. In the mapping
class/interface 106-3, 106-4 the element name is paired with a unique number. This number is
used in a switch statement to control the processing of the elements. In the OBJECT-XML

module 114, processing is optimized and coding assistance is improved by defining the

22

WO 02/101579 PCT/US01/49577
element name as an integer constant. Therefore, callbacks to these methods use integer

constants instead of strings.

The order of events in the handler interface 114-1 mirrors the order of information in the

object 116 themselves.

The XML document template 112 (written using JavaServer Pages technology), uses the
coding style detailed below. JSP technology separates the user interface from content
generation enabling changing to the overall page layout without altering the underlying
dynamic content. JavaServer Pages is an extension of the Java Servlet technology, which is

well known to those skilled in the art.

XML document template 112 — JSP coding style example
Callbécks are coded for the start and end tags of the document 118 and for complex types.
This allows the handler 114-1 to maintain state. In the JSP XML document template 112, the
start and end tags are also coded directly so that they will be directed to the targeted output
stream. When working with a simple type, callbacks do not have to be coded, but start and end

tags should still be coded so that they will be directed to the target output stream.

If a complex or simple type is optional then isOptionalElementPresent() is used in a
conditional clause within the template 112 to control whether the optional element is

generated.

If an attribute is optional then isOptional AttributePresent(int attributeName) is used in a
complex type and a isOptional AttributePresent(int elementName, int attributeName) in a
simple type. If the element type is a repeating simple type then determine if it contains an
optional attribute using a isOptional AttributePresent(int index, int elementName, int

attributeName) method.

For repeating elements, getElementRepetitions method is used to return the number of
repeating elements. This is used to construct a loop in the template 112 to process each
element. For simple types, the template 112 should contain the start and end tags and call a

getElementValue(int index, int elementName) to obtain the value. For complex types, since

23

WO 02/101579 PCT/US01/49577
state must be maintained the template 112 should invoke the startElement(int index, int

elementName) and endElement(int index, int elementName) methods.

Table M114-2 summarizes the main functions (i.e., not exhaustive) of the mapping interface
114- 2 (X2XMLMapping). The mapping interface 114-2 executes the mapping function
(between Java and XML) and establishes an output target stream. The mapping interface
114-2 extends the. handler interface 114-1, which provides the document template 112 call
back methods necessary for generating the output XML document 118.

TABLE M114-2

FUNCTION DESCRIPTION

execute() Performs the mapping that will create the output XML

document 118.

setOQutputStream() u Sets the output stream to which the output XML

document 118 will be generated.

Table M114-3 summarizes the main functions (i.e., not exhaustive) of the mapping class 114-3
(X2XMLMappingImpl). The mapping class 114-3 provides the methods for mapping from the
input Java object 116 to the output XML document 118. As discussed above in relation to the
definitions of class and interface, the X2XMLMappingImpl class 114-3 is not used directly,
but is sub-classed with content added to appropriate methods depending on document type
definitions for the output XML document 118 to be mapped to and the input Java object 116 it

is mapping from.

24

WO 02/101579 PCT/US01/49577
TABLE M114-3

FUNCTION DESCRIPTION

execute() Performs the mapping that will create the output XML

document 118.

setOQutputStream() Sets the output stream to which the output XML

document 118 will be generated.

Table M114-4 summarizes the main functions (i.e., not exhaustive) of the output target class

114-4 (X2XMLOutputTarget).

X2XMLOutputTarget class 114-4 allows the XML document 118 to be written to a byte
stream or a character stream. Class 114-4 provides optimizations, such as allowing the byte
stream to be targeted to the output stream of a serviet. Therefore, the XML document 118 is

not buffered before being written out.

TABLE M114-4

FUNCTION DESCRIPTION

close() Closes output stream and releases any system resources

associated with the stream.

flush() Flushes output stream and forces any buffered output

bytes to be written out

write() Writes bytes from a specified byte array to the output

stream

25

WO 02/101579 PCT/US01/49577

In summary, the X2XMLMappingImpl class 114-3 implements the X2XMLMapping interface
114-2. The X2XMLMapping interface 114-2 extends the X2XMILHandler interface 114-1.
Therefore, the X2XMLMappinglmpl class 114-3 implements the methods defined in the
X2XMLHandler interface 114-1.

With reference to Fig. 4, a method 400 is illustrated showing the general steps that are
performed to map the software object 116 (e.g., a Java Bean) to the XML document 118:

(a) obtain an instance of the mapping interface 114-2 (e.g., X2XMLMapping) for
implementing the mapping from input object X 116 to the output XML document 118 at step
402;

(b) set the software object 116 and an output stream for the XML document 118 in the
mapping interface 114-3 at step 404;

(c) invoke the mapping interface 114-2 at step 406;

(d) create a JSP container at step 408;

(¢) the mapping interface 114-2 invokes the JSP container using the JSP XML template 112
that will create the XML document 118 at step 410;

(f) the JSP container compiles and executes the JSP XML template 112 at step 412;

(g) the compiled JSP XML template 112 starts writing, at step 414, the XML document 118 to
the specified output stream (from step 404);

(h) when appropriate for element/attribute data and for start/end tags, at step 416, the compiled
JSP XML template 112 calls back to the mapping interface 114-2 to maintain state of
processing and to add data to the output XML document 118 (data is retrieved from the
software object 116;

(1) the compiled JSP XML template 112 can optionally call, at step 418, an
isOptionalElementPresent method or an isOptional AttributePresent method to determine if
certain portions of the XML document should be generated;

(3) the JSP XML template 112 calls back to a getElementRepetitions method to determine how
many times it should loop over generation of certain portions of the XML document at step
420; and

(k) the state of processing is maintained by a stack at step 422; this is useful when generating
complex types within an XML document where an array occurs, recursion occurs or a complex

type is contained within another complex type.

26

WO 02/101579 PCT/US01/49577
Mapping from Java to XML uses the XML document template 112, which is coded with
similar standards imposed by the parser 104, which processes events (ét least for complex
objects). For example, for complex types, start and end tags must be coded (not required for
primitive types). An example Il “JAVA-XML CUSTOMER?, detailed below, generates an

output customer XML document from a input customer java object.

EXAMPLE II
JAVA-XML CUSTOMER

The following components (detailed below) are part of example II:

(A) Customer2XMLMapping.java: the handler class 114-1 that the JSP 112 calls to obtain
values from the input customer Java object 116 to populate the output XML document 118;
(B) customer.jsp: the JSP template 112 used to generate the output XML document 118;

(C) CustomerSymbols.java: contains constants and a hashmap. The hashmap is used to map
the names of the tags to integer constants. The JSP template 112 uses the integer constants;
and

(D) execute.java: the program of the mapping class/interface 114-2, 114-3 used to execute

mapping from Java to XML and from XML to Java (as provided above as item C for Example
D).

A. A program (Customer2XMLMapping.java), with some reductions of conciseness, to

construct the XML document from the input Java object.

/ISTART Customer2XMLMapping.java
package com.xxx.xml2xmapping.sample.customer;
import Jjava.util.*;
import com.ibm.xmlZ2xmapping.util.*;
public class Customer2XMLMapping extends
com. xxx.xml2xmapping.X2XMLMappingImpl {
private Customer fieldCustomer;
/**
* CustomerZXMLMapping constructor comment.
*/
public Customer2XMLMapping () {

27

WO 02/101579 PCT/US01/49577
super () ;
fieldPageName="customer.jsp";
1
/**
* getElementRepetitions method comment.
*/
public int getElementRepetitions (int name) {
switch (name) {
}
return 0;
}
/ * k
* getElementValue method comment.
*/
public String getElementValue (int name) {
switch (name) {
case CustomerSymbols.CUSTOMER FIRSTNAME: ({
return this.fieldCustomer.getFirstName () ;
}
case CustomerSymbols.CUSTOMER LASTNAME: {
return this.fieldCustomer.getLastName () ;
}
case CustomerSymbols.CUSTOMER_ID: {
return this.fieldCustomer.getId();

}

return "";

}

* getElementValue method comment.
public String getElementValue (int index, int name) {
switch (name) {

}

.
’

return
}
* @param aCustomer
com. xxxX.xml2xmapping.sample.customer.Customer

28

WO 02/101579 PCT/US01/49577

public void setCustomer (Customer aCustomer) {
this.fieldCustomer = aCustomer;

}

}

//END Customer2XMLmapping.java

B. A document template (Customer.jsp), with some reductions for conciseness, in JSP for

module 112.

// START Customer.jsp
<%@ page import="com.ibm.xml2xmapping.*" %>
<%@ page

import="com.ibm.xml2xmapping.sample.customer.CustomerSymbols"

o

>

<%X2XMLHandler handler =

(X2XMLHandler) request.getAttribute ("com. ibm.xml2xmapping.X2XMLH
andler");

handler.setWriter (out) ;%>

<?xml version="1.0"?>

<customer>
<FirstName><%=handler.getElementValue(CustomerSymbols.CUSTOMER_
FI RSTNAME) $></FirstName>
<LastName><%=handler.getElementValue(CustomerSymbols.CUSTOMER_L
AS TNAME) $></LastName>
<CustId><%=handler.getElementValue(CustomerSymbols.CUSTOMER_ID)
%> </CustId>

</customer>

//END Customer.jsp

C. A program (Customersymbols.java), with some reductions for conciseness, of a

hashmap and constants used by customer.jsp.

/I START Customersymbols.java
package com.xxx.xml2xmapping.sample.customer;
import java.util.HashMap;

public class CustomerSymbols {
29

WO 02/101579 PCT/US01/49577
public static final int CUSTOMER = 1;
public static final int CUSTOMER FIRSTNAME = 2;
public static final int CUSTOMER LASTNAME = 3;
public static final int CUSTOMER ID = 4;
private static CustomerSymbols fieldInstance;
private HashMap fieldName2SymbolDictionary;
private static Object anObject = new Object ();
* CustomerInfoElementSymbols constructor comment.
private CustomerSymbols () {
super () ;
this.fieldName2SymbolDictionary = new HashMap () ;
this.fieldName2SymbolDictionary.put ("customer", new
Integer (CustomerSymbols.CUSTOMER)) ;
this.fieldName2SymbolDictionary.put("FirstName", new
Integer(CustomerSymbols.CUSTOMER_FIRSTNAME));
this.fieldNameZSymbolDictionary.put("LastName”, new
Integer(CustomerSymbols.CUSTOMER_LASTNAME));
this.fieldName2SymbolDictionary.put ("CustId", new
Integer(CustomerSymbols.CUSTOMER_ID));
}
* @return int
* @param elementName java.lang.String
public static int getSymbol (String elementName) |
if (CustomerSymbols.fieldInstance == null) {
synchronized (anObject) {
| if (CustomerSymbols.fieldInstance == null) {
CustomerSymbols. fieldInstance = new

CustomerSymbols () ;
}

}

return
((Integer)CustomerSymbols.fieldInstance.fieldNameZSymbolDiction
ar y.get (elementName)) .intValue () ;
}
}
/I END Customersymbols.java

30

WO 02/101579 PCT/US01/49577

To generate the XML document for the array of customers situation discussed in conjunction
with Example I a sample of the revised customer.jsp is provided below:

for (int 1i=0;

i<handler.getElementRepetitions (CustomerSymbols.CUSTOMERS) ; i++)

{
<%handler.startElement (i, CustomerSymbols.CUSTOMER) ; $>

<customer>

<FirstName>

<%=handler.getElementValue (CustomerSymbols.CUSTOMER FIRSTNAM
E)%$></FirstName>

<LastName>

<%=handler.getElementValue (CustomerSymbols.CUSTOMER LASTNAME
) %$></LastName>

<CustId><%=handler.getElementValue (CustomerSymbols.CUSTOMER
ID) $></CustId> |

</customer>
<%=handler.endElement (i, CustomerSymbols.CUSTOMER) ; %>

<3}%>

The handler 114-1 determines the array size (i.e., how many loops are to be executed) and
returns in the getElementRepitions method. When the customer.jsp calls startElement with the
index and name, the handler 114-1 sets a reference to that particular customer object in the

array.

To handle recursion, the handler 114-1 uses a stack. As the object recurses, the handler 114-1
pushes onto the stack with a startElement, and pops with the endElement. The working object

is the object on top of the stack.

If an object 1s optional then the isOptionalElement() or isOptional Attribute() methods are used
to determine if the object exists. The processing in the customer.jsp is revised to add a
conditional statement that uses a returned boolean for one of the isOptionalxxx methods.

In summary, advantages of an exemplary embodiment of the present include:

31

WO 02/101579 PCT/US01/49577
(a) providing a common framework for mapping from an XML document to a Java object and

from a Java object to an XML document, wherein the framework uses a handler that masks
how a property is obtained for mapping;

(b) use of readily available tools (e.g. SAX parser, JSP) to instantiate the mapping methods
(XML/Java) of the present invention; and

() providing interfaces and classes (in Java environment) that simplify the structure of the

mapping process of the present invention and makes the mapping process similar for both

mapping directions.

32

WO 02/101579 PCT/US01/49577

CLAIMS:

1. A computer-implemented method for converting a data structure representing a
software object to structured language elements of a document, the method comprising:

(a) generating a structured language element template document;

(b) reading properties from the software object, the properties being associated with the
structured language elements of the document;

(c) using the properties, obtaining constructs defined by the structured language
elements based on the association between the properties and the structured language elements;
and

(d) populating the structured language element template document with the constructs.

2. The computer-implemented method of claim 1, wherein step (c) includes direct call
back to the software object to obtain properties that represent the constructs that define

structure and content of the document.

3. The computer-implemented method of claim 1, wherein step (c) includes creating an

object model that represents structure and content of the document.

4. The computer-implemented method of claim 1, wherein the structured language

elements represent Extensible Markup Language (XML) constructs.

5. The computer-implemented method of claim 1, wherein step (c) includes constructing a

loop in the template document to process repeating structures language elements.

6. A computer-implemented method for converting structured language elements ofa
document to a data structure representing a software object, the method comprising:

(a) reading each of the structured language elements of the document;

(b) determining a property, selected from a set of available properties defined by the
data structure of the software object, associated with structured language elemeﬁts of the

document; and

33

WO 02/101579 PCT/US01/49577
(c) populating the properties of the data structure representing the software object with

structured language element values from the document.

7. The computer-implemented method of claim 6, wherein step (a) includes generating

events that represent structure and content of the document.

8. The computer-implemented method of claim 6, wherein step (a) includes calling back

to a handler with events that represent structure and content of the document.

9. The computer-implemented method of claim 6, wherein step (a) includes creating an

object model that represents structure and content of the document.

10. The computer-implemented method of claim 6, wherein the structured language
elements represent Extensible Markup Language (XML) constructs and step (a) further
includes enforcing Document Type Definition (DTD) and XML schema standards.

11. The computer-implemented method of claim 10, further comprising maintaining a

stack for recursive XML constructs.

12. A system for converting a software object (116) containing properties to a document
(118) defined by structured language elements, the system comprising:

(a) a document template (112);

(b) a handler interface (114-1)for providing a representation of the structured language
elements of the document (118) based on call backs made by the document template (112);

(c) a mapping module(114-2, 114-3), in communication with the handler interface
(114-1), for converting properties of the software objects (116)to structured language elements
recognized by the document (118); and

(d) an output target class (114-4), in communication with the mapping module (114-2,
114-3), for writing the structured language elements generated in step (¢) to the document

(118).

13. The system of claim 12, wherein the mapping module includes a mapping interface

(114-2) for executing the conversion of the properties to the structured language elements and

34

WO 02/101579 PCT/US01/49577

for setting an output target stream of the document (118) and a mapping class (114-3) for

providing methods used by the mapping interface (114-2).

14. The system of claim 13, wherein the output target stream is defined as a buffer.

15. The system of claim 13, wherein the output target stream is defined as a response

stream of a servlet.

16. The system of claim 12, wherein the structured language elements represent Extensible

Markup Language (XML) constructs.

17. The system of claim 16, wherein the document template is created using JavaServer

Pages (JSP).

18. A system for converting a document (108) containing structured language elements to a
software object (110), the system comprising:

(2) a parser (104) for obtaining events representative of features of the document (108);

(b) an input source class (106-1) for reading the document (108);

(c) a content handler class (106-2), in communication with the input source class
(106-1), for implementing a buffer for the events obtained by the parser (104); and

(d) a mapping module (106-3, 106-4), in communication with the content handler class
(106-2), for converting the events obtained by the parser (104) to properties for the software
object (110).

19. The system of claim 18, wherein the mapping module includes a mapping interface
(106-4) for executing the conversion of the events to the properties and for setting an output
target stream of the software object (110) and a mapping class (106-3) for providing methods
used by the mapping interface (106-4).

20. The system of claim 19, wherein the structured language elements represent Extensible

Markup Language (XML) constructs.

35

WO 02/101579 PCT/US01/49577
21. A method of converting a software object having properties to a document represented
by structured language elements, the method comprising:
(a) supplying the software object to an instance of an invoked mapping interface;
(b) compiling and executing a template using an instance of an invoked container; and

(c) writing the document to a specified output stream using the compiled template.

22, The method of claim 21, further comprising calling back to the mapping interface to

maintain state of processing.

23. The method of claim 21, further comprising calling an isOptionalElementPresent
method through the compiled template to determine if selected portions of the document are to

be generated.

24. The method of claim 21, further comprising calling an isOptional AttributePresent
method through the compiled template to determine if selected portions of the document are to

be generated.

25. The method of claim 21, further comprising maintaining a state of processing using a
stack when generating complex types within the document, said complex types selected from
the group consisting of: an array, recursion and a complex type being contained within another

complex type.
26. The method of claim 25, wherein the state of the stack is maintained by call backs from
the compiled template to the mapping interface to indicate when the complex types start and

end.

27. The method of claim 21, further comprising calling a getElementRepetitions method to

determine how many times the template loops over selected portions of the document.

28. The method of claim 21, wherein the structured language elements represent Extensible

Markup Language (XML) constructs and the template is created using JavaServer Pages (JSP).

36

WO 02/101579 PCT/US01/49577
29. A method of converting a document containing structured language elements to a
software object, the method comprising:
(a) supplying the document to an instance of an invoked mapping interface;
(b) registering the mapping interface as a content handler;
(c) parsing the document using an instance of an invoked parser; and
(d) populating the software object with properties aésociated with structured language elements

parsed from the document through call backs made to the mapping interface.

30. The method of claim 29, wherein step (d) includes call backs to invoke methods
selected from the group consisting of: startDocument, startElement, characters, endElement,

and endDocument.

31. The method of claim 30, wherein the startDocument and startElement methods

executed by the mapping interface creates the software object.

32. The method of claim 29, wherein the endElement method executed by the mapping

interface sets the properties into the software object.

33. The method of claim 29, wherein the structured language elements represent Extensible

Markup Language (XML) constructs.

34. A computer program product for converting a data structure representing a software
object to structured language elements of a document, the computer program product
comprising computer readable program code devices for:

(a) generating a structured language element template document;

(b) reading properties from the software object, the properties being associated with the
structured language elements of the document;

(c) using the properties, obtaining constructs defined by the structured language
elements based on the association between the properties and the structured language elements;
and

(d) populating the structured language element template document with the constructs.

37

WO 02/101579 PCT/US01/49577
35. The computer program product of claim 34, wherein step (c¢) includes direct call back

to the software object to obtain events that represent the constructs that define structure and

content of the document.

36. The computer program product of claim 34, wherein step (c) includes creating an

object model that represents structure and content of the document.

37. The computer program product of claim 34, wherein the structured language elements

represent Extensible Markup Language (XML) constructs.

38. The computer program product of claim 34, wherein step (c) includes constructing a

loop in the template document to process repeating structures language elements.

39. A computer program product for converting structured language elements of a
document to a data structure representing a software object, the computer program product

comprising computer readable program code devices for:

(2) reading each of the structured language elements of the document;

(b) determining a property, selected from a set of available properties defined by the
data structure of the software object, associated with structured language elements of the
document; and

(c) populating the properties of the data structure representing the software object with

structured language element values from the document.

40. The computer program product of claim 39, wherein step (a) includes generating events

that represent structure and content of the document.

41. The computer program product of claim 39, wherein step (a) includes calling back to a

handler with events that represent structure and content of the document.

42. The computer program product of claim 39, wherein step (a) includes creating an

object model that represents structure and content of the document.

38

WO 02/101579 PCT/US01/49577
43. The computer program product of claim 39, wherein the structured language elements
represent Extensible Markup Language (XML) constructs and step (a) further includes
enforcing Document Type Definition (DTD) and XML schema standards.

44. The computer program product of claim 43, further comprising maintaining a stack for

recursive XML constructs.

39

WO 02/101579 PCT/US01/49577
1/4
20 FIG. 1
PROCESSING UNIT b~ %2 OPERATING |~ 90
I ; SYSTEM
% sYsTEN MEMORY | g
Ve 30 : 5
RAM i | APPLICATIONS
,a»/”’/””’?
VR g § 54
(32 BIOS) : MODULES
44 34 56
/ / DATA
= INTERFACE f—w= HARD DRIVE
18 %
/ ™ FLOPPY DRIVE e 10
VN 54
{ CD-ROM DRIVE ——= NONITOR |~
et IVERFACE =1 [r¢ L2
58
KEYBOARD
o v | b
ADAPTER "
) a— INPUT DEVICE |~
PORT [
—
\ f
16 78
NETHORK
—= W [LA 0
{

REMOTE COMPUTER

MEMORY
STORAGE

| ~70

WO 02/101579 PCT/US01/49577
2l4
FIG. 2
102
{
TNTEGRATION COMPONENT
104~ paRsER 100
%96 e
XML-OBJECT MAPPING MODULE
106-1 106-2 106-4
i / / /
INPUT BUFFERED
INPUT XML MAPPING
SOURCE CONTENT
DOCUMENT CLASS HANDLER cLass| | INTERFACE
110
/
106-3~ | MAPPING JAVA
N CLASS = OBJECT
114
[
XML-OBJECT MAPPING MODULE
118 114-4 114-2 114-1 115
[! / / /
OUTPUT XML OUTPUT TARGET MAPPING HANDLER A
DOCUMENT CLASS INTERFACE INTERFACE OBJECT
) MAPPING
M-~ Telkss

112~

XML DOCUMENT
TEMPLATE

WO 02/101579 PCT/US01/49577

3/4
FIG. 3

OBTAIN INSTANCE OF A |~ 302
MAPPING INTERFACE P 300

l

INVOKE THE MpPING |~ 304
INTERFACE

l

SUPPLY INPUT XML 306
DOCUMENT

l

OBTAIN INSTANCE OF |~ 308
AN EVENT PARSER

|

REGISTER MAPPING 310
INTERFACE AS
CONTENT HANDLER

'

INVOKE EVENT PARSER ON |~312
INPUT XML DOCUMENT

'

CALL MAPPING INTERFACE |3
T0 INVOKE VARIOUS
MAPPING METHODS

Y
CREATE SOFTWARE OBJECT |~ 316

Y
| POPULATE SOFTWARE 0BJECT |-~318

WO 02/101579 PCT/US01/49577

4/4
FIG. 4 400
“(/——

OBTAIN INSTANCE OF A MAPPING INTERFACE | '0°

l

ESTABLISH INPUT OBJECT AND SET OUTPUT STREAM -0

7

INVOKE MAPPING INTERFACE

'

CREATE JSP CONTAINER

l

INVOKE JSP CONTAINER USING A JSP XML TEMPLATE

'

COMPILE AND EXECUTE JSP XML TEMPLATE

'

START WRITING XML DOCUMENT

l

CALL BACK TO MAPPING INTERFACE TO MAINTAIN L~ 416
STATE AND TO ADD DATA TO XML DOCUMENT

&

DETERMINE IF CERTAIN PORTIONS OF XML 418
DOCUMENT SHOULD BE GENERATED

l

DETERMINE LOOP REQUIREMENTS

'

MAINTAIN STACK

| _-408

| _-410

| -412

| -414

|_-420

|42

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US01/49577

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) : Go6F 17/21
US CL :707/501.1, 518, 522, 528

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

US. : 707/801.1, 518, 522, 528

Documentation searched other than minimum documentation to the extent that such documents are included in the fields

searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WEST Database search
search terms: XML, java, JSP, mapping, conversion, DOM, etc.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Gitation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 6,226,675 Bl (MELTZER et al) 01 May 2001, all. 1-44
A, P US 6,327,628 B1 (ANUFF et al) 04 December 2001, all. 1-44
AE US 6,343,265 B1 (GLEBOV et al) 29 January 2002, all. 1-44
A, E | US 6,347,307 B1 (SANDHU et al) 12 February 2002, all. 1-44

D Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited docaments: A
"A" document defining the general state of the art which is not considered
to be of particular relsvance
VE" earlier document published on or affer the international filing date X
"L document which may throw donbts on priority claim(s) or which is
cited fo establish the publication date of ancther citation or other
special reason (as specifisd) e
"o" document referring to an oral disclosnre, use, exhibition or other
means
P document published prior to the international filing date but later ngn

than the priority date claimed

later document published after the international filing date or priority
date and not in conflict with the application but cited to undexstand
the principle or theory underlying the invention

document of particular rel ; the claimed invention cannot be
considered novel or cannot be congidered to involve an inventive step
when the document is taken alone

document of particular rel ; the claimed in cannot be
considered to invelve an inventive step when the document is combined
with one or more other such doenments, such combination being
obvious to a person skilled in the art

doonment momber of the same patent family

Date of the actual completion of the international search

17 MAY 2002

Date of mailing of the international search report

13 JUN 2802

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (708) 305-3230

Authorized officer

STEPHEN HONG @ 0 lL

Telephone No. * (708) 805-8900

e

-7

Form PCT/ISA/210 (second sheet) (Tuly 1998)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

